xref: /linux/block/blk-merge.c (revision f86fd32d)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Functions related to segment and merge handling
4  */
5 #include <linux/kernel.h>
6 #include <linux/module.h>
7 #include <linux/bio.h>
8 #include <linux/blkdev.h>
9 #include <linux/scatterlist.h>
10 
11 #include <trace/events/block.h>
12 
13 #include "blk.h"
14 
15 static inline bool bio_will_gap(struct request_queue *q,
16 		struct request *prev_rq, struct bio *prev, struct bio *next)
17 {
18 	struct bio_vec pb, nb;
19 
20 	if (!bio_has_data(prev) || !queue_virt_boundary(q))
21 		return false;
22 
23 	/*
24 	 * Don't merge if the 1st bio starts with non-zero offset, otherwise it
25 	 * is quite difficult to respect the sg gap limit.  We work hard to
26 	 * merge a huge number of small single bios in case of mkfs.
27 	 */
28 	if (prev_rq)
29 		bio_get_first_bvec(prev_rq->bio, &pb);
30 	else
31 		bio_get_first_bvec(prev, &pb);
32 	if (pb.bv_offset & queue_virt_boundary(q))
33 		return true;
34 
35 	/*
36 	 * We don't need to worry about the situation that the merged segment
37 	 * ends in unaligned virt boundary:
38 	 *
39 	 * - if 'pb' ends aligned, the merged segment ends aligned
40 	 * - if 'pb' ends unaligned, the next bio must include
41 	 *   one single bvec of 'nb', otherwise the 'nb' can't
42 	 *   merge with 'pb'
43 	 */
44 	bio_get_last_bvec(prev, &pb);
45 	bio_get_first_bvec(next, &nb);
46 	if (biovec_phys_mergeable(q, &pb, &nb))
47 		return false;
48 	return __bvec_gap_to_prev(q, &pb, nb.bv_offset);
49 }
50 
51 static inline bool req_gap_back_merge(struct request *req, struct bio *bio)
52 {
53 	return bio_will_gap(req->q, req, req->biotail, bio);
54 }
55 
56 static inline bool req_gap_front_merge(struct request *req, struct bio *bio)
57 {
58 	return bio_will_gap(req->q, NULL, bio, req->bio);
59 }
60 
61 static struct bio *blk_bio_discard_split(struct request_queue *q,
62 					 struct bio *bio,
63 					 struct bio_set *bs,
64 					 unsigned *nsegs)
65 {
66 	unsigned int max_discard_sectors, granularity;
67 	int alignment;
68 	sector_t tmp;
69 	unsigned split_sectors;
70 
71 	*nsegs = 1;
72 
73 	/* Zero-sector (unknown) and one-sector granularities are the same.  */
74 	granularity = max(q->limits.discard_granularity >> 9, 1U);
75 
76 	max_discard_sectors = min(q->limits.max_discard_sectors,
77 			bio_allowed_max_sectors(q));
78 	max_discard_sectors -= max_discard_sectors % granularity;
79 
80 	if (unlikely(!max_discard_sectors)) {
81 		/* XXX: warn */
82 		return NULL;
83 	}
84 
85 	if (bio_sectors(bio) <= max_discard_sectors)
86 		return NULL;
87 
88 	split_sectors = max_discard_sectors;
89 
90 	/*
91 	 * If the next starting sector would be misaligned, stop the discard at
92 	 * the previous aligned sector.
93 	 */
94 	alignment = (q->limits.discard_alignment >> 9) % granularity;
95 
96 	tmp = bio->bi_iter.bi_sector + split_sectors - alignment;
97 	tmp = sector_div(tmp, granularity);
98 
99 	if (split_sectors > tmp)
100 		split_sectors -= tmp;
101 
102 	return bio_split(bio, split_sectors, GFP_NOIO, bs);
103 }
104 
105 static struct bio *blk_bio_write_zeroes_split(struct request_queue *q,
106 		struct bio *bio, struct bio_set *bs, unsigned *nsegs)
107 {
108 	*nsegs = 0;
109 
110 	if (!q->limits.max_write_zeroes_sectors)
111 		return NULL;
112 
113 	if (bio_sectors(bio) <= q->limits.max_write_zeroes_sectors)
114 		return NULL;
115 
116 	return bio_split(bio, q->limits.max_write_zeroes_sectors, GFP_NOIO, bs);
117 }
118 
119 static struct bio *blk_bio_write_same_split(struct request_queue *q,
120 					    struct bio *bio,
121 					    struct bio_set *bs,
122 					    unsigned *nsegs)
123 {
124 	*nsegs = 1;
125 
126 	if (!q->limits.max_write_same_sectors)
127 		return NULL;
128 
129 	if (bio_sectors(bio) <= q->limits.max_write_same_sectors)
130 		return NULL;
131 
132 	return bio_split(bio, q->limits.max_write_same_sectors, GFP_NOIO, bs);
133 }
134 
135 /*
136  * Return the maximum number of sectors from the start of a bio that may be
137  * submitted as a single request to a block device. If enough sectors remain,
138  * align the end to the physical block size. Otherwise align the end to the
139  * logical block size. This approach minimizes the number of non-aligned
140  * requests that are submitted to a block device if the start of a bio is not
141  * aligned to a physical block boundary.
142  */
143 static inline unsigned get_max_io_size(struct request_queue *q,
144 				       struct bio *bio)
145 {
146 	unsigned sectors = blk_max_size_offset(q, bio->bi_iter.bi_sector);
147 	unsigned max_sectors = sectors;
148 	unsigned pbs = queue_physical_block_size(q) >> SECTOR_SHIFT;
149 	unsigned lbs = queue_logical_block_size(q) >> SECTOR_SHIFT;
150 	unsigned start_offset = bio->bi_iter.bi_sector & (pbs - 1);
151 
152 	max_sectors += start_offset;
153 	max_sectors &= ~(pbs - 1);
154 	if (max_sectors > start_offset)
155 		return max_sectors - start_offset;
156 
157 	return sectors & (lbs - 1);
158 }
159 
160 static inline unsigned get_max_segment_size(const struct request_queue *q,
161 					    struct page *start_page,
162 					    unsigned long offset)
163 {
164 	unsigned long mask = queue_segment_boundary(q);
165 
166 	offset = mask & (page_to_phys(start_page) + offset);
167 
168 	/*
169 	 * overflow may be triggered in case of zero page physical address
170 	 * on 32bit arch, use queue's max segment size when that happens.
171 	 */
172 	return min_not_zero(mask - offset + 1,
173 			(unsigned long)queue_max_segment_size(q));
174 }
175 
176 /**
177  * bvec_split_segs - verify whether or not a bvec should be split in the middle
178  * @q:        [in] request queue associated with the bio associated with @bv
179  * @bv:       [in] bvec to examine
180  * @nsegs:    [in,out] Number of segments in the bio being built. Incremented
181  *            by the number of segments from @bv that may be appended to that
182  *            bio without exceeding @max_segs
183  * @sectors:  [in,out] Number of sectors in the bio being built. Incremented
184  *            by the number of sectors from @bv that may be appended to that
185  *            bio without exceeding @max_sectors
186  * @max_segs: [in] upper bound for *@nsegs
187  * @max_sectors: [in] upper bound for *@sectors
188  *
189  * When splitting a bio, it can happen that a bvec is encountered that is too
190  * big to fit in a single segment and hence that it has to be split in the
191  * middle. This function verifies whether or not that should happen. The value
192  * %true is returned if and only if appending the entire @bv to a bio with
193  * *@nsegs segments and *@sectors sectors would make that bio unacceptable for
194  * the block driver.
195  */
196 static bool bvec_split_segs(const struct request_queue *q,
197 			    const struct bio_vec *bv, unsigned *nsegs,
198 			    unsigned *sectors, unsigned max_segs,
199 			    unsigned max_sectors)
200 {
201 	unsigned max_len = (min(max_sectors, UINT_MAX >> 9) - *sectors) << 9;
202 	unsigned len = min(bv->bv_len, max_len);
203 	unsigned total_len = 0;
204 	unsigned seg_size = 0;
205 
206 	while (len && *nsegs < max_segs) {
207 		seg_size = get_max_segment_size(q, bv->bv_page,
208 						bv->bv_offset + total_len);
209 		seg_size = min(seg_size, len);
210 
211 		(*nsegs)++;
212 		total_len += seg_size;
213 		len -= seg_size;
214 
215 		if ((bv->bv_offset + total_len) & queue_virt_boundary(q))
216 			break;
217 	}
218 
219 	*sectors += total_len >> 9;
220 
221 	/* tell the caller to split the bvec if it is too big to fit */
222 	return len > 0 || bv->bv_len > max_len;
223 }
224 
225 /**
226  * blk_bio_segment_split - split a bio in two bios
227  * @q:    [in] request queue pointer
228  * @bio:  [in] bio to be split
229  * @bs:	  [in] bio set to allocate the clone from
230  * @segs: [out] number of segments in the bio with the first half of the sectors
231  *
232  * Clone @bio, update the bi_iter of the clone to represent the first sectors
233  * of @bio and update @bio->bi_iter to represent the remaining sectors. The
234  * following is guaranteed for the cloned bio:
235  * - That it has at most get_max_io_size(@q, @bio) sectors.
236  * - That it has at most queue_max_segments(@q) segments.
237  *
238  * Except for discard requests the cloned bio will point at the bi_io_vec of
239  * the original bio. It is the responsibility of the caller to ensure that the
240  * original bio is not freed before the cloned bio. The caller is also
241  * responsible for ensuring that @bs is only destroyed after processing of the
242  * split bio has finished.
243  */
244 static struct bio *blk_bio_segment_split(struct request_queue *q,
245 					 struct bio *bio,
246 					 struct bio_set *bs,
247 					 unsigned *segs)
248 {
249 	struct bio_vec bv, bvprv, *bvprvp = NULL;
250 	struct bvec_iter iter;
251 	unsigned nsegs = 0, sectors = 0;
252 	const unsigned max_sectors = get_max_io_size(q, bio);
253 	const unsigned max_segs = queue_max_segments(q);
254 
255 	bio_for_each_bvec(bv, bio, iter) {
256 		/*
257 		 * If the queue doesn't support SG gaps and adding this
258 		 * offset would create a gap, disallow it.
259 		 */
260 		if (bvprvp && bvec_gap_to_prev(q, bvprvp, bv.bv_offset))
261 			goto split;
262 
263 		if (nsegs < max_segs &&
264 		    sectors + (bv.bv_len >> 9) <= max_sectors &&
265 		    bv.bv_offset + bv.bv_len <= PAGE_SIZE) {
266 			nsegs++;
267 			sectors += bv.bv_len >> 9;
268 		} else if (bvec_split_segs(q, &bv, &nsegs, &sectors, max_segs,
269 					 max_sectors)) {
270 			goto split;
271 		}
272 
273 		bvprv = bv;
274 		bvprvp = &bvprv;
275 	}
276 
277 	*segs = nsegs;
278 	return NULL;
279 split:
280 	*segs = nsegs;
281 	return bio_split(bio, sectors, GFP_NOIO, bs);
282 }
283 
284 /**
285  * __blk_queue_split - split a bio and submit the second half
286  * @q:       [in] request queue pointer
287  * @bio:     [in, out] bio to be split
288  * @nr_segs: [out] number of segments in the first bio
289  *
290  * Split a bio into two bios, chain the two bios, submit the second half and
291  * store a pointer to the first half in *@bio. If the second bio is still too
292  * big it will be split by a recursive call to this function. Since this
293  * function may allocate a new bio from @q->bio_split, it is the responsibility
294  * of the caller to ensure that @q is only released after processing of the
295  * split bio has finished.
296  */
297 void __blk_queue_split(struct request_queue *q, struct bio **bio,
298 		unsigned int *nr_segs)
299 {
300 	struct bio *split = NULL;
301 
302 	switch (bio_op(*bio)) {
303 	case REQ_OP_DISCARD:
304 	case REQ_OP_SECURE_ERASE:
305 		split = blk_bio_discard_split(q, *bio, &q->bio_split, nr_segs);
306 		break;
307 	case REQ_OP_WRITE_ZEROES:
308 		split = blk_bio_write_zeroes_split(q, *bio, &q->bio_split,
309 				nr_segs);
310 		break;
311 	case REQ_OP_WRITE_SAME:
312 		split = blk_bio_write_same_split(q, *bio, &q->bio_split,
313 				nr_segs);
314 		break;
315 	default:
316 		/*
317 		 * All drivers must accept single-segments bios that are <=
318 		 * PAGE_SIZE.  This is a quick and dirty check that relies on
319 		 * the fact that bi_io_vec[0] is always valid if a bio has data.
320 		 * The check might lead to occasional false negatives when bios
321 		 * are cloned, but compared to the performance impact of cloned
322 		 * bios themselves the loop below doesn't matter anyway.
323 		 */
324 		if (!q->limits.chunk_sectors &&
325 		    (*bio)->bi_vcnt == 1 &&
326 		    ((*bio)->bi_io_vec[0].bv_len +
327 		     (*bio)->bi_io_vec[0].bv_offset) <= PAGE_SIZE) {
328 			*nr_segs = 1;
329 			break;
330 		}
331 		split = blk_bio_segment_split(q, *bio, &q->bio_split, nr_segs);
332 		break;
333 	}
334 
335 	if (split) {
336 		/* there isn't chance to merge the splitted bio */
337 		split->bi_opf |= REQ_NOMERGE;
338 
339 		/*
340 		 * Since we're recursing into make_request here, ensure
341 		 * that we mark this bio as already having entered the queue.
342 		 * If not, and the queue is going away, we can get stuck
343 		 * forever on waiting for the queue reference to drop. But
344 		 * that will never happen, as we're already holding a
345 		 * reference to it.
346 		 */
347 		bio_set_flag(*bio, BIO_QUEUE_ENTERED);
348 
349 		bio_chain(split, *bio);
350 		trace_block_split(q, split, (*bio)->bi_iter.bi_sector);
351 		generic_make_request(*bio);
352 		*bio = split;
353 	}
354 }
355 
356 /**
357  * blk_queue_split - split a bio and submit the second half
358  * @q:   [in] request queue pointer
359  * @bio: [in, out] bio to be split
360  *
361  * Split a bio into two bios, chains the two bios, submit the second half and
362  * store a pointer to the first half in *@bio. Since this function may allocate
363  * a new bio from @q->bio_split, it is the responsibility of the caller to
364  * ensure that @q is only released after processing of the split bio has
365  * finished.
366  */
367 void blk_queue_split(struct request_queue *q, struct bio **bio)
368 {
369 	unsigned int nr_segs;
370 
371 	__blk_queue_split(q, bio, &nr_segs);
372 }
373 EXPORT_SYMBOL(blk_queue_split);
374 
375 unsigned int blk_recalc_rq_segments(struct request *rq)
376 {
377 	unsigned int nr_phys_segs = 0;
378 	unsigned int nr_sectors = 0;
379 	struct req_iterator iter;
380 	struct bio_vec bv;
381 
382 	if (!rq->bio)
383 		return 0;
384 
385 	switch (bio_op(rq->bio)) {
386 	case REQ_OP_DISCARD:
387 	case REQ_OP_SECURE_ERASE:
388 	case REQ_OP_WRITE_ZEROES:
389 		return 0;
390 	case REQ_OP_WRITE_SAME:
391 		return 1;
392 	}
393 
394 	rq_for_each_bvec(bv, rq, iter)
395 		bvec_split_segs(rq->q, &bv, &nr_phys_segs, &nr_sectors,
396 				UINT_MAX, UINT_MAX);
397 	return nr_phys_segs;
398 }
399 
400 static inline struct scatterlist *blk_next_sg(struct scatterlist **sg,
401 		struct scatterlist *sglist)
402 {
403 	if (!*sg)
404 		return sglist;
405 
406 	/*
407 	 * If the driver previously mapped a shorter list, we could see a
408 	 * termination bit prematurely unless it fully inits the sg table
409 	 * on each mapping. We KNOW that there must be more entries here
410 	 * or the driver would be buggy, so force clear the termination bit
411 	 * to avoid doing a full sg_init_table() in drivers for each command.
412 	 */
413 	sg_unmark_end(*sg);
414 	return sg_next(*sg);
415 }
416 
417 static unsigned blk_bvec_map_sg(struct request_queue *q,
418 		struct bio_vec *bvec, struct scatterlist *sglist,
419 		struct scatterlist **sg)
420 {
421 	unsigned nbytes = bvec->bv_len;
422 	unsigned nsegs = 0, total = 0;
423 
424 	while (nbytes > 0) {
425 		unsigned offset = bvec->bv_offset + total;
426 		unsigned len = min(get_max_segment_size(q, bvec->bv_page,
427 					offset), nbytes);
428 		struct page *page = bvec->bv_page;
429 
430 		/*
431 		 * Unfortunately a fair number of drivers barf on scatterlists
432 		 * that have an offset larger than PAGE_SIZE, despite other
433 		 * subsystems dealing with that invariant just fine.  For now
434 		 * stick to the legacy format where we never present those from
435 		 * the block layer, but the code below should be removed once
436 		 * these offenders (mostly MMC/SD drivers) are fixed.
437 		 */
438 		page += (offset >> PAGE_SHIFT);
439 		offset &= ~PAGE_MASK;
440 
441 		*sg = blk_next_sg(sg, sglist);
442 		sg_set_page(*sg, page, len, offset);
443 
444 		total += len;
445 		nbytes -= len;
446 		nsegs++;
447 	}
448 
449 	return nsegs;
450 }
451 
452 static inline int __blk_bvec_map_sg(struct bio_vec bv,
453 		struct scatterlist *sglist, struct scatterlist **sg)
454 {
455 	*sg = blk_next_sg(sg, sglist);
456 	sg_set_page(*sg, bv.bv_page, bv.bv_len, bv.bv_offset);
457 	return 1;
458 }
459 
460 /* only try to merge bvecs into one sg if they are from two bios */
461 static inline bool
462 __blk_segment_map_sg_merge(struct request_queue *q, struct bio_vec *bvec,
463 			   struct bio_vec *bvprv, struct scatterlist **sg)
464 {
465 
466 	int nbytes = bvec->bv_len;
467 
468 	if (!*sg)
469 		return false;
470 
471 	if ((*sg)->length + nbytes > queue_max_segment_size(q))
472 		return false;
473 
474 	if (!biovec_phys_mergeable(q, bvprv, bvec))
475 		return false;
476 
477 	(*sg)->length += nbytes;
478 
479 	return true;
480 }
481 
482 static int __blk_bios_map_sg(struct request_queue *q, struct bio *bio,
483 			     struct scatterlist *sglist,
484 			     struct scatterlist **sg)
485 {
486 	struct bio_vec uninitialized_var(bvec), bvprv = { NULL };
487 	struct bvec_iter iter;
488 	int nsegs = 0;
489 	bool new_bio = false;
490 
491 	for_each_bio(bio) {
492 		bio_for_each_bvec(bvec, bio, iter) {
493 			/*
494 			 * Only try to merge bvecs from two bios given we
495 			 * have done bio internal merge when adding pages
496 			 * to bio
497 			 */
498 			if (new_bio &&
499 			    __blk_segment_map_sg_merge(q, &bvec, &bvprv, sg))
500 				goto next_bvec;
501 
502 			if (bvec.bv_offset + bvec.bv_len <= PAGE_SIZE)
503 				nsegs += __blk_bvec_map_sg(bvec, sglist, sg);
504 			else
505 				nsegs += blk_bvec_map_sg(q, &bvec, sglist, sg);
506  next_bvec:
507 			new_bio = false;
508 		}
509 		if (likely(bio->bi_iter.bi_size)) {
510 			bvprv = bvec;
511 			new_bio = true;
512 		}
513 	}
514 
515 	return nsegs;
516 }
517 
518 /*
519  * map a request to scatterlist, return number of sg entries setup. Caller
520  * must make sure sg can hold rq->nr_phys_segments entries
521  */
522 int blk_rq_map_sg(struct request_queue *q, struct request *rq,
523 		  struct scatterlist *sglist)
524 {
525 	struct scatterlist *sg = NULL;
526 	int nsegs = 0;
527 
528 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
529 		nsegs = __blk_bvec_map_sg(rq->special_vec, sglist, &sg);
530 	else if (rq->bio && bio_op(rq->bio) == REQ_OP_WRITE_SAME)
531 		nsegs = __blk_bvec_map_sg(bio_iovec(rq->bio), sglist, &sg);
532 	else if (rq->bio)
533 		nsegs = __blk_bios_map_sg(q, rq->bio, sglist, &sg);
534 
535 	if (unlikely(rq->rq_flags & RQF_COPY_USER) &&
536 	    (blk_rq_bytes(rq) & q->dma_pad_mask)) {
537 		unsigned int pad_len =
538 			(q->dma_pad_mask & ~blk_rq_bytes(rq)) + 1;
539 
540 		sg->length += pad_len;
541 		rq->extra_len += pad_len;
542 	}
543 
544 	if (q->dma_drain_size && q->dma_drain_needed(rq)) {
545 		if (op_is_write(req_op(rq)))
546 			memset(q->dma_drain_buffer, 0, q->dma_drain_size);
547 
548 		sg_unmark_end(sg);
549 		sg = sg_next(sg);
550 		sg_set_page(sg, virt_to_page(q->dma_drain_buffer),
551 			    q->dma_drain_size,
552 			    ((unsigned long)q->dma_drain_buffer) &
553 			    (PAGE_SIZE - 1));
554 		nsegs++;
555 		rq->extra_len += q->dma_drain_size;
556 	}
557 
558 	if (sg)
559 		sg_mark_end(sg);
560 
561 	/*
562 	 * Something must have been wrong if the figured number of
563 	 * segment is bigger than number of req's physical segments
564 	 */
565 	WARN_ON(nsegs > blk_rq_nr_phys_segments(rq));
566 
567 	return nsegs;
568 }
569 EXPORT_SYMBOL(blk_rq_map_sg);
570 
571 static inline int ll_new_hw_segment(struct request *req, struct bio *bio,
572 		unsigned int nr_phys_segs)
573 {
574 	if (req->nr_phys_segments + nr_phys_segs > queue_max_segments(req->q))
575 		goto no_merge;
576 
577 	if (blk_integrity_merge_bio(req->q, req, bio) == false)
578 		goto no_merge;
579 
580 	/*
581 	 * This will form the start of a new hw segment.  Bump both
582 	 * counters.
583 	 */
584 	req->nr_phys_segments += nr_phys_segs;
585 	return 1;
586 
587 no_merge:
588 	req_set_nomerge(req->q, req);
589 	return 0;
590 }
591 
592 int ll_back_merge_fn(struct request *req, struct bio *bio, unsigned int nr_segs)
593 {
594 	if (req_gap_back_merge(req, bio))
595 		return 0;
596 	if (blk_integrity_rq(req) &&
597 	    integrity_req_gap_back_merge(req, bio))
598 		return 0;
599 	if (blk_rq_sectors(req) + bio_sectors(bio) >
600 	    blk_rq_get_max_sectors(req, blk_rq_pos(req))) {
601 		req_set_nomerge(req->q, req);
602 		return 0;
603 	}
604 
605 	return ll_new_hw_segment(req, bio, nr_segs);
606 }
607 
608 int ll_front_merge_fn(struct request *req, struct bio *bio, unsigned int nr_segs)
609 {
610 	if (req_gap_front_merge(req, bio))
611 		return 0;
612 	if (blk_integrity_rq(req) &&
613 	    integrity_req_gap_front_merge(req, bio))
614 		return 0;
615 	if (blk_rq_sectors(req) + bio_sectors(bio) >
616 	    blk_rq_get_max_sectors(req, bio->bi_iter.bi_sector)) {
617 		req_set_nomerge(req->q, req);
618 		return 0;
619 	}
620 
621 	return ll_new_hw_segment(req, bio, nr_segs);
622 }
623 
624 static bool req_attempt_discard_merge(struct request_queue *q, struct request *req,
625 		struct request *next)
626 {
627 	unsigned short segments = blk_rq_nr_discard_segments(req);
628 
629 	if (segments >= queue_max_discard_segments(q))
630 		goto no_merge;
631 	if (blk_rq_sectors(req) + bio_sectors(next->bio) >
632 	    blk_rq_get_max_sectors(req, blk_rq_pos(req)))
633 		goto no_merge;
634 
635 	req->nr_phys_segments = segments + blk_rq_nr_discard_segments(next);
636 	return true;
637 no_merge:
638 	req_set_nomerge(q, req);
639 	return false;
640 }
641 
642 static int ll_merge_requests_fn(struct request_queue *q, struct request *req,
643 				struct request *next)
644 {
645 	int total_phys_segments;
646 
647 	if (req_gap_back_merge(req, next->bio))
648 		return 0;
649 
650 	/*
651 	 * Will it become too large?
652 	 */
653 	if ((blk_rq_sectors(req) + blk_rq_sectors(next)) >
654 	    blk_rq_get_max_sectors(req, blk_rq_pos(req)))
655 		return 0;
656 
657 	total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
658 	if (total_phys_segments > queue_max_segments(q))
659 		return 0;
660 
661 	if (blk_integrity_merge_rq(q, req, next) == false)
662 		return 0;
663 
664 	/* Merge is OK... */
665 	req->nr_phys_segments = total_phys_segments;
666 	return 1;
667 }
668 
669 /**
670  * blk_rq_set_mixed_merge - mark a request as mixed merge
671  * @rq: request to mark as mixed merge
672  *
673  * Description:
674  *     @rq is about to be mixed merged.  Make sure the attributes
675  *     which can be mixed are set in each bio and mark @rq as mixed
676  *     merged.
677  */
678 void blk_rq_set_mixed_merge(struct request *rq)
679 {
680 	unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
681 	struct bio *bio;
682 
683 	if (rq->rq_flags & RQF_MIXED_MERGE)
684 		return;
685 
686 	/*
687 	 * @rq will no longer represent mixable attributes for all the
688 	 * contained bios.  It will just track those of the first one.
689 	 * Distributes the attributs to each bio.
690 	 */
691 	for (bio = rq->bio; bio; bio = bio->bi_next) {
692 		WARN_ON_ONCE((bio->bi_opf & REQ_FAILFAST_MASK) &&
693 			     (bio->bi_opf & REQ_FAILFAST_MASK) != ff);
694 		bio->bi_opf |= ff;
695 	}
696 	rq->rq_flags |= RQF_MIXED_MERGE;
697 }
698 
699 static void blk_account_io_merge(struct request *req)
700 {
701 	if (blk_do_io_stat(req)) {
702 		struct hd_struct *part;
703 
704 		part_stat_lock();
705 		part = req->part;
706 
707 		part_dec_in_flight(req->q, part, rq_data_dir(req));
708 
709 		hd_struct_put(part);
710 		part_stat_unlock();
711 	}
712 }
713 /*
714  * Two cases of handling DISCARD merge:
715  * If max_discard_segments > 1, the driver takes every bio
716  * as a range and send them to controller together. The ranges
717  * needn't to be contiguous.
718  * Otherwise, the bios/requests will be handled as same as
719  * others which should be contiguous.
720  */
721 static inline bool blk_discard_mergable(struct request *req)
722 {
723 	if (req_op(req) == REQ_OP_DISCARD &&
724 	    queue_max_discard_segments(req->q) > 1)
725 		return true;
726 	return false;
727 }
728 
729 static enum elv_merge blk_try_req_merge(struct request *req,
730 					struct request *next)
731 {
732 	if (blk_discard_mergable(req))
733 		return ELEVATOR_DISCARD_MERGE;
734 	else if (blk_rq_pos(req) + blk_rq_sectors(req) == blk_rq_pos(next))
735 		return ELEVATOR_BACK_MERGE;
736 
737 	return ELEVATOR_NO_MERGE;
738 }
739 
740 /*
741  * For non-mq, this has to be called with the request spinlock acquired.
742  * For mq with scheduling, the appropriate queue wide lock should be held.
743  */
744 static struct request *attempt_merge(struct request_queue *q,
745 				     struct request *req, struct request *next)
746 {
747 	if (!rq_mergeable(req) || !rq_mergeable(next))
748 		return NULL;
749 
750 	if (req_op(req) != req_op(next))
751 		return NULL;
752 
753 	if (rq_data_dir(req) != rq_data_dir(next)
754 	    || req->rq_disk != next->rq_disk)
755 		return NULL;
756 
757 	if (req_op(req) == REQ_OP_WRITE_SAME &&
758 	    !blk_write_same_mergeable(req->bio, next->bio))
759 		return NULL;
760 
761 	/*
762 	 * Don't allow merge of different write hints, or for a hint with
763 	 * non-hint IO.
764 	 */
765 	if (req->write_hint != next->write_hint)
766 		return NULL;
767 
768 	if (req->ioprio != next->ioprio)
769 		return NULL;
770 
771 	/*
772 	 * If we are allowed to merge, then append bio list
773 	 * from next to rq and release next. merge_requests_fn
774 	 * will have updated segment counts, update sector
775 	 * counts here. Handle DISCARDs separately, as they
776 	 * have separate settings.
777 	 */
778 
779 	switch (blk_try_req_merge(req, next)) {
780 	case ELEVATOR_DISCARD_MERGE:
781 		if (!req_attempt_discard_merge(q, req, next))
782 			return NULL;
783 		break;
784 	case ELEVATOR_BACK_MERGE:
785 		if (!ll_merge_requests_fn(q, req, next))
786 			return NULL;
787 		break;
788 	default:
789 		return NULL;
790 	}
791 
792 	/*
793 	 * If failfast settings disagree or any of the two is already
794 	 * a mixed merge, mark both as mixed before proceeding.  This
795 	 * makes sure that all involved bios have mixable attributes
796 	 * set properly.
797 	 */
798 	if (((req->rq_flags | next->rq_flags) & RQF_MIXED_MERGE) ||
799 	    (req->cmd_flags & REQ_FAILFAST_MASK) !=
800 	    (next->cmd_flags & REQ_FAILFAST_MASK)) {
801 		blk_rq_set_mixed_merge(req);
802 		blk_rq_set_mixed_merge(next);
803 	}
804 
805 	/*
806 	 * At this point we have either done a back merge or front merge. We
807 	 * need the smaller start_time_ns of the merged requests to be the
808 	 * current request for accounting purposes.
809 	 */
810 	if (next->start_time_ns < req->start_time_ns)
811 		req->start_time_ns = next->start_time_ns;
812 
813 	req->biotail->bi_next = next->bio;
814 	req->biotail = next->biotail;
815 
816 	req->__data_len += blk_rq_bytes(next);
817 
818 	if (!blk_discard_mergable(req))
819 		elv_merge_requests(q, req, next);
820 
821 	/*
822 	 * 'next' is going away, so update stats accordingly
823 	 */
824 	blk_account_io_merge(next);
825 
826 	/*
827 	 * ownership of bio passed from next to req, return 'next' for
828 	 * the caller to free
829 	 */
830 	next->bio = NULL;
831 	return next;
832 }
833 
834 struct request *attempt_back_merge(struct request_queue *q, struct request *rq)
835 {
836 	struct request *next = elv_latter_request(q, rq);
837 
838 	if (next)
839 		return attempt_merge(q, rq, next);
840 
841 	return NULL;
842 }
843 
844 struct request *attempt_front_merge(struct request_queue *q, struct request *rq)
845 {
846 	struct request *prev = elv_former_request(q, rq);
847 
848 	if (prev)
849 		return attempt_merge(q, prev, rq);
850 
851 	return NULL;
852 }
853 
854 int blk_attempt_req_merge(struct request_queue *q, struct request *rq,
855 			  struct request *next)
856 {
857 	struct request *free;
858 
859 	free = attempt_merge(q, rq, next);
860 	if (free) {
861 		blk_put_request(free);
862 		return 1;
863 	}
864 
865 	return 0;
866 }
867 
868 bool blk_rq_merge_ok(struct request *rq, struct bio *bio)
869 {
870 	if (!rq_mergeable(rq) || !bio_mergeable(bio))
871 		return false;
872 
873 	if (req_op(rq) != bio_op(bio))
874 		return false;
875 
876 	/* different data direction or already started, don't merge */
877 	if (bio_data_dir(bio) != rq_data_dir(rq))
878 		return false;
879 
880 	/* must be same device */
881 	if (rq->rq_disk != bio->bi_disk)
882 		return false;
883 
884 	/* only merge integrity protected bio into ditto rq */
885 	if (blk_integrity_merge_bio(rq->q, rq, bio) == false)
886 		return false;
887 
888 	/* must be using the same buffer */
889 	if (req_op(rq) == REQ_OP_WRITE_SAME &&
890 	    !blk_write_same_mergeable(rq->bio, bio))
891 		return false;
892 
893 	/*
894 	 * Don't allow merge of different write hints, or for a hint with
895 	 * non-hint IO.
896 	 */
897 	if (rq->write_hint != bio->bi_write_hint)
898 		return false;
899 
900 	if (rq->ioprio != bio_prio(bio))
901 		return false;
902 
903 	return true;
904 }
905 
906 enum elv_merge blk_try_merge(struct request *rq, struct bio *bio)
907 {
908 	if (blk_discard_mergable(rq))
909 		return ELEVATOR_DISCARD_MERGE;
910 	else if (blk_rq_pos(rq) + blk_rq_sectors(rq) == bio->bi_iter.bi_sector)
911 		return ELEVATOR_BACK_MERGE;
912 	else if (blk_rq_pos(rq) - bio_sectors(bio) == bio->bi_iter.bi_sector)
913 		return ELEVATOR_FRONT_MERGE;
914 	return ELEVATOR_NO_MERGE;
915 }
916