xref: /linux/arch/x86/platform/uv/uv_time.c (revision 44f57d78)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * SGI RTC clock/timer routines.
4  *
5  *  Copyright (c) 2009-2013 Silicon Graphics, Inc.  All Rights Reserved.
6  *  Copyright (c) Dimitri Sivanich
7  */
8 #include <linux/clockchips.h>
9 #include <linux/slab.h>
10 
11 #include <asm/uv/uv_mmrs.h>
12 #include <asm/uv/uv_hub.h>
13 #include <asm/uv/bios.h>
14 #include <asm/uv/uv.h>
15 #include <asm/apic.h>
16 #include <asm/cpu.h>
17 
18 #define RTC_NAME		"sgi_rtc"
19 
20 static u64 uv_read_rtc(struct clocksource *cs);
21 static int uv_rtc_next_event(unsigned long, struct clock_event_device *);
22 static int uv_rtc_shutdown(struct clock_event_device *evt);
23 
24 static struct clocksource clocksource_uv = {
25 	.name		= RTC_NAME,
26 	.rating		= 299,
27 	.read		= uv_read_rtc,
28 	.mask		= (u64)UVH_RTC_REAL_TIME_CLOCK_MASK,
29 	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
30 };
31 
32 static struct clock_event_device clock_event_device_uv = {
33 	.name			= RTC_NAME,
34 	.features		= CLOCK_EVT_FEAT_ONESHOT,
35 	.shift			= 20,
36 	.rating			= 400,
37 	.irq			= -1,
38 	.set_next_event		= uv_rtc_next_event,
39 	.set_state_shutdown	= uv_rtc_shutdown,
40 	.event_handler		= NULL,
41 };
42 
43 static DEFINE_PER_CPU(struct clock_event_device, cpu_ced);
44 
45 /* There is one of these allocated per node */
46 struct uv_rtc_timer_head {
47 	spinlock_t	lock;
48 	/* next cpu waiting for timer, local node relative: */
49 	int		next_cpu;
50 	/* number of cpus on this node: */
51 	int		ncpus;
52 	struct {
53 		int	lcpu;		/* systemwide logical cpu number */
54 		u64	expires;	/* next timer expiration for this cpu */
55 	} cpu[1];
56 };
57 
58 /*
59  * Access to uv_rtc_timer_head via blade id.
60  */
61 static struct uv_rtc_timer_head		**blade_info __read_mostly;
62 
63 static int				uv_rtc_evt_enable;
64 
65 /*
66  * Hardware interface routines
67  */
68 
69 /* Send IPIs to another node */
70 static void uv_rtc_send_IPI(int cpu)
71 {
72 	unsigned long apicid, val;
73 	int pnode;
74 
75 	apicid = cpu_physical_id(cpu);
76 	pnode = uv_apicid_to_pnode(apicid);
77 	apicid |= uv_apicid_hibits;
78 	val = (1UL << UVH_IPI_INT_SEND_SHFT) |
79 	      (apicid << UVH_IPI_INT_APIC_ID_SHFT) |
80 	      (X86_PLATFORM_IPI_VECTOR << UVH_IPI_INT_VECTOR_SHFT);
81 
82 	uv_write_global_mmr64(pnode, UVH_IPI_INT, val);
83 }
84 
85 /* Check for an RTC interrupt pending */
86 static int uv_intr_pending(int pnode)
87 {
88 	if (is_uv1_hub())
89 		return uv_read_global_mmr64(pnode, UVH_EVENT_OCCURRED0) &
90 			UV1H_EVENT_OCCURRED0_RTC1_MASK;
91 	else if (is_uvx_hub())
92 		return uv_read_global_mmr64(pnode, UVXH_EVENT_OCCURRED2) &
93 			UVXH_EVENT_OCCURRED2_RTC_1_MASK;
94 	return 0;
95 }
96 
97 /* Setup interrupt and return non-zero if early expiration occurred. */
98 static int uv_setup_intr(int cpu, u64 expires)
99 {
100 	u64 val;
101 	unsigned long apicid = cpu_physical_id(cpu) | uv_apicid_hibits;
102 	int pnode = uv_cpu_to_pnode(cpu);
103 
104 	uv_write_global_mmr64(pnode, UVH_RTC1_INT_CONFIG,
105 		UVH_RTC1_INT_CONFIG_M_MASK);
106 	uv_write_global_mmr64(pnode, UVH_INT_CMPB, -1L);
107 
108 	if (is_uv1_hub())
109 		uv_write_global_mmr64(pnode, UVH_EVENT_OCCURRED0_ALIAS,
110 				UV1H_EVENT_OCCURRED0_RTC1_MASK);
111 	else
112 		uv_write_global_mmr64(pnode, UVXH_EVENT_OCCURRED2_ALIAS,
113 				UVXH_EVENT_OCCURRED2_RTC_1_MASK);
114 
115 	val = (X86_PLATFORM_IPI_VECTOR << UVH_RTC1_INT_CONFIG_VECTOR_SHFT) |
116 		((u64)apicid << UVH_RTC1_INT_CONFIG_APIC_ID_SHFT);
117 
118 	/* Set configuration */
119 	uv_write_global_mmr64(pnode, UVH_RTC1_INT_CONFIG, val);
120 	/* Initialize comparator value */
121 	uv_write_global_mmr64(pnode, UVH_INT_CMPB, expires);
122 
123 	if (uv_read_rtc(NULL) <= expires)
124 		return 0;
125 
126 	return !uv_intr_pending(pnode);
127 }
128 
129 /*
130  * Per-cpu timer tracking routines
131  */
132 
133 static __init void uv_rtc_deallocate_timers(void)
134 {
135 	int bid;
136 
137 	for_each_possible_blade(bid) {
138 		kfree(blade_info[bid]);
139 	}
140 	kfree(blade_info);
141 }
142 
143 /* Allocate per-node list of cpu timer expiration times. */
144 static __init int uv_rtc_allocate_timers(void)
145 {
146 	int cpu;
147 
148 	blade_info = kcalloc(uv_possible_blades, sizeof(void *), GFP_KERNEL);
149 	if (!blade_info)
150 		return -ENOMEM;
151 
152 	for_each_present_cpu(cpu) {
153 		int nid = cpu_to_node(cpu);
154 		int bid = uv_cpu_to_blade_id(cpu);
155 		int bcpu = uv_cpu_blade_processor_id(cpu);
156 		struct uv_rtc_timer_head *head = blade_info[bid];
157 
158 		if (!head) {
159 			head = kmalloc_node(sizeof(struct uv_rtc_timer_head) +
160 				(uv_blade_nr_possible_cpus(bid) *
161 					2 * sizeof(u64)),
162 				GFP_KERNEL, nid);
163 			if (!head) {
164 				uv_rtc_deallocate_timers();
165 				return -ENOMEM;
166 			}
167 			spin_lock_init(&head->lock);
168 			head->ncpus = uv_blade_nr_possible_cpus(bid);
169 			head->next_cpu = -1;
170 			blade_info[bid] = head;
171 		}
172 
173 		head->cpu[bcpu].lcpu = cpu;
174 		head->cpu[bcpu].expires = ULLONG_MAX;
175 	}
176 
177 	return 0;
178 }
179 
180 /* Find and set the next expiring timer.  */
181 static void uv_rtc_find_next_timer(struct uv_rtc_timer_head *head, int pnode)
182 {
183 	u64 lowest = ULLONG_MAX;
184 	int c, bcpu = -1;
185 
186 	head->next_cpu = -1;
187 	for (c = 0; c < head->ncpus; c++) {
188 		u64 exp = head->cpu[c].expires;
189 		if (exp < lowest) {
190 			bcpu = c;
191 			lowest = exp;
192 		}
193 	}
194 	if (bcpu >= 0) {
195 		head->next_cpu = bcpu;
196 		c = head->cpu[bcpu].lcpu;
197 		if (uv_setup_intr(c, lowest))
198 			/* If we didn't set it up in time, trigger */
199 			uv_rtc_send_IPI(c);
200 	} else {
201 		uv_write_global_mmr64(pnode, UVH_RTC1_INT_CONFIG,
202 			UVH_RTC1_INT_CONFIG_M_MASK);
203 	}
204 }
205 
206 /*
207  * Set expiration time for current cpu.
208  *
209  * Returns 1 if we missed the expiration time.
210  */
211 static int uv_rtc_set_timer(int cpu, u64 expires)
212 {
213 	int pnode = uv_cpu_to_pnode(cpu);
214 	int bid = uv_cpu_to_blade_id(cpu);
215 	struct uv_rtc_timer_head *head = blade_info[bid];
216 	int bcpu = uv_cpu_blade_processor_id(cpu);
217 	u64 *t = &head->cpu[bcpu].expires;
218 	unsigned long flags;
219 	int next_cpu;
220 
221 	spin_lock_irqsave(&head->lock, flags);
222 
223 	next_cpu = head->next_cpu;
224 	*t = expires;
225 
226 	/* Will this one be next to go off? */
227 	if (next_cpu < 0 || bcpu == next_cpu ||
228 			expires < head->cpu[next_cpu].expires) {
229 		head->next_cpu = bcpu;
230 		if (uv_setup_intr(cpu, expires)) {
231 			*t = ULLONG_MAX;
232 			uv_rtc_find_next_timer(head, pnode);
233 			spin_unlock_irqrestore(&head->lock, flags);
234 			return -ETIME;
235 		}
236 	}
237 
238 	spin_unlock_irqrestore(&head->lock, flags);
239 	return 0;
240 }
241 
242 /*
243  * Unset expiration time for current cpu.
244  *
245  * Returns 1 if this timer was pending.
246  */
247 static int uv_rtc_unset_timer(int cpu, int force)
248 {
249 	int pnode = uv_cpu_to_pnode(cpu);
250 	int bid = uv_cpu_to_blade_id(cpu);
251 	struct uv_rtc_timer_head *head = blade_info[bid];
252 	int bcpu = uv_cpu_blade_processor_id(cpu);
253 	u64 *t = &head->cpu[bcpu].expires;
254 	unsigned long flags;
255 	int rc = 0;
256 
257 	spin_lock_irqsave(&head->lock, flags);
258 
259 	if ((head->next_cpu == bcpu && uv_read_rtc(NULL) >= *t) || force)
260 		rc = 1;
261 
262 	if (rc) {
263 		*t = ULLONG_MAX;
264 		/* Was the hardware setup for this timer? */
265 		if (head->next_cpu == bcpu)
266 			uv_rtc_find_next_timer(head, pnode);
267 	}
268 
269 	spin_unlock_irqrestore(&head->lock, flags);
270 
271 	return rc;
272 }
273 
274 
275 /*
276  * Kernel interface routines.
277  */
278 
279 /*
280  * Read the RTC.
281  *
282  * Starting with HUB rev 2.0, the UV RTC register is replicated across all
283  * cachelines of it's own page.  This allows faster simultaneous reads
284  * from a given socket.
285  */
286 static u64 uv_read_rtc(struct clocksource *cs)
287 {
288 	unsigned long offset;
289 
290 	if (uv_get_min_hub_revision_id() == 1)
291 		offset = 0;
292 	else
293 		offset = (uv_blade_processor_id() * L1_CACHE_BYTES) % PAGE_SIZE;
294 
295 	return (u64)uv_read_local_mmr(UVH_RTC | offset);
296 }
297 
298 /*
299  * Program the next event, relative to now
300  */
301 static int uv_rtc_next_event(unsigned long delta,
302 			     struct clock_event_device *ced)
303 {
304 	int ced_cpu = cpumask_first(ced->cpumask);
305 
306 	return uv_rtc_set_timer(ced_cpu, delta + uv_read_rtc(NULL));
307 }
308 
309 /*
310  * Shutdown the RTC timer
311  */
312 static int uv_rtc_shutdown(struct clock_event_device *evt)
313 {
314 	int ced_cpu = cpumask_first(evt->cpumask);
315 
316 	uv_rtc_unset_timer(ced_cpu, 1);
317 	return 0;
318 }
319 
320 static void uv_rtc_interrupt(void)
321 {
322 	int cpu = smp_processor_id();
323 	struct clock_event_device *ced = &per_cpu(cpu_ced, cpu);
324 
325 	if (!ced || !ced->event_handler)
326 		return;
327 
328 	if (uv_rtc_unset_timer(cpu, 0) != 1)
329 		return;
330 
331 	ced->event_handler(ced);
332 }
333 
334 static int __init uv_enable_evt_rtc(char *str)
335 {
336 	uv_rtc_evt_enable = 1;
337 
338 	return 1;
339 }
340 __setup("uvrtcevt", uv_enable_evt_rtc);
341 
342 static __init void uv_rtc_register_clockevents(struct work_struct *dummy)
343 {
344 	struct clock_event_device *ced = this_cpu_ptr(&cpu_ced);
345 
346 	*ced = clock_event_device_uv;
347 	ced->cpumask = cpumask_of(smp_processor_id());
348 	clockevents_register_device(ced);
349 }
350 
351 static __init int uv_rtc_setup_clock(void)
352 {
353 	int rc;
354 
355 	if (!is_uv_system())
356 		return -ENODEV;
357 
358 	rc = clocksource_register_hz(&clocksource_uv, sn_rtc_cycles_per_second);
359 	if (rc)
360 		printk(KERN_INFO "UV RTC clocksource failed rc %d\n", rc);
361 	else
362 		printk(KERN_INFO "UV RTC clocksource registered freq %lu MHz\n",
363 			sn_rtc_cycles_per_second/(unsigned long)1E6);
364 
365 	if (rc || !uv_rtc_evt_enable || x86_platform_ipi_callback)
366 		return rc;
367 
368 	/* Setup and register clockevents */
369 	rc = uv_rtc_allocate_timers();
370 	if (rc)
371 		goto error;
372 
373 	x86_platform_ipi_callback = uv_rtc_interrupt;
374 
375 	clock_event_device_uv.mult = div_sc(sn_rtc_cycles_per_second,
376 				NSEC_PER_SEC, clock_event_device_uv.shift);
377 
378 	clock_event_device_uv.min_delta_ns = NSEC_PER_SEC /
379 						sn_rtc_cycles_per_second;
380 	clock_event_device_uv.min_delta_ticks = 1;
381 
382 	clock_event_device_uv.max_delta_ns = clocksource_uv.mask *
383 				(NSEC_PER_SEC / sn_rtc_cycles_per_second);
384 	clock_event_device_uv.max_delta_ticks = clocksource_uv.mask;
385 
386 	rc = schedule_on_each_cpu(uv_rtc_register_clockevents);
387 	if (rc) {
388 		x86_platform_ipi_callback = NULL;
389 		uv_rtc_deallocate_timers();
390 		goto error;
391 	}
392 
393 	printk(KERN_INFO "UV RTC clockevents registered\n");
394 
395 	return 0;
396 
397 error:
398 	clocksource_unregister(&clocksource_uv);
399 	printk(KERN_INFO "UV RTC clockevents failed rc %d\n", rc);
400 
401 	return rc;
402 }
403 arch_initcall(uv_rtc_setup_clock);
404