xref: /linux/arch/x86/platform/efi/efi_64.c (revision 2da68a77)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * x86_64 specific EFI support functions
4  * Based on Extensible Firmware Interface Specification version 1.0
5  *
6  * Copyright (C) 2005-2008 Intel Co.
7  *	Fenghua Yu <fenghua.yu@intel.com>
8  *	Bibo Mao <bibo.mao@intel.com>
9  *	Chandramouli Narayanan <mouli@linux.intel.com>
10  *	Huang Ying <ying.huang@intel.com>
11  *
12  * Code to convert EFI to E820 map has been implemented in elilo bootloader
13  * based on a EFI patch by Edgar Hucek. Based on the E820 map, the page table
14  * is setup appropriately for EFI runtime code.
15  * - mouli 06/14/2007.
16  *
17  */
18 
19 #define pr_fmt(fmt) "efi: " fmt
20 
21 #include <linux/kernel.h>
22 #include <linux/init.h>
23 #include <linux/mm.h>
24 #include <linux/types.h>
25 #include <linux/spinlock.h>
26 #include <linux/memblock.h>
27 #include <linux/ioport.h>
28 #include <linux/mc146818rtc.h>
29 #include <linux/efi.h>
30 #include <linux/export.h>
31 #include <linux/uaccess.h>
32 #include <linux/io.h>
33 #include <linux/reboot.h>
34 #include <linux/slab.h>
35 #include <linux/ucs2_string.h>
36 #include <linux/cc_platform.h>
37 #include <linux/sched/task.h>
38 
39 #include <asm/setup.h>
40 #include <asm/page.h>
41 #include <asm/e820/api.h>
42 #include <asm/tlbflush.h>
43 #include <asm/proto.h>
44 #include <asm/efi.h>
45 #include <asm/cacheflush.h>
46 #include <asm/fixmap.h>
47 #include <asm/realmode.h>
48 #include <asm/time.h>
49 #include <asm/pgalloc.h>
50 #include <asm/sev.h>
51 
52 /*
53  * We allocate runtime services regions top-down, starting from -4G, i.e.
54  * 0xffff_ffff_0000_0000 and limit EFI VA mapping space to 64G.
55  */
56 static u64 efi_va = EFI_VA_START;
57 static struct mm_struct *efi_prev_mm;
58 
59 /*
60  * We need our own copy of the higher levels of the page tables
61  * because we want to avoid inserting EFI region mappings (EFI_VA_END
62  * to EFI_VA_START) into the standard kernel page tables. Everything
63  * else can be shared, see efi_sync_low_kernel_mappings().
64  *
65  * We don't want the pgd on the pgd_list and cannot use pgd_alloc() for the
66  * allocation.
67  */
68 int __init efi_alloc_page_tables(void)
69 {
70 	pgd_t *pgd, *efi_pgd;
71 	p4d_t *p4d;
72 	pud_t *pud;
73 	gfp_t gfp_mask;
74 
75 	gfp_mask = GFP_KERNEL | __GFP_ZERO;
76 	efi_pgd = (pgd_t *)__get_free_pages(gfp_mask, PGD_ALLOCATION_ORDER);
77 	if (!efi_pgd)
78 		goto fail;
79 
80 	pgd = efi_pgd + pgd_index(EFI_VA_END);
81 	p4d = p4d_alloc(&init_mm, pgd, EFI_VA_END);
82 	if (!p4d)
83 		goto free_pgd;
84 
85 	pud = pud_alloc(&init_mm, p4d, EFI_VA_END);
86 	if (!pud)
87 		goto free_p4d;
88 
89 	efi_mm.pgd = efi_pgd;
90 	mm_init_cpumask(&efi_mm);
91 	init_new_context(NULL, &efi_mm);
92 
93 	return 0;
94 
95 free_p4d:
96 	if (pgtable_l5_enabled())
97 		free_page((unsigned long)pgd_page_vaddr(*pgd));
98 free_pgd:
99 	free_pages((unsigned long)efi_pgd, PGD_ALLOCATION_ORDER);
100 fail:
101 	return -ENOMEM;
102 }
103 
104 /*
105  * Add low kernel mappings for passing arguments to EFI functions.
106  */
107 void efi_sync_low_kernel_mappings(void)
108 {
109 	unsigned num_entries;
110 	pgd_t *pgd_k, *pgd_efi;
111 	p4d_t *p4d_k, *p4d_efi;
112 	pud_t *pud_k, *pud_efi;
113 	pgd_t *efi_pgd = efi_mm.pgd;
114 
115 	pgd_efi = efi_pgd + pgd_index(PAGE_OFFSET);
116 	pgd_k = pgd_offset_k(PAGE_OFFSET);
117 
118 	num_entries = pgd_index(EFI_VA_END) - pgd_index(PAGE_OFFSET);
119 	memcpy(pgd_efi, pgd_k, sizeof(pgd_t) * num_entries);
120 
121 	pgd_efi = efi_pgd + pgd_index(EFI_VA_END);
122 	pgd_k = pgd_offset_k(EFI_VA_END);
123 	p4d_efi = p4d_offset(pgd_efi, 0);
124 	p4d_k = p4d_offset(pgd_k, 0);
125 
126 	num_entries = p4d_index(EFI_VA_END);
127 	memcpy(p4d_efi, p4d_k, sizeof(p4d_t) * num_entries);
128 
129 	/*
130 	 * We share all the PUD entries apart from those that map the
131 	 * EFI regions. Copy around them.
132 	 */
133 	BUILD_BUG_ON((EFI_VA_START & ~PUD_MASK) != 0);
134 	BUILD_BUG_ON((EFI_VA_END & ~PUD_MASK) != 0);
135 
136 	p4d_efi = p4d_offset(pgd_efi, EFI_VA_END);
137 	p4d_k = p4d_offset(pgd_k, EFI_VA_END);
138 	pud_efi = pud_offset(p4d_efi, 0);
139 	pud_k = pud_offset(p4d_k, 0);
140 
141 	num_entries = pud_index(EFI_VA_END);
142 	memcpy(pud_efi, pud_k, sizeof(pud_t) * num_entries);
143 
144 	pud_efi = pud_offset(p4d_efi, EFI_VA_START);
145 	pud_k = pud_offset(p4d_k, EFI_VA_START);
146 
147 	num_entries = PTRS_PER_PUD - pud_index(EFI_VA_START);
148 	memcpy(pud_efi, pud_k, sizeof(pud_t) * num_entries);
149 }
150 
151 /*
152  * Wrapper for slow_virt_to_phys() that handles NULL addresses.
153  */
154 static inline phys_addr_t
155 virt_to_phys_or_null_size(void *va, unsigned long size)
156 {
157 	phys_addr_t pa;
158 
159 	if (!va)
160 		return 0;
161 
162 	if (virt_addr_valid(va))
163 		return virt_to_phys(va);
164 
165 	pa = slow_virt_to_phys(va);
166 
167 	/* check if the object crosses a page boundary */
168 	if (WARN_ON((pa ^ (pa + size - 1)) & PAGE_MASK))
169 		return 0;
170 
171 	return pa;
172 }
173 
174 #define virt_to_phys_or_null(addr)				\
175 	virt_to_phys_or_null_size((addr), sizeof(*(addr)))
176 
177 int __init efi_setup_page_tables(unsigned long pa_memmap, unsigned num_pages)
178 {
179 	extern const u8 __efi64_thunk_ret_tramp[];
180 	unsigned long pfn, text, pf, rodata, tramp;
181 	struct page *page;
182 	unsigned npages;
183 	pgd_t *pgd = efi_mm.pgd;
184 
185 	/*
186 	 * It can happen that the physical address of new_memmap lands in memory
187 	 * which is not mapped in the EFI page table. Therefore we need to go
188 	 * and ident-map those pages containing the map before calling
189 	 * phys_efi_set_virtual_address_map().
190 	 */
191 	pfn = pa_memmap >> PAGE_SHIFT;
192 	pf = _PAGE_NX | _PAGE_RW | _PAGE_ENC;
193 	if (kernel_map_pages_in_pgd(pgd, pfn, pa_memmap, num_pages, pf)) {
194 		pr_err("Error ident-mapping new memmap (0x%lx)!\n", pa_memmap);
195 		return 1;
196 	}
197 
198 	/*
199 	 * Certain firmware versions are way too sentimental and still believe
200 	 * they are exclusive and unquestionable owners of the first physical page,
201 	 * even though they explicitly mark it as EFI_CONVENTIONAL_MEMORY
202 	 * (but then write-access it later during SetVirtualAddressMap()).
203 	 *
204 	 * Create a 1:1 mapping for this page, to avoid triple faults during early
205 	 * boot with such firmware. We are free to hand this page to the BIOS,
206 	 * as trim_bios_range() will reserve the first page and isolate it away
207 	 * from memory allocators anyway.
208 	 */
209 	if (kernel_map_pages_in_pgd(pgd, 0x0, 0x0, 1, pf)) {
210 		pr_err("Failed to create 1:1 mapping for the first page!\n");
211 		return 1;
212 	}
213 
214 	/*
215 	 * When SEV-ES is active, the GHCB as set by the kernel will be used
216 	 * by firmware. Create a 1:1 unencrypted mapping for each GHCB.
217 	 */
218 	if (sev_es_efi_map_ghcbs(pgd)) {
219 		pr_err("Failed to create 1:1 mapping for the GHCBs!\n");
220 		return 1;
221 	}
222 
223 	/*
224 	 * When making calls to the firmware everything needs to be 1:1
225 	 * mapped and addressable with 32-bit pointers. Map the kernel
226 	 * text and allocate a new stack because we can't rely on the
227 	 * stack pointer being < 4GB.
228 	 */
229 	if (!efi_is_mixed())
230 		return 0;
231 
232 	page = alloc_page(GFP_KERNEL|__GFP_DMA32);
233 	if (!page) {
234 		pr_err("Unable to allocate EFI runtime stack < 4GB\n");
235 		return 1;
236 	}
237 
238 	efi_mixed_mode_stack_pa = page_to_phys(page + 1); /* stack grows down */
239 
240 	npages = (_etext - _text) >> PAGE_SHIFT;
241 	text = __pa(_text);
242 
243 	if (kernel_unmap_pages_in_pgd(pgd, text, npages)) {
244 		pr_err("Failed to unmap kernel text 1:1 mapping\n");
245 		return 1;
246 	}
247 
248 	npages = (__end_rodata - __start_rodata) >> PAGE_SHIFT;
249 	rodata = __pa(__start_rodata);
250 	pfn = rodata >> PAGE_SHIFT;
251 
252 	pf = _PAGE_NX | _PAGE_ENC;
253 	if (kernel_map_pages_in_pgd(pgd, pfn, rodata, npages, pf)) {
254 		pr_err("Failed to map kernel rodata 1:1\n");
255 		return 1;
256 	}
257 
258 	tramp = __pa(__efi64_thunk_ret_tramp);
259 	pfn = tramp >> PAGE_SHIFT;
260 
261 	pf = _PAGE_ENC;
262 	if (kernel_map_pages_in_pgd(pgd, pfn, tramp, 1, pf)) {
263 		pr_err("Failed to map mixed mode return trampoline\n");
264 		return 1;
265 	}
266 
267 	return 0;
268 }
269 
270 static void __init __map_region(efi_memory_desc_t *md, u64 va)
271 {
272 	unsigned long flags = _PAGE_RW;
273 	unsigned long pfn;
274 	pgd_t *pgd = efi_mm.pgd;
275 
276 	/*
277 	 * EFI_RUNTIME_SERVICES_CODE regions typically cover PE/COFF
278 	 * executable images in memory that consist of both R-X and
279 	 * RW- sections, so we cannot apply read-only or non-exec
280 	 * permissions just yet. However, modern EFI systems provide
281 	 * a memory attributes table that describes those sections
282 	 * with the appropriate restricted permissions, which are
283 	 * applied in efi_runtime_update_mappings() below. All other
284 	 * regions can be mapped non-executable at this point, with
285 	 * the exception of boot services code regions, but those will
286 	 * be unmapped again entirely in efi_free_boot_services().
287 	 */
288 	if (md->type != EFI_BOOT_SERVICES_CODE &&
289 	    md->type != EFI_RUNTIME_SERVICES_CODE)
290 		flags |= _PAGE_NX;
291 
292 	if (!(md->attribute & EFI_MEMORY_WB))
293 		flags |= _PAGE_PCD;
294 
295 	if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT) &&
296 	    md->type != EFI_MEMORY_MAPPED_IO)
297 		flags |= _PAGE_ENC;
298 
299 	pfn = md->phys_addr >> PAGE_SHIFT;
300 	if (kernel_map_pages_in_pgd(pgd, pfn, va, md->num_pages, flags))
301 		pr_warn("Error mapping PA 0x%llx -> VA 0x%llx!\n",
302 			   md->phys_addr, va);
303 }
304 
305 void __init efi_map_region(efi_memory_desc_t *md)
306 {
307 	unsigned long size = md->num_pages << PAGE_SHIFT;
308 	u64 pa = md->phys_addr;
309 
310 	/*
311 	 * Make sure the 1:1 mappings are present as a catch-all for b0rked
312 	 * firmware which doesn't update all internal pointers after switching
313 	 * to virtual mode and would otherwise crap on us.
314 	 */
315 	__map_region(md, md->phys_addr);
316 
317 	/*
318 	 * Enforce the 1:1 mapping as the default virtual address when
319 	 * booting in EFI mixed mode, because even though we may be
320 	 * running a 64-bit kernel, the firmware may only be 32-bit.
321 	 */
322 	if (efi_is_mixed()) {
323 		md->virt_addr = md->phys_addr;
324 		return;
325 	}
326 
327 	efi_va -= size;
328 
329 	/* Is PA 2M-aligned? */
330 	if (!(pa & (PMD_SIZE - 1))) {
331 		efi_va &= PMD_MASK;
332 	} else {
333 		u64 pa_offset = pa & (PMD_SIZE - 1);
334 		u64 prev_va = efi_va;
335 
336 		/* get us the same offset within this 2M page */
337 		efi_va = (efi_va & PMD_MASK) + pa_offset;
338 
339 		if (efi_va > prev_va)
340 			efi_va -= PMD_SIZE;
341 	}
342 
343 	if (efi_va < EFI_VA_END) {
344 		pr_warn(FW_WARN "VA address range overflow!\n");
345 		return;
346 	}
347 
348 	/* Do the VA map */
349 	__map_region(md, efi_va);
350 	md->virt_addr = efi_va;
351 }
352 
353 /*
354  * kexec kernel will use efi_map_region_fixed to map efi runtime memory ranges.
355  * md->virt_addr is the original virtual address which had been mapped in kexec
356  * 1st kernel.
357  */
358 void __init efi_map_region_fixed(efi_memory_desc_t *md)
359 {
360 	__map_region(md, md->phys_addr);
361 	__map_region(md, md->virt_addr);
362 }
363 
364 void __init parse_efi_setup(u64 phys_addr, u32 data_len)
365 {
366 	efi_setup = phys_addr + sizeof(struct setup_data);
367 }
368 
369 static int __init efi_update_mappings(efi_memory_desc_t *md, unsigned long pf)
370 {
371 	unsigned long pfn;
372 	pgd_t *pgd = efi_mm.pgd;
373 	int err1, err2;
374 
375 	/* Update the 1:1 mapping */
376 	pfn = md->phys_addr >> PAGE_SHIFT;
377 	err1 = kernel_map_pages_in_pgd(pgd, pfn, md->phys_addr, md->num_pages, pf);
378 	if (err1) {
379 		pr_err("Error while updating 1:1 mapping PA 0x%llx -> VA 0x%llx!\n",
380 			   md->phys_addr, md->virt_addr);
381 	}
382 
383 	err2 = kernel_map_pages_in_pgd(pgd, pfn, md->virt_addr, md->num_pages, pf);
384 	if (err2) {
385 		pr_err("Error while updating VA mapping PA 0x%llx -> VA 0x%llx!\n",
386 			   md->phys_addr, md->virt_addr);
387 	}
388 
389 	return err1 || err2;
390 }
391 
392 static int __init efi_update_mem_attr(struct mm_struct *mm, efi_memory_desc_t *md)
393 {
394 	unsigned long pf = 0;
395 
396 	if (md->attribute & EFI_MEMORY_XP)
397 		pf |= _PAGE_NX;
398 
399 	if (!(md->attribute & EFI_MEMORY_RO))
400 		pf |= _PAGE_RW;
401 
402 	if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT))
403 		pf |= _PAGE_ENC;
404 
405 	return efi_update_mappings(md, pf);
406 }
407 
408 void __init efi_runtime_update_mappings(void)
409 {
410 	efi_memory_desc_t *md;
411 
412 	/*
413 	 * Use the EFI Memory Attribute Table for mapping permissions if it
414 	 * exists, since it is intended to supersede EFI_PROPERTIES_TABLE.
415 	 */
416 	if (efi_enabled(EFI_MEM_ATTR)) {
417 		efi_memattr_apply_permissions(NULL, efi_update_mem_attr);
418 		return;
419 	}
420 
421 	/*
422 	 * EFI_MEMORY_ATTRIBUTES_TABLE is intended to replace
423 	 * EFI_PROPERTIES_TABLE. So, use EFI_PROPERTIES_TABLE to update
424 	 * permissions only if EFI_MEMORY_ATTRIBUTES_TABLE is not
425 	 * published by the firmware. Even if we find a buggy implementation of
426 	 * EFI_MEMORY_ATTRIBUTES_TABLE, don't fall back to
427 	 * EFI_PROPERTIES_TABLE, because of the same reason.
428 	 */
429 
430 	if (!efi_enabled(EFI_NX_PE_DATA))
431 		return;
432 
433 	for_each_efi_memory_desc(md) {
434 		unsigned long pf = 0;
435 
436 		if (!(md->attribute & EFI_MEMORY_RUNTIME))
437 			continue;
438 
439 		if (!(md->attribute & EFI_MEMORY_WB))
440 			pf |= _PAGE_PCD;
441 
442 		if ((md->attribute & EFI_MEMORY_XP) ||
443 			(md->type == EFI_RUNTIME_SERVICES_DATA))
444 			pf |= _PAGE_NX;
445 
446 		if (!(md->attribute & EFI_MEMORY_RO) &&
447 			(md->type != EFI_RUNTIME_SERVICES_CODE))
448 			pf |= _PAGE_RW;
449 
450 		if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT))
451 			pf |= _PAGE_ENC;
452 
453 		efi_update_mappings(md, pf);
454 	}
455 }
456 
457 void __init efi_dump_pagetable(void)
458 {
459 #ifdef CONFIG_EFI_PGT_DUMP
460 	ptdump_walk_pgd_level(NULL, &efi_mm);
461 #endif
462 }
463 
464 /*
465  * Makes the calling thread switch to/from efi_mm context. Can be used
466  * in a kernel thread and user context. Preemption needs to remain disabled
467  * while the EFI-mm is borrowed. mmgrab()/mmdrop() is not used because the mm
468  * can not change under us.
469  * It should be ensured that there are no concurrent calls to this function.
470  */
471 void efi_enter_mm(void)
472 {
473 	efi_prev_mm = current->active_mm;
474 	current->active_mm = &efi_mm;
475 	switch_mm(efi_prev_mm, &efi_mm, NULL);
476 }
477 
478 void efi_leave_mm(void)
479 {
480 	current->active_mm = efi_prev_mm;
481 	switch_mm(&efi_mm, efi_prev_mm, NULL);
482 }
483 
484 static DEFINE_SPINLOCK(efi_runtime_lock);
485 
486 /*
487  * DS and ES contain user values.  We need to save them.
488  * The 32-bit EFI code needs a valid DS, ES, and SS.  There's no
489  * need to save the old SS: __KERNEL_DS is always acceptable.
490  */
491 #define __efi_thunk(func, ...)						\
492 ({									\
493 	unsigned short __ds, __es;					\
494 	efi_status_t ____s;						\
495 									\
496 	savesegment(ds, __ds);						\
497 	savesegment(es, __es);						\
498 									\
499 	loadsegment(ss, __KERNEL_DS);					\
500 	loadsegment(ds, __KERNEL_DS);					\
501 	loadsegment(es, __KERNEL_DS);					\
502 									\
503 	____s = efi64_thunk(efi.runtime->mixed_mode.func, __VA_ARGS__);	\
504 									\
505 	loadsegment(ds, __ds);						\
506 	loadsegment(es, __es);						\
507 									\
508 	____s ^= (____s & BIT(31)) | (____s & BIT_ULL(31)) << 32;	\
509 	____s;								\
510 })
511 
512 /*
513  * Switch to the EFI page tables early so that we can access the 1:1
514  * runtime services mappings which are not mapped in any other page
515  * tables.
516  *
517  * Also, disable interrupts because the IDT points to 64-bit handlers,
518  * which aren't going to function correctly when we switch to 32-bit.
519  */
520 #define efi_thunk(func...)						\
521 ({									\
522 	efi_status_t __s;						\
523 									\
524 	arch_efi_call_virt_setup();					\
525 									\
526 	__s = __efi_thunk(func);					\
527 									\
528 	arch_efi_call_virt_teardown();					\
529 									\
530 	__s;								\
531 })
532 
533 static efi_status_t __init __no_sanitize_address
534 efi_thunk_set_virtual_address_map(unsigned long memory_map_size,
535 				  unsigned long descriptor_size,
536 				  u32 descriptor_version,
537 				  efi_memory_desc_t *virtual_map)
538 {
539 	efi_status_t status;
540 	unsigned long flags;
541 
542 	efi_sync_low_kernel_mappings();
543 	local_irq_save(flags);
544 
545 	efi_enter_mm();
546 
547 	status = __efi_thunk(set_virtual_address_map, memory_map_size,
548 			     descriptor_size, descriptor_version, virtual_map);
549 
550 	efi_leave_mm();
551 	local_irq_restore(flags);
552 
553 	return status;
554 }
555 
556 static efi_status_t efi_thunk_get_time(efi_time_t *tm, efi_time_cap_t *tc)
557 {
558 	return EFI_UNSUPPORTED;
559 }
560 
561 static efi_status_t efi_thunk_set_time(efi_time_t *tm)
562 {
563 	return EFI_UNSUPPORTED;
564 }
565 
566 static efi_status_t
567 efi_thunk_get_wakeup_time(efi_bool_t *enabled, efi_bool_t *pending,
568 			  efi_time_t *tm)
569 {
570 	return EFI_UNSUPPORTED;
571 }
572 
573 static efi_status_t
574 efi_thunk_set_wakeup_time(efi_bool_t enabled, efi_time_t *tm)
575 {
576 	return EFI_UNSUPPORTED;
577 }
578 
579 static unsigned long efi_name_size(efi_char16_t *name)
580 {
581 	return ucs2_strsize(name, EFI_VAR_NAME_LEN) + 1;
582 }
583 
584 static efi_status_t
585 efi_thunk_get_variable(efi_char16_t *name, efi_guid_t *vendor,
586 		       u32 *attr, unsigned long *data_size, void *data)
587 {
588 	u8 buf[24] __aligned(8);
589 	efi_guid_t *vnd = PTR_ALIGN((efi_guid_t *)buf, sizeof(*vnd));
590 	efi_status_t status;
591 	u32 phys_name, phys_vendor, phys_attr;
592 	u32 phys_data_size, phys_data;
593 	unsigned long flags;
594 
595 	spin_lock_irqsave(&efi_runtime_lock, flags);
596 
597 	*vnd = *vendor;
598 
599 	phys_data_size = virt_to_phys_or_null(data_size);
600 	phys_vendor = virt_to_phys_or_null(vnd);
601 	phys_name = virt_to_phys_or_null_size(name, efi_name_size(name));
602 	phys_attr = virt_to_phys_or_null(attr);
603 	phys_data = virt_to_phys_or_null_size(data, *data_size);
604 
605 	if (!phys_name || (data && !phys_data))
606 		status = EFI_INVALID_PARAMETER;
607 	else
608 		status = efi_thunk(get_variable, phys_name, phys_vendor,
609 				   phys_attr, phys_data_size, phys_data);
610 
611 	spin_unlock_irqrestore(&efi_runtime_lock, flags);
612 
613 	return status;
614 }
615 
616 static efi_status_t
617 efi_thunk_set_variable(efi_char16_t *name, efi_guid_t *vendor,
618 		       u32 attr, unsigned long data_size, void *data)
619 {
620 	u8 buf[24] __aligned(8);
621 	efi_guid_t *vnd = PTR_ALIGN((efi_guid_t *)buf, sizeof(*vnd));
622 	u32 phys_name, phys_vendor, phys_data;
623 	efi_status_t status;
624 	unsigned long flags;
625 
626 	spin_lock_irqsave(&efi_runtime_lock, flags);
627 
628 	*vnd = *vendor;
629 
630 	phys_name = virt_to_phys_or_null_size(name, efi_name_size(name));
631 	phys_vendor = virt_to_phys_or_null(vnd);
632 	phys_data = virt_to_phys_or_null_size(data, data_size);
633 
634 	if (!phys_name || (data && !phys_data))
635 		status = EFI_INVALID_PARAMETER;
636 	else
637 		status = efi_thunk(set_variable, phys_name, phys_vendor,
638 				   attr, data_size, phys_data);
639 
640 	spin_unlock_irqrestore(&efi_runtime_lock, flags);
641 
642 	return status;
643 }
644 
645 static efi_status_t
646 efi_thunk_set_variable_nonblocking(efi_char16_t *name, efi_guid_t *vendor,
647 				   u32 attr, unsigned long data_size,
648 				   void *data)
649 {
650 	u8 buf[24] __aligned(8);
651 	efi_guid_t *vnd = PTR_ALIGN((efi_guid_t *)buf, sizeof(*vnd));
652 	u32 phys_name, phys_vendor, phys_data;
653 	efi_status_t status;
654 	unsigned long flags;
655 
656 	if (!spin_trylock_irqsave(&efi_runtime_lock, flags))
657 		return EFI_NOT_READY;
658 
659 	*vnd = *vendor;
660 
661 	phys_name = virt_to_phys_or_null_size(name, efi_name_size(name));
662 	phys_vendor = virt_to_phys_or_null(vnd);
663 	phys_data = virt_to_phys_or_null_size(data, data_size);
664 
665 	if (!phys_name || (data && !phys_data))
666 		status = EFI_INVALID_PARAMETER;
667 	else
668 		status = efi_thunk(set_variable, phys_name, phys_vendor,
669 				   attr, data_size, phys_data);
670 
671 	spin_unlock_irqrestore(&efi_runtime_lock, flags);
672 
673 	return status;
674 }
675 
676 static efi_status_t
677 efi_thunk_get_next_variable(unsigned long *name_size,
678 			    efi_char16_t *name,
679 			    efi_guid_t *vendor)
680 {
681 	u8 buf[24] __aligned(8);
682 	efi_guid_t *vnd = PTR_ALIGN((efi_guid_t *)buf, sizeof(*vnd));
683 	efi_status_t status;
684 	u32 phys_name_size, phys_name, phys_vendor;
685 	unsigned long flags;
686 
687 	spin_lock_irqsave(&efi_runtime_lock, flags);
688 
689 	*vnd = *vendor;
690 
691 	phys_name_size = virt_to_phys_or_null(name_size);
692 	phys_vendor = virt_to_phys_or_null(vnd);
693 	phys_name = virt_to_phys_or_null_size(name, *name_size);
694 
695 	if (!phys_name)
696 		status = EFI_INVALID_PARAMETER;
697 	else
698 		status = efi_thunk(get_next_variable, phys_name_size,
699 				   phys_name, phys_vendor);
700 
701 	spin_unlock_irqrestore(&efi_runtime_lock, flags);
702 
703 	*vendor = *vnd;
704 	return status;
705 }
706 
707 static efi_status_t
708 efi_thunk_get_next_high_mono_count(u32 *count)
709 {
710 	return EFI_UNSUPPORTED;
711 }
712 
713 static void
714 efi_thunk_reset_system(int reset_type, efi_status_t status,
715 		       unsigned long data_size, efi_char16_t *data)
716 {
717 	u32 phys_data;
718 	unsigned long flags;
719 
720 	spin_lock_irqsave(&efi_runtime_lock, flags);
721 
722 	phys_data = virt_to_phys_or_null_size(data, data_size);
723 
724 	efi_thunk(reset_system, reset_type, status, data_size, phys_data);
725 
726 	spin_unlock_irqrestore(&efi_runtime_lock, flags);
727 }
728 
729 static efi_status_t
730 efi_thunk_update_capsule(efi_capsule_header_t **capsules,
731 			 unsigned long count, unsigned long sg_list)
732 {
733 	/*
734 	 * To properly support this function we would need to repackage
735 	 * 'capsules' because the firmware doesn't understand 64-bit
736 	 * pointers.
737 	 */
738 	return EFI_UNSUPPORTED;
739 }
740 
741 static efi_status_t
742 efi_thunk_query_variable_info(u32 attr, u64 *storage_space,
743 			      u64 *remaining_space,
744 			      u64 *max_variable_size)
745 {
746 	efi_status_t status;
747 	u32 phys_storage, phys_remaining, phys_max;
748 	unsigned long flags;
749 
750 	if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION)
751 		return EFI_UNSUPPORTED;
752 
753 	spin_lock_irqsave(&efi_runtime_lock, flags);
754 
755 	phys_storage = virt_to_phys_or_null(storage_space);
756 	phys_remaining = virt_to_phys_or_null(remaining_space);
757 	phys_max = virt_to_phys_or_null(max_variable_size);
758 
759 	status = efi_thunk(query_variable_info, attr, phys_storage,
760 			   phys_remaining, phys_max);
761 
762 	spin_unlock_irqrestore(&efi_runtime_lock, flags);
763 
764 	return status;
765 }
766 
767 static efi_status_t
768 efi_thunk_query_variable_info_nonblocking(u32 attr, u64 *storage_space,
769 					  u64 *remaining_space,
770 					  u64 *max_variable_size)
771 {
772 	efi_status_t status;
773 	u32 phys_storage, phys_remaining, phys_max;
774 	unsigned long flags;
775 
776 	if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION)
777 		return EFI_UNSUPPORTED;
778 
779 	if (!spin_trylock_irqsave(&efi_runtime_lock, flags))
780 		return EFI_NOT_READY;
781 
782 	phys_storage = virt_to_phys_or_null(storage_space);
783 	phys_remaining = virt_to_phys_or_null(remaining_space);
784 	phys_max = virt_to_phys_or_null(max_variable_size);
785 
786 	status = efi_thunk(query_variable_info, attr, phys_storage,
787 			   phys_remaining, phys_max);
788 
789 	spin_unlock_irqrestore(&efi_runtime_lock, flags);
790 
791 	return status;
792 }
793 
794 static efi_status_t
795 efi_thunk_query_capsule_caps(efi_capsule_header_t **capsules,
796 			     unsigned long count, u64 *max_size,
797 			     int *reset_type)
798 {
799 	/*
800 	 * To properly support this function we would need to repackage
801 	 * 'capsules' because the firmware doesn't understand 64-bit
802 	 * pointers.
803 	 */
804 	return EFI_UNSUPPORTED;
805 }
806 
807 void __init efi_thunk_runtime_setup(void)
808 {
809 	if (!IS_ENABLED(CONFIG_EFI_MIXED))
810 		return;
811 
812 	efi.get_time = efi_thunk_get_time;
813 	efi.set_time = efi_thunk_set_time;
814 	efi.get_wakeup_time = efi_thunk_get_wakeup_time;
815 	efi.set_wakeup_time = efi_thunk_set_wakeup_time;
816 	efi.get_variable = efi_thunk_get_variable;
817 	efi.get_next_variable = efi_thunk_get_next_variable;
818 	efi.set_variable = efi_thunk_set_variable;
819 	efi.set_variable_nonblocking = efi_thunk_set_variable_nonblocking;
820 	efi.get_next_high_mono_count = efi_thunk_get_next_high_mono_count;
821 	efi.reset_system = efi_thunk_reset_system;
822 	efi.query_variable_info = efi_thunk_query_variable_info;
823 	efi.query_variable_info_nonblocking = efi_thunk_query_variable_info_nonblocking;
824 	efi.update_capsule = efi_thunk_update_capsule;
825 	efi.query_capsule_caps = efi_thunk_query_capsule_caps;
826 }
827 
828 efi_status_t __init __no_sanitize_address
829 efi_set_virtual_address_map(unsigned long memory_map_size,
830 			    unsigned long descriptor_size,
831 			    u32 descriptor_version,
832 			    efi_memory_desc_t *virtual_map,
833 			    unsigned long systab_phys)
834 {
835 	const efi_system_table_t *systab = (efi_system_table_t *)systab_phys;
836 	efi_status_t status;
837 	unsigned long flags;
838 
839 	if (efi_is_mixed())
840 		return efi_thunk_set_virtual_address_map(memory_map_size,
841 							 descriptor_size,
842 							 descriptor_version,
843 							 virtual_map);
844 	efi_enter_mm();
845 
846 	efi_fpu_begin();
847 
848 	/* Disable interrupts around EFI calls: */
849 	local_irq_save(flags);
850 	status = efi_call(efi.runtime->set_virtual_address_map,
851 			  memory_map_size, descriptor_size,
852 			  descriptor_version, virtual_map);
853 	local_irq_restore(flags);
854 
855 	efi_fpu_end();
856 
857 	/* grab the virtually remapped EFI runtime services table pointer */
858 	efi.runtime = READ_ONCE(systab->runtime);
859 
860 	efi_leave_mm();
861 
862 	return status;
863 }
864