xref: /linux/block/blk-cgroup.c (revision 0be3ff0c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Common Block IO controller cgroup interface
4  *
5  * Based on ideas and code from CFQ, CFS and BFQ:
6  * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
7  *
8  * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it>
9  *		      Paolo Valente <paolo.valente@unimore.it>
10  *
11  * Copyright (C) 2009 Vivek Goyal <vgoyal@redhat.com>
12  * 	              Nauman Rafique <nauman@google.com>
13  *
14  * For policy-specific per-blkcg data:
15  * Copyright (C) 2015 Paolo Valente <paolo.valente@unimore.it>
16  *                    Arianna Avanzini <avanzini.arianna@gmail.com>
17  */
18 #include <linux/ioprio.h>
19 #include <linux/kdev_t.h>
20 #include <linux/module.h>
21 #include <linux/sched/signal.h>
22 #include <linux/err.h>
23 #include <linux/blkdev.h>
24 #include <linux/backing-dev.h>
25 #include <linux/slab.h>
26 #include <linux/delay.h>
27 #include <linux/atomic.h>
28 #include <linux/ctype.h>
29 #include <linux/resume_user_mode.h>
30 #include <linux/psi.h>
31 #include <linux/part_stat.h>
32 #include "blk.h"
33 #include "blk-cgroup.h"
34 #include "blk-ioprio.h"
35 #include "blk-throttle.h"
36 
37 /*
38  * blkcg_pol_mutex protects blkcg_policy[] and policy [de]activation.
39  * blkcg_pol_register_mutex nests outside of it and synchronizes entire
40  * policy [un]register operations including cgroup file additions /
41  * removals.  Putting cgroup file registration outside blkcg_pol_mutex
42  * allows grabbing it from cgroup callbacks.
43  */
44 static DEFINE_MUTEX(blkcg_pol_register_mutex);
45 static DEFINE_MUTEX(blkcg_pol_mutex);
46 
47 struct blkcg blkcg_root;
48 EXPORT_SYMBOL_GPL(blkcg_root);
49 
50 struct cgroup_subsys_state * const blkcg_root_css = &blkcg_root.css;
51 EXPORT_SYMBOL_GPL(blkcg_root_css);
52 
53 static struct blkcg_policy *blkcg_policy[BLKCG_MAX_POLS];
54 
55 static LIST_HEAD(all_blkcgs);		/* protected by blkcg_pol_mutex */
56 
57 bool blkcg_debug_stats = false;
58 static struct workqueue_struct *blkcg_punt_bio_wq;
59 
60 #define BLKG_DESTROY_BATCH_SIZE  64
61 
62 /**
63  * blkcg_css - find the current css
64  *
65  * Find the css associated with either the kthread or the current task.
66  * This may return a dying css, so it is up to the caller to use tryget logic
67  * to confirm it is alive and well.
68  */
69 static struct cgroup_subsys_state *blkcg_css(void)
70 {
71 	struct cgroup_subsys_state *css;
72 
73 	css = kthread_blkcg();
74 	if (css)
75 		return css;
76 	return task_css(current, io_cgrp_id);
77 }
78 
79 static bool blkcg_policy_enabled(struct request_queue *q,
80 				 const struct blkcg_policy *pol)
81 {
82 	return pol && test_bit(pol->plid, q->blkcg_pols);
83 }
84 
85 static void blkg_free_workfn(struct work_struct *work)
86 {
87 	struct blkcg_gq *blkg = container_of(work, struct blkcg_gq,
88 					     free_work);
89 	int i;
90 
91 	for (i = 0; i < BLKCG_MAX_POLS; i++)
92 		if (blkg->pd[i])
93 			blkcg_policy[i]->pd_free_fn(blkg->pd[i]);
94 
95 	if (blkg->q)
96 		blk_put_queue(blkg->q);
97 	free_percpu(blkg->iostat_cpu);
98 	percpu_ref_exit(&blkg->refcnt);
99 	kfree(blkg);
100 }
101 
102 /**
103  * blkg_free - free a blkg
104  * @blkg: blkg to free
105  *
106  * Free @blkg which may be partially allocated.
107  */
108 static void blkg_free(struct blkcg_gq *blkg)
109 {
110 	if (!blkg)
111 		return;
112 
113 	/*
114 	 * Both ->pd_free_fn() and request queue's release handler may
115 	 * sleep, so free us by scheduling one work func
116 	 */
117 	INIT_WORK(&blkg->free_work, blkg_free_workfn);
118 	schedule_work(&blkg->free_work);
119 }
120 
121 static void __blkg_release(struct rcu_head *rcu)
122 {
123 	struct blkcg_gq *blkg = container_of(rcu, struct blkcg_gq, rcu_head);
124 
125 	WARN_ON(!bio_list_empty(&blkg->async_bios));
126 
127 	/* release the blkcg and parent blkg refs this blkg has been holding */
128 	css_put(&blkg->blkcg->css);
129 	if (blkg->parent)
130 		blkg_put(blkg->parent);
131 	blkg_free(blkg);
132 }
133 
134 /*
135  * A group is RCU protected, but having an rcu lock does not mean that one
136  * can access all the fields of blkg and assume these are valid.  For
137  * example, don't try to follow throtl_data and request queue links.
138  *
139  * Having a reference to blkg under an rcu allows accesses to only values
140  * local to groups like group stats and group rate limits.
141  */
142 static void blkg_release(struct percpu_ref *ref)
143 {
144 	struct blkcg_gq *blkg = container_of(ref, struct blkcg_gq, refcnt);
145 
146 	call_rcu(&blkg->rcu_head, __blkg_release);
147 }
148 
149 static void blkg_async_bio_workfn(struct work_struct *work)
150 {
151 	struct blkcg_gq *blkg = container_of(work, struct blkcg_gq,
152 					     async_bio_work);
153 	struct bio_list bios = BIO_EMPTY_LIST;
154 	struct bio *bio;
155 	struct blk_plug plug;
156 	bool need_plug = false;
157 
158 	/* as long as there are pending bios, @blkg can't go away */
159 	spin_lock_bh(&blkg->async_bio_lock);
160 	bio_list_merge(&bios, &blkg->async_bios);
161 	bio_list_init(&blkg->async_bios);
162 	spin_unlock_bh(&blkg->async_bio_lock);
163 
164 	/* start plug only when bio_list contains at least 2 bios */
165 	if (bios.head && bios.head->bi_next) {
166 		need_plug = true;
167 		blk_start_plug(&plug);
168 	}
169 	while ((bio = bio_list_pop(&bios)))
170 		submit_bio(bio);
171 	if (need_plug)
172 		blk_finish_plug(&plug);
173 }
174 
175 /**
176  * bio_blkcg_css - return the blkcg CSS associated with a bio
177  * @bio: target bio
178  *
179  * This returns the CSS for the blkcg associated with a bio, or %NULL if not
180  * associated. Callers are expected to either handle %NULL or know association
181  * has been done prior to calling this.
182  */
183 struct cgroup_subsys_state *bio_blkcg_css(struct bio *bio)
184 {
185 	if (!bio || !bio->bi_blkg)
186 		return NULL;
187 	return &bio->bi_blkg->blkcg->css;
188 }
189 EXPORT_SYMBOL_GPL(bio_blkcg_css);
190 
191 /**
192  * blkcg_parent - get the parent of a blkcg
193  * @blkcg: blkcg of interest
194  *
195  * Return the parent blkcg of @blkcg.  Can be called anytime.
196  */
197 static inline struct blkcg *blkcg_parent(struct blkcg *blkcg)
198 {
199 	return css_to_blkcg(blkcg->css.parent);
200 }
201 
202 /**
203  * blkg_alloc - allocate a blkg
204  * @blkcg: block cgroup the new blkg is associated with
205  * @q: request_queue the new blkg is associated with
206  * @gfp_mask: allocation mask to use
207  *
208  * Allocate a new blkg assocating @blkcg and @q.
209  */
210 static struct blkcg_gq *blkg_alloc(struct blkcg *blkcg, struct request_queue *q,
211 				   gfp_t gfp_mask)
212 {
213 	struct blkcg_gq *blkg;
214 	int i, cpu;
215 
216 	/* alloc and init base part */
217 	blkg = kzalloc_node(sizeof(*blkg), gfp_mask, q->node);
218 	if (!blkg)
219 		return NULL;
220 
221 	if (percpu_ref_init(&blkg->refcnt, blkg_release, 0, gfp_mask))
222 		goto err_free;
223 
224 	blkg->iostat_cpu = alloc_percpu_gfp(struct blkg_iostat_set, gfp_mask);
225 	if (!blkg->iostat_cpu)
226 		goto err_free;
227 
228 	if (!blk_get_queue(q))
229 		goto err_free;
230 
231 	blkg->q = q;
232 	INIT_LIST_HEAD(&blkg->q_node);
233 	spin_lock_init(&blkg->async_bio_lock);
234 	bio_list_init(&blkg->async_bios);
235 	INIT_WORK(&blkg->async_bio_work, blkg_async_bio_workfn);
236 	blkg->blkcg = blkcg;
237 
238 	u64_stats_init(&blkg->iostat.sync);
239 	for_each_possible_cpu(cpu)
240 		u64_stats_init(&per_cpu_ptr(blkg->iostat_cpu, cpu)->sync);
241 
242 	for (i = 0; i < BLKCG_MAX_POLS; i++) {
243 		struct blkcg_policy *pol = blkcg_policy[i];
244 		struct blkg_policy_data *pd;
245 
246 		if (!blkcg_policy_enabled(q, pol))
247 			continue;
248 
249 		/* alloc per-policy data and attach it to blkg */
250 		pd = pol->pd_alloc_fn(gfp_mask, q, blkcg);
251 		if (!pd)
252 			goto err_free;
253 
254 		blkg->pd[i] = pd;
255 		pd->blkg = blkg;
256 		pd->plid = i;
257 	}
258 
259 	return blkg;
260 
261 err_free:
262 	blkg_free(blkg);
263 	return NULL;
264 }
265 
266 struct blkcg_gq *blkg_lookup_slowpath(struct blkcg *blkcg,
267 				      struct request_queue *q, bool update_hint)
268 {
269 	struct blkcg_gq *blkg;
270 
271 	/*
272 	 * Hint didn't match.  Look up from the radix tree.  Note that the
273 	 * hint can only be updated under queue_lock as otherwise @blkg
274 	 * could have already been removed from blkg_tree.  The caller is
275 	 * responsible for grabbing queue_lock if @update_hint.
276 	 */
277 	blkg = radix_tree_lookup(&blkcg->blkg_tree, q->id);
278 	if (blkg && blkg->q == q) {
279 		if (update_hint) {
280 			lockdep_assert_held(&q->queue_lock);
281 			rcu_assign_pointer(blkcg->blkg_hint, blkg);
282 		}
283 		return blkg;
284 	}
285 
286 	return NULL;
287 }
288 EXPORT_SYMBOL_GPL(blkg_lookup_slowpath);
289 
290 /*
291  * If @new_blkg is %NULL, this function tries to allocate a new one as
292  * necessary using %GFP_NOWAIT.  @new_blkg is always consumed on return.
293  */
294 static struct blkcg_gq *blkg_create(struct blkcg *blkcg,
295 				    struct request_queue *q,
296 				    struct blkcg_gq *new_blkg)
297 {
298 	struct blkcg_gq *blkg;
299 	int i, ret;
300 
301 	lockdep_assert_held(&q->queue_lock);
302 
303 	/* request_queue is dying, do not create/recreate a blkg */
304 	if (blk_queue_dying(q)) {
305 		ret = -ENODEV;
306 		goto err_free_blkg;
307 	}
308 
309 	/* blkg holds a reference to blkcg */
310 	if (!css_tryget_online(&blkcg->css)) {
311 		ret = -ENODEV;
312 		goto err_free_blkg;
313 	}
314 
315 	/* allocate */
316 	if (!new_blkg) {
317 		new_blkg = blkg_alloc(blkcg, q, GFP_NOWAIT | __GFP_NOWARN);
318 		if (unlikely(!new_blkg)) {
319 			ret = -ENOMEM;
320 			goto err_put_css;
321 		}
322 	}
323 	blkg = new_blkg;
324 
325 	/* link parent */
326 	if (blkcg_parent(blkcg)) {
327 		blkg->parent = __blkg_lookup(blkcg_parent(blkcg), q, false);
328 		if (WARN_ON_ONCE(!blkg->parent)) {
329 			ret = -ENODEV;
330 			goto err_put_css;
331 		}
332 		blkg_get(blkg->parent);
333 	}
334 
335 	/* invoke per-policy init */
336 	for (i = 0; i < BLKCG_MAX_POLS; i++) {
337 		struct blkcg_policy *pol = blkcg_policy[i];
338 
339 		if (blkg->pd[i] && pol->pd_init_fn)
340 			pol->pd_init_fn(blkg->pd[i]);
341 	}
342 
343 	/* insert */
344 	spin_lock(&blkcg->lock);
345 	ret = radix_tree_insert(&blkcg->blkg_tree, q->id, blkg);
346 	if (likely(!ret)) {
347 		hlist_add_head_rcu(&blkg->blkcg_node, &blkcg->blkg_list);
348 		list_add(&blkg->q_node, &q->blkg_list);
349 
350 		for (i = 0; i < BLKCG_MAX_POLS; i++) {
351 			struct blkcg_policy *pol = blkcg_policy[i];
352 
353 			if (blkg->pd[i] && pol->pd_online_fn)
354 				pol->pd_online_fn(blkg->pd[i]);
355 		}
356 	}
357 	blkg->online = true;
358 	spin_unlock(&blkcg->lock);
359 
360 	if (!ret)
361 		return blkg;
362 
363 	/* @blkg failed fully initialized, use the usual release path */
364 	blkg_put(blkg);
365 	return ERR_PTR(ret);
366 
367 err_put_css:
368 	css_put(&blkcg->css);
369 err_free_blkg:
370 	blkg_free(new_blkg);
371 	return ERR_PTR(ret);
372 }
373 
374 /**
375  * blkg_lookup_create - lookup blkg, try to create one if not there
376  * @blkcg: blkcg of interest
377  * @q: request_queue of interest
378  *
379  * Lookup blkg for the @blkcg - @q pair.  If it doesn't exist, try to
380  * create one.  blkg creation is performed recursively from blkcg_root such
381  * that all non-root blkg's have access to the parent blkg.  This function
382  * should be called under RCU read lock and takes @q->queue_lock.
383  *
384  * Returns the blkg or the closest blkg if blkg_create() fails as it walks
385  * down from root.
386  */
387 static struct blkcg_gq *blkg_lookup_create(struct blkcg *blkcg,
388 		struct request_queue *q)
389 {
390 	struct blkcg_gq *blkg;
391 	unsigned long flags;
392 
393 	WARN_ON_ONCE(!rcu_read_lock_held());
394 
395 	blkg = blkg_lookup(blkcg, q);
396 	if (blkg)
397 		return blkg;
398 
399 	spin_lock_irqsave(&q->queue_lock, flags);
400 	blkg = __blkg_lookup(blkcg, q, true);
401 	if (blkg)
402 		goto found;
403 
404 	/*
405 	 * Create blkgs walking down from blkcg_root to @blkcg, so that all
406 	 * non-root blkgs have access to their parents.  Returns the closest
407 	 * blkg to the intended blkg should blkg_create() fail.
408 	 */
409 	while (true) {
410 		struct blkcg *pos = blkcg;
411 		struct blkcg *parent = blkcg_parent(blkcg);
412 		struct blkcg_gq *ret_blkg = q->root_blkg;
413 
414 		while (parent) {
415 			blkg = __blkg_lookup(parent, q, false);
416 			if (blkg) {
417 				/* remember closest blkg */
418 				ret_blkg = blkg;
419 				break;
420 			}
421 			pos = parent;
422 			parent = blkcg_parent(parent);
423 		}
424 
425 		blkg = blkg_create(pos, q, NULL);
426 		if (IS_ERR(blkg)) {
427 			blkg = ret_blkg;
428 			break;
429 		}
430 		if (pos == blkcg)
431 			break;
432 	}
433 
434 found:
435 	spin_unlock_irqrestore(&q->queue_lock, flags);
436 	return blkg;
437 }
438 
439 static void blkg_destroy(struct blkcg_gq *blkg)
440 {
441 	struct blkcg *blkcg = blkg->blkcg;
442 	int i;
443 
444 	lockdep_assert_held(&blkg->q->queue_lock);
445 	lockdep_assert_held(&blkcg->lock);
446 
447 	/* Something wrong if we are trying to remove same group twice */
448 	WARN_ON_ONCE(list_empty(&blkg->q_node));
449 	WARN_ON_ONCE(hlist_unhashed(&blkg->blkcg_node));
450 
451 	for (i = 0; i < BLKCG_MAX_POLS; i++) {
452 		struct blkcg_policy *pol = blkcg_policy[i];
453 
454 		if (blkg->pd[i] && pol->pd_offline_fn)
455 			pol->pd_offline_fn(blkg->pd[i]);
456 	}
457 
458 	blkg->online = false;
459 
460 	radix_tree_delete(&blkcg->blkg_tree, blkg->q->id);
461 	list_del_init(&blkg->q_node);
462 	hlist_del_init_rcu(&blkg->blkcg_node);
463 
464 	/*
465 	 * Both setting lookup hint to and clearing it from @blkg are done
466 	 * under queue_lock.  If it's not pointing to @blkg now, it never
467 	 * will.  Hint assignment itself can race safely.
468 	 */
469 	if (rcu_access_pointer(blkcg->blkg_hint) == blkg)
470 		rcu_assign_pointer(blkcg->blkg_hint, NULL);
471 
472 	/*
473 	 * Put the reference taken at the time of creation so that when all
474 	 * queues are gone, group can be destroyed.
475 	 */
476 	percpu_ref_kill(&blkg->refcnt);
477 }
478 
479 /**
480  * blkg_destroy_all - destroy all blkgs associated with a request_queue
481  * @q: request_queue of interest
482  *
483  * Destroy all blkgs associated with @q.
484  */
485 static void blkg_destroy_all(struct request_queue *q)
486 {
487 	struct blkcg_gq *blkg, *n;
488 	int count = BLKG_DESTROY_BATCH_SIZE;
489 
490 restart:
491 	spin_lock_irq(&q->queue_lock);
492 	list_for_each_entry_safe(blkg, n, &q->blkg_list, q_node) {
493 		struct blkcg *blkcg = blkg->blkcg;
494 
495 		spin_lock(&blkcg->lock);
496 		blkg_destroy(blkg);
497 		spin_unlock(&blkcg->lock);
498 
499 		/*
500 		 * in order to avoid holding the spin lock for too long, release
501 		 * it when a batch of blkgs are destroyed.
502 		 */
503 		if (!(--count)) {
504 			count = BLKG_DESTROY_BATCH_SIZE;
505 			spin_unlock_irq(&q->queue_lock);
506 			cond_resched();
507 			goto restart;
508 		}
509 	}
510 
511 	q->root_blkg = NULL;
512 	spin_unlock_irq(&q->queue_lock);
513 }
514 
515 static int blkcg_reset_stats(struct cgroup_subsys_state *css,
516 			     struct cftype *cftype, u64 val)
517 {
518 	struct blkcg *blkcg = css_to_blkcg(css);
519 	struct blkcg_gq *blkg;
520 	int i, cpu;
521 
522 	mutex_lock(&blkcg_pol_mutex);
523 	spin_lock_irq(&blkcg->lock);
524 
525 	/*
526 	 * Note that stat reset is racy - it doesn't synchronize against
527 	 * stat updates.  This is a debug feature which shouldn't exist
528 	 * anyway.  If you get hit by a race, retry.
529 	 */
530 	hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) {
531 		for_each_possible_cpu(cpu) {
532 			struct blkg_iostat_set *bis =
533 				per_cpu_ptr(blkg->iostat_cpu, cpu);
534 			memset(bis, 0, sizeof(*bis));
535 		}
536 		memset(&blkg->iostat, 0, sizeof(blkg->iostat));
537 
538 		for (i = 0; i < BLKCG_MAX_POLS; i++) {
539 			struct blkcg_policy *pol = blkcg_policy[i];
540 
541 			if (blkg->pd[i] && pol->pd_reset_stats_fn)
542 				pol->pd_reset_stats_fn(blkg->pd[i]);
543 		}
544 	}
545 
546 	spin_unlock_irq(&blkcg->lock);
547 	mutex_unlock(&blkcg_pol_mutex);
548 	return 0;
549 }
550 
551 const char *blkg_dev_name(struct blkcg_gq *blkg)
552 {
553 	if (!blkg->q->disk || !blkg->q->disk->bdi->dev)
554 		return NULL;
555 	return bdi_dev_name(blkg->q->disk->bdi);
556 }
557 
558 /**
559  * blkcg_print_blkgs - helper for printing per-blkg data
560  * @sf: seq_file to print to
561  * @blkcg: blkcg of interest
562  * @prfill: fill function to print out a blkg
563  * @pol: policy in question
564  * @data: data to be passed to @prfill
565  * @show_total: to print out sum of prfill return values or not
566  *
567  * This function invokes @prfill on each blkg of @blkcg if pd for the
568  * policy specified by @pol exists.  @prfill is invoked with @sf, the
569  * policy data and @data and the matching queue lock held.  If @show_total
570  * is %true, the sum of the return values from @prfill is printed with
571  * "Total" label at the end.
572  *
573  * This is to be used to construct print functions for
574  * cftype->read_seq_string method.
575  */
576 void blkcg_print_blkgs(struct seq_file *sf, struct blkcg *blkcg,
577 		       u64 (*prfill)(struct seq_file *,
578 				     struct blkg_policy_data *, int),
579 		       const struct blkcg_policy *pol, int data,
580 		       bool show_total)
581 {
582 	struct blkcg_gq *blkg;
583 	u64 total = 0;
584 
585 	rcu_read_lock();
586 	hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) {
587 		spin_lock_irq(&blkg->q->queue_lock);
588 		if (blkcg_policy_enabled(blkg->q, pol))
589 			total += prfill(sf, blkg->pd[pol->plid], data);
590 		spin_unlock_irq(&blkg->q->queue_lock);
591 	}
592 	rcu_read_unlock();
593 
594 	if (show_total)
595 		seq_printf(sf, "Total %llu\n", (unsigned long long)total);
596 }
597 EXPORT_SYMBOL_GPL(blkcg_print_blkgs);
598 
599 /**
600  * __blkg_prfill_u64 - prfill helper for a single u64 value
601  * @sf: seq_file to print to
602  * @pd: policy private data of interest
603  * @v: value to print
604  *
605  * Print @v to @sf for the device assocaited with @pd.
606  */
607 u64 __blkg_prfill_u64(struct seq_file *sf, struct blkg_policy_data *pd, u64 v)
608 {
609 	const char *dname = blkg_dev_name(pd->blkg);
610 
611 	if (!dname)
612 		return 0;
613 
614 	seq_printf(sf, "%s %llu\n", dname, (unsigned long long)v);
615 	return v;
616 }
617 EXPORT_SYMBOL_GPL(__blkg_prfill_u64);
618 
619 /* Performs queue bypass and policy enabled checks then looks up blkg. */
620 static struct blkcg_gq *blkg_lookup_check(struct blkcg *blkcg,
621 					  const struct blkcg_policy *pol,
622 					  struct request_queue *q)
623 {
624 	WARN_ON_ONCE(!rcu_read_lock_held());
625 	lockdep_assert_held(&q->queue_lock);
626 
627 	if (!blkcg_policy_enabled(q, pol))
628 		return ERR_PTR(-EOPNOTSUPP);
629 	return __blkg_lookup(blkcg, q, true /* update_hint */);
630 }
631 
632 /**
633  * blkcg_conf_open_bdev - parse and open bdev for per-blkg config update
634  * @inputp: input string pointer
635  *
636  * Parse the device node prefix part, MAJ:MIN, of per-blkg config update
637  * from @input and get and return the matching bdev.  *@inputp is
638  * updated to point past the device node prefix.  Returns an ERR_PTR()
639  * value on error.
640  *
641  * Use this function iff blkg_conf_prep() can't be used for some reason.
642  */
643 struct block_device *blkcg_conf_open_bdev(char **inputp)
644 {
645 	char *input = *inputp;
646 	unsigned int major, minor;
647 	struct block_device *bdev;
648 	int key_len;
649 
650 	if (sscanf(input, "%u:%u%n", &major, &minor, &key_len) != 2)
651 		return ERR_PTR(-EINVAL);
652 
653 	input += key_len;
654 	if (!isspace(*input))
655 		return ERR_PTR(-EINVAL);
656 	input = skip_spaces(input);
657 
658 	bdev = blkdev_get_no_open(MKDEV(major, minor));
659 	if (!bdev)
660 		return ERR_PTR(-ENODEV);
661 	if (bdev_is_partition(bdev)) {
662 		blkdev_put_no_open(bdev);
663 		return ERR_PTR(-ENODEV);
664 	}
665 
666 	*inputp = input;
667 	return bdev;
668 }
669 
670 /**
671  * blkg_conf_prep - parse and prepare for per-blkg config update
672  * @blkcg: target block cgroup
673  * @pol: target policy
674  * @input: input string
675  * @ctx: blkg_conf_ctx to be filled
676  *
677  * Parse per-blkg config update from @input and initialize @ctx with the
678  * result.  @ctx->blkg points to the blkg to be updated and @ctx->body the
679  * part of @input following MAJ:MIN.  This function returns with RCU read
680  * lock and queue lock held and must be paired with blkg_conf_finish().
681  */
682 int blkg_conf_prep(struct blkcg *blkcg, const struct blkcg_policy *pol,
683 		   char *input, struct blkg_conf_ctx *ctx)
684 	__acquires(rcu) __acquires(&bdev->bd_queue->queue_lock)
685 {
686 	struct block_device *bdev;
687 	struct request_queue *q;
688 	struct blkcg_gq *blkg;
689 	int ret;
690 
691 	bdev = blkcg_conf_open_bdev(&input);
692 	if (IS_ERR(bdev))
693 		return PTR_ERR(bdev);
694 
695 	q = bdev_get_queue(bdev);
696 
697 	/*
698 	 * blkcg_deactivate_policy() requires queue to be frozen, we can grab
699 	 * q_usage_counter to prevent concurrent with blkcg_deactivate_policy().
700 	 */
701 	ret = blk_queue_enter(q, 0);
702 	if (ret)
703 		goto fail;
704 
705 	rcu_read_lock();
706 	spin_lock_irq(&q->queue_lock);
707 
708 	blkg = blkg_lookup_check(blkcg, pol, q);
709 	if (IS_ERR(blkg)) {
710 		ret = PTR_ERR(blkg);
711 		goto fail_unlock;
712 	}
713 
714 	if (blkg)
715 		goto success;
716 
717 	/*
718 	 * Create blkgs walking down from blkcg_root to @blkcg, so that all
719 	 * non-root blkgs have access to their parents.
720 	 */
721 	while (true) {
722 		struct blkcg *pos = blkcg;
723 		struct blkcg *parent;
724 		struct blkcg_gq *new_blkg;
725 
726 		parent = blkcg_parent(blkcg);
727 		while (parent && !__blkg_lookup(parent, q, false)) {
728 			pos = parent;
729 			parent = blkcg_parent(parent);
730 		}
731 
732 		/* Drop locks to do new blkg allocation with GFP_KERNEL. */
733 		spin_unlock_irq(&q->queue_lock);
734 		rcu_read_unlock();
735 
736 		new_blkg = blkg_alloc(pos, q, GFP_KERNEL);
737 		if (unlikely(!new_blkg)) {
738 			ret = -ENOMEM;
739 			goto fail_exit_queue;
740 		}
741 
742 		if (radix_tree_preload(GFP_KERNEL)) {
743 			blkg_free(new_blkg);
744 			ret = -ENOMEM;
745 			goto fail_exit_queue;
746 		}
747 
748 		rcu_read_lock();
749 		spin_lock_irq(&q->queue_lock);
750 
751 		blkg = blkg_lookup_check(pos, pol, q);
752 		if (IS_ERR(blkg)) {
753 			ret = PTR_ERR(blkg);
754 			blkg_free(new_blkg);
755 			goto fail_preloaded;
756 		}
757 
758 		if (blkg) {
759 			blkg_free(new_blkg);
760 		} else {
761 			blkg = blkg_create(pos, q, new_blkg);
762 			if (IS_ERR(blkg)) {
763 				ret = PTR_ERR(blkg);
764 				goto fail_preloaded;
765 			}
766 		}
767 
768 		radix_tree_preload_end();
769 
770 		if (pos == blkcg)
771 			goto success;
772 	}
773 success:
774 	blk_queue_exit(q);
775 	ctx->bdev = bdev;
776 	ctx->blkg = blkg;
777 	ctx->body = input;
778 	return 0;
779 
780 fail_preloaded:
781 	radix_tree_preload_end();
782 fail_unlock:
783 	spin_unlock_irq(&q->queue_lock);
784 	rcu_read_unlock();
785 fail_exit_queue:
786 	blk_queue_exit(q);
787 fail:
788 	blkdev_put_no_open(bdev);
789 	/*
790 	 * If queue was bypassing, we should retry.  Do so after a
791 	 * short msleep().  It isn't strictly necessary but queue
792 	 * can be bypassing for some time and it's always nice to
793 	 * avoid busy looping.
794 	 */
795 	if (ret == -EBUSY) {
796 		msleep(10);
797 		ret = restart_syscall();
798 	}
799 	return ret;
800 }
801 EXPORT_SYMBOL_GPL(blkg_conf_prep);
802 
803 /**
804  * blkg_conf_finish - finish up per-blkg config update
805  * @ctx: blkg_conf_ctx intiailized by blkg_conf_prep()
806  *
807  * Finish up after per-blkg config update.  This function must be paired
808  * with blkg_conf_prep().
809  */
810 void blkg_conf_finish(struct blkg_conf_ctx *ctx)
811 	__releases(&ctx->bdev->bd_queue->queue_lock) __releases(rcu)
812 {
813 	spin_unlock_irq(&bdev_get_queue(ctx->bdev)->queue_lock);
814 	rcu_read_unlock();
815 	blkdev_put_no_open(ctx->bdev);
816 }
817 EXPORT_SYMBOL_GPL(blkg_conf_finish);
818 
819 static void blkg_iostat_set(struct blkg_iostat *dst, struct blkg_iostat *src)
820 {
821 	int i;
822 
823 	for (i = 0; i < BLKG_IOSTAT_NR; i++) {
824 		dst->bytes[i] = src->bytes[i];
825 		dst->ios[i] = src->ios[i];
826 	}
827 }
828 
829 static void blkg_iostat_add(struct blkg_iostat *dst, struct blkg_iostat *src)
830 {
831 	int i;
832 
833 	for (i = 0; i < BLKG_IOSTAT_NR; i++) {
834 		dst->bytes[i] += src->bytes[i];
835 		dst->ios[i] += src->ios[i];
836 	}
837 }
838 
839 static void blkg_iostat_sub(struct blkg_iostat *dst, struct blkg_iostat *src)
840 {
841 	int i;
842 
843 	for (i = 0; i < BLKG_IOSTAT_NR; i++) {
844 		dst->bytes[i] -= src->bytes[i];
845 		dst->ios[i] -= src->ios[i];
846 	}
847 }
848 
849 static void blkcg_rstat_flush(struct cgroup_subsys_state *css, int cpu)
850 {
851 	struct blkcg *blkcg = css_to_blkcg(css);
852 	struct blkcg_gq *blkg;
853 
854 	/* Root-level stats are sourced from system-wide IO stats */
855 	if (!cgroup_parent(css->cgroup))
856 		return;
857 
858 	rcu_read_lock();
859 
860 	hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) {
861 		struct blkcg_gq *parent = blkg->parent;
862 		struct blkg_iostat_set *bisc = per_cpu_ptr(blkg->iostat_cpu, cpu);
863 		struct blkg_iostat cur, delta;
864 		unsigned long flags;
865 		unsigned int seq;
866 
867 		/* fetch the current per-cpu values */
868 		do {
869 			seq = u64_stats_fetch_begin(&bisc->sync);
870 			blkg_iostat_set(&cur, &bisc->cur);
871 		} while (u64_stats_fetch_retry(&bisc->sync, seq));
872 
873 		/* propagate percpu delta to global */
874 		flags = u64_stats_update_begin_irqsave(&blkg->iostat.sync);
875 		blkg_iostat_set(&delta, &cur);
876 		blkg_iostat_sub(&delta, &bisc->last);
877 		blkg_iostat_add(&blkg->iostat.cur, &delta);
878 		blkg_iostat_add(&bisc->last, &delta);
879 		u64_stats_update_end_irqrestore(&blkg->iostat.sync, flags);
880 
881 		/* propagate global delta to parent (unless that's root) */
882 		if (parent && parent->parent) {
883 			flags = u64_stats_update_begin_irqsave(&parent->iostat.sync);
884 			blkg_iostat_set(&delta, &blkg->iostat.cur);
885 			blkg_iostat_sub(&delta, &blkg->iostat.last);
886 			blkg_iostat_add(&parent->iostat.cur, &delta);
887 			blkg_iostat_add(&blkg->iostat.last, &delta);
888 			u64_stats_update_end_irqrestore(&parent->iostat.sync, flags);
889 		}
890 	}
891 
892 	rcu_read_unlock();
893 }
894 
895 /*
896  * We source root cgroup stats from the system-wide stats to avoid
897  * tracking the same information twice and incurring overhead when no
898  * cgroups are defined. For that reason, cgroup_rstat_flush in
899  * blkcg_print_stat does not actually fill out the iostat in the root
900  * cgroup's blkcg_gq.
901  *
902  * However, we would like to re-use the printing code between the root and
903  * non-root cgroups to the extent possible. For that reason, we simulate
904  * flushing the root cgroup's stats by explicitly filling in the iostat
905  * with disk level statistics.
906  */
907 static void blkcg_fill_root_iostats(void)
908 {
909 	struct class_dev_iter iter;
910 	struct device *dev;
911 
912 	class_dev_iter_init(&iter, &block_class, NULL, &disk_type);
913 	while ((dev = class_dev_iter_next(&iter))) {
914 		struct block_device *bdev = dev_to_bdev(dev);
915 		struct blkcg_gq *blkg =
916 			blk_queue_root_blkg(bdev_get_queue(bdev));
917 		struct blkg_iostat tmp;
918 		int cpu;
919 		unsigned long flags;
920 
921 		memset(&tmp, 0, sizeof(tmp));
922 		for_each_possible_cpu(cpu) {
923 			struct disk_stats *cpu_dkstats;
924 
925 			cpu_dkstats = per_cpu_ptr(bdev->bd_stats, cpu);
926 			tmp.ios[BLKG_IOSTAT_READ] +=
927 				cpu_dkstats->ios[STAT_READ];
928 			tmp.ios[BLKG_IOSTAT_WRITE] +=
929 				cpu_dkstats->ios[STAT_WRITE];
930 			tmp.ios[BLKG_IOSTAT_DISCARD] +=
931 				cpu_dkstats->ios[STAT_DISCARD];
932 			// convert sectors to bytes
933 			tmp.bytes[BLKG_IOSTAT_READ] +=
934 				cpu_dkstats->sectors[STAT_READ] << 9;
935 			tmp.bytes[BLKG_IOSTAT_WRITE] +=
936 				cpu_dkstats->sectors[STAT_WRITE] << 9;
937 			tmp.bytes[BLKG_IOSTAT_DISCARD] +=
938 				cpu_dkstats->sectors[STAT_DISCARD] << 9;
939 		}
940 
941 		flags = u64_stats_update_begin_irqsave(&blkg->iostat.sync);
942 		blkg_iostat_set(&blkg->iostat.cur, &tmp);
943 		u64_stats_update_end_irqrestore(&blkg->iostat.sync, flags);
944 	}
945 }
946 
947 static void blkcg_print_one_stat(struct blkcg_gq *blkg, struct seq_file *s)
948 {
949 	struct blkg_iostat_set *bis = &blkg->iostat;
950 	u64 rbytes, wbytes, rios, wios, dbytes, dios;
951 	const char *dname;
952 	unsigned seq;
953 	int i;
954 
955 	if (!blkg->online)
956 		return;
957 
958 	dname = blkg_dev_name(blkg);
959 	if (!dname)
960 		return;
961 
962 	seq_printf(s, "%s ", dname);
963 
964 	do {
965 		seq = u64_stats_fetch_begin(&bis->sync);
966 
967 		rbytes = bis->cur.bytes[BLKG_IOSTAT_READ];
968 		wbytes = bis->cur.bytes[BLKG_IOSTAT_WRITE];
969 		dbytes = bis->cur.bytes[BLKG_IOSTAT_DISCARD];
970 		rios = bis->cur.ios[BLKG_IOSTAT_READ];
971 		wios = bis->cur.ios[BLKG_IOSTAT_WRITE];
972 		dios = bis->cur.ios[BLKG_IOSTAT_DISCARD];
973 	} while (u64_stats_fetch_retry(&bis->sync, seq));
974 
975 	if (rbytes || wbytes || rios || wios) {
976 		seq_printf(s, "rbytes=%llu wbytes=%llu rios=%llu wios=%llu dbytes=%llu dios=%llu",
977 			rbytes, wbytes, rios, wios,
978 			dbytes, dios);
979 	}
980 
981 	if (blkcg_debug_stats && atomic_read(&blkg->use_delay)) {
982 		seq_printf(s, " use_delay=%d delay_nsec=%llu",
983 			atomic_read(&blkg->use_delay),
984 			atomic64_read(&blkg->delay_nsec));
985 	}
986 
987 	for (i = 0; i < BLKCG_MAX_POLS; i++) {
988 		struct blkcg_policy *pol = blkcg_policy[i];
989 
990 		if (!blkg->pd[i] || !pol->pd_stat_fn)
991 			continue;
992 
993 		pol->pd_stat_fn(blkg->pd[i], s);
994 	}
995 
996 	seq_puts(s, "\n");
997 }
998 
999 static int blkcg_print_stat(struct seq_file *sf, void *v)
1000 {
1001 	struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
1002 	struct blkcg_gq *blkg;
1003 
1004 	if (!seq_css(sf)->parent)
1005 		blkcg_fill_root_iostats();
1006 	else
1007 		cgroup_rstat_flush(blkcg->css.cgroup);
1008 
1009 	rcu_read_lock();
1010 	hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) {
1011 		spin_lock_irq(&blkg->q->queue_lock);
1012 		blkcg_print_one_stat(blkg, sf);
1013 		spin_unlock_irq(&blkg->q->queue_lock);
1014 	}
1015 	rcu_read_unlock();
1016 	return 0;
1017 }
1018 
1019 static struct cftype blkcg_files[] = {
1020 	{
1021 		.name = "stat",
1022 		.seq_show = blkcg_print_stat,
1023 	},
1024 	{ }	/* terminate */
1025 };
1026 
1027 static struct cftype blkcg_legacy_files[] = {
1028 	{
1029 		.name = "reset_stats",
1030 		.write_u64 = blkcg_reset_stats,
1031 	},
1032 	{ }	/* terminate */
1033 };
1034 
1035 #ifdef CONFIG_CGROUP_WRITEBACK
1036 struct list_head *blkcg_get_cgwb_list(struct cgroup_subsys_state *css)
1037 {
1038 	return &css_to_blkcg(css)->cgwb_list;
1039 }
1040 #endif
1041 
1042 /*
1043  * blkcg destruction is a three-stage process.
1044  *
1045  * 1. Destruction starts.  The blkcg_css_offline() callback is invoked
1046  *    which offlines writeback.  Here we tie the next stage of blkg destruction
1047  *    to the completion of writeback associated with the blkcg.  This lets us
1048  *    avoid punting potentially large amounts of outstanding writeback to root
1049  *    while maintaining any ongoing policies.  The next stage is triggered when
1050  *    the nr_cgwbs count goes to zero.
1051  *
1052  * 2. When the nr_cgwbs count goes to zero, blkcg_destroy_blkgs() is called
1053  *    and handles the destruction of blkgs.  Here the css reference held by
1054  *    the blkg is put back eventually allowing blkcg_css_free() to be called.
1055  *    This work may occur in cgwb_release_workfn() on the cgwb_release
1056  *    workqueue.  Any submitted ios that fail to get the blkg ref will be
1057  *    punted to the root_blkg.
1058  *
1059  * 3. Once the blkcg ref count goes to zero, blkcg_css_free() is called.
1060  *    This finally frees the blkcg.
1061  */
1062 
1063 /**
1064  * blkcg_destroy_blkgs - responsible for shooting down blkgs
1065  * @blkcg: blkcg of interest
1066  *
1067  * blkgs should be removed while holding both q and blkcg locks.  As blkcg lock
1068  * is nested inside q lock, this function performs reverse double lock dancing.
1069  * Destroying the blkgs releases the reference held on the blkcg's css allowing
1070  * blkcg_css_free to eventually be called.
1071  *
1072  * This is the blkcg counterpart of ioc_release_fn().
1073  */
1074 static void blkcg_destroy_blkgs(struct blkcg *blkcg)
1075 {
1076 	might_sleep();
1077 
1078 	spin_lock_irq(&blkcg->lock);
1079 
1080 	while (!hlist_empty(&blkcg->blkg_list)) {
1081 		struct blkcg_gq *blkg = hlist_entry(blkcg->blkg_list.first,
1082 						struct blkcg_gq, blkcg_node);
1083 		struct request_queue *q = blkg->q;
1084 
1085 		if (need_resched() || !spin_trylock(&q->queue_lock)) {
1086 			/*
1087 			 * Given that the system can accumulate a huge number
1088 			 * of blkgs in pathological cases, check to see if we
1089 			 * need to rescheduling to avoid softlockup.
1090 			 */
1091 			spin_unlock_irq(&blkcg->lock);
1092 			cond_resched();
1093 			spin_lock_irq(&blkcg->lock);
1094 			continue;
1095 		}
1096 
1097 		blkg_destroy(blkg);
1098 		spin_unlock(&q->queue_lock);
1099 	}
1100 
1101 	spin_unlock_irq(&blkcg->lock);
1102 }
1103 
1104 /**
1105  * blkcg_pin_online - pin online state
1106  * @blkcg_css: blkcg of interest
1107  *
1108  * While pinned, a blkcg is kept online.  This is primarily used to
1109  * impedance-match blkg and cgwb lifetimes so that blkg doesn't go offline
1110  * while an associated cgwb is still active.
1111  */
1112 void blkcg_pin_online(struct cgroup_subsys_state *blkcg_css)
1113 {
1114 	refcount_inc(&css_to_blkcg(blkcg_css)->online_pin);
1115 }
1116 
1117 /**
1118  * blkcg_unpin_online - unpin online state
1119  * @blkcg_css: blkcg of interest
1120  *
1121  * This is primarily used to impedance-match blkg and cgwb lifetimes so
1122  * that blkg doesn't go offline while an associated cgwb is still active.
1123  * When this count goes to zero, all active cgwbs have finished so the
1124  * blkcg can continue destruction by calling blkcg_destroy_blkgs().
1125  */
1126 void blkcg_unpin_online(struct cgroup_subsys_state *blkcg_css)
1127 {
1128 	struct blkcg *blkcg = css_to_blkcg(blkcg_css);
1129 
1130 	do {
1131 		if (!refcount_dec_and_test(&blkcg->online_pin))
1132 			break;
1133 		blkcg_destroy_blkgs(blkcg);
1134 		blkcg = blkcg_parent(blkcg);
1135 	} while (blkcg);
1136 }
1137 
1138 /**
1139  * blkcg_css_offline - cgroup css_offline callback
1140  * @css: css of interest
1141  *
1142  * This function is called when @css is about to go away.  Here the cgwbs are
1143  * offlined first and only once writeback associated with the blkcg has
1144  * finished do we start step 2 (see above).
1145  */
1146 static void blkcg_css_offline(struct cgroup_subsys_state *css)
1147 {
1148 	/* this prevents anyone from attaching or migrating to this blkcg */
1149 	wb_blkcg_offline(css);
1150 
1151 	/* put the base online pin allowing step 2 to be triggered */
1152 	blkcg_unpin_online(css);
1153 }
1154 
1155 static void blkcg_css_free(struct cgroup_subsys_state *css)
1156 {
1157 	struct blkcg *blkcg = css_to_blkcg(css);
1158 	int i;
1159 
1160 	mutex_lock(&blkcg_pol_mutex);
1161 
1162 	list_del(&blkcg->all_blkcgs_node);
1163 
1164 	for (i = 0; i < BLKCG_MAX_POLS; i++)
1165 		if (blkcg->cpd[i])
1166 			blkcg_policy[i]->cpd_free_fn(blkcg->cpd[i]);
1167 
1168 	mutex_unlock(&blkcg_pol_mutex);
1169 
1170 	kfree(blkcg);
1171 }
1172 
1173 static struct cgroup_subsys_state *
1174 blkcg_css_alloc(struct cgroup_subsys_state *parent_css)
1175 {
1176 	struct blkcg *blkcg;
1177 	struct cgroup_subsys_state *ret;
1178 	int i;
1179 
1180 	mutex_lock(&blkcg_pol_mutex);
1181 
1182 	if (!parent_css) {
1183 		blkcg = &blkcg_root;
1184 	} else {
1185 		blkcg = kzalloc(sizeof(*blkcg), GFP_KERNEL);
1186 		if (!blkcg) {
1187 			ret = ERR_PTR(-ENOMEM);
1188 			goto unlock;
1189 		}
1190 	}
1191 
1192 	for (i = 0; i < BLKCG_MAX_POLS ; i++) {
1193 		struct blkcg_policy *pol = blkcg_policy[i];
1194 		struct blkcg_policy_data *cpd;
1195 
1196 		/*
1197 		 * If the policy hasn't been attached yet, wait for it
1198 		 * to be attached before doing anything else. Otherwise,
1199 		 * check if the policy requires any specific per-cgroup
1200 		 * data: if it does, allocate and initialize it.
1201 		 */
1202 		if (!pol || !pol->cpd_alloc_fn)
1203 			continue;
1204 
1205 		cpd = pol->cpd_alloc_fn(GFP_KERNEL);
1206 		if (!cpd) {
1207 			ret = ERR_PTR(-ENOMEM);
1208 			goto free_pd_blkcg;
1209 		}
1210 		blkcg->cpd[i] = cpd;
1211 		cpd->blkcg = blkcg;
1212 		cpd->plid = i;
1213 		if (pol->cpd_init_fn)
1214 			pol->cpd_init_fn(cpd);
1215 	}
1216 
1217 	spin_lock_init(&blkcg->lock);
1218 	refcount_set(&blkcg->online_pin, 1);
1219 	INIT_RADIX_TREE(&blkcg->blkg_tree, GFP_NOWAIT | __GFP_NOWARN);
1220 	INIT_HLIST_HEAD(&blkcg->blkg_list);
1221 #ifdef CONFIG_CGROUP_WRITEBACK
1222 	INIT_LIST_HEAD(&blkcg->cgwb_list);
1223 #endif
1224 	list_add_tail(&blkcg->all_blkcgs_node, &all_blkcgs);
1225 
1226 	mutex_unlock(&blkcg_pol_mutex);
1227 	return &blkcg->css;
1228 
1229 free_pd_blkcg:
1230 	for (i--; i >= 0; i--)
1231 		if (blkcg->cpd[i])
1232 			blkcg_policy[i]->cpd_free_fn(blkcg->cpd[i]);
1233 
1234 	if (blkcg != &blkcg_root)
1235 		kfree(blkcg);
1236 unlock:
1237 	mutex_unlock(&blkcg_pol_mutex);
1238 	return ret;
1239 }
1240 
1241 static int blkcg_css_online(struct cgroup_subsys_state *css)
1242 {
1243 	struct blkcg *parent = blkcg_parent(css_to_blkcg(css));
1244 
1245 	/*
1246 	 * blkcg_pin_online() is used to delay blkcg offline so that blkgs
1247 	 * don't go offline while cgwbs are still active on them.  Pin the
1248 	 * parent so that offline always happens towards the root.
1249 	 */
1250 	if (parent)
1251 		blkcg_pin_online(css);
1252 	return 0;
1253 }
1254 
1255 /**
1256  * blkcg_init_queue - initialize blkcg part of request queue
1257  * @q: request_queue to initialize
1258  *
1259  * Called from blk_alloc_queue(). Responsible for initializing blkcg
1260  * part of new request_queue @q.
1261  *
1262  * RETURNS:
1263  * 0 on success, -errno on failure.
1264  */
1265 int blkcg_init_queue(struct request_queue *q)
1266 {
1267 	struct blkcg_gq *new_blkg, *blkg;
1268 	bool preloaded;
1269 	int ret;
1270 
1271 	INIT_LIST_HEAD(&q->blkg_list);
1272 
1273 	new_blkg = blkg_alloc(&blkcg_root, q, GFP_KERNEL);
1274 	if (!new_blkg)
1275 		return -ENOMEM;
1276 
1277 	preloaded = !radix_tree_preload(GFP_KERNEL);
1278 
1279 	/* Make sure the root blkg exists. */
1280 	/* spin_lock_irq can serve as RCU read-side critical section. */
1281 	spin_lock_irq(&q->queue_lock);
1282 	blkg = blkg_create(&blkcg_root, q, new_blkg);
1283 	if (IS_ERR(blkg))
1284 		goto err_unlock;
1285 	q->root_blkg = blkg;
1286 	spin_unlock_irq(&q->queue_lock);
1287 
1288 	if (preloaded)
1289 		radix_tree_preload_end();
1290 
1291 	ret = blk_ioprio_init(q);
1292 	if (ret)
1293 		goto err_destroy_all;
1294 
1295 	ret = blk_throtl_init(q);
1296 	if (ret)
1297 		goto err_destroy_all;
1298 
1299 	ret = blk_iolatency_init(q);
1300 	if (ret) {
1301 		blk_throtl_exit(q);
1302 		goto err_destroy_all;
1303 	}
1304 
1305 	return 0;
1306 
1307 err_destroy_all:
1308 	blkg_destroy_all(q);
1309 	return ret;
1310 err_unlock:
1311 	spin_unlock_irq(&q->queue_lock);
1312 	if (preloaded)
1313 		radix_tree_preload_end();
1314 	return PTR_ERR(blkg);
1315 }
1316 
1317 /**
1318  * blkcg_exit_queue - exit and release blkcg part of request_queue
1319  * @q: request_queue being released
1320  *
1321  * Called from blk_exit_queue().  Responsible for exiting blkcg part.
1322  */
1323 void blkcg_exit_queue(struct request_queue *q)
1324 {
1325 	blkg_destroy_all(q);
1326 	blk_throtl_exit(q);
1327 }
1328 
1329 static void blkcg_bind(struct cgroup_subsys_state *root_css)
1330 {
1331 	int i;
1332 
1333 	mutex_lock(&blkcg_pol_mutex);
1334 
1335 	for (i = 0; i < BLKCG_MAX_POLS; i++) {
1336 		struct blkcg_policy *pol = blkcg_policy[i];
1337 		struct blkcg *blkcg;
1338 
1339 		if (!pol || !pol->cpd_bind_fn)
1340 			continue;
1341 
1342 		list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node)
1343 			if (blkcg->cpd[pol->plid])
1344 				pol->cpd_bind_fn(blkcg->cpd[pol->plid]);
1345 	}
1346 	mutex_unlock(&blkcg_pol_mutex);
1347 }
1348 
1349 static void blkcg_exit(struct task_struct *tsk)
1350 {
1351 	if (tsk->throttle_queue)
1352 		blk_put_queue(tsk->throttle_queue);
1353 	tsk->throttle_queue = NULL;
1354 }
1355 
1356 struct cgroup_subsys io_cgrp_subsys = {
1357 	.css_alloc = blkcg_css_alloc,
1358 	.css_online = blkcg_css_online,
1359 	.css_offline = blkcg_css_offline,
1360 	.css_free = blkcg_css_free,
1361 	.css_rstat_flush = blkcg_rstat_flush,
1362 	.bind = blkcg_bind,
1363 	.dfl_cftypes = blkcg_files,
1364 	.legacy_cftypes = blkcg_legacy_files,
1365 	.legacy_name = "blkio",
1366 	.exit = blkcg_exit,
1367 #ifdef CONFIG_MEMCG
1368 	/*
1369 	 * This ensures that, if available, memcg is automatically enabled
1370 	 * together on the default hierarchy so that the owner cgroup can
1371 	 * be retrieved from writeback pages.
1372 	 */
1373 	.depends_on = 1 << memory_cgrp_id,
1374 #endif
1375 };
1376 EXPORT_SYMBOL_GPL(io_cgrp_subsys);
1377 
1378 /**
1379  * blkcg_activate_policy - activate a blkcg policy on a request_queue
1380  * @q: request_queue of interest
1381  * @pol: blkcg policy to activate
1382  *
1383  * Activate @pol on @q.  Requires %GFP_KERNEL context.  @q goes through
1384  * bypass mode to populate its blkgs with policy_data for @pol.
1385  *
1386  * Activation happens with @q bypassed, so nobody would be accessing blkgs
1387  * from IO path.  Update of each blkg is protected by both queue and blkcg
1388  * locks so that holding either lock and testing blkcg_policy_enabled() is
1389  * always enough for dereferencing policy data.
1390  *
1391  * The caller is responsible for synchronizing [de]activations and policy
1392  * [un]registerations.  Returns 0 on success, -errno on failure.
1393  */
1394 int blkcg_activate_policy(struct request_queue *q,
1395 			  const struct blkcg_policy *pol)
1396 {
1397 	struct blkg_policy_data *pd_prealloc = NULL;
1398 	struct blkcg_gq *blkg, *pinned_blkg = NULL;
1399 	int ret;
1400 
1401 	if (blkcg_policy_enabled(q, pol))
1402 		return 0;
1403 
1404 	if (queue_is_mq(q))
1405 		blk_mq_freeze_queue(q);
1406 retry:
1407 	spin_lock_irq(&q->queue_lock);
1408 
1409 	/* blkg_list is pushed at the head, reverse walk to allocate parents first */
1410 	list_for_each_entry_reverse(blkg, &q->blkg_list, q_node) {
1411 		struct blkg_policy_data *pd;
1412 
1413 		if (blkg->pd[pol->plid])
1414 			continue;
1415 
1416 		/* If prealloc matches, use it; otherwise try GFP_NOWAIT */
1417 		if (blkg == pinned_blkg) {
1418 			pd = pd_prealloc;
1419 			pd_prealloc = NULL;
1420 		} else {
1421 			pd = pol->pd_alloc_fn(GFP_NOWAIT | __GFP_NOWARN, q,
1422 					      blkg->blkcg);
1423 		}
1424 
1425 		if (!pd) {
1426 			/*
1427 			 * GFP_NOWAIT failed.  Free the existing one and
1428 			 * prealloc for @blkg w/ GFP_KERNEL.
1429 			 */
1430 			if (pinned_blkg)
1431 				blkg_put(pinned_blkg);
1432 			blkg_get(blkg);
1433 			pinned_blkg = blkg;
1434 
1435 			spin_unlock_irq(&q->queue_lock);
1436 
1437 			if (pd_prealloc)
1438 				pol->pd_free_fn(pd_prealloc);
1439 			pd_prealloc = pol->pd_alloc_fn(GFP_KERNEL, q,
1440 						       blkg->blkcg);
1441 			if (pd_prealloc)
1442 				goto retry;
1443 			else
1444 				goto enomem;
1445 		}
1446 
1447 		blkg->pd[pol->plid] = pd;
1448 		pd->blkg = blkg;
1449 		pd->plid = pol->plid;
1450 	}
1451 
1452 	/* all allocated, init in the same order */
1453 	if (pol->pd_init_fn)
1454 		list_for_each_entry_reverse(blkg, &q->blkg_list, q_node)
1455 			pol->pd_init_fn(blkg->pd[pol->plid]);
1456 
1457 	__set_bit(pol->plid, q->blkcg_pols);
1458 	ret = 0;
1459 
1460 	spin_unlock_irq(&q->queue_lock);
1461 out:
1462 	if (queue_is_mq(q))
1463 		blk_mq_unfreeze_queue(q);
1464 	if (pinned_blkg)
1465 		blkg_put(pinned_blkg);
1466 	if (pd_prealloc)
1467 		pol->pd_free_fn(pd_prealloc);
1468 	return ret;
1469 
1470 enomem:
1471 	/* alloc failed, nothing's initialized yet, free everything */
1472 	spin_lock_irq(&q->queue_lock);
1473 	list_for_each_entry(blkg, &q->blkg_list, q_node) {
1474 		struct blkcg *blkcg = blkg->blkcg;
1475 
1476 		spin_lock(&blkcg->lock);
1477 		if (blkg->pd[pol->plid]) {
1478 			pol->pd_free_fn(blkg->pd[pol->plid]);
1479 			blkg->pd[pol->plid] = NULL;
1480 		}
1481 		spin_unlock(&blkcg->lock);
1482 	}
1483 	spin_unlock_irq(&q->queue_lock);
1484 	ret = -ENOMEM;
1485 	goto out;
1486 }
1487 EXPORT_SYMBOL_GPL(blkcg_activate_policy);
1488 
1489 /**
1490  * blkcg_deactivate_policy - deactivate a blkcg policy on a request_queue
1491  * @q: request_queue of interest
1492  * @pol: blkcg policy to deactivate
1493  *
1494  * Deactivate @pol on @q.  Follows the same synchronization rules as
1495  * blkcg_activate_policy().
1496  */
1497 void blkcg_deactivate_policy(struct request_queue *q,
1498 			     const struct blkcg_policy *pol)
1499 {
1500 	struct blkcg_gq *blkg;
1501 
1502 	if (!blkcg_policy_enabled(q, pol))
1503 		return;
1504 
1505 	if (queue_is_mq(q))
1506 		blk_mq_freeze_queue(q);
1507 
1508 	spin_lock_irq(&q->queue_lock);
1509 
1510 	__clear_bit(pol->plid, q->blkcg_pols);
1511 
1512 	list_for_each_entry(blkg, &q->blkg_list, q_node) {
1513 		struct blkcg *blkcg = blkg->blkcg;
1514 
1515 		spin_lock(&blkcg->lock);
1516 		if (blkg->pd[pol->plid]) {
1517 			if (pol->pd_offline_fn)
1518 				pol->pd_offline_fn(blkg->pd[pol->plid]);
1519 			pol->pd_free_fn(blkg->pd[pol->plid]);
1520 			blkg->pd[pol->plid] = NULL;
1521 		}
1522 		spin_unlock(&blkcg->lock);
1523 	}
1524 
1525 	spin_unlock_irq(&q->queue_lock);
1526 
1527 	if (queue_is_mq(q))
1528 		blk_mq_unfreeze_queue(q);
1529 }
1530 EXPORT_SYMBOL_GPL(blkcg_deactivate_policy);
1531 
1532 /**
1533  * blkcg_policy_register - register a blkcg policy
1534  * @pol: blkcg policy to register
1535  *
1536  * Register @pol with blkcg core.  Might sleep and @pol may be modified on
1537  * successful registration.  Returns 0 on success and -errno on failure.
1538  */
1539 int blkcg_policy_register(struct blkcg_policy *pol)
1540 {
1541 	struct blkcg *blkcg;
1542 	int i, ret;
1543 
1544 	mutex_lock(&blkcg_pol_register_mutex);
1545 	mutex_lock(&blkcg_pol_mutex);
1546 
1547 	/* find an empty slot */
1548 	ret = -ENOSPC;
1549 	for (i = 0; i < BLKCG_MAX_POLS; i++)
1550 		if (!blkcg_policy[i])
1551 			break;
1552 	if (i >= BLKCG_MAX_POLS) {
1553 		pr_warn("blkcg_policy_register: BLKCG_MAX_POLS too small\n");
1554 		goto err_unlock;
1555 	}
1556 
1557 	/* Make sure cpd/pd_alloc_fn and cpd/pd_free_fn in pairs */
1558 	if ((!pol->cpd_alloc_fn ^ !pol->cpd_free_fn) ||
1559 		(!pol->pd_alloc_fn ^ !pol->pd_free_fn))
1560 		goto err_unlock;
1561 
1562 	/* register @pol */
1563 	pol->plid = i;
1564 	blkcg_policy[pol->plid] = pol;
1565 
1566 	/* allocate and install cpd's */
1567 	if (pol->cpd_alloc_fn) {
1568 		list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) {
1569 			struct blkcg_policy_data *cpd;
1570 
1571 			cpd = pol->cpd_alloc_fn(GFP_KERNEL);
1572 			if (!cpd)
1573 				goto err_free_cpds;
1574 
1575 			blkcg->cpd[pol->plid] = cpd;
1576 			cpd->blkcg = blkcg;
1577 			cpd->plid = pol->plid;
1578 			if (pol->cpd_init_fn)
1579 				pol->cpd_init_fn(cpd);
1580 		}
1581 	}
1582 
1583 	mutex_unlock(&blkcg_pol_mutex);
1584 
1585 	/* everything is in place, add intf files for the new policy */
1586 	if (pol->dfl_cftypes)
1587 		WARN_ON(cgroup_add_dfl_cftypes(&io_cgrp_subsys,
1588 					       pol->dfl_cftypes));
1589 	if (pol->legacy_cftypes)
1590 		WARN_ON(cgroup_add_legacy_cftypes(&io_cgrp_subsys,
1591 						  pol->legacy_cftypes));
1592 	mutex_unlock(&blkcg_pol_register_mutex);
1593 	return 0;
1594 
1595 err_free_cpds:
1596 	if (pol->cpd_free_fn) {
1597 		list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) {
1598 			if (blkcg->cpd[pol->plid]) {
1599 				pol->cpd_free_fn(blkcg->cpd[pol->plid]);
1600 				blkcg->cpd[pol->plid] = NULL;
1601 			}
1602 		}
1603 	}
1604 	blkcg_policy[pol->plid] = NULL;
1605 err_unlock:
1606 	mutex_unlock(&blkcg_pol_mutex);
1607 	mutex_unlock(&blkcg_pol_register_mutex);
1608 	return ret;
1609 }
1610 EXPORT_SYMBOL_GPL(blkcg_policy_register);
1611 
1612 /**
1613  * blkcg_policy_unregister - unregister a blkcg policy
1614  * @pol: blkcg policy to unregister
1615  *
1616  * Undo blkcg_policy_register(@pol).  Might sleep.
1617  */
1618 void blkcg_policy_unregister(struct blkcg_policy *pol)
1619 {
1620 	struct blkcg *blkcg;
1621 
1622 	mutex_lock(&blkcg_pol_register_mutex);
1623 
1624 	if (WARN_ON(blkcg_policy[pol->plid] != pol))
1625 		goto out_unlock;
1626 
1627 	/* kill the intf files first */
1628 	if (pol->dfl_cftypes)
1629 		cgroup_rm_cftypes(pol->dfl_cftypes);
1630 	if (pol->legacy_cftypes)
1631 		cgroup_rm_cftypes(pol->legacy_cftypes);
1632 
1633 	/* remove cpds and unregister */
1634 	mutex_lock(&blkcg_pol_mutex);
1635 
1636 	if (pol->cpd_free_fn) {
1637 		list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) {
1638 			if (blkcg->cpd[pol->plid]) {
1639 				pol->cpd_free_fn(blkcg->cpd[pol->plid]);
1640 				blkcg->cpd[pol->plid] = NULL;
1641 			}
1642 		}
1643 	}
1644 	blkcg_policy[pol->plid] = NULL;
1645 
1646 	mutex_unlock(&blkcg_pol_mutex);
1647 out_unlock:
1648 	mutex_unlock(&blkcg_pol_register_mutex);
1649 }
1650 EXPORT_SYMBOL_GPL(blkcg_policy_unregister);
1651 
1652 bool __blkcg_punt_bio_submit(struct bio *bio)
1653 {
1654 	struct blkcg_gq *blkg = bio->bi_blkg;
1655 
1656 	/* consume the flag first */
1657 	bio->bi_opf &= ~REQ_CGROUP_PUNT;
1658 
1659 	/* never bounce for the root cgroup */
1660 	if (!blkg->parent)
1661 		return false;
1662 
1663 	spin_lock_bh(&blkg->async_bio_lock);
1664 	bio_list_add(&blkg->async_bios, bio);
1665 	spin_unlock_bh(&blkg->async_bio_lock);
1666 
1667 	queue_work(blkcg_punt_bio_wq, &blkg->async_bio_work);
1668 	return true;
1669 }
1670 
1671 /*
1672  * Scale the accumulated delay based on how long it has been since we updated
1673  * the delay.  We only call this when we are adding delay, in case it's been a
1674  * while since we added delay, and when we are checking to see if we need to
1675  * delay a task, to account for any delays that may have occurred.
1676  */
1677 static void blkcg_scale_delay(struct blkcg_gq *blkg, u64 now)
1678 {
1679 	u64 old = atomic64_read(&blkg->delay_start);
1680 
1681 	/* negative use_delay means no scaling, see blkcg_set_delay() */
1682 	if (atomic_read(&blkg->use_delay) < 0)
1683 		return;
1684 
1685 	/*
1686 	 * We only want to scale down every second.  The idea here is that we
1687 	 * want to delay people for min(delay_nsec, NSEC_PER_SEC) in a certain
1688 	 * time window.  We only want to throttle tasks for recent delay that
1689 	 * has occurred, in 1 second time windows since that's the maximum
1690 	 * things can be throttled.  We save the current delay window in
1691 	 * blkg->last_delay so we know what amount is still left to be charged
1692 	 * to the blkg from this point onward.  blkg->last_use keeps track of
1693 	 * the use_delay counter.  The idea is if we're unthrottling the blkg we
1694 	 * are ok with whatever is happening now, and we can take away more of
1695 	 * the accumulated delay as we've already throttled enough that
1696 	 * everybody is happy with their IO latencies.
1697 	 */
1698 	if (time_before64(old + NSEC_PER_SEC, now) &&
1699 	    atomic64_cmpxchg(&blkg->delay_start, old, now) == old) {
1700 		u64 cur = atomic64_read(&blkg->delay_nsec);
1701 		u64 sub = min_t(u64, blkg->last_delay, now - old);
1702 		int cur_use = atomic_read(&blkg->use_delay);
1703 
1704 		/*
1705 		 * We've been unthrottled, subtract a larger chunk of our
1706 		 * accumulated delay.
1707 		 */
1708 		if (cur_use < blkg->last_use)
1709 			sub = max_t(u64, sub, blkg->last_delay >> 1);
1710 
1711 		/*
1712 		 * This shouldn't happen, but handle it anyway.  Our delay_nsec
1713 		 * should only ever be growing except here where we subtract out
1714 		 * min(last_delay, 1 second), but lord knows bugs happen and I'd
1715 		 * rather not end up with negative numbers.
1716 		 */
1717 		if (unlikely(cur < sub)) {
1718 			atomic64_set(&blkg->delay_nsec, 0);
1719 			blkg->last_delay = 0;
1720 		} else {
1721 			atomic64_sub(sub, &blkg->delay_nsec);
1722 			blkg->last_delay = cur - sub;
1723 		}
1724 		blkg->last_use = cur_use;
1725 	}
1726 }
1727 
1728 /*
1729  * This is called when we want to actually walk up the hierarchy and check to
1730  * see if we need to throttle, and then actually throttle if there is some
1731  * accumulated delay.  This should only be called upon return to user space so
1732  * we're not holding some lock that would induce a priority inversion.
1733  */
1734 static void blkcg_maybe_throttle_blkg(struct blkcg_gq *blkg, bool use_memdelay)
1735 {
1736 	unsigned long pflags;
1737 	bool clamp;
1738 	u64 now = ktime_to_ns(ktime_get());
1739 	u64 exp;
1740 	u64 delay_nsec = 0;
1741 	int tok;
1742 
1743 	while (blkg->parent) {
1744 		int use_delay = atomic_read(&blkg->use_delay);
1745 
1746 		if (use_delay) {
1747 			u64 this_delay;
1748 
1749 			blkcg_scale_delay(blkg, now);
1750 			this_delay = atomic64_read(&blkg->delay_nsec);
1751 			if (this_delay > delay_nsec) {
1752 				delay_nsec = this_delay;
1753 				clamp = use_delay > 0;
1754 			}
1755 		}
1756 		blkg = blkg->parent;
1757 	}
1758 
1759 	if (!delay_nsec)
1760 		return;
1761 
1762 	/*
1763 	 * Let's not sleep for all eternity if we've amassed a huge delay.
1764 	 * Swapping or metadata IO can accumulate 10's of seconds worth of
1765 	 * delay, and we want userspace to be able to do _something_ so cap the
1766 	 * delays at 0.25s. If there's 10's of seconds worth of delay then the
1767 	 * tasks will be delayed for 0.25 second for every syscall. If
1768 	 * blkcg_set_delay() was used as indicated by negative use_delay, the
1769 	 * caller is responsible for regulating the range.
1770 	 */
1771 	if (clamp)
1772 		delay_nsec = min_t(u64, delay_nsec, 250 * NSEC_PER_MSEC);
1773 
1774 	if (use_memdelay)
1775 		psi_memstall_enter(&pflags);
1776 
1777 	exp = ktime_add_ns(now, delay_nsec);
1778 	tok = io_schedule_prepare();
1779 	do {
1780 		__set_current_state(TASK_KILLABLE);
1781 		if (!schedule_hrtimeout(&exp, HRTIMER_MODE_ABS))
1782 			break;
1783 	} while (!fatal_signal_pending(current));
1784 	io_schedule_finish(tok);
1785 
1786 	if (use_memdelay)
1787 		psi_memstall_leave(&pflags);
1788 }
1789 
1790 /**
1791  * blkcg_maybe_throttle_current - throttle the current task if it has been marked
1792  *
1793  * This is only called if we've been marked with set_notify_resume().  Obviously
1794  * we can be set_notify_resume() for reasons other than blkcg throttling, so we
1795  * check to see if current->throttle_queue is set and if not this doesn't do
1796  * anything.  This should only ever be called by the resume code, it's not meant
1797  * to be called by people willy-nilly as it will actually do the work to
1798  * throttle the task if it is setup for throttling.
1799  */
1800 void blkcg_maybe_throttle_current(void)
1801 {
1802 	struct request_queue *q = current->throttle_queue;
1803 	struct blkcg *blkcg;
1804 	struct blkcg_gq *blkg;
1805 	bool use_memdelay = current->use_memdelay;
1806 
1807 	if (!q)
1808 		return;
1809 
1810 	current->throttle_queue = NULL;
1811 	current->use_memdelay = false;
1812 
1813 	rcu_read_lock();
1814 	blkcg = css_to_blkcg(blkcg_css());
1815 	if (!blkcg)
1816 		goto out;
1817 	blkg = blkg_lookup(blkcg, q);
1818 	if (!blkg)
1819 		goto out;
1820 	if (!blkg_tryget(blkg))
1821 		goto out;
1822 	rcu_read_unlock();
1823 
1824 	blkcg_maybe_throttle_blkg(blkg, use_memdelay);
1825 	blkg_put(blkg);
1826 	blk_put_queue(q);
1827 	return;
1828 out:
1829 	rcu_read_unlock();
1830 	blk_put_queue(q);
1831 }
1832 
1833 /**
1834  * blkcg_schedule_throttle - this task needs to check for throttling
1835  * @q: the request queue IO was submitted on
1836  * @use_memdelay: do we charge this to memory delay for PSI
1837  *
1838  * This is called by the IO controller when we know there's delay accumulated
1839  * for the blkg for this task.  We do not pass the blkg because there are places
1840  * we call this that may not have that information, the swapping code for
1841  * instance will only have a request_queue at that point.  This set's the
1842  * notify_resume for the task to check and see if it requires throttling before
1843  * returning to user space.
1844  *
1845  * We will only schedule once per syscall.  You can call this over and over
1846  * again and it will only do the check once upon return to user space, and only
1847  * throttle once.  If the task needs to be throttled again it'll need to be
1848  * re-set at the next time we see the task.
1849  */
1850 void blkcg_schedule_throttle(struct request_queue *q, bool use_memdelay)
1851 {
1852 	if (unlikely(current->flags & PF_KTHREAD))
1853 		return;
1854 
1855 	if (current->throttle_queue != q) {
1856 		if (!blk_get_queue(q))
1857 			return;
1858 
1859 		if (current->throttle_queue)
1860 			blk_put_queue(current->throttle_queue);
1861 		current->throttle_queue = q;
1862 	}
1863 
1864 	if (use_memdelay)
1865 		current->use_memdelay = use_memdelay;
1866 	set_notify_resume(current);
1867 }
1868 
1869 /**
1870  * blkcg_add_delay - add delay to this blkg
1871  * @blkg: blkg of interest
1872  * @now: the current time in nanoseconds
1873  * @delta: how many nanoseconds of delay to add
1874  *
1875  * Charge @delta to the blkg's current delay accumulation.  This is used to
1876  * throttle tasks if an IO controller thinks we need more throttling.
1877  */
1878 void blkcg_add_delay(struct blkcg_gq *blkg, u64 now, u64 delta)
1879 {
1880 	if (WARN_ON_ONCE(atomic_read(&blkg->use_delay) < 0))
1881 		return;
1882 	blkcg_scale_delay(blkg, now);
1883 	atomic64_add(delta, &blkg->delay_nsec);
1884 }
1885 
1886 /**
1887  * blkg_tryget_closest - try and get a blkg ref on the closet blkg
1888  * @bio: target bio
1889  * @css: target css
1890  *
1891  * As the failure mode here is to walk up the blkg tree, this ensure that the
1892  * blkg->parent pointers are always valid.  This returns the blkg that it ended
1893  * up taking a reference on or %NULL if no reference was taken.
1894  */
1895 static inline struct blkcg_gq *blkg_tryget_closest(struct bio *bio,
1896 		struct cgroup_subsys_state *css)
1897 {
1898 	struct blkcg_gq *blkg, *ret_blkg = NULL;
1899 
1900 	rcu_read_lock();
1901 	blkg = blkg_lookup_create(css_to_blkcg(css),
1902 				  bdev_get_queue(bio->bi_bdev));
1903 	while (blkg) {
1904 		if (blkg_tryget(blkg)) {
1905 			ret_blkg = blkg;
1906 			break;
1907 		}
1908 		blkg = blkg->parent;
1909 	}
1910 	rcu_read_unlock();
1911 
1912 	return ret_blkg;
1913 }
1914 
1915 /**
1916  * bio_associate_blkg_from_css - associate a bio with a specified css
1917  * @bio: target bio
1918  * @css: target css
1919  *
1920  * Associate @bio with the blkg found by combining the css's blkg and the
1921  * request_queue of the @bio.  An association failure is handled by walking up
1922  * the blkg tree.  Therefore, the blkg associated can be anything between @blkg
1923  * and q->root_blkg.  This situation only happens when a cgroup is dying and
1924  * then the remaining bios will spill to the closest alive blkg.
1925  *
1926  * A reference will be taken on the blkg and will be released when @bio is
1927  * freed.
1928  */
1929 void bio_associate_blkg_from_css(struct bio *bio,
1930 				 struct cgroup_subsys_state *css)
1931 {
1932 	if (bio->bi_blkg)
1933 		blkg_put(bio->bi_blkg);
1934 
1935 	if (css && css->parent) {
1936 		bio->bi_blkg = blkg_tryget_closest(bio, css);
1937 	} else {
1938 		blkg_get(bdev_get_queue(bio->bi_bdev)->root_blkg);
1939 		bio->bi_blkg = bdev_get_queue(bio->bi_bdev)->root_blkg;
1940 	}
1941 }
1942 EXPORT_SYMBOL_GPL(bio_associate_blkg_from_css);
1943 
1944 /**
1945  * bio_associate_blkg - associate a bio with a blkg
1946  * @bio: target bio
1947  *
1948  * Associate @bio with the blkg found from the bio's css and request_queue.
1949  * If one is not found, bio_lookup_blkg() creates the blkg.  If a blkg is
1950  * already associated, the css is reused and association redone as the
1951  * request_queue may have changed.
1952  */
1953 void bio_associate_blkg(struct bio *bio)
1954 {
1955 	struct cgroup_subsys_state *css;
1956 
1957 	rcu_read_lock();
1958 
1959 	if (bio->bi_blkg)
1960 		css = bio_blkcg_css(bio);
1961 	else
1962 		css = blkcg_css();
1963 
1964 	bio_associate_blkg_from_css(bio, css);
1965 
1966 	rcu_read_unlock();
1967 }
1968 EXPORT_SYMBOL_GPL(bio_associate_blkg);
1969 
1970 /**
1971  * bio_clone_blkg_association - clone blkg association from src to dst bio
1972  * @dst: destination bio
1973  * @src: source bio
1974  */
1975 void bio_clone_blkg_association(struct bio *dst, struct bio *src)
1976 {
1977 	if (src->bi_blkg) {
1978 		if (dst->bi_blkg)
1979 			blkg_put(dst->bi_blkg);
1980 		blkg_get(src->bi_blkg);
1981 		dst->bi_blkg = src->bi_blkg;
1982 	}
1983 }
1984 EXPORT_SYMBOL_GPL(bio_clone_blkg_association);
1985 
1986 static int blk_cgroup_io_type(struct bio *bio)
1987 {
1988 	if (op_is_discard(bio->bi_opf))
1989 		return BLKG_IOSTAT_DISCARD;
1990 	if (op_is_write(bio->bi_opf))
1991 		return BLKG_IOSTAT_WRITE;
1992 	return BLKG_IOSTAT_READ;
1993 }
1994 
1995 void blk_cgroup_bio_start(struct bio *bio)
1996 {
1997 	int rwd = blk_cgroup_io_type(bio), cpu;
1998 	struct blkg_iostat_set *bis;
1999 	unsigned long flags;
2000 
2001 	cpu = get_cpu();
2002 	bis = per_cpu_ptr(bio->bi_blkg->iostat_cpu, cpu);
2003 	flags = u64_stats_update_begin_irqsave(&bis->sync);
2004 
2005 	/*
2006 	 * If the bio is flagged with BIO_CGROUP_ACCT it means this is a split
2007 	 * bio and we would have already accounted for the size of the bio.
2008 	 */
2009 	if (!bio_flagged(bio, BIO_CGROUP_ACCT)) {
2010 		bio_set_flag(bio, BIO_CGROUP_ACCT);
2011 		bis->cur.bytes[rwd] += bio->bi_iter.bi_size;
2012 	}
2013 	bis->cur.ios[rwd]++;
2014 
2015 	u64_stats_update_end_irqrestore(&bis->sync, flags);
2016 	if (cgroup_subsys_on_dfl(io_cgrp_subsys))
2017 		cgroup_rstat_updated(bio->bi_blkg->blkcg->css.cgroup, cpu);
2018 	put_cpu();
2019 }
2020 
2021 bool blk_cgroup_congested(void)
2022 {
2023 	struct cgroup_subsys_state *css;
2024 	bool ret = false;
2025 
2026 	rcu_read_lock();
2027 	for (css = blkcg_css(); css; css = css->parent) {
2028 		if (atomic_read(&css->cgroup->congestion_count)) {
2029 			ret = true;
2030 			break;
2031 		}
2032 	}
2033 	rcu_read_unlock();
2034 	return ret;
2035 }
2036 
2037 static int __init blkcg_init(void)
2038 {
2039 	blkcg_punt_bio_wq = alloc_workqueue("blkcg_punt_bio",
2040 					    WQ_MEM_RECLAIM | WQ_FREEZABLE |
2041 					    WQ_UNBOUND | WQ_SYSFS, 0);
2042 	if (!blkcg_punt_bio_wq)
2043 		return -ENOMEM;
2044 	return 0;
2045 }
2046 subsys_initcall(blkcg_init);
2047 
2048 module_param(blkcg_debug_stats, bool, 0644);
2049 MODULE_PARM_DESC(blkcg_debug_stats, "True if you want debug stats, false if not");
2050