xref: /linux/arch/x86/platform/efi/efi.c (revision f86fd32d)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Common EFI (Extensible Firmware Interface) support functions
4  * Based on Extensible Firmware Interface Specification version 1.0
5  *
6  * Copyright (C) 1999 VA Linux Systems
7  * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
8  * Copyright (C) 1999-2002 Hewlett-Packard Co.
9  *	David Mosberger-Tang <davidm@hpl.hp.com>
10  *	Stephane Eranian <eranian@hpl.hp.com>
11  * Copyright (C) 2005-2008 Intel Co.
12  *	Fenghua Yu <fenghua.yu@intel.com>
13  *	Bibo Mao <bibo.mao@intel.com>
14  *	Chandramouli Narayanan <mouli@linux.intel.com>
15  *	Huang Ying <ying.huang@intel.com>
16  * Copyright (C) 2013 SuSE Labs
17  *	Borislav Petkov <bp@suse.de> - runtime services VA mapping
18  *
19  * Copied from efi_32.c to eliminate the duplicated code between EFI
20  * 32/64 support code. --ying 2007-10-26
21  *
22  * All EFI Runtime Services are not implemented yet as EFI only
23  * supports physical mode addressing on SoftSDV. This is to be fixed
24  * in a future version.  --drummond 1999-07-20
25  *
26  * Implemented EFI runtime services and virtual mode calls.  --davidm
27  *
28  * Goutham Rao: <goutham.rao@intel.com>
29  *	Skip non-WB memory and ignore empty memory ranges.
30  */
31 
32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33 
34 #include <linux/kernel.h>
35 #include <linux/init.h>
36 #include <linux/efi.h>
37 #include <linux/efi-bgrt.h>
38 #include <linux/export.h>
39 #include <linux/memblock.h>
40 #include <linux/slab.h>
41 #include <linux/spinlock.h>
42 #include <linux/uaccess.h>
43 #include <linux/time.h>
44 #include <linux/io.h>
45 #include <linux/reboot.h>
46 #include <linux/bcd.h>
47 
48 #include <asm/setup.h>
49 #include <asm/efi.h>
50 #include <asm/e820/api.h>
51 #include <asm/time.h>
52 #include <asm/set_memory.h>
53 #include <asm/tlbflush.h>
54 #include <asm/x86_init.h>
55 #include <asm/uv/uv.h>
56 
57 static efi_system_table_t efi_systab __initdata;
58 static u64 efi_systab_phys __initdata;
59 
60 static efi_config_table_type_t arch_tables[] __initdata = {
61 #ifdef CONFIG_X86_UV
62 	{UV_SYSTEM_TABLE_GUID, "UVsystab", &uv_systab_phys},
63 #endif
64 	{NULL_GUID, NULL, NULL},
65 };
66 
67 static const unsigned long * const efi_tables[] = {
68 	&efi.mps,
69 	&efi.acpi,
70 	&efi.acpi20,
71 	&efi.smbios,
72 	&efi.smbios3,
73 	&efi.boot_info,
74 	&efi.hcdp,
75 	&efi.uga,
76 #ifdef CONFIG_X86_UV
77 	&uv_systab_phys,
78 #endif
79 	&efi.fw_vendor,
80 	&efi.runtime,
81 	&efi.config_table,
82 	&efi.esrt,
83 	&efi.properties_table,
84 	&efi.mem_attr_table,
85 #ifdef CONFIG_EFI_RCI2_TABLE
86 	&rci2_table_phys,
87 #endif
88 };
89 
90 u64 efi_setup;		/* efi setup_data physical address */
91 
92 static int add_efi_memmap __initdata;
93 static int __init setup_add_efi_memmap(char *arg)
94 {
95 	add_efi_memmap = 1;
96 	return 0;
97 }
98 early_param("add_efi_memmap", setup_add_efi_memmap);
99 
100 void __init efi_find_mirror(void)
101 {
102 	efi_memory_desc_t *md;
103 	u64 mirror_size = 0, total_size = 0;
104 
105 	if (!efi_enabled(EFI_MEMMAP))
106 		return;
107 
108 	for_each_efi_memory_desc(md) {
109 		unsigned long long start = md->phys_addr;
110 		unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
111 
112 		total_size += size;
113 		if (md->attribute & EFI_MEMORY_MORE_RELIABLE) {
114 			memblock_mark_mirror(start, size);
115 			mirror_size += size;
116 		}
117 	}
118 	if (mirror_size)
119 		pr_info("Memory: %lldM/%lldM mirrored memory\n",
120 			mirror_size>>20, total_size>>20);
121 }
122 
123 /*
124  * Tell the kernel about the EFI memory map.  This might include
125  * more than the max 128 entries that can fit in the passed in e820
126  * legacy (zeropage) memory map, but the kernel's e820 table can hold
127  * E820_MAX_ENTRIES.
128  */
129 
130 static void __init do_add_efi_memmap(void)
131 {
132 	efi_memory_desc_t *md;
133 
134 	if (!efi_enabled(EFI_MEMMAP))
135 		return;
136 
137 	for_each_efi_memory_desc(md) {
138 		unsigned long long start = md->phys_addr;
139 		unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
140 		int e820_type;
141 
142 		switch (md->type) {
143 		case EFI_LOADER_CODE:
144 		case EFI_LOADER_DATA:
145 		case EFI_BOOT_SERVICES_CODE:
146 		case EFI_BOOT_SERVICES_DATA:
147 		case EFI_CONVENTIONAL_MEMORY:
148 			if (efi_soft_reserve_enabled()
149 			    && (md->attribute & EFI_MEMORY_SP))
150 				e820_type = E820_TYPE_SOFT_RESERVED;
151 			else if (md->attribute & EFI_MEMORY_WB)
152 				e820_type = E820_TYPE_RAM;
153 			else
154 				e820_type = E820_TYPE_RESERVED;
155 			break;
156 		case EFI_ACPI_RECLAIM_MEMORY:
157 			e820_type = E820_TYPE_ACPI;
158 			break;
159 		case EFI_ACPI_MEMORY_NVS:
160 			e820_type = E820_TYPE_NVS;
161 			break;
162 		case EFI_UNUSABLE_MEMORY:
163 			e820_type = E820_TYPE_UNUSABLE;
164 			break;
165 		case EFI_PERSISTENT_MEMORY:
166 			e820_type = E820_TYPE_PMEM;
167 			break;
168 		default:
169 			/*
170 			 * EFI_RESERVED_TYPE EFI_RUNTIME_SERVICES_CODE
171 			 * EFI_RUNTIME_SERVICES_DATA EFI_MEMORY_MAPPED_IO
172 			 * EFI_MEMORY_MAPPED_IO_PORT_SPACE EFI_PAL_CODE
173 			 */
174 			e820_type = E820_TYPE_RESERVED;
175 			break;
176 		}
177 
178 		e820__range_add(start, size, e820_type);
179 	}
180 	e820__update_table(e820_table);
181 }
182 
183 /*
184  * Given add_efi_memmap defaults to 0 and there there is no alternative
185  * e820 mechanism for soft-reserved memory, import the full EFI memory
186  * map if soft reservations are present and enabled. Otherwise, the
187  * mechanism to disable the kernel's consideration of EFI_MEMORY_SP is
188  * the efi=nosoftreserve option.
189  */
190 static bool do_efi_soft_reserve(void)
191 {
192 	efi_memory_desc_t *md;
193 
194 	if (!efi_enabled(EFI_MEMMAP))
195 		return false;
196 
197 	if (!efi_soft_reserve_enabled())
198 		return false;
199 
200 	for_each_efi_memory_desc(md)
201 		if (md->type == EFI_CONVENTIONAL_MEMORY &&
202 		    (md->attribute & EFI_MEMORY_SP))
203 			return true;
204 	return false;
205 }
206 
207 int __init efi_memblock_x86_reserve_range(void)
208 {
209 	struct efi_info *e = &boot_params.efi_info;
210 	struct efi_memory_map_data data;
211 	phys_addr_t pmap;
212 	int rv;
213 
214 	if (efi_enabled(EFI_PARAVIRT))
215 		return 0;
216 
217 #ifdef CONFIG_X86_32
218 	/* Can't handle data above 4GB at this time */
219 	if (e->efi_memmap_hi) {
220 		pr_err("Memory map is above 4GB, disabling EFI.\n");
221 		return -EINVAL;
222 	}
223 	pmap =  e->efi_memmap;
224 #else
225 	pmap = (e->efi_memmap |	((__u64)e->efi_memmap_hi << 32));
226 #endif
227 	data.phys_map		= pmap;
228 	data.size 		= e->efi_memmap_size;
229 	data.desc_size		= e->efi_memdesc_size;
230 	data.desc_version	= e->efi_memdesc_version;
231 
232 	rv = efi_memmap_init_early(&data);
233 	if (rv)
234 		return rv;
235 
236 	if (add_efi_memmap || do_efi_soft_reserve())
237 		do_add_efi_memmap();
238 
239 	efi_fake_memmap_early();
240 
241 	WARN(efi.memmap.desc_version != 1,
242 	     "Unexpected EFI_MEMORY_DESCRIPTOR version %ld",
243 	     efi.memmap.desc_version);
244 
245 	memblock_reserve(pmap, efi.memmap.nr_map * efi.memmap.desc_size);
246 
247 	return 0;
248 }
249 
250 #define OVERFLOW_ADDR_SHIFT	(64 - EFI_PAGE_SHIFT)
251 #define OVERFLOW_ADDR_MASK	(U64_MAX << OVERFLOW_ADDR_SHIFT)
252 #define U64_HIGH_BIT		(~(U64_MAX >> 1))
253 
254 static bool __init efi_memmap_entry_valid(const efi_memory_desc_t *md, int i)
255 {
256 	u64 end = (md->num_pages << EFI_PAGE_SHIFT) + md->phys_addr - 1;
257 	u64 end_hi = 0;
258 	char buf[64];
259 
260 	if (md->num_pages == 0) {
261 		end = 0;
262 	} else if (md->num_pages > EFI_PAGES_MAX ||
263 		   EFI_PAGES_MAX - md->num_pages <
264 		   (md->phys_addr >> EFI_PAGE_SHIFT)) {
265 		end_hi = (md->num_pages & OVERFLOW_ADDR_MASK)
266 			>> OVERFLOW_ADDR_SHIFT;
267 
268 		if ((md->phys_addr & U64_HIGH_BIT) && !(end & U64_HIGH_BIT))
269 			end_hi += 1;
270 	} else {
271 		return true;
272 	}
273 
274 	pr_warn_once(FW_BUG "Invalid EFI memory map entries:\n");
275 
276 	if (end_hi) {
277 		pr_warn("mem%02u: %s range=[0x%016llx-0x%llx%016llx] (invalid)\n",
278 			i, efi_md_typeattr_format(buf, sizeof(buf), md),
279 			md->phys_addr, end_hi, end);
280 	} else {
281 		pr_warn("mem%02u: %s range=[0x%016llx-0x%016llx] (invalid)\n",
282 			i, efi_md_typeattr_format(buf, sizeof(buf), md),
283 			md->phys_addr, end);
284 	}
285 	return false;
286 }
287 
288 static void __init efi_clean_memmap(void)
289 {
290 	efi_memory_desc_t *out = efi.memmap.map;
291 	const efi_memory_desc_t *in = out;
292 	const efi_memory_desc_t *end = efi.memmap.map_end;
293 	int i, n_removal;
294 
295 	for (i = n_removal = 0; in < end; i++) {
296 		if (efi_memmap_entry_valid(in, i)) {
297 			if (out != in)
298 				memcpy(out, in, efi.memmap.desc_size);
299 			out = (void *)out + efi.memmap.desc_size;
300 		} else {
301 			n_removal++;
302 		}
303 		in = (void *)in + efi.memmap.desc_size;
304 	}
305 
306 	if (n_removal > 0) {
307 		struct efi_memory_map_data data = {
308 			.phys_map = efi.memmap.phys_map,
309 			.desc_version = efi.memmap.desc_version,
310 			.desc_size = efi.memmap.desc_size,
311 			.size = efi.memmap.desc_size * (efi.memmap.nr_map - n_removal),
312 			.flags = 0,
313 		};
314 
315 		pr_warn("Removing %d invalid memory map entries.\n", n_removal);
316 		efi_memmap_install(&data);
317 	}
318 }
319 
320 void __init efi_print_memmap(void)
321 {
322 	efi_memory_desc_t *md;
323 	int i = 0;
324 
325 	for_each_efi_memory_desc(md) {
326 		char buf[64];
327 
328 		pr_info("mem%02u: %s range=[0x%016llx-0x%016llx] (%lluMB)\n",
329 			i++, efi_md_typeattr_format(buf, sizeof(buf), md),
330 			md->phys_addr,
331 			md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT) - 1,
332 			(md->num_pages >> (20 - EFI_PAGE_SHIFT)));
333 	}
334 }
335 
336 static int __init efi_systab_init(u64 phys)
337 {
338 	int size = efi_enabled(EFI_64BIT) ? sizeof(efi_system_table_64_t)
339 					  : sizeof(efi_system_table_32_t);
340 	bool over4g = false;
341 	void *p;
342 
343 	p = early_memremap_ro(phys, size);
344 	if (p == NULL) {
345 		pr_err("Couldn't map the system table!\n");
346 		return -ENOMEM;
347 	}
348 
349 	if (efi_enabled(EFI_64BIT)) {
350 		const efi_system_table_64_t *systab64 = p;
351 
352 		efi_systab.hdr			= systab64->hdr;
353 		efi_systab.fw_vendor		= systab64->fw_vendor;
354 		efi_systab.fw_revision		= systab64->fw_revision;
355 		efi_systab.con_in_handle	= systab64->con_in_handle;
356 		efi_systab.con_in		= systab64->con_in;
357 		efi_systab.con_out_handle	= systab64->con_out_handle;
358 		efi_systab.con_out		= (void *)(unsigned long)systab64->con_out;
359 		efi_systab.stderr_handle	= systab64->stderr_handle;
360 		efi_systab.stderr		= systab64->stderr;
361 		efi_systab.runtime		= (void *)(unsigned long)systab64->runtime;
362 		efi_systab.boottime		= (void *)(unsigned long)systab64->boottime;
363 		efi_systab.nr_tables		= systab64->nr_tables;
364 		efi_systab.tables		= systab64->tables;
365 
366 		over4g = systab64->con_in_handle	> U32_MAX ||
367 			 systab64->con_in		> U32_MAX ||
368 			 systab64->con_out_handle	> U32_MAX ||
369 			 systab64->con_out		> U32_MAX ||
370 			 systab64->stderr_handle	> U32_MAX ||
371 			 systab64->stderr		> U32_MAX ||
372 			 systab64->boottime		> U32_MAX;
373 
374 		if (efi_setup) {
375 			struct efi_setup_data *data;
376 
377 			data = early_memremap_ro(efi_setup, sizeof(*data));
378 			if (!data) {
379 				early_memunmap(p, size);
380 				return -ENOMEM;
381 			}
382 
383 			efi_systab.fw_vendor	= (unsigned long)data->fw_vendor;
384 			efi_systab.runtime	= (void *)(unsigned long)data->runtime;
385 			efi_systab.tables	= (unsigned long)data->tables;
386 
387 			over4g |= data->fw_vendor	> U32_MAX ||
388 				  data->runtime		> U32_MAX ||
389 				  data->tables		> U32_MAX;
390 
391 			early_memunmap(data, sizeof(*data));
392 		} else {
393 			over4g |= systab64->fw_vendor	> U32_MAX ||
394 				  systab64->runtime	> U32_MAX ||
395 				  systab64->tables	> U32_MAX;
396 		}
397 	} else {
398 		const efi_system_table_32_t *systab32 = p;
399 
400 		efi_systab.hdr			= systab32->hdr;
401 		efi_systab.fw_vendor		= systab32->fw_vendor;
402 		efi_systab.fw_revision		= systab32->fw_revision;
403 		efi_systab.con_in_handle	= systab32->con_in_handle;
404 		efi_systab.con_in		= systab32->con_in;
405 		efi_systab.con_out_handle	= systab32->con_out_handle;
406 		efi_systab.con_out		= (void *)(unsigned long)systab32->con_out;
407 		efi_systab.stderr_handle	= systab32->stderr_handle;
408 		efi_systab.stderr		= systab32->stderr;
409 		efi_systab.runtime		= (void *)(unsigned long)systab32->runtime;
410 		efi_systab.boottime		= (void *)(unsigned long)systab32->boottime;
411 		efi_systab.nr_tables		= systab32->nr_tables;
412 		efi_systab.tables		= systab32->tables;
413 	}
414 
415 	early_memunmap(p, size);
416 
417 	if (IS_ENABLED(CONFIG_X86_32) && over4g) {
418 		pr_err("EFI data located above 4GB, disabling EFI.\n");
419 		return -EINVAL;
420 	}
421 
422 	efi.systab = &efi_systab;
423 
424 	/*
425 	 * Verify the EFI Table
426 	 */
427 	if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE) {
428 		pr_err("System table signature incorrect!\n");
429 		return -EINVAL;
430 	}
431 	if ((efi.systab->hdr.revision >> 16) == 0)
432 		pr_err("Warning: System table version %d.%02d, expected 1.00 or greater!\n",
433 		       efi.systab->hdr.revision >> 16,
434 		       efi.systab->hdr.revision & 0xffff);
435 
436 	return 0;
437 }
438 
439 void __init efi_init(void)
440 {
441 	efi_char16_t *c16;
442 	char vendor[100] = "unknown";
443 	int i = 0;
444 
445 	if (IS_ENABLED(CONFIG_X86_32) &&
446 	    (boot_params.efi_info.efi_systab_hi ||
447 	     boot_params.efi_info.efi_memmap_hi)) {
448 		pr_info("Table located above 4GB, disabling EFI.\n");
449 		return;
450 	}
451 
452 	efi_systab_phys = boot_params.efi_info.efi_systab |
453 			  ((__u64)boot_params.efi_info.efi_systab_hi << 32);
454 
455 	if (efi_systab_init(efi_systab_phys))
456 		return;
457 
458 	efi.config_table = (unsigned long)efi.systab->tables;
459 	efi.fw_vendor	 = (unsigned long)efi.systab->fw_vendor;
460 	efi.runtime	 = (unsigned long)efi.systab->runtime;
461 
462 	/*
463 	 * Show what we know for posterity
464 	 */
465 	c16 = early_memremap_ro(efi.systab->fw_vendor,
466 				sizeof(vendor) * sizeof(efi_char16_t));
467 	if (c16) {
468 		for (i = 0; i < sizeof(vendor) - 1 && c16[i]; ++i)
469 			vendor[i] = c16[i];
470 		vendor[i] = '\0';
471 		early_memunmap(c16, sizeof(vendor) * sizeof(efi_char16_t));
472 	} else {
473 		pr_err("Could not map the firmware vendor!\n");
474 	}
475 
476 	pr_info("EFI v%u.%.02u by %s\n",
477 		efi.systab->hdr.revision >> 16,
478 		efi.systab->hdr.revision & 0xffff, vendor);
479 
480 	if (efi_reuse_config(efi.systab->tables, efi.systab->nr_tables))
481 		return;
482 
483 	if (efi_config_init(arch_tables))
484 		return;
485 
486 	/*
487 	 * Note: We currently don't support runtime services on an EFI
488 	 * that doesn't match the kernel 32/64-bit mode.
489 	 */
490 
491 	if (!efi_runtime_supported())
492 		pr_info("No EFI runtime due to 32/64-bit mismatch with kernel\n");
493 
494 	if (!efi_runtime_supported() || efi_runtime_disabled()) {
495 		efi_memmap_unmap();
496 		return;
497 	}
498 
499 	set_bit(EFI_RUNTIME_SERVICES, &efi.flags);
500 	efi_clean_memmap();
501 
502 	if (efi_enabled(EFI_DBG))
503 		efi_print_memmap();
504 }
505 
506 #if defined(CONFIG_X86_32) || defined(CONFIG_X86_UV)
507 
508 void __init efi_set_executable(efi_memory_desc_t *md, bool executable)
509 {
510 	u64 addr, npages;
511 
512 	addr = md->virt_addr;
513 	npages = md->num_pages;
514 
515 	memrange_efi_to_native(&addr, &npages);
516 
517 	if (executable)
518 		set_memory_x(addr, npages);
519 	else
520 		set_memory_nx(addr, npages);
521 }
522 
523 void __init runtime_code_page_mkexec(void)
524 {
525 	efi_memory_desc_t *md;
526 
527 	/* Make EFI runtime service code area executable */
528 	for_each_efi_memory_desc(md) {
529 		if (md->type != EFI_RUNTIME_SERVICES_CODE)
530 			continue;
531 
532 		efi_set_executable(md, true);
533 	}
534 }
535 
536 void __init efi_memory_uc(u64 addr, unsigned long size)
537 {
538 	unsigned long page_shift = 1UL << EFI_PAGE_SHIFT;
539 	u64 npages;
540 
541 	npages = round_up(size, page_shift) / page_shift;
542 	memrange_efi_to_native(&addr, &npages);
543 	set_memory_uc(addr, npages);
544 }
545 
546 void __init old_map_region(efi_memory_desc_t *md)
547 {
548 	u64 start_pfn, end_pfn, end;
549 	unsigned long size;
550 	void *va;
551 
552 	start_pfn = PFN_DOWN(md->phys_addr);
553 	size	  = md->num_pages << PAGE_SHIFT;
554 	end	  = md->phys_addr + size;
555 	end_pfn   = PFN_UP(end);
556 
557 	if (pfn_range_is_mapped(start_pfn, end_pfn)) {
558 		va = __va(md->phys_addr);
559 
560 		if (!(md->attribute & EFI_MEMORY_WB))
561 			efi_memory_uc((u64)(unsigned long)va, size);
562 	} else
563 		va = efi_ioremap(md->phys_addr, size,
564 				 md->type, md->attribute);
565 
566 	md->virt_addr = (u64) (unsigned long) va;
567 	if (!va)
568 		pr_err("ioremap of 0x%llX failed!\n",
569 		       (unsigned long long)md->phys_addr);
570 }
571 
572 #endif
573 
574 /* Merge contiguous regions of the same type and attribute */
575 static void __init efi_merge_regions(void)
576 {
577 	efi_memory_desc_t *md, *prev_md = NULL;
578 
579 	for_each_efi_memory_desc(md) {
580 		u64 prev_size;
581 
582 		if (!prev_md) {
583 			prev_md = md;
584 			continue;
585 		}
586 
587 		if (prev_md->type != md->type ||
588 		    prev_md->attribute != md->attribute) {
589 			prev_md = md;
590 			continue;
591 		}
592 
593 		prev_size = prev_md->num_pages << EFI_PAGE_SHIFT;
594 
595 		if (md->phys_addr == (prev_md->phys_addr + prev_size)) {
596 			prev_md->num_pages += md->num_pages;
597 			md->type = EFI_RESERVED_TYPE;
598 			md->attribute = 0;
599 			continue;
600 		}
601 		prev_md = md;
602 	}
603 }
604 
605 static void __init get_systab_virt_addr(efi_memory_desc_t *md)
606 {
607 	unsigned long size;
608 	u64 end, systab;
609 
610 	size = md->num_pages << EFI_PAGE_SHIFT;
611 	end = md->phys_addr + size;
612 	systab = efi_systab_phys;
613 	if (md->phys_addr <= systab && systab < end) {
614 		systab += md->virt_addr - md->phys_addr;
615 		efi.systab = (efi_system_table_t *)(unsigned long)systab;
616 	}
617 }
618 
619 static void *realloc_pages(void *old_memmap, int old_shift)
620 {
621 	void *ret;
622 
623 	ret = (void *)__get_free_pages(GFP_KERNEL, old_shift + 1);
624 	if (!ret)
625 		goto out;
626 
627 	/*
628 	 * A first-time allocation doesn't have anything to copy.
629 	 */
630 	if (!old_memmap)
631 		return ret;
632 
633 	memcpy(ret, old_memmap, PAGE_SIZE << old_shift);
634 
635 out:
636 	free_pages((unsigned long)old_memmap, old_shift);
637 	return ret;
638 }
639 
640 /*
641  * Iterate the EFI memory map in reverse order because the regions
642  * will be mapped top-down. The end result is the same as if we had
643  * mapped things forward, but doesn't require us to change the
644  * existing implementation of efi_map_region().
645  */
646 static inline void *efi_map_next_entry_reverse(void *entry)
647 {
648 	/* Initial call */
649 	if (!entry)
650 		return efi.memmap.map_end - efi.memmap.desc_size;
651 
652 	entry -= efi.memmap.desc_size;
653 	if (entry < efi.memmap.map)
654 		return NULL;
655 
656 	return entry;
657 }
658 
659 /*
660  * efi_map_next_entry - Return the next EFI memory map descriptor
661  * @entry: Previous EFI memory map descriptor
662  *
663  * This is a helper function to iterate over the EFI memory map, which
664  * we do in different orders depending on the current configuration.
665  *
666  * To begin traversing the memory map @entry must be %NULL.
667  *
668  * Returns %NULL when we reach the end of the memory map.
669  */
670 static void *efi_map_next_entry(void *entry)
671 {
672 	if (!efi_have_uv1_memmap() && efi_enabled(EFI_64BIT)) {
673 		/*
674 		 * Starting in UEFI v2.5 the EFI_PROPERTIES_TABLE
675 		 * config table feature requires us to map all entries
676 		 * in the same order as they appear in the EFI memory
677 		 * map. That is to say, entry N must have a lower
678 		 * virtual address than entry N+1. This is because the
679 		 * firmware toolchain leaves relative references in
680 		 * the code/data sections, which are split and become
681 		 * separate EFI memory regions. Mapping things
682 		 * out-of-order leads to the firmware accessing
683 		 * unmapped addresses.
684 		 *
685 		 * Since we need to map things this way whether or not
686 		 * the kernel actually makes use of
687 		 * EFI_PROPERTIES_TABLE, let's just switch to this
688 		 * scheme by default for 64-bit.
689 		 */
690 		return efi_map_next_entry_reverse(entry);
691 	}
692 
693 	/* Initial call */
694 	if (!entry)
695 		return efi.memmap.map;
696 
697 	entry += efi.memmap.desc_size;
698 	if (entry >= efi.memmap.map_end)
699 		return NULL;
700 
701 	return entry;
702 }
703 
704 static bool should_map_region(efi_memory_desc_t *md)
705 {
706 	/*
707 	 * Runtime regions always require runtime mappings (obviously).
708 	 */
709 	if (md->attribute & EFI_MEMORY_RUNTIME)
710 		return true;
711 
712 	/*
713 	 * 32-bit EFI doesn't suffer from the bug that requires us to
714 	 * reserve boot services regions, and mixed mode support
715 	 * doesn't exist for 32-bit kernels.
716 	 */
717 	if (IS_ENABLED(CONFIG_X86_32))
718 		return false;
719 
720 	/*
721 	 * EFI specific purpose memory may be reserved by default
722 	 * depending on kernel config and boot options.
723 	 */
724 	if (md->type == EFI_CONVENTIONAL_MEMORY &&
725 	    efi_soft_reserve_enabled() &&
726 	    (md->attribute & EFI_MEMORY_SP))
727 		return false;
728 
729 	/*
730 	 * Map all of RAM so that we can access arguments in the 1:1
731 	 * mapping when making EFI runtime calls.
732 	 */
733 	if (efi_is_mixed()) {
734 		if (md->type == EFI_CONVENTIONAL_MEMORY ||
735 		    md->type == EFI_LOADER_DATA ||
736 		    md->type == EFI_LOADER_CODE)
737 			return true;
738 	}
739 
740 	/*
741 	 * Map boot services regions as a workaround for buggy
742 	 * firmware that accesses them even when they shouldn't.
743 	 *
744 	 * See efi_{reserve,free}_boot_services().
745 	 */
746 	if (md->type == EFI_BOOT_SERVICES_CODE ||
747 	    md->type == EFI_BOOT_SERVICES_DATA)
748 		return true;
749 
750 	return false;
751 }
752 
753 /*
754  * Map the efi memory ranges of the runtime services and update new_mmap with
755  * virtual addresses.
756  */
757 static void * __init efi_map_regions(int *count, int *pg_shift)
758 {
759 	void *p, *new_memmap = NULL;
760 	unsigned long left = 0;
761 	unsigned long desc_size;
762 	efi_memory_desc_t *md;
763 
764 	desc_size = efi.memmap.desc_size;
765 
766 	p = NULL;
767 	while ((p = efi_map_next_entry(p))) {
768 		md = p;
769 
770 		if (!should_map_region(md))
771 			continue;
772 
773 		efi_map_region(md);
774 		get_systab_virt_addr(md);
775 
776 		if (left < desc_size) {
777 			new_memmap = realloc_pages(new_memmap, *pg_shift);
778 			if (!new_memmap)
779 				return NULL;
780 
781 			left += PAGE_SIZE << *pg_shift;
782 			(*pg_shift)++;
783 		}
784 
785 		memcpy(new_memmap + (*count * desc_size), md, desc_size);
786 
787 		left -= desc_size;
788 		(*count)++;
789 	}
790 
791 	return new_memmap;
792 }
793 
794 static void __init kexec_enter_virtual_mode(void)
795 {
796 #ifdef CONFIG_KEXEC_CORE
797 	efi_memory_desc_t *md;
798 	unsigned int num_pages;
799 
800 	efi.systab = NULL;
801 
802 	/*
803 	 * We don't do virtual mode, since we don't do runtime services, on
804 	 * non-native EFI. With the UV1 memmap, we don't do runtime services in
805 	 * kexec kernel because in the initial boot something else might
806 	 * have been mapped at these virtual addresses.
807 	 */
808 	if (efi_is_mixed() || efi_have_uv1_memmap()) {
809 		efi_memmap_unmap();
810 		clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
811 		return;
812 	}
813 
814 	if (efi_alloc_page_tables()) {
815 		pr_err("Failed to allocate EFI page tables\n");
816 		clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
817 		return;
818 	}
819 
820 	/*
821 	* Map efi regions which were passed via setup_data. The virt_addr is a
822 	* fixed addr which was used in first kernel of a kexec boot.
823 	*/
824 	for_each_efi_memory_desc(md) {
825 		efi_map_region_fixed(md); /* FIXME: add error handling */
826 		get_systab_virt_addr(md);
827 	}
828 
829 	/*
830 	 * Unregister the early EFI memmap from efi_init() and install
831 	 * the new EFI memory map.
832 	 */
833 	efi_memmap_unmap();
834 
835 	if (efi_memmap_init_late(efi.memmap.phys_map,
836 				 efi.memmap.desc_size * efi.memmap.nr_map)) {
837 		pr_err("Failed to remap late EFI memory map\n");
838 		clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
839 		return;
840 	}
841 
842 	BUG_ON(!efi.systab);
843 
844 	num_pages = ALIGN(efi.memmap.nr_map * efi.memmap.desc_size, PAGE_SIZE);
845 	num_pages >>= PAGE_SHIFT;
846 
847 	if (efi_setup_page_tables(efi.memmap.phys_map, num_pages)) {
848 		clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
849 		return;
850 	}
851 
852 	efi_sync_low_kernel_mappings();
853 
854 	/*
855 	 * Now that EFI is in virtual mode, update the function
856 	 * pointers in the runtime service table to the new virtual addresses.
857 	 *
858 	 * Call EFI services through wrapper functions.
859 	 */
860 	efi.runtime_version = efi_systab.hdr.revision;
861 
862 	efi_native_runtime_setup();
863 #endif
864 }
865 
866 /*
867  * This function will switch the EFI runtime services to virtual mode.
868  * Essentially, we look through the EFI memmap and map every region that
869  * has the runtime attribute bit set in its memory descriptor into the
870  * efi_pgd page table.
871  *
872  * The old method which used to update that memory descriptor with the
873  * virtual address obtained from ioremap() is still supported when the
874  * kernel is booted on SG1 UV1 hardware. Same old method enabled the
875  * runtime services to be called without having to thunk back into
876  * physical mode for every invocation.
877  *
878  * The new method does a pagetable switch in a preemption-safe manner
879  * so that we're in a different address space when calling a runtime
880  * function. For function arguments passing we do copy the PUDs of the
881  * kernel page table into efi_pgd prior to each call.
882  *
883  * Specially for kexec boot, efi runtime maps in previous kernel should
884  * be passed in via setup_data. In that case runtime ranges will be mapped
885  * to the same virtual addresses as the first kernel, see
886  * kexec_enter_virtual_mode().
887  */
888 static void __init __efi_enter_virtual_mode(void)
889 {
890 	int count = 0, pg_shift = 0;
891 	void *new_memmap = NULL;
892 	efi_status_t status;
893 	unsigned long pa;
894 
895 	efi.systab = NULL;
896 
897 	if (efi_alloc_page_tables()) {
898 		pr_err("Failed to allocate EFI page tables\n");
899 		goto err;
900 	}
901 
902 	efi_merge_regions();
903 	new_memmap = efi_map_regions(&count, &pg_shift);
904 	if (!new_memmap) {
905 		pr_err("Error reallocating memory, EFI runtime non-functional!\n");
906 		goto err;
907 	}
908 
909 	pa = __pa(new_memmap);
910 
911 	/*
912 	 * Unregister the early EFI memmap from efi_init() and install
913 	 * the new EFI memory map that we are about to pass to the
914 	 * firmware via SetVirtualAddressMap().
915 	 */
916 	efi_memmap_unmap();
917 
918 	if (efi_memmap_init_late(pa, efi.memmap.desc_size * count)) {
919 		pr_err("Failed to remap late EFI memory map\n");
920 		goto err;
921 	}
922 
923 	if (efi_enabled(EFI_DBG)) {
924 		pr_info("EFI runtime memory map:\n");
925 		efi_print_memmap();
926 	}
927 
928 	if (WARN_ON(!efi.systab))
929 		goto err;
930 
931 	if (efi_setup_page_tables(pa, 1 << pg_shift))
932 		goto err;
933 
934 	efi_sync_low_kernel_mappings();
935 
936 	status = efi_set_virtual_address_map(efi.memmap.desc_size * count,
937 					     efi.memmap.desc_size,
938 					     efi.memmap.desc_version,
939 					     (efi_memory_desc_t *)pa);
940 	if (status != EFI_SUCCESS) {
941 		pr_err("Unable to switch EFI into virtual mode (status=%lx)!\n",
942 		       status);
943 		goto err;
944 	}
945 
946 	efi_free_boot_services();
947 
948 	/*
949 	 * Now that EFI is in virtual mode, update the function
950 	 * pointers in the runtime service table to the new virtual addresses.
951 	 *
952 	 * Call EFI services through wrapper functions.
953 	 */
954 	efi.runtime_version = efi_systab.hdr.revision;
955 
956 	if (!efi_is_mixed())
957 		efi_native_runtime_setup();
958 	else
959 		efi_thunk_runtime_setup();
960 
961 	/*
962 	 * Apply more restrictive page table mapping attributes now that
963 	 * SVAM() has been called and the firmware has performed all
964 	 * necessary relocation fixups for the new virtual addresses.
965 	 */
966 	efi_runtime_update_mappings();
967 
968 	/* clean DUMMY object */
969 	efi_delete_dummy_variable();
970 	return;
971 
972 err:
973 	clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
974 }
975 
976 void __init efi_enter_virtual_mode(void)
977 {
978 	if (efi_enabled(EFI_PARAVIRT))
979 		return;
980 
981 	if (efi_setup)
982 		kexec_enter_virtual_mode();
983 	else
984 		__efi_enter_virtual_mode();
985 
986 	efi_dump_pagetable();
987 }
988 
989 bool efi_is_table_address(unsigned long phys_addr)
990 {
991 	unsigned int i;
992 
993 	if (phys_addr == EFI_INVALID_TABLE_ADDR)
994 		return false;
995 
996 	for (i = 0; i < ARRAY_SIZE(efi_tables); i++)
997 		if (*(efi_tables[i]) == phys_addr)
998 			return true;
999 
1000 	return false;
1001 }
1002