xref: /linux/arch/x86/mm/fault.c (revision f86fd32d)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright (C) 1995  Linus Torvalds
4  *  Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
5  *  Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
6  */
7 #include <linux/sched.h>		/* test_thread_flag(), ...	*/
8 #include <linux/sched/task_stack.h>	/* task_stack_*(), ...		*/
9 #include <linux/kdebug.h>		/* oops_begin/end, ...		*/
10 #include <linux/extable.h>		/* search_exception_tables	*/
11 #include <linux/memblock.h>		/* max_low_pfn			*/
12 #include <linux/kprobes.h>		/* NOKPROBE_SYMBOL, ...		*/
13 #include <linux/mmiotrace.h>		/* kmmio_handler, ...		*/
14 #include <linux/perf_event.h>		/* perf_sw_event		*/
15 #include <linux/hugetlb.h>		/* hstate_index_to_shift	*/
16 #include <linux/prefetch.h>		/* prefetchw			*/
17 #include <linux/context_tracking.h>	/* exception_enter(), ...	*/
18 #include <linux/uaccess.h>		/* faulthandler_disabled()	*/
19 #include <linux/efi.h>			/* efi_recover_from_page_fault()*/
20 #include <linux/mm_types.h>
21 
22 #include <asm/cpufeature.h>		/* boot_cpu_has, ...		*/
23 #include <asm/traps.h>			/* dotraplinkage, ...		*/
24 #include <asm/pgalloc.h>		/* pgd_*(), ...			*/
25 #include <asm/fixmap.h>			/* VSYSCALL_ADDR		*/
26 #include <asm/vsyscall.h>		/* emulate_vsyscall		*/
27 #include <asm/vm86.h>			/* struct vm86			*/
28 #include <asm/mmu_context.h>		/* vma_pkey()			*/
29 #include <asm/efi.h>			/* efi_recover_from_page_fault()*/
30 #include <asm/desc.h>			/* store_idt(), ...		*/
31 #include <asm/cpu_entry_area.h>		/* exception stack		*/
32 #include <asm/pgtable_areas.h>		/* VMALLOC_START, ...		*/
33 
34 #define CREATE_TRACE_POINTS
35 #include <asm/trace/exceptions.h>
36 
37 /*
38  * Returns 0 if mmiotrace is disabled, or if the fault is not
39  * handled by mmiotrace:
40  */
41 static nokprobe_inline int
42 kmmio_fault(struct pt_regs *regs, unsigned long addr)
43 {
44 	if (unlikely(is_kmmio_active()))
45 		if (kmmio_handler(regs, addr) == 1)
46 			return -1;
47 	return 0;
48 }
49 
50 /*
51  * Prefetch quirks:
52  *
53  * 32-bit mode:
54  *
55  *   Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
56  *   Check that here and ignore it.
57  *
58  * 64-bit mode:
59  *
60  *   Sometimes the CPU reports invalid exceptions on prefetch.
61  *   Check that here and ignore it.
62  *
63  * Opcode checker based on code by Richard Brunner.
64  */
65 static inline int
66 check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
67 		      unsigned char opcode, int *prefetch)
68 {
69 	unsigned char instr_hi = opcode & 0xf0;
70 	unsigned char instr_lo = opcode & 0x0f;
71 
72 	switch (instr_hi) {
73 	case 0x20:
74 	case 0x30:
75 		/*
76 		 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
77 		 * In X86_64 long mode, the CPU will signal invalid
78 		 * opcode if some of these prefixes are present so
79 		 * X86_64 will never get here anyway
80 		 */
81 		return ((instr_lo & 7) == 0x6);
82 #ifdef CONFIG_X86_64
83 	case 0x40:
84 		/*
85 		 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
86 		 * Need to figure out under what instruction mode the
87 		 * instruction was issued. Could check the LDT for lm,
88 		 * but for now it's good enough to assume that long
89 		 * mode only uses well known segments or kernel.
90 		 */
91 		return (!user_mode(regs) || user_64bit_mode(regs));
92 #endif
93 	case 0x60:
94 		/* 0x64 thru 0x67 are valid prefixes in all modes. */
95 		return (instr_lo & 0xC) == 0x4;
96 	case 0xF0:
97 		/* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
98 		return !instr_lo || (instr_lo>>1) == 1;
99 	case 0x00:
100 		/* Prefetch instruction is 0x0F0D or 0x0F18 */
101 		if (probe_kernel_address(instr, opcode))
102 			return 0;
103 
104 		*prefetch = (instr_lo == 0xF) &&
105 			(opcode == 0x0D || opcode == 0x18);
106 		return 0;
107 	default:
108 		return 0;
109 	}
110 }
111 
112 static int
113 is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
114 {
115 	unsigned char *max_instr;
116 	unsigned char *instr;
117 	int prefetch = 0;
118 
119 	/*
120 	 * If it was a exec (instruction fetch) fault on NX page, then
121 	 * do not ignore the fault:
122 	 */
123 	if (error_code & X86_PF_INSTR)
124 		return 0;
125 
126 	instr = (void *)convert_ip_to_linear(current, regs);
127 	max_instr = instr + 15;
128 
129 	if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE_MAX)
130 		return 0;
131 
132 	while (instr < max_instr) {
133 		unsigned char opcode;
134 
135 		if (probe_kernel_address(instr, opcode))
136 			break;
137 
138 		instr++;
139 
140 		if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
141 			break;
142 	}
143 	return prefetch;
144 }
145 
146 DEFINE_SPINLOCK(pgd_lock);
147 LIST_HEAD(pgd_list);
148 
149 #ifdef CONFIG_X86_32
150 static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
151 {
152 	unsigned index = pgd_index(address);
153 	pgd_t *pgd_k;
154 	p4d_t *p4d, *p4d_k;
155 	pud_t *pud, *pud_k;
156 	pmd_t *pmd, *pmd_k;
157 
158 	pgd += index;
159 	pgd_k = init_mm.pgd + index;
160 
161 	if (!pgd_present(*pgd_k))
162 		return NULL;
163 
164 	/*
165 	 * set_pgd(pgd, *pgd_k); here would be useless on PAE
166 	 * and redundant with the set_pmd() on non-PAE. As would
167 	 * set_p4d/set_pud.
168 	 */
169 	p4d = p4d_offset(pgd, address);
170 	p4d_k = p4d_offset(pgd_k, address);
171 	if (!p4d_present(*p4d_k))
172 		return NULL;
173 
174 	pud = pud_offset(p4d, address);
175 	pud_k = pud_offset(p4d_k, address);
176 	if (!pud_present(*pud_k))
177 		return NULL;
178 
179 	pmd = pmd_offset(pud, address);
180 	pmd_k = pmd_offset(pud_k, address);
181 
182 	if (pmd_present(*pmd) != pmd_present(*pmd_k))
183 		set_pmd(pmd, *pmd_k);
184 
185 	if (!pmd_present(*pmd_k))
186 		return NULL;
187 	else
188 		BUG_ON(pmd_pfn(*pmd) != pmd_pfn(*pmd_k));
189 
190 	return pmd_k;
191 }
192 
193 void vmalloc_sync_all(void)
194 {
195 	unsigned long address;
196 
197 	if (SHARED_KERNEL_PMD)
198 		return;
199 
200 	for (address = VMALLOC_START & PMD_MASK;
201 	     address >= TASK_SIZE_MAX && address < VMALLOC_END;
202 	     address += PMD_SIZE) {
203 		struct page *page;
204 
205 		spin_lock(&pgd_lock);
206 		list_for_each_entry(page, &pgd_list, lru) {
207 			spinlock_t *pgt_lock;
208 
209 			/* the pgt_lock only for Xen */
210 			pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
211 
212 			spin_lock(pgt_lock);
213 			vmalloc_sync_one(page_address(page), address);
214 			spin_unlock(pgt_lock);
215 		}
216 		spin_unlock(&pgd_lock);
217 	}
218 }
219 
220 /*
221  * 32-bit:
222  *
223  *   Handle a fault on the vmalloc or module mapping area
224  */
225 static noinline int vmalloc_fault(unsigned long address)
226 {
227 	unsigned long pgd_paddr;
228 	pmd_t *pmd_k;
229 	pte_t *pte_k;
230 
231 	/* Make sure we are in vmalloc area: */
232 	if (!(address >= VMALLOC_START && address < VMALLOC_END))
233 		return -1;
234 
235 	/*
236 	 * Synchronize this task's top level page-table
237 	 * with the 'reference' page table.
238 	 *
239 	 * Do _not_ use "current" here. We might be inside
240 	 * an interrupt in the middle of a task switch..
241 	 */
242 	pgd_paddr = read_cr3_pa();
243 	pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
244 	if (!pmd_k)
245 		return -1;
246 
247 	if (pmd_large(*pmd_k))
248 		return 0;
249 
250 	pte_k = pte_offset_kernel(pmd_k, address);
251 	if (!pte_present(*pte_k))
252 		return -1;
253 
254 	return 0;
255 }
256 NOKPROBE_SYMBOL(vmalloc_fault);
257 
258 /*
259  * Did it hit the DOS screen memory VA from vm86 mode?
260  */
261 static inline void
262 check_v8086_mode(struct pt_regs *regs, unsigned long address,
263 		 struct task_struct *tsk)
264 {
265 #ifdef CONFIG_VM86
266 	unsigned long bit;
267 
268 	if (!v8086_mode(regs) || !tsk->thread.vm86)
269 		return;
270 
271 	bit = (address - 0xA0000) >> PAGE_SHIFT;
272 	if (bit < 32)
273 		tsk->thread.vm86->screen_bitmap |= 1 << bit;
274 #endif
275 }
276 
277 static bool low_pfn(unsigned long pfn)
278 {
279 	return pfn < max_low_pfn;
280 }
281 
282 static void dump_pagetable(unsigned long address)
283 {
284 	pgd_t *base = __va(read_cr3_pa());
285 	pgd_t *pgd = &base[pgd_index(address)];
286 	p4d_t *p4d;
287 	pud_t *pud;
288 	pmd_t *pmd;
289 	pte_t *pte;
290 
291 #ifdef CONFIG_X86_PAE
292 	pr_info("*pdpt = %016Lx ", pgd_val(*pgd));
293 	if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
294 		goto out;
295 #define pr_pde pr_cont
296 #else
297 #define pr_pde pr_info
298 #endif
299 	p4d = p4d_offset(pgd, address);
300 	pud = pud_offset(p4d, address);
301 	pmd = pmd_offset(pud, address);
302 	pr_pde("*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
303 #undef pr_pde
304 
305 	/*
306 	 * We must not directly access the pte in the highpte
307 	 * case if the page table is located in highmem.
308 	 * And let's rather not kmap-atomic the pte, just in case
309 	 * it's allocated already:
310 	 */
311 	if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd))
312 		goto out;
313 
314 	pte = pte_offset_kernel(pmd, address);
315 	pr_cont("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
316 out:
317 	pr_cont("\n");
318 }
319 
320 #else /* CONFIG_X86_64: */
321 
322 void vmalloc_sync_all(void)
323 {
324 	sync_global_pgds(VMALLOC_START & PGDIR_MASK, VMALLOC_END);
325 }
326 
327 /*
328  * 64-bit:
329  *
330  *   Handle a fault on the vmalloc area
331  */
332 static noinline int vmalloc_fault(unsigned long address)
333 {
334 	pgd_t *pgd, *pgd_k;
335 	p4d_t *p4d, *p4d_k;
336 	pud_t *pud;
337 	pmd_t *pmd;
338 	pte_t *pte;
339 
340 	/* Make sure we are in vmalloc area: */
341 	if (!(address >= VMALLOC_START && address < VMALLOC_END))
342 		return -1;
343 
344 	/*
345 	 * Copy kernel mappings over when needed. This can also
346 	 * happen within a race in page table update. In the later
347 	 * case just flush:
348 	 */
349 	pgd = (pgd_t *)__va(read_cr3_pa()) + pgd_index(address);
350 	pgd_k = pgd_offset_k(address);
351 	if (pgd_none(*pgd_k))
352 		return -1;
353 
354 	if (pgtable_l5_enabled()) {
355 		if (pgd_none(*pgd)) {
356 			set_pgd(pgd, *pgd_k);
357 			arch_flush_lazy_mmu_mode();
358 		} else {
359 			BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_k));
360 		}
361 	}
362 
363 	/* With 4-level paging, copying happens on the p4d level. */
364 	p4d = p4d_offset(pgd, address);
365 	p4d_k = p4d_offset(pgd_k, address);
366 	if (p4d_none(*p4d_k))
367 		return -1;
368 
369 	if (p4d_none(*p4d) && !pgtable_l5_enabled()) {
370 		set_p4d(p4d, *p4d_k);
371 		arch_flush_lazy_mmu_mode();
372 	} else {
373 		BUG_ON(p4d_pfn(*p4d) != p4d_pfn(*p4d_k));
374 	}
375 
376 	BUILD_BUG_ON(CONFIG_PGTABLE_LEVELS < 4);
377 
378 	pud = pud_offset(p4d, address);
379 	if (pud_none(*pud))
380 		return -1;
381 
382 	if (pud_large(*pud))
383 		return 0;
384 
385 	pmd = pmd_offset(pud, address);
386 	if (pmd_none(*pmd))
387 		return -1;
388 
389 	if (pmd_large(*pmd))
390 		return 0;
391 
392 	pte = pte_offset_kernel(pmd, address);
393 	if (!pte_present(*pte))
394 		return -1;
395 
396 	return 0;
397 }
398 NOKPROBE_SYMBOL(vmalloc_fault);
399 
400 #ifdef CONFIG_CPU_SUP_AMD
401 static const char errata93_warning[] =
402 KERN_ERR
403 "******* Your BIOS seems to not contain a fix for K8 errata #93\n"
404 "******* Working around it, but it may cause SEGVs or burn power.\n"
405 "******* Please consider a BIOS update.\n"
406 "******* Disabling USB legacy in the BIOS may also help.\n";
407 #endif
408 
409 /*
410  * No vm86 mode in 64-bit mode:
411  */
412 static inline void
413 check_v8086_mode(struct pt_regs *regs, unsigned long address,
414 		 struct task_struct *tsk)
415 {
416 }
417 
418 static int bad_address(void *p)
419 {
420 	unsigned long dummy;
421 
422 	return probe_kernel_address((unsigned long *)p, dummy);
423 }
424 
425 static void dump_pagetable(unsigned long address)
426 {
427 	pgd_t *base = __va(read_cr3_pa());
428 	pgd_t *pgd = base + pgd_index(address);
429 	p4d_t *p4d;
430 	pud_t *pud;
431 	pmd_t *pmd;
432 	pte_t *pte;
433 
434 	if (bad_address(pgd))
435 		goto bad;
436 
437 	pr_info("PGD %lx ", pgd_val(*pgd));
438 
439 	if (!pgd_present(*pgd))
440 		goto out;
441 
442 	p4d = p4d_offset(pgd, address);
443 	if (bad_address(p4d))
444 		goto bad;
445 
446 	pr_cont("P4D %lx ", p4d_val(*p4d));
447 	if (!p4d_present(*p4d) || p4d_large(*p4d))
448 		goto out;
449 
450 	pud = pud_offset(p4d, address);
451 	if (bad_address(pud))
452 		goto bad;
453 
454 	pr_cont("PUD %lx ", pud_val(*pud));
455 	if (!pud_present(*pud) || pud_large(*pud))
456 		goto out;
457 
458 	pmd = pmd_offset(pud, address);
459 	if (bad_address(pmd))
460 		goto bad;
461 
462 	pr_cont("PMD %lx ", pmd_val(*pmd));
463 	if (!pmd_present(*pmd) || pmd_large(*pmd))
464 		goto out;
465 
466 	pte = pte_offset_kernel(pmd, address);
467 	if (bad_address(pte))
468 		goto bad;
469 
470 	pr_cont("PTE %lx", pte_val(*pte));
471 out:
472 	pr_cont("\n");
473 	return;
474 bad:
475 	pr_info("BAD\n");
476 }
477 
478 #endif /* CONFIG_X86_64 */
479 
480 /*
481  * Workaround for K8 erratum #93 & buggy BIOS.
482  *
483  * BIOS SMM functions are required to use a specific workaround
484  * to avoid corruption of the 64bit RIP register on C stepping K8.
485  *
486  * A lot of BIOS that didn't get tested properly miss this.
487  *
488  * The OS sees this as a page fault with the upper 32bits of RIP cleared.
489  * Try to work around it here.
490  *
491  * Note we only handle faults in kernel here.
492  * Does nothing on 32-bit.
493  */
494 static int is_errata93(struct pt_regs *regs, unsigned long address)
495 {
496 #if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD)
497 	if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD
498 	    || boot_cpu_data.x86 != 0xf)
499 		return 0;
500 
501 	if (address != regs->ip)
502 		return 0;
503 
504 	if ((address >> 32) != 0)
505 		return 0;
506 
507 	address |= 0xffffffffUL << 32;
508 	if ((address >= (u64)_stext && address <= (u64)_etext) ||
509 	    (address >= MODULES_VADDR && address <= MODULES_END)) {
510 		printk_once(errata93_warning);
511 		regs->ip = address;
512 		return 1;
513 	}
514 #endif
515 	return 0;
516 }
517 
518 /*
519  * Work around K8 erratum #100 K8 in compat mode occasionally jumps
520  * to illegal addresses >4GB.
521  *
522  * We catch this in the page fault handler because these addresses
523  * are not reachable. Just detect this case and return.  Any code
524  * segment in LDT is compatibility mode.
525  */
526 static int is_errata100(struct pt_regs *regs, unsigned long address)
527 {
528 #ifdef CONFIG_X86_64
529 	if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
530 		return 1;
531 #endif
532 	return 0;
533 }
534 
535 static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
536 {
537 #ifdef CONFIG_X86_F00F_BUG
538 	unsigned long nr;
539 
540 	/*
541 	 * Pentium F0 0F C7 C8 bug workaround:
542 	 */
543 	if (boot_cpu_has_bug(X86_BUG_F00F)) {
544 		nr = (address - idt_descr.address) >> 3;
545 
546 		if (nr == 6) {
547 			do_invalid_op(regs, 0);
548 			return 1;
549 		}
550 	}
551 #endif
552 	return 0;
553 }
554 
555 static void show_ldttss(const struct desc_ptr *gdt, const char *name, u16 index)
556 {
557 	u32 offset = (index >> 3) * sizeof(struct desc_struct);
558 	unsigned long addr;
559 	struct ldttss_desc desc;
560 
561 	if (index == 0) {
562 		pr_alert("%s: NULL\n", name);
563 		return;
564 	}
565 
566 	if (offset + sizeof(struct ldttss_desc) >= gdt->size) {
567 		pr_alert("%s: 0x%hx -- out of bounds\n", name, index);
568 		return;
569 	}
570 
571 	if (probe_kernel_read(&desc, (void *)(gdt->address + offset),
572 			      sizeof(struct ldttss_desc))) {
573 		pr_alert("%s: 0x%hx -- GDT entry is not readable\n",
574 			 name, index);
575 		return;
576 	}
577 
578 	addr = desc.base0 | (desc.base1 << 16) | ((unsigned long)desc.base2 << 24);
579 #ifdef CONFIG_X86_64
580 	addr |= ((u64)desc.base3 << 32);
581 #endif
582 	pr_alert("%s: 0x%hx -- base=0x%lx limit=0x%x\n",
583 		 name, index, addr, (desc.limit0 | (desc.limit1 << 16)));
584 }
585 
586 static void
587 show_fault_oops(struct pt_regs *regs, unsigned long error_code, unsigned long address)
588 {
589 	if (!oops_may_print())
590 		return;
591 
592 	if (error_code & X86_PF_INSTR) {
593 		unsigned int level;
594 		pgd_t *pgd;
595 		pte_t *pte;
596 
597 		pgd = __va(read_cr3_pa());
598 		pgd += pgd_index(address);
599 
600 		pte = lookup_address_in_pgd(pgd, address, &level);
601 
602 		if (pte && pte_present(*pte) && !pte_exec(*pte))
603 			pr_crit("kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n",
604 				from_kuid(&init_user_ns, current_uid()));
605 		if (pte && pte_present(*pte) && pte_exec(*pte) &&
606 				(pgd_flags(*pgd) & _PAGE_USER) &&
607 				(__read_cr4() & X86_CR4_SMEP))
608 			pr_crit("unable to execute userspace code (SMEP?) (uid: %d)\n",
609 				from_kuid(&init_user_ns, current_uid()));
610 	}
611 
612 	if (address < PAGE_SIZE && !user_mode(regs))
613 		pr_alert("BUG: kernel NULL pointer dereference, address: %px\n",
614 			(void *)address);
615 	else
616 		pr_alert("BUG: unable to handle page fault for address: %px\n",
617 			(void *)address);
618 
619 	pr_alert("#PF: %s %s in %s mode\n",
620 		 (error_code & X86_PF_USER)  ? "user" : "supervisor",
621 		 (error_code & X86_PF_INSTR) ? "instruction fetch" :
622 		 (error_code & X86_PF_WRITE) ? "write access" :
623 					       "read access",
624 			     user_mode(regs) ? "user" : "kernel");
625 	pr_alert("#PF: error_code(0x%04lx) - %s\n", error_code,
626 		 !(error_code & X86_PF_PROT) ? "not-present page" :
627 		 (error_code & X86_PF_RSVD)  ? "reserved bit violation" :
628 		 (error_code & X86_PF_PK)    ? "protection keys violation" :
629 					       "permissions violation");
630 
631 	if (!(error_code & X86_PF_USER) && user_mode(regs)) {
632 		struct desc_ptr idt, gdt;
633 		u16 ldtr, tr;
634 
635 		/*
636 		 * This can happen for quite a few reasons.  The more obvious
637 		 * ones are faults accessing the GDT, or LDT.  Perhaps
638 		 * surprisingly, if the CPU tries to deliver a benign or
639 		 * contributory exception from user code and gets a page fault
640 		 * during delivery, the page fault can be delivered as though
641 		 * it originated directly from user code.  This could happen
642 		 * due to wrong permissions on the IDT, GDT, LDT, TSS, or
643 		 * kernel or IST stack.
644 		 */
645 		store_idt(&idt);
646 
647 		/* Usable even on Xen PV -- it's just slow. */
648 		native_store_gdt(&gdt);
649 
650 		pr_alert("IDT: 0x%lx (limit=0x%hx) GDT: 0x%lx (limit=0x%hx)\n",
651 			 idt.address, idt.size, gdt.address, gdt.size);
652 
653 		store_ldt(ldtr);
654 		show_ldttss(&gdt, "LDTR", ldtr);
655 
656 		store_tr(tr);
657 		show_ldttss(&gdt, "TR", tr);
658 	}
659 
660 	dump_pagetable(address);
661 }
662 
663 static noinline void
664 pgtable_bad(struct pt_regs *regs, unsigned long error_code,
665 	    unsigned long address)
666 {
667 	struct task_struct *tsk;
668 	unsigned long flags;
669 	int sig;
670 
671 	flags = oops_begin();
672 	tsk = current;
673 	sig = SIGKILL;
674 
675 	printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
676 	       tsk->comm, address);
677 	dump_pagetable(address);
678 
679 	if (__die("Bad pagetable", regs, error_code))
680 		sig = 0;
681 
682 	oops_end(flags, regs, sig);
683 }
684 
685 static void set_signal_archinfo(unsigned long address,
686 				unsigned long error_code)
687 {
688 	struct task_struct *tsk = current;
689 
690 	/*
691 	 * To avoid leaking information about the kernel page
692 	 * table layout, pretend that user-mode accesses to
693 	 * kernel addresses are always protection faults.
694 	 *
695 	 * NB: This means that failed vsyscalls with vsyscall=none
696 	 * will have the PROT bit.  This doesn't leak any
697 	 * information and does not appear to cause any problems.
698 	 */
699 	if (address >= TASK_SIZE_MAX)
700 		error_code |= X86_PF_PROT;
701 
702 	tsk->thread.trap_nr = X86_TRAP_PF;
703 	tsk->thread.error_code = error_code | X86_PF_USER;
704 	tsk->thread.cr2 = address;
705 }
706 
707 static noinline void
708 no_context(struct pt_regs *regs, unsigned long error_code,
709 	   unsigned long address, int signal, int si_code)
710 {
711 	struct task_struct *tsk = current;
712 	unsigned long flags;
713 	int sig;
714 
715 	if (user_mode(regs)) {
716 		/*
717 		 * This is an implicit supervisor-mode access from user
718 		 * mode.  Bypass all the kernel-mode recovery code and just
719 		 * OOPS.
720 		 */
721 		goto oops;
722 	}
723 
724 	/* Are we prepared to handle this kernel fault? */
725 	if (fixup_exception(regs, X86_TRAP_PF, error_code, address)) {
726 		/*
727 		 * Any interrupt that takes a fault gets the fixup. This makes
728 		 * the below recursive fault logic only apply to a faults from
729 		 * task context.
730 		 */
731 		if (in_interrupt())
732 			return;
733 
734 		/*
735 		 * Per the above we're !in_interrupt(), aka. task context.
736 		 *
737 		 * In this case we need to make sure we're not recursively
738 		 * faulting through the emulate_vsyscall() logic.
739 		 */
740 		if (current->thread.sig_on_uaccess_err && signal) {
741 			set_signal_archinfo(address, error_code);
742 
743 			/* XXX: hwpoison faults will set the wrong code. */
744 			force_sig_fault(signal, si_code, (void __user *)address);
745 		}
746 
747 		/*
748 		 * Barring that, we can do the fixup and be happy.
749 		 */
750 		return;
751 	}
752 
753 #ifdef CONFIG_VMAP_STACK
754 	/*
755 	 * Stack overflow?  During boot, we can fault near the initial
756 	 * stack in the direct map, but that's not an overflow -- check
757 	 * that we're in vmalloc space to avoid this.
758 	 */
759 	if (is_vmalloc_addr((void *)address) &&
760 	    (((unsigned long)tsk->stack - 1 - address < PAGE_SIZE) ||
761 	     address - ((unsigned long)tsk->stack + THREAD_SIZE) < PAGE_SIZE)) {
762 		unsigned long stack = __this_cpu_ist_top_va(DF) - sizeof(void *);
763 		/*
764 		 * We're likely to be running with very little stack space
765 		 * left.  It's plausible that we'd hit this condition but
766 		 * double-fault even before we get this far, in which case
767 		 * we're fine: the double-fault handler will deal with it.
768 		 *
769 		 * We don't want to make it all the way into the oops code
770 		 * and then double-fault, though, because we're likely to
771 		 * break the console driver and lose most of the stack dump.
772 		 */
773 		asm volatile ("movq %[stack], %%rsp\n\t"
774 			      "call handle_stack_overflow\n\t"
775 			      "1: jmp 1b"
776 			      : ASM_CALL_CONSTRAINT
777 			      : "D" ("kernel stack overflow (page fault)"),
778 				"S" (regs), "d" (address),
779 				[stack] "rm" (stack));
780 		unreachable();
781 	}
782 #endif
783 
784 	/*
785 	 * 32-bit:
786 	 *
787 	 *   Valid to do another page fault here, because if this fault
788 	 *   had been triggered by is_prefetch fixup_exception would have
789 	 *   handled it.
790 	 *
791 	 * 64-bit:
792 	 *
793 	 *   Hall of shame of CPU/BIOS bugs.
794 	 */
795 	if (is_prefetch(regs, error_code, address))
796 		return;
797 
798 	if (is_errata93(regs, address))
799 		return;
800 
801 	/*
802 	 * Buggy firmware could access regions which might page fault, try to
803 	 * recover from such faults.
804 	 */
805 	if (IS_ENABLED(CONFIG_EFI))
806 		efi_recover_from_page_fault(address);
807 
808 oops:
809 	/*
810 	 * Oops. The kernel tried to access some bad page. We'll have to
811 	 * terminate things with extreme prejudice:
812 	 */
813 	flags = oops_begin();
814 
815 	show_fault_oops(regs, error_code, address);
816 
817 	if (task_stack_end_corrupted(tsk))
818 		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
819 
820 	sig = SIGKILL;
821 	if (__die("Oops", regs, error_code))
822 		sig = 0;
823 
824 	/* Executive summary in case the body of the oops scrolled away */
825 	printk(KERN_DEFAULT "CR2: %016lx\n", address);
826 
827 	oops_end(flags, regs, sig);
828 }
829 
830 /*
831  * Print out info about fatal segfaults, if the show_unhandled_signals
832  * sysctl is set:
833  */
834 static inline void
835 show_signal_msg(struct pt_regs *regs, unsigned long error_code,
836 		unsigned long address, struct task_struct *tsk)
837 {
838 	const char *loglvl = task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG;
839 
840 	if (!unhandled_signal(tsk, SIGSEGV))
841 		return;
842 
843 	if (!printk_ratelimit())
844 		return;
845 
846 	printk("%s%s[%d]: segfault at %lx ip %px sp %px error %lx",
847 		loglvl, tsk->comm, task_pid_nr(tsk), address,
848 		(void *)regs->ip, (void *)regs->sp, error_code);
849 
850 	print_vma_addr(KERN_CONT " in ", regs->ip);
851 
852 	printk(KERN_CONT "\n");
853 
854 	show_opcodes(regs, loglvl);
855 }
856 
857 /*
858  * The (legacy) vsyscall page is the long page in the kernel portion
859  * of the address space that has user-accessible permissions.
860  */
861 static bool is_vsyscall_vaddr(unsigned long vaddr)
862 {
863 	return unlikely((vaddr & PAGE_MASK) == VSYSCALL_ADDR);
864 }
865 
866 static void
867 __bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
868 		       unsigned long address, u32 pkey, int si_code)
869 {
870 	struct task_struct *tsk = current;
871 
872 	/* User mode accesses just cause a SIGSEGV */
873 	if (user_mode(regs) && (error_code & X86_PF_USER)) {
874 		/*
875 		 * It's possible to have interrupts off here:
876 		 */
877 		local_irq_enable();
878 
879 		/*
880 		 * Valid to do another page fault here because this one came
881 		 * from user space:
882 		 */
883 		if (is_prefetch(regs, error_code, address))
884 			return;
885 
886 		if (is_errata100(regs, address))
887 			return;
888 
889 		/*
890 		 * To avoid leaking information about the kernel page table
891 		 * layout, pretend that user-mode accesses to kernel addresses
892 		 * are always protection faults.
893 		 */
894 		if (address >= TASK_SIZE_MAX)
895 			error_code |= X86_PF_PROT;
896 
897 		if (likely(show_unhandled_signals))
898 			show_signal_msg(regs, error_code, address, tsk);
899 
900 		set_signal_archinfo(address, error_code);
901 
902 		if (si_code == SEGV_PKUERR)
903 			force_sig_pkuerr((void __user *)address, pkey);
904 
905 		force_sig_fault(SIGSEGV, si_code, (void __user *)address);
906 
907 		return;
908 	}
909 
910 	if (is_f00f_bug(regs, address))
911 		return;
912 
913 	no_context(regs, error_code, address, SIGSEGV, si_code);
914 }
915 
916 static noinline void
917 bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
918 		     unsigned long address)
919 {
920 	__bad_area_nosemaphore(regs, error_code, address, 0, SEGV_MAPERR);
921 }
922 
923 static void
924 __bad_area(struct pt_regs *regs, unsigned long error_code,
925 	   unsigned long address, u32 pkey, int si_code)
926 {
927 	struct mm_struct *mm = current->mm;
928 	/*
929 	 * Something tried to access memory that isn't in our memory map..
930 	 * Fix it, but check if it's kernel or user first..
931 	 */
932 	up_read(&mm->mmap_sem);
933 
934 	__bad_area_nosemaphore(regs, error_code, address, pkey, si_code);
935 }
936 
937 static noinline void
938 bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address)
939 {
940 	__bad_area(regs, error_code, address, 0, SEGV_MAPERR);
941 }
942 
943 static inline bool bad_area_access_from_pkeys(unsigned long error_code,
944 		struct vm_area_struct *vma)
945 {
946 	/* This code is always called on the current mm */
947 	bool foreign = false;
948 
949 	if (!boot_cpu_has(X86_FEATURE_OSPKE))
950 		return false;
951 	if (error_code & X86_PF_PK)
952 		return true;
953 	/* this checks permission keys on the VMA: */
954 	if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE),
955 				       (error_code & X86_PF_INSTR), foreign))
956 		return true;
957 	return false;
958 }
959 
960 static noinline void
961 bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
962 		      unsigned long address, struct vm_area_struct *vma)
963 {
964 	/*
965 	 * This OSPKE check is not strictly necessary at runtime.
966 	 * But, doing it this way allows compiler optimizations
967 	 * if pkeys are compiled out.
968 	 */
969 	if (bad_area_access_from_pkeys(error_code, vma)) {
970 		/*
971 		 * A protection key fault means that the PKRU value did not allow
972 		 * access to some PTE.  Userspace can figure out what PKRU was
973 		 * from the XSAVE state.  This function captures the pkey from
974 		 * the vma and passes it to userspace so userspace can discover
975 		 * which protection key was set on the PTE.
976 		 *
977 		 * If we get here, we know that the hardware signaled a X86_PF_PK
978 		 * fault and that there was a VMA once we got in the fault
979 		 * handler.  It does *not* guarantee that the VMA we find here
980 		 * was the one that we faulted on.
981 		 *
982 		 * 1. T1   : mprotect_key(foo, PAGE_SIZE, pkey=4);
983 		 * 2. T1   : set PKRU to deny access to pkey=4, touches page
984 		 * 3. T1   : faults...
985 		 * 4.    T2: mprotect_key(foo, PAGE_SIZE, pkey=5);
986 		 * 5. T1   : enters fault handler, takes mmap_sem, etc...
987 		 * 6. T1   : reaches here, sees vma_pkey(vma)=5, when we really
988 		 *	     faulted on a pte with its pkey=4.
989 		 */
990 		u32 pkey = vma_pkey(vma);
991 
992 		__bad_area(regs, error_code, address, pkey, SEGV_PKUERR);
993 	} else {
994 		__bad_area(regs, error_code, address, 0, SEGV_ACCERR);
995 	}
996 }
997 
998 static void
999 do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
1000 	  vm_fault_t fault)
1001 {
1002 	/* Kernel mode? Handle exceptions or die: */
1003 	if (!(error_code & X86_PF_USER)) {
1004 		no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
1005 		return;
1006 	}
1007 
1008 	/* User-space => ok to do another page fault: */
1009 	if (is_prefetch(regs, error_code, address))
1010 		return;
1011 
1012 	set_signal_archinfo(address, error_code);
1013 
1014 #ifdef CONFIG_MEMORY_FAILURE
1015 	if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
1016 		struct task_struct *tsk = current;
1017 		unsigned lsb = 0;
1018 
1019 		pr_err(
1020 	"MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
1021 			tsk->comm, tsk->pid, address);
1022 		if (fault & VM_FAULT_HWPOISON_LARGE)
1023 			lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
1024 		if (fault & VM_FAULT_HWPOISON)
1025 			lsb = PAGE_SHIFT;
1026 		force_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb);
1027 		return;
1028 	}
1029 #endif
1030 	force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)address);
1031 }
1032 
1033 static noinline void
1034 mm_fault_error(struct pt_regs *regs, unsigned long error_code,
1035 	       unsigned long address, vm_fault_t fault)
1036 {
1037 	if (fatal_signal_pending(current) && !(error_code & X86_PF_USER)) {
1038 		no_context(regs, error_code, address, 0, 0);
1039 		return;
1040 	}
1041 
1042 	if (fault & VM_FAULT_OOM) {
1043 		/* Kernel mode? Handle exceptions or die: */
1044 		if (!(error_code & X86_PF_USER)) {
1045 			no_context(regs, error_code, address,
1046 				   SIGSEGV, SEGV_MAPERR);
1047 			return;
1048 		}
1049 
1050 		/*
1051 		 * We ran out of memory, call the OOM killer, and return the
1052 		 * userspace (which will retry the fault, or kill us if we got
1053 		 * oom-killed):
1054 		 */
1055 		pagefault_out_of_memory();
1056 	} else {
1057 		if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
1058 			     VM_FAULT_HWPOISON_LARGE))
1059 			do_sigbus(regs, error_code, address, fault);
1060 		else if (fault & VM_FAULT_SIGSEGV)
1061 			bad_area_nosemaphore(regs, error_code, address);
1062 		else
1063 			BUG();
1064 	}
1065 }
1066 
1067 static int spurious_kernel_fault_check(unsigned long error_code, pte_t *pte)
1068 {
1069 	if ((error_code & X86_PF_WRITE) && !pte_write(*pte))
1070 		return 0;
1071 
1072 	if ((error_code & X86_PF_INSTR) && !pte_exec(*pte))
1073 		return 0;
1074 
1075 	return 1;
1076 }
1077 
1078 /*
1079  * Handle a spurious fault caused by a stale TLB entry.
1080  *
1081  * This allows us to lazily refresh the TLB when increasing the
1082  * permissions of a kernel page (RO -> RW or NX -> X).  Doing it
1083  * eagerly is very expensive since that implies doing a full
1084  * cross-processor TLB flush, even if no stale TLB entries exist
1085  * on other processors.
1086  *
1087  * Spurious faults may only occur if the TLB contains an entry with
1088  * fewer permission than the page table entry.  Non-present (P = 0)
1089  * and reserved bit (R = 1) faults are never spurious.
1090  *
1091  * There are no security implications to leaving a stale TLB when
1092  * increasing the permissions on a page.
1093  *
1094  * Returns non-zero if a spurious fault was handled, zero otherwise.
1095  *
1096  * See Intel Developer's Manual Vol 3 Section 4.10.4.3, bullet 3
1097  * (Optional Invalidation).
1098  */
1099 static noinline int
1100 spurious_kernel_fault(unsigned long error_code, unsigned long address)
1101 {
1102 	pgd_t *pgd;
1103 	p4d_t *p4d;
1104 	pud_t *pud;
1105 	pmd_t *pmd;
1106 	pte_t *pte;
1107 	int ret;
1108 
1109 	/*
1110 	 * Only writes to RO or instruction fetches from NX may cause
1111 	 * spurious faults.
1112 	 *
1113 	 * These could be from user or supervisor accesses but the TLB
1114 	 * is only lazily flushed after a kernel mapping protection
1115 	 * change, so user accesses are not expected to cause spurious
1116 	 * faults.
1117 	 */
1118 	if (error_code != (X86_PF_WRITE | X86_PF_PROT) &&
1119 	    error_code != (X86_PF_INSTR | X86_PF_PROT))
1120 		return 0;
1121 
1122 	pgd = init_mm.pgd + pgd_index(address);
1123 	if (!pgd_present(*pgd))
1124 		return 0;
1125 
1126 	p4d = p4d_offset(pgd, address);
1127 	if (!p4d_present(*p4d))
1128 		return 0;
1129 
1130 	if (p4d_large(*p4d))
1131 		return spurious_kernel_fault_check(error_code, (pte_t *) p4d);
1132 
1133 	pud = pud_offset(p4d, address);
1134 	if (!pud_present(*pud))
1135 		return 0;
1136 
1137 	if (pud_large(*pud))
1138 		return spurious_kernel_fault_check(error_code, (pte_t *) pud);
1139 
1140 	pmd = pmd_offset(pud, address);
1141 	if (!pmd_present(*pmd))
1142 		return 0;
1143 
1144 	if (pmd_large(*pmd))
1145 		return spurious_kernel_fault_check(error_code, (pte_t *) pmd);
1146 
1147 	pte = pte_offset_kernel(pmd, address);
1148 	if (!pte_present(*pte))
1149 		return 0;
1150 
1151 	ret = spurious_kernel_fault_check(error_code, pte);
1152 	if (!ret)
1153 		return 0;
1154 
1155 	/*
1156 	 * Make sure we have permissions in PMD.
1157 	 * If not, then there's a bug in the page tables:
1158 	 */
1159 	ret = spurious_kernel_fault_check(error_code, (pte_t *) pmd);
1160 	WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
1161 
1162 	return ret;
1163 }
1164 NOKPROBE_SYMBOL(spurious_kernel_fault);
1165 
1166 int show_unhandled_signals = 1;
1167 
1168 static inline int
1169 access_error(unsigned long error_code, struct vm_area_struct *vma)
1170 {
1171 	/* This is only called for the current mm, so: */
1172 	bool foreign = false;
1173 
1174 	/*
1175 	 * Read or write was blocked by protection keys.  This is
1176 	 * always an unconditional error and can never result in
1177 	 * a follow-up action to resolve the fault, like a COW.
1178 	 */
1179 	if (error_code & X86_PF_PK)
1180 		return 1;
1181 
1182 	/*
1183 	 * Make sure to check the VMA so that we do not perform
1184 	 * faults just to hit a X86_PF_PK as soon as we fill in a
1185 	 * page.
1186 	 */
1187 	if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE),
1188 				       (error_code & X86_PF_INSTR), foreign))
1189 		return 1;
1190 
1191 	if (error_code & X86_PF_WRITE) {
1192 		/* write, present and write, not present: */
1193 		if (unlikely(!(vma->vm_flags & VM_WRITE)))
1194 			return 1;
1195 		return 0;
1196 	}
1197 
1198 	/* read, present: */
1199 	if (unlikely(error_code & X86_PF_PROT))
1200 		return 1;
1201 
1202 	/* read, not present: */
1203 	if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
1204 		return 1;
1205 
1206 	return 0;
1207 }
1208 
1209 static int fault_in_kernel_space(unsigned long address)
1210 {
1211 	/*
1212 	 * On 64-bit systems, the vsyscall page is at an address above
1213 	 * TASK_SIZE_MAX, but is not considered part of the kernel
1214 	 * address space.
1215 	 */
1216 	if (IS_ENABLED(CONFIG_X86_64) && is_vsyscall_vaddr(address))
1217 		return false;
1218 
1219 	return address >= TASK_SIZE_MAX;
1220 }
1221 
1222 /*
1223  * Called for all faults where 'address' is part of the kernel address
1224  * space.  Might get called for faults that originate from *code* that
1225  * ran in userspace or the kernel.
1226  */
1227 static void
1228 do_kern_addr_fault(struct pt_regs *regs, unsigned long hw_error_code,
1229 		   unsigned long address)
1230 {
1231 	/*
1232 	 * Protection keys exceptions only happen on user pages.  We
1233 	 * have no user pages in the kernel portion of the address
1234 	 * space, so do not expect them here.
1235 	 */
1236 	WARN_ON_ONCE(hw_error_code & X86_PF_PK);
1237 
1238 	/*
1239 	 * We can fault-in kernel-space virtual memory on-demand. The
1240 	 * 'reference' page table is init_mm.pgd.
1241 	 *
1242 	 * NOTE! We MUST NOT take any locks for this case. We may
1243 	 * be in an interrupt or a critical region, and should
1244 	 * only copy the information from the master page table,
1245 	 * nothing more.
1246 	 *
1247 	 * Before doing this on-demand faulting, ensure that the
1248 	 * fault is not any of the following:
1249 	 * 1. A fault on a PTE with a reserved bit set.
1250 	 * 2. A fault caused by a user-mode access.  (Do not demand-
1251 	 *    fault kernel memory due to user-mode accesses).
1252 	 * 3. A fault caused by a page-level protection violation.
1253 	 *    (A demand fault would be on a non-present page which
1254 	 *     would have X86_PF_PROT==0).
1255 	 */
1256 	if (!(hw_error_code & (X86_PF_RSVD | X86_PF_USER | X86_PF_PROT))) {
1257 		if (vmalloc_fault(address) >= 0)
1258 			return;
1259 	}
1260 
1261 	/* Was the fault spurious, caused by lazy TLB invalidation? */
1262 	if (spurious_kernel_fault(hw_error_code, address))
1263 		return;
1264 
1265 	/* kprobes don't want to hook the spurious faults: */
1266 	if (kprobe_page_fault(regs, X86_TRAP_PF))
1267 		return;
1268 
1269 	/*
1270 	 * Note, despite being a "bad area", there are quite a few
1271 	 * acceptable reasons to get here, such as erratum fixups
1272 	 * and handling kernel code that can fault, like get_user().
1273 	 *
1274 	 * Don't take the mm semaphore here. If we fixup a prefetch
1275 	 * fault we could otherwise deadlock:
1276 	 */
1277 	bad_area_nosemaphore(regs, hw_error_code, address);
1278 }
1279 NOKPROBE_SYMBOL(do_kern_addr_fault);
1280 
1281 /* Handle faults in the user portion of the address space */
1282 static inline
1283 void do_user_addr_fault(struct pt_regs *regs,
1284 			unsigned long hw_error_code,
1285 			unsigned long address)
1286 {
1287 	struct vm_area_struct *vma;
1288 	struct task_struct *tsk;
1289 	struct mm_struct *mm;
1290 	vm_fault_t fault, major = 0;
1291 	unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1292 
1293 	tsk = current;
1294 	mm = tsk->mm;
1295 
1296 	/* kprobes don't want to hook the spurious faults: */
1297 	if (unlikely(kprobe_page_fault(regs, X86_TRAP_PF)))
1298 		return;
1299 
1300 	/*
1301 	 * Reserved bits are never expected to be set on
1302 	 * entries in the user portion of the page tables.
1303 	 */
1304 	if (unlikely(hw_error_code & X86_PF_RSVD))
1305 		pgtable_bad(regs, hw_error_code, address);
1306 
1307 	/*
1308 	 * If SMAP is on, check for invalid kernel (supervisor) access to user
1309 	 * pages in the user address space.  The odd case here is WRUSS,
1310 	 * which, according to the preliminary documentation, does not respect
1311 	 * SMAP and will have the USER bit set so, in all cases, SMAP
1312 	 * enforcement appears to be consistent with the USER bit.
1313 	 */
1314 	if (unlikely(cpu_feature_enabled(X86_FEATURE_SMAP) &&
1315 		     !(hw_error_code & X86_PF_USER) &&
1316 		     !(regs->flags & X86_EFLAGS_AC)))
1317 	{
1318 		bad_area_nosemaphore(regs, hw_error_code, address);
1319 		return;
1320 	}
1321 
1322 	/*
1323 	 * If we're in an interrupt, have no user context or are running
1324 	 * in a region with pagefaults disabled then we must not take the fault
1325 	 */
1326 	if (unlikely(faulthandler_disabled() || !mm)) {
1327 		bad_area_nosemaphore(regs, hw_error_code, address);
1328 		return;
1329 	}
1330 
1331 	/*
1332 	 * It's safe to allow irq's after cr2 has been saved and the
1333 	 * vmalloc fault has been handled.
1334 	 *
1335 	 * User-mode registers count as a user access even for any
1336 	 * potential system fault or CPU buglet:
1337 	 */
1338 	if (user_mode(regs)) {
1339 		local_irq_enable();
1340 		flags |= FAULT_FLAG_USER;
1341 	} else {
1342 		if (regs->flags & X86_EFLAGS_IF)
1343 			local_irq_enable();
1344 	}
1345 
1346 	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
1347 
1348 	if (hw_error_code & X86_PF_WRITE)
1349 		flags |= FAULT_FLAG_WRITE;
1350 	if (hw_error_code & X86_PF_INSTR)
1351 		flags |= FAULT_FLAG_INSTRUCTION;
1352 
1353 #ifdef CONFIG_X86_64
1354 	/*
1355 	 * Faults in the vsyscall page might need emulation.  The
1356 	 * vsyscall page is at a high address (>PAGE_OFFSET), but is
1357 	 * considered to be part of the user address space.
1358 	 *
1359 	 * The vsyscall page does not have a "real" VMA, so do this
1360 	 * emulation before we go searching for VMAs.
1361 	 *
1362 	 * PKRU never rejects instruction fetches, so we don't need
1363 	 * to consider the PF_PK bit.
1364 	 */
1365 	if (is_vsyscall_vaddr(address)) {
1366 		if (emulate_vsyscall(hw_error_code, regs, address))
1367 			return;
1368 	}
1369 #endif
1370 
1371 	/*
1372 	 * Kernel-mode access to the user address space should only occur
1373 	 * on well-defined single instructions listed in the exception
1374 	 * tables.  But, an erroneous kernel fault occurring outside one of
1375 	 * those areas which also holds mmap_sem might deadlock attempting
1376 	 * to validate the fault against the address space.
1377 	 *
1378 	 * Only do the expensive exception table search when we might be at
1379 	 * risk of a deadlock.  This happens if we
1380 	 * 1. Failed to acquire mmap_sem, and
1381 	 * 2. The access did not originate in userspace.
1382 	 */
1383 	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
1384 		if (!user_mode(regs) && !search_exception_tables(regs->ip)) {
1385 			/*
1386 			 * Fault from code in kernel from
1387 			 * which we do not expect faults.
1388 			 */
1389 			bad_area_nosemaphore(regs, hw_error_code, address);
1390 			return;
1391 		}
1392 retry:
1393 		down_read(&mm->mmap_sem);
1394 	} else {
1395 		/*
1396 		 * The above down_read_trylock() might have succeeded in
1397 		 * which case we'll have missed the might_sleep() from
1398 		 * down_read():
1399 		 */
1400 		might_sleep();
1401 	}
1402 
1403 	vma = find_vma(mm, address);
1404 	if (unlikely(!vma)) {
1405 		bad_area(regs, hw_error_code, address);
1406 		return;
1407 	}
1408 	if (likely(vma->vm_start <= address))
1409 		goto good_area;
1410 	if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) {
1411 		bad_area(regs, hw_error_code, address);
1412 		return;
1413 	}
1414 	if (unlikely(expand_stack(vma, address))) {
1415 		bad_area(regs, hw_error_code, address);
1416 		return;
1417 	}
1418 
1419 	/*
1420 	 * Ok, we have a good vm_area for this memory access, so
1421 	 * we can handle it..
1422 	 */
1423 good_area:
1424 	if (unlikely(access_error(hw_error_code, vma))) {
1425 		bad_area_access_error(regs, hw_error_code, address, vma);
1426 		return;
1427 	}
1428 
1429 	/*
1430 	 * If for any reason at all we couldn't handle the fault,
1431 	 * make sure we exit gracefully rather than endlessly redo
1432 	 * the fault.  Since we never set FAULT_FLAG_RETRY_NOWAIT, if
1433 	 * we get VM_FAULT_RETRY back, the mmap_sem has been unlocked.
1434 	 *
1435 	 * Note that handle_userfault() may also release and reacquire mmap_sem
1436 	 * (and not return with VM_FAULT_RETRY), when returning to userland to
1437 	 * repeat the page fault later with a VM_FAULT_NOPAGE retval
1438 	 * (potentially after handling any pending signal during the return to
1439 	 * userland). The return to userland is identified whenever
1440 	 * FAULT_FLAG_USER|FAULT_FLAG_KILLABLE are both set in flags.
1441 	 */
1442 	fault = handle_mm_fault(vma, address, flags);
1443 	major |= fault & VM_FAULT_MAJOR;
1444 
1445 	/*
1446 	 * If we need to retry the mmap_sem has already been released,
1447 	 * and if there is a fatal signal pending there is no guarantee
1448 	 * that we made any progress. Handle this case first.
1449 	 */
1450 	if (unlikely(fault & VM_FAULT_RETRY)) {
1451 		/* Retry at most once */
1452 		if (flags & FAULT_FLAG_ALLOW_RETRY) {
1453 			flags &= ~FAULT_FLAG_ALLOW_RETRY;
1454 			flags |= FAULT_FLAG_TRIED;
1455 			if (!fatal_signal_pending(tsk))
1456 				goto retry;
1457 		}
1458 
1459 		/* User mode? Just return to handle the fatal exception */
1460 		if (flags & FAULT_FLAG_USER)
1461 			return;
1462 
1463 		/* Not returning to user mode? Handle exceptions or die: */
1464 		no_context(regs, hw_error_code, address, SIGBUS, BUS_ADRERR);
1465 		return;
1466 	}
1467 
1468 	up_read(&mm->mmap_sem);
1469 	if (unlikely(fault & VM_FAULT_ERROR)) {
1470 		mm_fault_error(regs, hw_error_code, address, fault);
1471 		return;
1472 	}
1473 
1474 	/*
1475 	 * Major/minor page fault accounting. If any of the events
1476 	 * returned VM_FAULT_MAJOR, we account it as a major fault.
1477 	 */
1478 	if (major) {
1479 		tsk->maj_flt++;
1480 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
1481 	} else {
1482 		tsk->min_flt++;
1483 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
1484 	}
1485 
1486 	check_v8086_mode(regs, address, tsk);
1487 }
1488 NOKPROBE_SYMBOL(do_user_addr_fault);
1489 
1490 static __always_inline void
1491 trace_page_fault_entries(struct pt_regs *regs, unsigned long error_code,
1492 			 unsigned long address)
1493 {
1494 	if (!trace_pagefault_enabled())
1495 		return;
1496 
1497 	if (user_mode(regs))
1498 		trace_page_fault_user(address, regs, error_code);
1499 	else
1500 		trace_page_fault_kernel(address, regs, error_code);
1501 }
1502 
1503 dotraplinkage void
1504 do_page_fault(struct pt_regs *regs, unsigned long hw_error_code,
1505 		unsigned long address)
1506 {
1507 	prefetchw(&current->mm->mmap_sem);
1508 	trace_page_fault_entries(regs, hw_error_code, address);
1509 
1510 	if (unlikely(kmmio_fault(regs, address)))
1511 		return;
1512 
1513 	/* Was the fault on kernel-controlled part of the address space? */
1514 	if (unlikely(fault_in_kernel_space(address)))
1515 		do_kern_addr_fault(regs, hw_error_code, address);
1516 	else
1517 		do_user_addr_fault(regs, hw_error_code, address);
1518 }
1519 NOKPROBE_SYMBOL(do_page_fault);
1520