xref: /linux/block/blk-mq.c (revision 021bc4b9)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block multiqueue core code
4  *
5  * Copyright (C) 2013-2014 Jens Axboe
6  * Copyright (C) 2013-2014 Christoph Hellwig
7  */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/blk-integrity.h>
14 #include <linux/kmemleak.h>
15 #include <linux/mm.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/workqueue.h>
19 #include <linux/smp.h>
20 #include <linux/interrupt.h>
21 #include <linux/llist.h>
22 #include <linux/cpu.h>
23 #include <linux/cache.h>
24 #include <linux/sched/sysctl.h>
25 #include <linux/sched/topology.h>
26 #include <linux/sched/signal.h>
27 #include <linux/delay.h>
28 #include <linux/crash_dump.h>
29 #include <linux/prefetch.h>
30 #include <linux/blk-crypto.h>
31 #include <linux/part_stat.h>
32 
33 #include <trace/events/block.h>
34 
35 #include <linux/t10-pi.h>
36 #include "blk.h"
37 #include "blk-mq.h"
38 #include "blk-mq-debugfs.h"
39 #include "blk-pm.h"
40 #include "blk-stat.h"
41 #include "blk-mq-sched.h"
42 #include "blk-rq-qos.h"
43 
44 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
45 static DEFINE_PER_CPU(call_single_data_t, blk_cpu_csd);
46 
47 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags);
48 static void blk_mq_request_bypass_insert(struct request *rq,
49 		blk_insert_t flags);
50 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
51 		struct list_head *list);
52 static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
53 			 struct io_comp_batch *iob, unsigned int flags);
54 
55 /*
56  * Check if any of the ctx, dispatch list or elevator
57  * have pending work in this hardware queue.
58  */
59 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
60 {
61 	return !list_empty_careful(&hctx->dispatch) ||
62 		sbitmap_any_bit_set(&hctx->ctx_map) ||
63 			blk_mq_sched_has_work(hctx);
64 }
65 
66 /*
67  * Mark this ctx as having pending work in this hardware queue
68  */
69 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
70 				     struct blk_mq_ctx *ctx)
71 {
72 	const int bit = ctx->index_hw[hctx->type];
73 
74 	if (!sbitmap_test_bit(&hctx->ctx_map, bit))
75 		sbitmap_set_bit(&hctx->ctx_map, bit);
76 }
77 
78 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
79 				      struct blk_mq_ctx *ctx)
80 {
81 	const int bit = ctx->index_hw[hctx->type];
82 
83 	sbitmap_clear_bit(&hctx->ctx_map, bit);
84 }
85 
86 struct mq_inflight {
87 	struct block_device *part;
88 	unsigned int inflight[2];
89 };
90 
91 static bool blk_mq_check_inflight(struct request *rq, void *priv)
92 {
93 	struct mq_inflight *mi = priv;
94 
95 	if (rq->part && blk_do_io_stat(rq) &&
96 	    (!mi->part->bd_partno || rq->part == mi->part) &&
97 	    blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
98 		mi->inflight[rq_data_dir(rq)]++;
99 
100 	return true;
101 }
102 
103 unsigned int blk_mq_in_flight(struct request_queue *q,
104 		struct block_device *part)
105 {
106 	struct mq_inflight mi = { .part = part };
107 
108 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
109 
110 	return mi.inflight[0] + mi.inflight[1];
111 }
112 
113 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
114 		unsigned int inflight[2])
115 {
116 	struct mq_inflight mi = { .part = part };
117 
118 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
119 	inflight[0] = mi.inflight[0];
120 	inflight[1] = mi.inflight[1];
121 }
122 
123 void blk_freeze_queue_start(struct request_queue *q)
124 {
125 	mutex_lock(&q->mq_freeze_lock);
126 	if (++q->mq_freeze_depth == 1) {
127 		percpu_ref_kill(&q->q_usage_counter);
128 		mutex_unlock(&q->mq_freeze_lock);
129 		if (queue_is_mq(q))
130 			blk_mq_run_hw_queues(q, false);
131 	} else {
132 		mutex_unlock(&q->mq_freeze_lock);
133 	}
134 }
135 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
136 
137 void blk_mq_freeze_queue_wait(struct request_queue *q)
138 {
139 	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
140 }
141 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
142 
143 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
144 				     unsigned long timeout)
145 {
146 	return wait_event_timeout(q->mq_freeze_wq,
147 					percpu_ref_is_zero(&q->q_usage_counter),
148 					timeout);
149 }
150 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
151 
152 /*
153  * Guarantee no request is in use, so we can change any data structure of
154  * the queue afterward.
155  */
156 void blk_freeze_queue(struct request_queue *q)
157 {
158 	/*
159 	 * In the !blk_mq case we are only calling this to kill the
160 	 * q_usage_counter, otherwise this increases the freeze depth
161 	 * and waits for it to return to zero.  For this reason there is
162 	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
163 	 * exported to drivers as the only user for unfreeze is blk_mq.
164 	 */
165 	blk_freeze_queue_start(q);
166 	blk_mq_freeze_queue_wait(q);
167 }
168 
169 void blk_mq_freeze_queue(struct request_queue *q)
170 {
171 	/*
172 	 * ...just an alias to keep freeze and unfreeze actions balanced
173 	 * in the blk_mq_* namespace
174 	 */
175 	blk_freeze_queue(q);
176 }
177 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
178 
179 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic)
180 {
181 	mutex_lock(&q->mq_freeze_lock);
182 	if (force_atomic)
183 		q->q_usage_counter.data->force_atomic = true;
184 	q->mq_freeze_depth--;
185 	WARN_ON_ONCE(q->mq_freeze_depth < 0);
186 	if (!q->mq_freeze_depth) {
187 		percpu_ref_resurrect(&q->q_usage_counter);
188 		wake_up_all(&q->mq_freeze_wq);
189 	}
190 	mutex_unlock(&q->mq_freeze_lock);
191 }
192 
193 void blk_mq_unfreeze_queue(struct request_queue *q)
194 {
195 	__blk_mq_unfreeze_queue(q, false);
196 }
197 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
198 
199 /*
200  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
201  * mpt3sas driver such that this function can be removed.
202  */
203 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
204 {
205 	unsigned long flags;
206 
207 	spin_lock_irqsave(&q->queue_lock, flags);
208 	if (!q->quiesce_depth++)
209 		blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
210 	spin_unlock_irqrestore(&q->queue_lock, flags);
211 }
212 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
213 
214 /**
215  * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done
216  * @set: tag_set to wait on
217  *
218  * Note: it is driver's responsibility for making sure that quiesce has
219  * been started on or more of the request_queues of the tag_set.  This
220  * function only waits for the quiesce on those request_queues that had
221  * the quiesce flag set using blk_mq_quiesce_queue_nowait.
222  */
223 void blk_mq_wait_quiesce_done(struct blk_mq_tag_set *set)
224 {
225 	if (set->flags & BLK_MQ_F_BLOCKING)
226 		synchronize_srcu(set->srcu);
227 	else
228 		synchronize_rcu();
229 }
230 EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done);
231 
232 /**
233  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
234  * @q: request queue.
235  *
236  * Note: this function does not prevent that the struct request end_io()
237  * callback function is invoked. Once this function is returned, we make
238  * sure no dispatch can happen until the queue is unquiesced via
239  * blk_mq_unquiesce_queue().
240  */
241 void blk_mq_quiesce_queue(struct request_queue *q)
242 {
243 	blk_mq_quiesce_queue_nowait(q);
244 	/* nothing to wait for non-mq queues */
245 	if (queue_is_mq(q))
246 		blk_mq_wait_quiesce_done(q->tag_set);
247 }
248 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
249 
250 /*
251  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
252  * @q: request queue.
253  *
254  * This function recovers queue into the state before quiescing
255  * which is done by blk_mq_quiesce_queue.
256  */
257 void blk_mq_unquiesce_queue(struct request_queue *q)
258 {
259 	unsigned long flags;
260 	bool run_queue = false;
261 
262 	spin_lock_irqsave(&q->queue_lock, flags);
263 	if (WARN_ON_ONCE(q->quiesce_depth <= 0)) {
264 		;
265 	} else if (!--q->quiesce_depth) {
266 		blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
267 		run_queue = true;
268 	}
269 	spin_unlock_irqrestore(&q->queue_lock, flags);
270 
271 	/* dispatch requests which are inserted during quiescing */
272 	if (run_queue)
273 		blk_mq_run_hw_queues(q, true);
274 }
275 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
276 
277 void blk_mq_quiesce_tagset(struct blk_mq_tag_set *set)
278 {
279 	struct request_queue *q;
280 
281 	mutex_lock(&set->tag_list_lock);
282 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
283 		if (!blk_queue_skip_tagset_quiesce(q))
284 			blk_mq_quiesce_queue_nowait(q);
285 	}
286 	blk_mq_wait_quiesce_done(set);
287 	mutex_unlock(&set->tag_list_lock);
288 }
289 EXPORT_SYMBOL_GPL(blk_mq_quiesce_tagset);
290 
291 void blk_mq_unquiesce_tagset(struct blk_mq_tag_set *set)
292 {
293 	struct request_queue *q;
294 
295 	mutex_lock(&set->tag_list_lock);
296 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
297 		if (!blk_queue_skip_tagset_quiesce(q))
298 			blk_mq_unquiesce_queue(q);
299 	}
300 	mutex_unlock(&set->tag_list_lock);
301 }
302 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_tagset);
303 
304 void blk_mq_wake_waiters(struct request_queue *q)
305 {
306 	struct blk_mq_hw_ctx *hctx;
307 	unsigned long i;
308 
309 	queue_for_each_hw_ctx(q, hctx, i)
310 		if (blk_mq_hw_queue_mapped(hctx))
311 			blk_mq_tag_wakeup_all(hctx->tags, true);
312 }
313 
314 void blk_rq_init(struct request_queue *q, struct request *rq)
315 {
316 	memset(rq, 0, sizeof(*rq));
317 
318 	INIT_LIST_HEAD(&rq->queuelist);
319 	rq->q = q;
320 	rq->__sector = (sector_t) -1;
321 	INIT_HLIST_NODE(&rq->hash);
322 	RB_CLEAR_NODE(&rq->rb_node);
323 	rq->tag = BLK_MQ_NO_TAG;
324 	rq->internal_tag = BLK_MQ_NO_TAG;
325 	rq->start_time_ns = ktime_get_ns();
326 	rq->part = NULL;
327 	blk_crypto_rq_set_defaults(rq);
328 }
329 EXPORT_SYMBOL(blk_rq_init);
330 
331 /* Set start and alloc time when the allocated request is actually used */
332 static inline void blk_mq_rq_time_init(struct request *rq, u64 alloc_time_ns)
333 {
334 	if (blk_mq_need_time_stamp(rq))
335 		rq->start_time_ns = ktime_get_ns();
336 	else
337 		rq->start_time_ns = 0;
338 
339 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
340 	if (blk_queue_rq_alloc_time(rq->q))
341 		rq->alloc_time_ns = alloc_time_ns ?: rq->start_time_ns;
342 	else
343 		rq->alloc_time_ns = 0;
344 #endif
345 }
346 
347 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
348 		struct blk_mq_tags *tags, unsigned int tag)
349 {
350 	struct blk_mq_ctx *ctx = data->ctx;
351 	struct blk_mq_hw_ctx *hctx = data->hctx;
352 	struct request_queue *q = data->q;
353 	struct request *rq = tags->static_rqs[tag];
354 
355 	rq->q = q;
356 	rq->mq_ctx = ctx;
357 	rq->mq_hctx = hctx;
358 	rq->cmd_flags = data->cmd_flags;
359 
360 	if (data->flags & BLK_MQ_REQ_PM)
361 		data->rq_flags |= RQF_PM;
362 	if (blk_queue_io_stat(q))
363 		data->rq_flags |= RQF_IO_STAT;
364 	rq->rq_flags = data->rq_flags;
365 
366 	if (data->rq_flags & RQF_SCHED_TAGS) {
367 		rq->tag = BLK_MQ_NO_TAG;
368 		rq->internal_tag = tag;
369 	} else {
370 		rq->tag = tag;
371 		rq->internal_tag = BLK_MQ_NO_TAG;
372 	}
373 	rq->timeout = 0;
374 
375 	rq->part = NULL;
376 	rq->io_start_time_ns = 0;
377 	rq->stats_sectors = 0;
378 	rq->nr_phys_segments = 0;
379 #if defined(CONFIG_BLK_DEV_INTEGRITY)
380 	rq->nr_integrity_segments = 0;
381 #endif
382 	rq->end_io = NULL;
383 	rq->end_io_data = NULL;
384 
385 	blk_crypto_rq_set_defaults(rq);
386 	INIT_LIST_HEAD(&rq->queuelist);
387 	/* tag was already set */
388 	WRITE_ONCE(rq->deadline, 0);
389 	req_ref_set(rq, 1);
390 
391 	if (rq->rq_flags & RQF_USE_SCHED) {
392 		struct elevator_queue *e = data->q->elevator;
393 
394 		INIT_HLIST_NODE(&rq->hash);
395 		RB_CLEAR_NODE(&rq->rb_node);
396 
397 		if (e->type->ops.prepare_request)
398 			e->type->ops.prepare_request(rq);
399 	}
400 
401 	return rq;
402 }
403 
404 static inline struct request *
405 __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data)
406 {
407 	unsigned int tag, tag_offset;
408 	struct blk_mq_tags *tags;
409 	struct request *rq;
410 	unsigned long tag_mask;
411 	int i, nr = 0;
412 
413 	tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset);
414 	if (unlikely(!tag_mask))
415 		return NULL;
416 
417 	tags = blk_mq_tags_from_data(data);
418 	for (i = 0; tag_mask; i++) {
419 		if (!(tag_mask & (1UL << i)))
420 			continue;
421 		tag = tag_offset + i;
422 		prefetch(tags->static_rqs[tag]);
423 		tag_mask &= ~(1UL << i);
424 		rq = blk_mq_rq_ctx_init(data, tags, tag);
425 		rq_list_add(data->cached_rq, rq);
426 		nr++;
427 	}
428 	if (!(data->rq_flags & RQF_SCHED_TAGS))
429 		blk_mq_add_active_requests(data->hctx, nr);
430 	/* caller already holds a reference, add for remainder */
431 	percpu_ref_get_many(&data->q->q_usage_counter, nr - 1);
432 	data->nr_tags -= nr;
433 
434 	return rq_list_pop(data->cached_rq);
435 }
436 
437 static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data)
438 {
439 	struct request_queue *q = data->q;
440 	u64 alloc_time_ns = 0;
441 	struct request *rq;
442 	unsigned int tag;
443 
444 	/* alloc_time includes depth and tag waits */
445 	if (blk_queue_rq_alloc_time(q))
446 		alloc_time_ns = ktime_get_ns();
447 
448 	if (data->cmd_flags & REQ_NOWAIT)
449 		data->flags |= BLK_MQ_REQ_NOWAIT;
450 
451 	if (q->elevator) {
452 		/*
453 		 * All requests use scheduler tags when an I/O scheduler is
454 		 * enabled for the queue.
455 		 */
456 		data->rq_flags |= RQF_SCHED_TAGS;
457 
458 		/*
459 		 * Flush/passthrough requests are special and go directly to the
460 		 * dispatch list.
461 		 */
462 		if ((data->cmd_flags & REQ_OP_MASK) != REQ_OP_FLUSH &&
463 		    !blk_op_is_passthrough(data->cmd_flags)) {
464 			struct elevator_mq_ops *ops = &q->elevator->type->ops;
465 
466 			WARN_ON_ONCE(data->flags & BLK_MQ_REQ_RESERVED);
467 
468 			data->rq_flags |= RQF_USE_SCHED;
469 			if (ops->limit_depth)
470 				ops->limit_depth(data->cmd_flags, data);
471 		}
472 	}
473 
474 retry:
475 	data->ctx = blk_mq_get_ctx(q);
476 	data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
477 	if (!(data->rq_flags & RQF_SCHED_TAGS))
478 		blk_mq_tag_busy(data->hctx);
479 
480 	if (data->flags & BLK_MQ_REQ_RESERVED)
481 		data->rq_flags |= RQF_RESV;
482 
483 	/*
484 	 * Try batched alloc if we want more than 1 tag.
485 	 */
486 	if (data->nr_tags > 1) {
487 		rq = __blk_mq_alloc_requests_batch(data);
488 		if (rq) {
489 			blk_mq_rq_time_init(rq, alloc_time_ns);
490 			return rq;
491 		}
492 		data->nr_tags = 1;
493 	}
494 
495 	/*
496 	 * Waiting allocations only fail because of an inactive hctx.  In that
497 	 * case just retry the hctx assignment and tag allocation as CPU hotplug
498 	 * should have migrated us to an online CPU by now.
499 	 */
500 	tag = blk_mq_get_tag(data);
501 	if (tag == BLK_MQ_NO_TAG) {
502 		if (data->flags & BLK_MQ_REQ_NOWAIT)
503 			return NULL;
504 		/*
505 		 * Give up the CPU and sleep for a random short time to
506 		 * ensure that thread using a realtime scheduling class
507 		 * are migrated off the CPU, and thus off the hctx that
508 		 * is going away.
509 		 */
510 		msleep(3);
511 		goto retry;
512 	}
513 
514 	if (!(data->rq_flags & RQF_SCHED_TAGS))
515 		blk_mq_inc_active_requests(data->hctx);
516 	rq = blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag);
517 	blk_mq_rq_time_init(rq, alloc_time_ns);
518 	return rq;
519 }
520 
521 static struct request *blk_mq_rq_cache_fill(struct request_queue *q,
522 					    struct blk_plug *plug,
523 					    blk_opf_t opf,
524 					    blk_mq_req_flags_t flags)
525 {
526 	struct blk_mq_alloc_data data = {
527 		.q		= q,
528 		.flags		= flags,
529 		.cmd_flags	= opf,
530 		.nr_tags	= plug->nr_ios,
531 		.cached_rq	= &plug->cached_rq,
532 	};
533 	struct request *rq;
534 
535 	if (blk_queue_enter(q, flags))
536 		return NULL;
537 
538 	plug->nr_ios = 1;
539 
540 	rq = __blk_mq_alloc_requests(&data);
541 	if (unlikely(!rq))
542 		blk_queue_exit(q);
543 	return rq;
544 }
545 
546 static struct request *blk_mq_alloc_cached_request(struct request_queue *q,
547 						   blk_opf_t opf,
548 						   blk_mq_req_flags_t flags)
549 {
550 	struct blk_plug *plug = current->plug;
551 	struct request *rq;
552 
553 	if (!plug)
554 		return NULL;
555 
556 	if (rq_list_empty(plug->cached_rq)) {
557 		if (plug->nr_ios == 1)
558 			return NULL;
559 		rq = blk_mq_rq_cache_fill(q, plug, opf, flags);
560 		if (!rq)
561 			return NULL;
562 	} else {
563 		rq = rq_list_peek(&plug->cached_rq);
564 		if (!rq || rq->q != q)
565 			return NULL;
566 
567 		if (blk_mq_get_hctx_type(opf) != rq->mq_hctx->type)
568 			return NULL;
569 		if (op_is_flush(rq->cmd_flags) != op_is_flush(opf))
570 			return NULL;
571 
572 		plug->cached_rq = rq_list_next(rq);
573 		blk_mq_rq_time_init(rq, 0);
574 	}
575 
576 	rq->cmd_flags = opf;
577 	INIT_LIST_HEAD(&rq->queuelist);
578 	return rq;
579 }
580 
581 struct request *blk_mq_alloc_request(struct request_queue *q, blk_opf_t opf,
582 		blk_mq_req_flags_t flags)
583 {
584 	struct request *rq;
585 
586 	rq = blk_mq_alloc_cached_request(q, opf, flags);
587 	if (!rq) {
588 		struct blk_mq_alloc_data data = {
589 			.q		= q,
590 			.flags		= flags,
591 			.cmd_flags	= opf,
592 			.nr_tags	= 1,
593 		};
594 		int ret;
595 
596 		ret = blk_queue_enter(q, flags);
597 		if (ret)
598 			return ERR_PTR(ret);
599 
600 		rq = __blk_mq_alloc_requests(&data);
601 		if (!rq)
602 			goto out_queue_exit;
603 	}
604 	rq->__data_len = 0;
605 	rq->__sector = (sector_t) -1;
606 	rq->bio = rq->biotail = NULL;
607 	return rq;
608 out_queue_exit:
609 	blk_queue_exit(q);
610 	return ERR_PTR(-EWOULDBLOCK);
611 }
612 EXPORT_SYMBOL(blk_mq_alloc_request);
613 
614 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
615 	blk_opf_t opf, blk_mq_req_flags_t flags, unsigned int hctx_idx)
616 {
617 	struct blk_mq_alloc_data data = {
618 		.q		= q,
619 		.flags		= flags,
620 		.cmd_flags	= opf,
621 		.nr_tags	= 1,
622 	};
623 	u64 alloc_time_ns = 0;
624 	struct request *rq;
625 	unsigned int cpu;
626 	unsigned int tag;
627 	int ret;
628 
629 	/* alloc_time includes depth and tag waits */
630 	if (blk_queue_rq_alloc_time(q))
631 		alloc_time_ns = ktime_get_ns();
632 
633 	/*
634 	 * If the tag allocator sleeps we could get an allocation for a
635 	 * different hardware context.  No need to complicate the low level
636 	 * allocator for this for the rare use case of a command tied to
637 	 * a specific queue.
638 	 */
639 	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)) ||
640 	    WARN_ON_ONCE(!(flags & BLK_MQ_REQ_RESERVED)))
641 		return ERR_PTR(-EINVAL);
642 
643 	if (hctx_idx >= q->nr_hw_queues)
644 		return ERR_PTR(-EIO);
645 
646 	ret = blk_queue_enter(q, flags);
647 	if (ret)
648 		return ERR_PTR(ret);
649 
650 	/*
651 	 * Check if the hardware context is actually mapped to anything.
652 	 * If not tell the caller that it should skip this queue.
653 	 */
654 	ret = -EXDEV;
655 	data.hctx = xa_load(&q->hctx_table, hctx_idx);
656 	if (!blk_mq_hw_queue_mapped(data.hctx))
657 		goto out_queue_exit;
658 	cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
659 	if (cpu >= nr_cpu_ids)
660 		goto out_queue_exit;
661 	data.ctx = __blk_mq_get_ctx(q, cpu);
662 
663 	if (q->elevator)
664 		data.rq_flags |= RQF_SCHED_TAGS;
665 	else
666 		blk_mq_tag_busy(data.hctx);
667 
668 	if (flags & BLK_MQ_REQ_RESERVED)
669 		data.rq_flags |= RQF_RESV;
670 
671 	ret = -EWOULDBLOCK;
672 	tag = blk_mq_get_tag(&data);
673 	if (tag == BLK_MQ_NO_TAG)
674 		goto out_queue_exit;
675 	if (!(data.rq_flags & RQF_SCHED_TAGS))
676 		blk_mq_inc_active_requests(data.hctx);
677 	rq = blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag);
678 	blk_mq_rq_time_init(rq, alloc_time_ns);
679 	rq->__data_len = 0;
680 	rq->__sector = (sector_t) -1;
681 	rq->bio = rq->biotail = NULL;
682 	return rq;
683 
684 out_queue_exit:
685 	blk_queue_exit(q);
686 	return ERR_PTR(ret);
687 }
688 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
689 
690 static void blk_mq_finish_request(struct request *rq)
691 {
692 	struct request_queue *q = rq->q;
693 
694 	if (rq->rq_flags & RQF_USE_SCHED) {
695 		q->elevator->type->ops.finish_request(rq);
696 		/*
697 		 * For postflush request that may need to be
698 		 * completed twice, we should clear this flag
699 		 * to avoid double finish_request() on the rq.
700 		 */
701 		rq->rq_flags &= ~RQF_USE_SCHED;
702 	}
703 }
704 
705 static void __blk_mq_free_request(struct request *rq)
706 {
707 	struct request_queue *q = rq->q;
708 	struct blk_mq_ctx *ctx = rq->mq_ctx;
709 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
710 	const int sched_tag = rq->internal_tag;
711 
712 	blk_crypto_free_request(rq);
713 	blk_pm_mark_last_busy(rq);
714 	rq->mq_hctx = NULL;
715 
716 	if (rq->tag != BLK_MQ_NO_TAG) {
717 		blk_mq_dec_active_requests(hctx);
718 		blk_mq_put_tag(hctx->tags, ctx, rq->tag);
719 	}
720 	if (sched_tag != BLK_MQ_NO_TAG)
721 		blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
722 	blk_mq_sched_restart(hctx);
723 	blk_queue_exit(q);
724 }
725 
726 void blk_mq_free_request(struct request *rq)
727 {
728 	struct request_queue *q = rq->q;
729 
730 	blk_mq_finish_request(rq);
731 
732 	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
733 		laptop_io_completion(q->disk->bdi);
734 
735 	rq_qos_done(q, rq);
736 
737 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
738 	if (req_ref_put_and_test(rq))
739 		__blk_mq_free_request(rq);
740 }
741 EXPORT_SYMBOL_GPL(blk_mq_free_request);
742 
743 void blk_mq_free_plug_rqs(struct blk_plug *plug)
744 {
745 	struct request *rq;
746 
747 	while ((rq = rq_list_pop(&plug->cached_rq)) != NULL)
748 		blk_mq_free_request(rq);
749 }
750 
751 void blk_dump_rq_flags(struct request *rq, char *msg)
752 {
753 	printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
754 		rq->q->disk ? rq->q->disk->disk_name : "?",
755 		(__force unsigned long long) rq->cmd_flags);
756 
757 	printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
758 	       (unsigned long long)blk_rq_pos(rq),
759 	       blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
760 	printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
761 	       rq->bio, rq->biotail, blk_rq_bytes(rq));
762 }
763 EXPORT_SYMBOL(blk_dump_rq_flags);
764 
765 static void req_bio_endio(struct request *rq, struct bio *bio,
766 			  unsigned int nbytes, blk_status_t error)
767 {
768 	if (unlikely(error)) {
769 		bio->bi_status = error;
770 	} else if (req_op(rq) == REQ_OP_ZONE_APPEND) {
771 		/*
772 		 * Partial zone append completions cannot be supported as the
773 		 * BIO fragments may end up not being written sequentially.
774 		 * For such case, force the completed nbytes to be equal to
775 		 * the BIO size so that bio_advance() sets the BIO remaining
776 		 * size to 0 and we end up calling bio_endio() before returning.
777 		 */
778 		if (bio->bi_iter.bi_size != nbytes) {
779 			bio->bi_status = BLK_STS_IOERR;
780 			nbytes = bio->bi_iter.bi_size;
781 		} else {
782 			bio->bi_iter.bi_sector = rq->__sector;
783 		}
784 	}
785 
786 	bio_advance(bio, nbytes);
787 
788 	if (unlikely(rq->rq_flags & RQF_QUIET))
789 		bio_set_flag(bio, BIO_QUIET);
790 	/* don't actually finish bio if it's part of flush sequence */
791 	if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
792 		bio_endio(bio);
793 }
794 
795 static void blk_account_io_completion(struct request *req, unsigned int bytes)
796 {
797 	if (req->part && blk_do_io_stat(req)) {
798 		const int sgrp = op_stat_group(req_op(req));
799 
800 		part_stat_lock();
801 		part_stat_add(req->part, sectors[sgrp], bytes >> 9);
802 		part_stat_unlock();
803 	}
804 }
805 
806 static void blk_print_req_error(struct request *req, blk_status_t status)
807 {
808 	printk_ratelimited(KERN_ERR
809 		"%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
810 		"phys_seg %u prio class %u\n",
811 		blk_status_to_str(status),
812 		req->q->disk ? req->q->disk->disk_name : "?",
813 		blk_rq_pos(req), (__force u32)req_op(req),
814 		blk_op_str(req_op(req)),
815 		(__force u32)(req->cmd_flags & ~REQ_OP_MASK),
816 		req->nr_phys_segments,
817 		IOPRIO_PRIO_CLASS(req->ioprio));
818 }
819 
820 /*
821  * Fully end IO on a request. Does not support partial completions, or
822  * errors.
823  */
824 static void blk_complete_request(struct request *req)
825 {
826 	const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0;
827 	int total_bytes = blk_rq_bytes(req);
828 	struct bio *bio = req->bio;
829 
830 	trace_block_rq_complete(req, BLK_STS_OK, total_bytes);
831 
832 	if (!bio)
833 		return;
834 
835 #ifdef CONFIG_BLK_DEV_INTEGRITY
836 	if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ)
837 		req->q->integrity.profile->complete_fn(req, total_bytes);
838 #endif
839 
840 	/*
841 	 * Upper layers may call blk_crypto_evict_key() anytime after the last
842 	 * bio_endio().  Therefore, the keyslot must be released before that.
843 	 */
844 	blk_crypto_rq_put_keyslot(req);
845 
846 	blk_account_io_completion(req, total_bytes);
847 
848 	do {
849 		struct bio *next = bio->bi_next;
850 
851 		/* Completion has already been traced */
852 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
853 
854 		if (req_op(req) == REQ_OP_ZONE_APPEND)
855 			bio->bi_iter.bi_sector = req->__sector;
856 
857 		if (!is_flush)
858 			bio_endio(bio);
859 		bio = next;
860 	} while (bio);
861 
862 	/*
863 	 * Reset counters so that the request stacking driver
864 	 * can find how many bytes remain in the request
865 	 * later.
866 	 */
867 	if (!req->end_io) {
868 		req->bio = NULL;
869 		req->__data_len = 0;
870 	}
871 }
872 
873 /**
874  * blk_update_request - Complete multiple bytes without completing the request
875  * @req:      the request being processed
876  * @error:    block status code
877  * @nr_bytes: number of bytes to complete for @req
878  *
879  * Description:
880  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
881  *     the request structure even if @req doesn't have leftover.
882  *     If @req has leftover, sets it up for the next range of segments.
883  *
884  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
885  *     %false return from this function.
886  *
887  * Note:
888  *	The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function
889  *      except in the consistency check at the end of this function.
890  *
891  * Return:
892  *     %false - this request doesn't have any more data
893  *     %true  - this request has more data
894  **/
895 bool blk_update_request(struct request *req, blk_status_t error,
896 		unsigned int nr_bytes)
897 {
898 	int total_bytes;
899 
900 	trace_block_rq_complete(req, error, nr_bytes);
901 
902 	if (!req->bio)
903 		return false;
904 
905 #ifdef CONFIG_BLK_DEV_INTEGRITY
906 	if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
907 	    error == BLK_STS_OK)
908 		req->q->integrity.profile->complete_fn(req, nr_bytes);
909 #endif
910 
911 	/*
912 	 * Upper layers may call blk_crypto_evict_key() anytime after the last
913 	 * bio_endio().  Therefore, the keyslot must be released before that.
914 	 */
915 	if (blk_crypto_rq_has_keyslot(req) && nr_bytes >= blk_rq_bytes(req))
916 		__blk_crypto_rq_put_keyslot(req);
917 
918 	if (unlikely(error && !blk_rq_is_passthrough(req) &&
919 		     !(req->rq_flags & RQF_QUIET)) &&
920 		     !test_bit(GD_DEAD, &req->q->disk->state)) {
921 		blk_print_req_error(req, error);
922 		trace_block_rq_error(req, error, nr_bytes);
923 	}
924 
925 	blk_account_io_completion(req, nr_bytes);
926 
927 	total_bytes = 0;
928 	while (req->bio) {
929 		struct bio *bio = req->bio;
930 		unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
931 
932 		if (bio_bytes == bio->bi_iter.bi_size)
933 			req->bio = bio->bi_next;
934 
935 		/* Completion has already been traced */
936 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
937 		req_bio_endio(req, bio, bio_bytes, error);
938 
939 		total_bytes += bio_bytes;
940 		nr_bytes -= bio_bytes;
941 
942 		if (!nr_bytes)
943 			break;
944 	}
945 
946 	/*
947 	 * completely done
948 	 */
949 	if (!req->bio) {
950 		/*
951 		 * Reset counters so that the request stacking driver
952 		 * can find how many bytes remain in the request
953 		 * later.
954 		 */
955 		req->__data_len = 0;
956 		return false;
957 	}
958 
959 	req->__data_len -= total_bytes;
960 
961 	/* update sector only for requests with clear definition of sector */
962 	if (!blk_rq_is_passthrough(req))
963 		req->__sector += total_bytes >> 9;
964 
965 	/* mixed attributes always follow the first bio */
966 	if (req->rq_flags & RQF_MIXED_MERGE) {
967 		req->cmd_flags &= ~REQ_FAILFAST_MASK;
968 		req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
969 	}
970 
971 	if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
972 		/*
973 		 * If total number of sectors is less than the first segment
974 		 * size, something has gone terribly wrong.
975 		 */
976 		if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
977 			blk_dump_rq_flags(req, "request botched");
978 			req->__data_len = blk_rq_cur_bytes(req);
979 		}
980 
981 		/* recalculate the number of segments */
982 		req->nr_phys_segments = blk_recalc_rq_segments(req);
983 	}
984 
985 	return true;
986 }
987 EXPORT_SYMBOL_GPL(blk_update_request);
988 
989 static inline void blk_account_io_done(struct request *req, u64 now)
990 {
991 	trace_block_io_done(req);
992 
993 	/*
994 	 * Account IO completion.  flush_rq isn't accounted as a
995 	 * normal IO on queueing nor completion.  Accounting the
996 	 * containing request is enough.
997 	 */
998 	if (blk_do_io_stat(req) && req->part &&
999 	    !(req->rq_flags & RQF_FLUSH_SEQ)) {
1000 		const int sgrp = op_stat_group(req_op(req));
1001 
1002 		part_stat_lock();
1003 		update_io_ticks(req->part, jiffies, true);
1004 		part_stat_inc(req->part, ios[sgrp]);
1005 		part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns);
1006 		part_stat_unlock();
1007 	}
1008 }
1009 
1010 static inline void blk_account_io_start(struct request *req)
1011 {
1012 	trace_block_io_start(req);
1013 
1014 	if (blk_do_io_stat(req)) {
1015 		/*
1016 		 * All non-passthrough requests are created from a bio with one
1017 		 * exception: when a flush command that is part of a flush sequence
1018 		 * generated by the state machine in blk-flush.c is cloned onto the
1019 		 * lower device by dm-multipath we can get here without a bio.
1020 		 */
1021 		if (req->bio)
1022 			req->part = req->bio->bi_bdev;
1023 		else
1024 			req->part = req->q->disk->part0;
1025 
1026 		part_stat_lock();
1027 		update_io_ticks(req->part, jiffies, false);
1028 		part_stat_unlock();
1029 	}
1030 }
1031 
1032 static inline void __blk_mq_end_request_acct(struct request *rq, u64 now)
1033 {
1034 	if (rq->rq_flags & RQF_STATS)
1035 		blk_stat_add(rq, now);
1036 
1037 	blk_mq_sched_completed_request(rq, now);
1038 	blk_account_io_done(rq, now);
1039 }
1040 
1041 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
1042 {
1043 	if (blk_mq_need_time_stamp(rq))
1044 		__blk_mq_end_request_acct(rq, ktime_get_ns());
1045 
1046 	blk_mq_finish_request(rq);
1047 
1048 	if (rq->end_io) {
1049 		rq_qos_done(rq->q, rq);
1050 		if (rq->end_io(rq, error) == RQ_END_IO_FREE)
1051 			blk_mq_free_request(rq);
1052 	} else {
1053 		blk_mq_free_request(rq);
1054 	}
1055 }
1056 EXPORT_SYMBOL(__blk_mq_end_request);
1057 
1058 void blk_mq_end_request(struct request *rq, blk_status_t error)
1059 {
1060 	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
1061 		BUG();
1062 	__blk_mq_end_request(rq, error);
1063 }
1064 EXPORT_SYMBOL(blk_mq_end_request);
1065 
1066 #define TAG_COMP_BATCH		32
1067 
1068 static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx,
1069 					  int *tag_array, int nr_tags)
1070 {
1071 	struct request_queue *q = hctx->queue;
1072 
1073 	blk_mq_sub_active_requests(hctx, nr_tags);
1074 
1075 	blk_mq_put_tags(hctx->tags, tag_array, nr_tags);
1076 	percpu_ref_put_many(&q->q_usage_counter, nr_tags);
1077 }
1078 
1079 void blk_mq_end_request_batch(struct io_comp_batch *iob)
1080 {
1081 	int tags[TAG_COMP_BATCH], nr_tags = 0;
1082 	struct blk_mq_hw_ctx *cur_hctx = NULL;
1083 	struct request *rq;
1084 	u64 now = 0;
1085 
1086 	if (iob->need_ts)
1087 		now = ktime_get_ns();
1088 
1089 	while ((rq = rq_list_pop(&iob->req_list)) != NULL) {
1090 		prefetch(rq->bio);
1091 		prefetch(rq->rq_next);
1092 
1093 		blk_complete_request(rq);
1094 		if (iob->need_ts)
1095 			__blk_mq_end_request_acct(rq, now);
1096 
1097 		blk_mq_finish_request(rq);
1098 
1099 		rq_qos_done(rq->q, rq);
1100 
1101 		/*
1102 		 * If end_io handler returns NONE, then it still has
1103 		 * ownership of the request.
1104 		 */
1105 		if (rq->end_io && rq->end_io(rq, 0) == RQ_END_IO_NONE)
1106 			continue;
1107 
1108 		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1109 		if (!req_ref_put_and_test(rq))
1110 			continue;
1111 
1112 		blk_crypto_free_request(rq);
1113 		blk_pm_mark_last_busy(rq);
1114 
1115 		if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) {
1116 			if (cur_hctx)
1117 				blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1118 			nr_tags = 0;
1119 			cur_hctx = rq->mq_hctx;
1120 		}
1121 		tags[nr_tags++] = rq->tag;
1122 	}
1123 
1124 	if (nr_tags)
1125 		blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1126 }
1127 EXPORT_SYMBOL_GPL(blk_mq_end_request_batch);
1128 
1129 static void blk_complete_reqs(struct llist_head *list)
1130 {
1131 	struct llist_node *entry = llist_reverse_order(llist_del_all(list));
1132 	struct request *rq, *next;
1133 
1134 	llist_for_each_entry_safe(rq, next, entry, ipi_list)
1135 		rq->q->mq_ops->complete(rq);
1136 }
1137 
1138 static __latent_entropy void blk_done_softirq(struct softirq_action *h)
1139 {
1140 	blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
1141 }
1142 
1143 static int blk_softirq_cpu_dead(unsigned int cpu)
1144 {
1145 	blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
1146 	return 0;
1147 }
1148 
1149 static void __blk_mq_complete_request_remote(void *data)
1150 {
1151 	__raise_softirq_irqoff(BLOCK_SOFTIRQ);
1152 }
1153 
1154 static inline bool blk_mq_complete_need_ipi(struct request *rq)
1155 {
1156 	int cpu = raw_smp_processor_id();
1157 
1158 	if (!IS_ENABLED(CONFIG_SMP) ||
1159 	    !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
1160 		return false;
1161 	/*
1162 	 * With force threaded interrupts enabled, raising softirq from an SMP
1163 	 * function call will always result in waking the ksoftirqd thread.
1164 	 * This is probably worse than completing the request on a different
1165 	 * cache domain.
1166 	 */
1167 	if (force_irqthreads())
1168 		return false;
1169 
1170 	/* same CPU or cache domain?  Complete locally */
1171 	if (cpu == rq->mq_ctx->cpu ||
1172 	    (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
1173 	     cpus_share_cache(cpu, rq->mq_ctx->cpu)))
1174 		return false;
1175 
1176 	/* don't try to IPI to an offline CPU */
1177 	return cpu_online(rq->mq_ctx->cpu);
1178 }
1179 
1180 static void blk_mq_complete_send_ipi(struct request *rq)
1181 {
1182 	unsigned int cpu;
1183 
1184 	cpu = rq->mq_ctx->cpu;
1185 	if (llist_add(&rq->ipi_list, &per_cpu(blk_cpu_done, cpu)))
1186 		smp_call_function_single_async(cpu, &per_cpu(blk_cpu_csd, cpu));
1187 }
1188 
1189 static void blk_mq_raise_softirq(struct request *rq)
1190 {
1191 	struct llist_head *list;
1192 
1193 	preempt_disable();
1194 	list = this_cpu_ptr(&blk_cpu_done);
1195 	if (llist_add(&rq->ipi_list, list))
1196 		raise_softirq(BLOCK_SOFTIRQ);
1197 	preempt_enable();
1198 }
1199 
1200 bool blk_mq_complete_request_remote(struct request *rq)
1201 {
1202 	WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
1203 
1204 	/*
1205 	 * For request which hctx has only one ctx mapping,
1206 	 * or a polled request, always complete locally,
1207 	 * it's pointless to redirect the completion.
1208 	 */
1209 	if ((rq->mq_hctx->nr_ctx == 1 &&
1210 	     rq->mq_ctx->cpu == raw_smp_processor_id()) ||
1211 	     rq->cmd_flags & REQ_POLLED)
1212 		return false;
1213 
1214 	if (blk_mq_complete_need_ipi(rq)) {
1215 		blk_mq_complete_send_ipi(rq);
1216 		return true;
1217 	}
1218 
1219 	if (rq->q->nr_hw_queues == 1) {
1220 		blk_mq_raise_softirq(rq);
1221 		return true;
1222 	}
1223 	return false;
1224 }
1225 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
1226 
1227 /**
1228  * blk_mq_complete_request - end I/O on a request
1229  * @rq:		the request being processed
1230  *
1231  * Description:
1232  *	Complete a request by scheduling the ->complete_rq operation.
1233  **/
1234 void blk_mq_complete_request(struct request *rq)
1235 {
1236 	if (!blk_mq_complete_request_remote(rq))
1237 		rq->q->mq_ops->complete(rq);
1238 }
1239 EXPORT_SYMBOL(blk_mq_complete_request);
1240 
1241 /**
1242  * blk_mq_start_request - Start processing a request
1243  * @rq: Pointer to request to be started
1244  *
1245  * Function used by device drivers to notify the block layer that a request
1246  * is going to be processed now, so blk layer can do proper initializations
1247  * such as starting the timeout timer.
1248  */
1249 void blk_mq_start_request(struct request *rq)
1250 {
1251 	struct request_queue *q = rq->q;
1252 
1253 	trace_block_rq_issue(rq);
1254 
1255 	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags) &&
1256 	    !blk_rq_is_passthrough(rq)) {
1257 		rq->io_start_time_ns = ktime_get_ns();
1258 		rq->stats_sectors = blk_rq_sectors(rq);
1259 		rq->rq_flags |= RQF_STATS;
1260 		rq_qos_issue(q, rq);
1261 	}
1262 
1263 	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
1264 
1265 	blk_add_timer(rq);
1266 	WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
1267 	rq->mq_hctx->tags->rqs[rq->tag] = rq;
1268 
1269 #ifdef CONFIG_BLK_DEV_INTEGRITY
1270 	if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
1271 		q->integrity.profile->prepare_fn(rq);
1272 #endif
1273 	if (rq->bio && rq->bio->bi_opf & REQ_POLLED)
1274 	        WRITE_ONCE(rq->bio->bi_cookie, rq->mq_hctx->queue_num);
1275 }
1276 EXPORT_SYMBOL(blk_mq_start_request);
1277 
1278 /*
1279  * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
1280  * queues. This is important for md arrays to benefit from merging
1281  * requests.
1282  */
1283 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
1284 {
1285 	if (plug->multiple_queues)
1286 		return BLK_MAX_REQUEST_COUNT * 2;
1287 	return BLK_MAX_REQUEST_COUNT;
1288 }
1289 
1290 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
1291 {
1292 	struct request *last = rq_list_peek(&plug->mq_list);
1293 
1294 	if (!plug->rq_count) {
1295 		trace_block_plug(rq->q);
1296 	} else if (plug->rq_count >= blk_plug_max_rq_count(plug) ||
1297 		   (!blk_queue_nomerges(rq->q) &&
1298 		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1299 		blk_mq_flush_plug_list(plug, false);
1300 		last = NULL;
1301 		trace_block_plug(rq->q);
1302 	}
1303 
1304 	if (!plug->multiple_queues && last && last->q != rq->q)
1305 		plug->multiple_queues = true;
1306 	/*
1307 	 * Any request allocated from sched tags can't be issued to
1308 	 * ->queue_rqs() directly
1309 	 */
1310 	if (!plug->has_elevator && (rq->rq_flags & RQF_SCHED_TAGS))
1311 		plug->has_elevator = true;
1312 	rq->rq_next = NULL;
1313 	rq_list_add(&plug->mq_list, rq);
1314 	plug->rq_count++;
1315 }
1316 
1317 /**
1318  * blk_execute_rq_nowait - insert a request to I/O scheduler for execution
1319  * @rq:		request to insert
1320  * @at_head:    insert request at head or tail of queue
1321  *
1322  * Description:
1323  *    Insert a fully prepared request at the back of the I/O scheduler queue
1324  *    for execution.  Don't wait for completion.
1325  *
1326  * Note:
1327  *    This function will invoke @done directly if the queue is dead.
1328  */
1329 void blk_execute_rq_nowait(struct request *rq, bool at_head)
1330 {
1331 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1332 
1333 	WARN_ON(irqs_disabled());
1334 	WARN_ON(!blk_rq_is_passthrough(rq));
1335 
1336 	blk_account_io_start(rq);
1337 
1338 	/*
1339 	 * As plugging can be enabled for passthrough requests on a zoned
1340 	 * device, directly accessing the plug instead of using blk_mq_plug()
1341 	 * should not have any consequences.
1342 	 */
1343 	if (current->plug && !at_head) {
1344 		blk_add_rq_to_plug(current->plug, rq);
1345 		return;
1346 	}
1347 
1348 	blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0);
1349 	blk_mq_run_hw_queue(hctx, hctx->flags & BLK_MQ_F_BLOCKING);
1350 }
1351 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
1352 
1353 struct blk_rq_wait {
1354 	struct completion done;
1355 	blk_status_t ret;
1356 };
1357 
1358 static enum rq_end_io_ret blk_end_sync_rq(struct request *rq, blk_status_t ret)
1359 {
1360 	struct blk_rq_wait *wait = rq->end_io_data;
1361 
1362 	wait->ret = ret;
1363 	complete(&wait->done);
1364 	return RQ_END_IO_NONE;
1365 }
1366 
1367 bool blk_rq_is_poll(struct request *rq)
1368 {
1369 	if (!rq->mq_hctx)
1370 		return false;
1371 	if (rq->mq_hctx->type != HCTX_TYPE_POLL)
1372 		return false;
1373 	return true;
1374 }
1375 EXPORT_SYMBOL_GPL(blk_rq_is_poll);
1376 
1377 static void blk_rq_poll_completion(struct request *rq, struct completion *wait)
1378 {
1379 	do {
1380 		blk_hctx_poll(rq->q, rq->mq_hctx, NULL, 0);
1381 		cond_resched();
1382 	} while (!completion_done(wait));
1383 }
1384 
1385 /**
1386  * blk_execute_rq - insert a request into queue for execution
1387  * @rq:		request to insert
1388  * @at_head:    insert request at head or tail of queue
1389  *
1390  * Description:
1391  *    Insert a fully prepared request at the back of the I/O scheduler queue
1392  *    for execution and wait for completion.
1393  * Return: The blk_status_t result provided to blk_mq_end_request().
1394  */
1395 blk_status_t blk_execute_rq(struct request *rq, bool at_head)
1396 {
1397 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1398 	struct blk_rq_wait wait = {
1399 		.done = COMPLETION_INITIALIZER_ONSTACK(wait.done),
1400 	};
1401 
1402 	WARN_ON(irqs_disabled());
1403 	WARN_ON(!blk_rq_is_passthrough(rq));
1404 
1405 	rq->end_io_data = &wait;
1406 	rq->end_io = blk_end_sync_rq;
1407 
1408 	blk_account_io_start(rq);
1409 	blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0);
1410 	blk_mq_run_hw_queue(hctx, false);
1411 
1412 	if (blk_rq_is_poll(rq)) {
1413 		blk_rq_poll_completion(rq, &wait.done);
1414 	} else {
1415 		/*
1416 		 * Prevent hang_check timer from firing at us during very long
1417 		 * I/O
1418 		 */
1419 		unsigned long hang_check = sysctl_hung_task_timeout_secs;
1420 
1421 		if (hang_check)
1422 			while (!wait_for_completion_io_timeout(&wait.done,
1423 					hang_check * (HZ/2)))
1424 				;
1425 		else
1426 			wait_for_completion_io(&wait.done);
1427 	}
1428 
1429 	return wait.ret;
1430 }
1431 EXPORT_SYMBOL(blk_execute_rq);
1432 
1433 static void __blk_mq_requeue_request(struct request *rq)
1434 {
1435 	struct request_queue *q = rq->q;
1436 
1437 	blk_mq_put_driver_tag(rq);
1438 
1439 	trace_block_rq_requeue(rq);
1440 	rq_qos_requeue(q, rq);
1441 
1442 	if (blk_mq_request_started(rq)) {
1443 		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1444 		rq->rq_flags &= ~RQF_TIMED_OUT;
1445 	}
1446 }
1447 
1448 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
1449 {
1450 	struct request_queue *q = rq->q;
1451 	unsigned long flags;
1452 
1453 	__blk_mq_requeue_request(rq);
1454 
1455 	/* this request will be re-inserted to io scheduler queue */
1456 	blk_mq_sched_requeue_request(rq);
1457 
1458 	spin_lock_irqsave(&q->requeue_lock, flags);
1459 	list_add_tail(&rq->queuelist, &q->requeue_list);
1460 	spin_unlock_irqrestore(&q->requeue_lock, flags);
1461 
1462 	if (kick_requeue_list)
1463 		blk_mq_kick_requeue_list(q);
1464 }
1465 EXPORT_SYMBOL(blk_mq_requeue_request);
1466 
1467 static void blk_mq_requeue_work(struct work_struct *work)
1468 {
1469 	struct request_queue *q =
1470 		container_of(work, struct request_queue, requeue_work.work);
1471 	LIST_HEAD(rq_list);
1472 	LIST_HEAD(flush_list);
1473 	struct request *rq;
1474 
1475 	spin_lock_irq(&q->requeue_lock);
1476 	list_splice_init(&q->requeue_list, &rq_list);
1477 	list_splice_init(&q->flush_list, &flush_list);
1478 	spin_unlock_irq(&q->requeue_lock);
1479 
1480 	while (!list_empty(&rq_list)) {
1481 		rq = list_entry(rq_list.next, struct request, queuelist);
1482 		/*
1483 		 * If RQF_DONTPREP ist set, the request has been started by the
1484 		 * driver already and might have driver-specific data allocated
1485 		 * already.  Insert it into the hctx dispatch list to avoid
1486 		 * block layer merges for the request.
1487 		 */
1488 		if (rq->rq_flags & RQF_DONTPREP) {
1489 			list_del_init(&rq->queuelist);
1490 			blk_mq_request_bypass_insert(rq, 0);
1491 		} else {
1492 			list_del_init(&rq->queuelist);
1493 			blk_mq_insert_request(rq, BLK_MQ_INSERT_AT_HEAD);
1494 		}
1495 	}
1496 
1497 	while (!list_empty(&flush_list)) {
1498 		rq = list_entry(flush_list.next, struct request, queuelist);
1499 		list_del_init(&rq->queuelist);
1500 		blk_mq_insert_request(rq, 0);
1501 	}
1502 
1503 	blk_mq_run_hw_queues(q, false);
1504 }
1505 
1506 void blk_mq_kick_requeue_list(struct request_queue *q)
1507 {
1508 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
1509 }
1510 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
1511 
1512 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
1513 				    unsigned long msecs)
1514 {
1515 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
1516 				    msecs_to_jiffies(msecs));
1517 }
1518 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
1519 
1520 static bool blk_is_flush_data_rq(struct request *rq)
1521 {
1522 	return (rq->rq_flags & RQF_FLUSH_SEQ) && !is_flush_rq(rq);
1523 }
1524 
1525 static bool blk_mq_rq_inflight(struct request *rq, void *priv)
1526 {
1527 	/*
1528 	 * If we find a request that isn't idle we know the queue is busy
1529 	 * as it's checked in the iter.
1530 	 * Return false to stop the iteration.
1531 	 *
1532 	 * In case of queue quiesce, if one flush data request is completed,
1533 	 * don't count it as inflight given the flush sequence is suspended,
1534 	 * and the original flush data request is invisible to driver, just
1535 	 * like other pending requests because of quiesce
1536 	 */
1537 	if (blk_mq_request_started(rq) && !(blk_queue_quiesced(rq->q) &&
1538 				blk_is_flush_data_rq(rq) &&
1539 				blk_mq_request_completed(rq))) {
1540 		bool *busy = priv;
1541 
1542 		*busy = true;
1543 		return false;
1544 	}
1545 
1546 	return true;
1547 }
1548 
1549 bool blk_mq_queue_inflight(struct request_queue *q)
1550 {
1551 	bool busy = false;
1552 
1553 	blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
1554 	return busy;
1555 }
1556 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
1557 
1558 static void blk_mq_rq_timed_out(struct request *req)
1559 {
1560 	req->rq_flags |= RQF_TIMED_OUT;
1561 	if (req->q->mq_ops->timeout) {
1562 		enum blk_eh_timer_return ret;
1563 
1564 		ret = req->q->mq_ops->timeout(req);
1565 		if (ret == BLK_EH_DONE)
1566 			return;
1567 		WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
1568 	}
1569 
1570 	blk_add_timer(req);
1571 }
1572 
1573 struct blk_expired_data {
1574 	bool has_timedout_rq;
1575 	unsigned long next;
1576 	unsigned long timeout_start;
1577 };
1578 
1579 static bool blk_mq_req_expired(struct request *rq, struct blk_expired_data *expired)
1580 {
1581 	unsigned long deadline;
1582 
1583 	if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
1584 		return false;
1585 	if (rq->rq_flags & RQF_TIMED_OUT)
1586 		return false;
1587 
1588 	deadline = READ_ONCE(rq->deadline);
1589 	if (time_after_eq(expired->timeout_start, deadline))
1590 		return true;
1591 
1592 	if (expired->next == 0)
1593 		expired->next = deadline;
1594 	else if (time_after(expired->next, deadline))
1595 		expired->next = deadline;
1596 	return false;
1597 }
1598 
1599 void blk_mq_put_rq_ref(struct request *rq)
1600 {
1601 	if (is_flush_rq(rq)) {
1602 		if (rq->end_io(rq, 0) == RQ_END_IO_FREE)
1603 			blk_mq_free_request(rq);
1604 	} else if (req_ref_put_and_test(rq)) {
1605 		__blk_mq_free_request(rq);
1606 	}
1607 }
1608 
1609 static bool blk_mq_check_expired(struct request *rq, void *priv)
1610 {
1611 	struct blk_expired_data *expired = priv;
1612 
1613 	/*
1614 	 * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
1615 	 * be reallocated underneath the timeout handler's processing, then
1616 	 * the expire check is reliable. If the request is not expired, then
1617 	 * it was completed and reallocated as a new request after returning
1618 	 * from blk_mq_check_expired().
1619 	 */
1620 	if (blk_mq_req_expired(rq, expired)) {
1621 		expired->has_timedout_rq = true;
1622 		return false;
1623 	}
1624 	return true;
1625 }
1626 
1627 static bool blk_mq_handle_expired(struct request *rq, void *priv)
1628 {
1629 	struct blk_expired_data *expired = priv;
1630 
1631 	if (blk_mq_req_expired(rq, expired))
1632 		blk_mq_rq_timed_out(rq);
1633 	return true;
1634 }
1635 
1636 static void blk_mq_timeout_work(struct work_struct *work)
1637 {
1638 	struct request_queue *q =
1639 		container_of(work, struct request_queue, timeout_work);
1640 	struct blk_expired_data expired = {
1641 		.timeout_start = jiffies,
1642 	};
1643 	struct blk_mq_hw_ctx *hctx;
1644 	unsigned long i;
1645 
1646 	/* A deadlock might occur if a request is stuck requiring a
1647 	 * timeout at the same time a queue freeze is waiting
1648 	 * completion, since the timeout code would not be able to
1649 	 * acquire the queue reference here.
1650 	 *
1651 	 * That's why we don't use blk_queue_enter here; instead, we use
1652 	 * percpu_ref_tryget directly, because we need to be able to
1653 	 * obtain a reference even in the short window between the queue
1654 	 * starting to freeze, by dropping the first reference in
1655 	 * blk_freeze_queue_start, and the moment the last request is
1656 	 * consumed, marked by the instant q_usage_counter reaches
1657 	 * zero.
1658 	 */
1659 	if (!percpu_ref_tryget(&q->q_usage_counter))
1660 		return;
1661 
1662 	/* check if there is any timed-out request */
1663 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &expired);
1664 	if (expired.has_timedout_rq) {
1665 		/*
1666 		 * Before walking tags, we must ensure any submit started
1667 		 * before the current time has finished. Since the submit
1668 		 * uses srcu or rcu, wait for a synchronization point to
1669 		 * ensure all running submits have finished
1670 		 */
1671 		blk_mq_wait_quiesce_done(q->tag_set);
1672 
1673 		expired.next = 0;
1674 		blk_mq_queue_tag_busy_iter(q, blk_mq_handle_expired, &expired);
1675 	}
1676 
1677 	if (expired.next != 0) {
1678 		mod_timer(&q->timeout, expired.next);
1679 	} else {
1680 		/*
1681 		 * Request timeouts are handled as a forward rolling timer. If
1682 		 * we end up here it means that no requests are pending and
1683 		 * also that no request has been pending for a while. Mark
1684 		 * each hctx as idle.
1685 		 */
1686 		queue_for_each_hw_ctx(q, hctx, i) {
1687 			/* the hctx may be unmapped, so check it here */
1688 			if (blk_mq_hw_queue_mapped(hctx))
1689 				blk_mq_tag_idle(hctx);
1690 		}
1691 	}
1692 	blk_queue_exit(q);
1693 }
1694 
1695 struct flush_busy_ctx_data {
1696 	struct blk_mq_hw_ctx *hctx;
1697 	struct list_head *list;
1698 };
1699 
1700 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1701 {
1702 	struct flush_busy_ctx_data *flush_data = data;
1703 	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1704 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1705 	enum hctx_type type = hctx->type;
1706 
1707 	spin_lock(&ctx->lock);
1708 	list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1709 	sbitmap_clear_bit(sb, bitnr);
1710 	spin_unlock(&ctx->lock);
1711 	return true;
1712 }
1713 
1714 /*
1715  * Process software queues that have been marked busy, splicing them
1716  * to the for-dispatch
1717  */
1718 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1719 {
1720 	struct flush_busy_ctx_data data = {
1721 		.hctx = hctx,
1722 		.list = list,
1723 	};
1724 
1725 	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1726 }
1727 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1728 
1729 struct dispatch_rq_data {
1730 	struct blk_mq_hw_ctx *hctx;
1731 	struct request *rq;
1732 };
1733 
1734 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1735 		void *data)
1736 {
1737 	struct dispatch_rq_data *dispatch_data = data;
1738 	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1739 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1740 	enum hctx_type type = hctx->type;
1741 
1742 	spin_lock(&ctx->lock);
1743 	if (!list_empty(&ctx->rq_lists[type])) {
1744 		dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1745 		list_del_init(&dispatch_data->rq->queuelist);
1746 		if (list_empty(&ctx->rq_lists[type]))
1747 			sbitmap_clear_bit(sb, bitnr);
1748 	}
1749 	spin_unlock(&ctx->lock);
1750 
1751 	return !dispatch_data->rq;
1752 }
1753 
1754 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1755 					struct blk_mq_ctx *start)
1756 {
1757 	unsigned off = start ? start->index_hw[hctx->type] : 0;
1758 	struct dispatch_rq_data data = {
1759 		.hctx = hctx,
1760 		.rq   = NULL,
1761 	};
1762 
1763 	__sbitmap_for_each_set(&hctx->ctx_map, off,
1764 			       dispatch_rq_from_ctx, &data);
1765 
1766 	return data.rq;
1767 }
1768 
1769 bool __blk_mq_alloc_driver_tag(struct request *rq)
1770 {
1771 	struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags;
1772 	unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1773 	int tag;
1774 
1775 	blk_mq_tag_busy(rq->mq_hctx);
1776 
1777 	if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1778 		bt = &rq->mq_hctx->tags->breserved_tags;
1779 		tag_offset = 0;
1780 	} else {
1781 		if (!hctx_may_queue(rq->mq_hctx, bt))
1782 			return false;
1783 	}
1784 
1785 	tag = __sbitmap_queue_get(bt);
1786 	if (tag == BLK_MQ_NO_TAG)
1787 		return false;
1788 
1789 	rq->tag = tag + tag_offset;
1790 	blk_mq_inc_active_requests(rq->mq_hctx);
1791 	return true;
1792 }
1793 
1794 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1795 				int flags, void *key)
1796 {
1797 	struct blk_mq_hw_ctx *hctx;
1798 
1799 	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1800 
1801 	spin_lock(&hctx->dispatch_wait_lock);
1802 	if (!list_empty(&wait->entry)) {
1803 		struct sbitmap_queue *sbq;
1804 
1805 		list_del_init(&wait->entry);
1806 		sbq = &hctx->tags->bitmap_tags;
1807 		atomic_dec(&sbq->ws_active);
1808 	}
1809 	spin_unlock(&hctx->dispatch_wait_lock);
1810 
1811 	blk_mq_run_hw_queue(hctx, true);
1812 	return 1;
1813 }
1814 
1815 /*
1816  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1817  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1818  * restart. For both cases, take care to check the condition again after
1819  * marking us as waiting.
1820  */
1821 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1822 				 struct request *rq)
1823 {
1824 	struct sbitmap_queue *sbq;
1825 	struct wait_queue_head *wq;
1826 	wait_queue_entry_t *wait;
1827 	bool ret;
1828 
1829 	if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1830 	    !(blk_mq_is_shared_tags(hctx->flags))) {
1831 		blk_mq_sched_mark_restart_hctx(hctx);
1832 
1833 		/*
1834 		 * It's possible that a tag was freed in the window between the
1835 		 * allocation failure and adding the hardware queue to the wait
1836 		 * queue.
1837 		 *
1838 		 * Don't clear RESTART here, someone else could have set it.
1839 		 * At most this will cost an extra queue run.
1840 		 */
1841 		return blk_mq_get_driver_tag(rq);
1842 	}
1843 
1844 	wait = &hctx->dispatch_wait;
1845 	if (!list_empty_careful(&wait->entry))
1846 		return false;
1847 
1848 	if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag))
1849 		sbq = &hctx->tags->breserved_tags;
1850 	else
1851 		sbq = &hctx->tags->bitmap_tags;
1852 	wq = &bt_wait_ptr(sbq, hctx)->wait;
1853 
1854 	spin_lock_irq(&wq->lock);
1855 	spin_lock(&hctx->dispatch_wait_lock);
1856 	if (!list_empty(&wait->entry)) {
1857 		spin_unlock(&hctx->dispatch_wait_lock);
1858 		spin_unlock_irq(&wq->lock);
1859 		return false;
1860 	}
1861 
1862 	atomic_inc(&sbq->ws_active);
1863 	wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1864 	__add_wait_queue(wq, wait);
1865 
1866 	/*
1867 	 * Add one explicit barrier since blk_mq_get_driver_tag() may
1868 	 * not imply barrier in case of failure.
1869 	 *
1870 	 * Order adding us to wait queue and allocating driver tag.
1871 	 *
1872 	 * The pair is the one implied in sbitmap_queue_wake_up() which
1873 	 * orders clearing sbitmap tag bits and waitqueue_active() in
1874 	 * __sbitmap_queue_wake_up(), since waitqueue_active() is lockless
1875 	 *
1876 	 * Otherwise, re-order of adding wait queue and getting driver tag
1877 	 * may cause __sbitmap_queue_wake_up() to wake up nothing because
1878 	 * the waitqueue_active() may not observe us in wait queue.
1879 	 */
1880 	smp_mb();
1881 
1882 	/*
1883 	 * It's possible that a tag was freed in the window between the
1884 	 * allocation failure and adding the hardware queue to the wait
1885 	 * queue.
1886 	 */
1887 	ret = blk_mq_get_driver_tag(rq);
1888 	if (!ret) {
1889 		spin_unlock(&hctx->dispatch_wait_lock);
1890 		spin_unlock_irq(&wq->lock);
1891 		return false;
1892 	}
1893 
1894 	/*
1895 	 * We got a tag, remove ourselves from the wait queue to ensure
1896 	 * someone else gets the wakeup.
1897 	 */
1898 	list_del_init(&wait->entry);
1899 	atomic_dec(&sbq->ws_active);
1900 	spin_unlock(&hctx->dispatch_wait_lock);
1901 	spin_unlock_irq(&wq->lock);
1902 
1903 	return true;
1904 }
1905 
1906 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1907 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1908 /*
1909  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1910  * - EWMA is one simple way to compute running average value
1911  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1912  * - take 4 as factor for avoiding to get too small(0) result, and this
1913  *   factor doesn't matter because EWMA decreases exponentially
1914  */
1915 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1916 {
1917 	unsigned int ewma;
1918 
1919 	ewma = hctx->dispatch_busy;
1920 
1921 	if (!ewma && !busy)
1922 		return;
1923 
1924 	ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1925 	if (busy)
1926 		ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1927 	ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1928 
1929 	hctx->dispatch_busy = ewma;
1930 }
1931 
1932 #define BLK_MQ_RESOURCE_DELAY	3		/* ms units */
1933 
1934 static void blk_mq_handle_dev_resource(struct request *rq,
1935 				       struct list_head *list)
1936 {
1937 	list_add(&rq->queuelist, list);
1938 	__blk_mq_requeue_request(rq);
1939 }
1940 
1941 static void blk_mq_handle_zone_resource(struct request *rq,
1942 					struct list_head *zone_list)
1943 {
1944 	/*
1945 	 * If we end up here it is because we cannot dispatch a request to a
1946 	 * specific zone due to LLD level zone-write locking or other zone
1947 	 * related resource not being available. In this case, set the request
1948 	 * aside in zone_list for retrying it later.
1949 	 */
1950 	list_add(&rq->queuelist, zone_list);
1951 	__blk_mq_requeue_request(rq);
1952 }
1953 
1954 enum prep_dispatch {
1955 	PREP_DISPATCH_OK,
1956 	PREP_DISPATCH_NO_TAG,
1957 	PREP_DISPATCH_NO_BUDGET,
1958 };
1959 
1960 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1961 						  bool need_budget)
1962 {
1963 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1964 	int budget_token = -1;
1965 
1966 	if (need_budget) {
1967 		budget_token = blk_mq_get_dispatch_budget(rq->q);
1968 		if (budget_token < 0) {
1969 			blk_mq_put_driver_tag(rq);
1970 			return PREP_DISPATCH_NO_BUDGET;
1971 		}
1972 		blk_mq_set_rq_budget_token(rq, budget_token);
1973 	}
1974 
1975 	if (!blk_mq_get_driver_tag(rq)) {
1976 		/*
1977 		 * The initial allocation attempt failed, so we need to
1978 		 * rerun the hardware queue when a tag is freed. The
1979 		 * waitqueue takes care of that. If the queue is run
1980 		 * before we add this entry back on the dispatch list,
1981 		 * we'll re-run it below.
1982 		 */
1983 		if (!blk_mq_mark_tag_wait(hctx, rq)) {
1984 			/*
1985 			 * All budgets not got from this function will be put
1986 			 * together during handling partial dispatch
1987 			 */
1988 			if (need_budget)
1989 				blk_mq_put_dispatch_budget(rq->q, budget_token);
1990 			return PREP_DISPATCH_NO_TAG;
1991 		}
1992 	}
1993 
1994 	return PREP_DISPATCH_OK;
1995 }
1996 
1997 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
1998 static void blk_mq_release_budgets(struct request_queue *q,
1999 		struct list_head *list)
2000 {
2001 	struct request *rq;
2002 
2003 	list_for_each_entry(rq, list, queuelist) {
2004 		int budget_token = blk_mq_get_rq_budget_token(rq);
2005 
2006 		if (budget_token >= 0)
2007 			blk_mq_put_dispatch_budget(q, budget_token);
2008 	}
2009 }
2010 
2011 /*
2012  * blk_mq_commit_rqs will notify driver using bd->last that there is no
2013  * more requests. (See comment in struct blk_mq_ops for commit_rqs for
2014  * details)
2015  * Attention, we should explicitly call this in unusual cases:
2016  *  1) did not queue everything initially scheduled to queue
2017  *  2) the last attempt to queue a request failed
2018  */
2019 static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int queued,
2020 			      bool from_schedule)
2021 {
2022 	if (hctx->queue->mq_ops->commit_rqs && queued) {
2023 		trace_block_unplug(hctx->queue, queued, !from_schedule);
2024 		hctx->queue->mq_ops->commit_rqs(hctx);
2025 	}
2026 }
2027 
2028 /*
2029  * Returns true if we did some work AND can potentially do more.
2030  */
2031 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
2032 			     unsigned int nr_budgets)
2033 {
2034 	enum prep_dispatch prep;
2035 	struct request_queue *q = hctx->queue;
2036 	struct request *rq;
2037 	int queued;
2038 	blk_status_t ret = BLK_STS_OK;
2039 	LIST_HEAD(zone_list);
2040 	bool needs_resource = false;
2041 
2042 	if (list_empty(list))
2043 		return false;
2044 
2045 	/*
2046 	 * Now process all the entries, sending them to the driver.
2047 	 */
2048 	queued = 0;
2049 	do {
2050 		struct blk_mq_queue_data bd;
2051 
2052 		rq = list_first_entry(list, struct request, queuelist);
2053 
2054 		WARN_ON_ONCE(hctx != rq->mq_hctx);
2055 		prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
2056 		if (prep != PREP_DISPATCH_OK)
2057 			break;
2058 
2059 		list_del_init(&rq->queuelist);
2060 
2061 		bd.rq = rq;
2062 		bd.last = list_empty(list);
2063 
2064 		/*
2065 		 * once the request is queued to lld, no need to cover the
2066 		 * budget any more
2067 		 */
2068 		if (nr_budgets)
2069 			nr_budgets--;
2070 		ret = q->mq_ops->queue_rq(hctx, &bd);
2071 		switch (ret) {
2072 		case BLK_STS_OK:
2073 			queued++;
2074 			break;
2075 		case BLK_STS_RESOURCE:
2076 			needs_resource = true;
2077 			fallthrough;
2078 		case BLK_STS_DEV_RESOURCE:
2079 			blk_mq_handle_dev_resource(rq, list);
2080 			goto out;
2081 		case BLK_STS_ZONE_RESOURCE:
2082 			/*
2083 			 * Move the request to zone_list and keep going through
2084 			 * the dispatch list to find more requests the drive can
2085 			 * accept.
2086 			 */
2087 			blk_mq_handle_zone_resource(rq, &zone_list);
2088 			needs_resource = true;
2089 			break;
2090 		default:
2091 			blk_mq_end_request(rq, ret);
2092 		}
2093 	} while (!list_empty(list));
2094 out:
2095 	if (!list_empty(&zone_list))
2096 		list_splice_tail_init(&zone_list, list);
2097 
2098 	/* If we didn't flush the entire list, we could have told the driver
2099 	 * there was more coming, but that turned out to be a lie.
2100 	 */
2101 	if (!list_empty(list) || ret != BLK_STS_OK)
2102 		blk_mq_commit_rqs(hctx, queued, false);
2103 
2104 	/*
2105 	 * Any items that need requeuing? Stuff them into hctx->dispatch,
2106 	 * that is where we will continue on next queue run.
2107 	 */
2108 	if (!list_empty(list)) {
2109 		bool needs_restart;
2110 		/* For non-shared tags, the RESTART check will suffice */
2111 		bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
2112 			((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) ||
2113 			blk_mq_is_shared_tags(hctx->flags));
2114 
2115 		if (nr_budgets)
2116 			blk_mq_release_budgets(q, list);
2117 
2118 		spin_lock(&hctx->lock);
2119 		list_splice_tail_init(list, &hctx->dispatch);
2120 		spin_unlock(&hctx->lock);
2121 
2122 		/*
2123 		 * Order adding requests to hctx->dispatch and checking
2124 		 * SCHED_RESTART flag. The pair of this smp_mb() is the one
2125 		 * in blk_mq_sched_restart(). Avoid restart code path to
2126 		 * miss the new added requests to hctx->dispatch, meantime
2127 		 * SCHED_RESTART is observed here.
2128 		 */
2129 		smp_mb();
2130 
2131 		/*
2132 		 * If SCHED_RESTART was set by the caller of this function and
2133 		 * it is no longer set that means that it was cleared by another
2134 		 * thread and hence that a queue rerun is needed.
2135 		 *
2136 		 * If 'no_tag' is set, that means that we failed getting
2137 		 * a driver tag with an I/O scheduler attached. If our dispatch
2138 		 * waitqueue is no longer active, ensure that we run the queue
2139 		 * AFTER adding our entries back to the list.
2140 		 *
2141 		 * If no I/O scheduler has been configured it is possible that
2142 		 * the hardware queue got stopped and restarted before requests
2143 		 * were pushed back onto the dispatch list. Rerun the queue to
2144 		 * avoid starvation. Notes:
2145 		 * - blk_mq_run_hw_queue() checks whether or not a queue has
2146 		 *   been stopped before rerunning a queue.
2147 		 * - Some but not all block drivers stop a queue before
2148 		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
2149 		 *   and dm-rq.
2150 		 *
2151 		 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
2152 		 * bit is set, run queue after a delay to avoid IO stalls
2153 		 * that could otherwise occur if the queue is idle.  We'll do
2154 		 * similar if we couldn't get budget or couldn't lock a zone
2155 		 * and SCHED_RESTART is set.
2156 		 */
2157 		needs_restart = blk_mq_sched_needs_restart(hctx);
2158 		if (prep == PREP_DISPATCH_NO_BUDGET)
2159 			needs_resource = true;
2160 		if (!needs_restart ||
2161 		    (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
2162 			blk_mq_run_hw_queue(hctx, true);
2163 		else if (needs_resource)
2164 			blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
2165 
2166 		blk_mq_update_dispatch_busy(hctx, true);
2167 		return false;
2168 	}
2169 
2170 	blk_mq_update_dispatch_busy(hctx, false);
2171 	return true;
2172 }
2173 
2174 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
2175 {
2176 	int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
2177 
2178 	if (cpu >= nr_cpu_ids)
2179 		cpu = cpumask_first(hctx->cpumask);
2180 	return cpu;
2181 }
2182 
2183 /*
2184  * It'd be great if the workqueue API had a way to pass
2185  * in a mask and had some smarts for more clever placement.
2186  * For now we just round-robin here, switching for every
2187  * BLK_MQ_CPU_WORK_BATCH queued items.
2188  */
2189 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
2190 {
2191 	bool tried = false;
2192 	int next_cpu = hctx->next_cpu;
2193 
2194 	if (hctx->queue->nr_hw_queues == 1)
2195 		return WORK_CPU_UNBOUND;
2196 
2197 	if (--hctx->next_cpu_batch <= 0) {
2198 select_cpu:
2199 		next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
2200 				cpu_online_mask);
2201 		if (next_cpu >= nr_cpu_ids)
2202 			next_cpu = blk_mq_first_mapped_cpu(hctx);
2203 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2204 	}
2205 
2206 	/*
2207 	 * Do unbound schedule if we can't find a online CPU for this hctx,
2208 	 * and it should only happen in the path of handling CPU DEAD.
2209 	 */
2210 	if (!cpu_online(next_cpu)) {
2211 		if (!tried) {
2212 			tried = true;
2213 			goto select_cpu;
2214 		}
2215 
2216 		/*
2217 		 * Make sure to re-select CPU next time once after CPUs
2218 		 * in hctx->cpumask become online again.
2219 		 */
2220 		hctx->next_cpu = next_cpu;
2221 		hctx->next_cpu_batch = 1;
2222 		return WORK_CPU_UNBOUND;
2223 	}
2224 
2225 	hctx->next_cpu = next_cpu;
2226 	return next_cpu;
2227 }
2228 
2229 /**
2230  * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
2231  * @hctx: Pointer to the hardware queue to run.
2232  * @msecs: Milliseconds of delay to wait before running the queue.
2233  *
2234  * Run a hardware queue asynchronously with a delay of @msecs.
2235  */
2236 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
2237 {
2238 	if (unlikely(blk_mq_hctx_stopped(hctx)))
2239 		return;
2240 	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
2241 				    msecs_to_jiffies(msecs));
2242 }
2243 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
2244 
2245 /**
2246  * blk_mq_run_hw_queue - Start to run a hardware queue.
2247  * @hctx: Pointer to the hardware queue to run.
2248  * @async: If we want to run the queue asynchronously.
2249  *
2250  * Check if the request queue is not in a quiesced state and if there are
2251  * pending requests to be sent. If this is true, run the queue to send requests
2252  * to hardware.
2253  */
2254 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2255 {
2256 	bool need_run;
2257 
2258 	/*
2259 	 * We can't run the queue inline with interrupts disabled.
2260 	 */
2261 	WARN_ON_ONCE(!async && in_interrupt());
2262 
2263 	might_sleep_if(!async && hctx->flags & BLK_MQ_F_BLOCKING);
2264 
2265 	/*
2266 	 * When queue is quiesced, we may be switching io scheduler, or
2267 	 * updating nr_hw_queues, or other things, and we can't run queue
2268 	 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
2269 	 *
2270 	 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
2271 	 * quiesced.
2272 	 */
2273 	__blk_mq_run_dispatch_ops(hctx->queue, false,
2274 		need_run = !blk_queue_quiesced(hctx->queue) &&
2275 		blk_mq_hctx_has_pending(hctx));
2276 
2277 	if (!need_run)
2278 		return;
2279 
2280 	if (async || !cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask)) {
2281 		blk_mq_delay_run_hw_queue(hctx, 0);
2282 		return;
2283 	}
2284 
2285 	blk_mq_run_dispatch_ops(hctx->queue,
2286 				blk_mq_sched_dispatch_requests(hctx));
2287 }
2288 EXPORT_SYMBOL(blk_mq_run_hw_queue);
2289 
2290 /*
2291  * Return prefered queue to dispatch from (if any) for non-mq aware IO
2292  * scheduler.
2293  */
2294 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
2295 {
2296 	struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
2297 	/*
2298 	 * If the IO scheduler does not respect hardware queues when
2299 	 * dispatching, we just don't bother with multiple HW queues and
2300 	 * dispatch from hctx for the current CPU since running multiple queues
2301 	 * just causes lock contention inside the scheduler and pointless cache
2302 	 * bouncing.
2303 	 */
2304 	struct blk_mq_hw_ctx *hctx = ctx->hctxs[HCTX_TYPE_DEFAULT];
2305 
2306 	if (!blk_mq_hctx_stopped(hctx))
2307 		return hctx;
2308 	return NULL;
2309 }
2310 
2311 /**
2312  * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
2313  * @q: Pointer to the request queue to run.
2314  * @async: If we want to run the queue asynchronously.
2315  */
2316 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
2317 {
2318 	struct blk_mq_hw_ctx *hctx, *sq_hctx;
2319 	unsigned long i;
2320 
2321 	sq_hctx = NULL;
2322 	if (blk_queue_sq_sched(q))
2323 		sq_hctx = blk_mq_get_sq_hctx(q);
2324 	queue_for_each_hw_ctx(q, hctx, i) {
2325 		if (blk_mq_hctx_stopped(hctx))
2326 			continue;
2327 		/*
2328 		 * Dispatch from this hctx either if there's no hctx preferred
2329 		 * by IO scheduler or if it has requests that bypass the
2330 		 * scheduler.
2331 		 */
2332 		if (!sq_hctx || sq_hctx == hctx ||
2333 		    !list_empty_careful(&hctx->dispatch))
2334 			blk_mq_run_hw_queue(hctx, async);
2335 	}
2336 }
2337 EXPORT_SYMBOL(blk_mq_run_hw_queues);
2338 
2339 /**
2340  * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
2341  * @q: Pointer to the request queue to run.
2342  * @msecs: Milliseconds of delay to wait before running the queues.
2343  */
2344 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
2345 {
2346 	struct blk_mq_hw_ctx *hctx, *sq_hctx;
2347 	unsigned long i;
2348 
2349 	sq_hctx = NULL;
2350 	if (blk_queue_sq_sched(q))
2351 		sq_hctx = blk_mq_get_sq_hctx(q);
2352 	queue_for_each_hw_ctx(q, hctx, i) {
2353 		if (blk_mq_hctx_stopped(hctx))
2354 			continue;
2355 		/*
2356 		 * If there is already a run_work pending, leave the
2357 		 * pending delay untouched. Otherwise, a hctx can stall
2358 		 * if another hctx is re-delaying the other's work
2359 		 * before the work executes.
2360 		 */
2361 		if (delayed_work_pending(&hctx->run_work))
2362 			continue;
2363 		/*
2364 		 * Dispatch from this hctx either if there's no hctx preferred
2365 		 * by IO scheduler or if it has requests that bypass the
2366 		 * scheduler.
2367 		 */
2368 		if (!sq_hctx || sq_hctx == hctx ||
2369 		    !list_empty_careful(&hctx->dispatch))
2370 			blk_mq_delay_run_hw_queue(hctx, msecs);
2371 	}
2372 }
2373 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
2374 
2375 /*
2376  * This function is often used for pausing .queue_rq() by driver when
2377  * there isn't enough resource or some conditions aren't satisfied, and
2378  * BLK_STS_RESOURCE is usually returned.
2379  *
2380  * We do not guarantee that dispatch can be drained or blocked
2381  * after blk_mq_stop_hw_queue() returns. Please use
2382  * blk_mq_quiesce_queue() for that requirement.
2383  */
2384 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
2385 {
2386 	cancel_delayed_work(&hctx->run_work);
2387 
2388 	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2389 }
2390 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2391 
2392 /*
2393  * This function is often used for pausing .queue_rq() by driver when
2394  * there isn't enough resource or some conditions aren't satisfied, and
2395  * BLK_STS_RESOURCE is usually returned.
2396  *
2397  * We do not guarantee that dispatch can be drained or blocked
2398  * after blk_mq_stop_hw_queues() returns. Please use
2399  * blk_mq_quiesce_queue() for that requirement.
2400  */
2401 void blk_mq_stop_hw_queues(struct request_queue *q)
2402 {
2403 	struct blk_mq_hw_ctx *hctx;
2404 	unsigned long i;
2405 
2406 	queue_for_each_hw_ctx(q, hctx, i)
2407 		blk_mq_stop_hw_queue(hctx);
2408 }
2409 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
2410 
2411 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
2412 {
2413 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2414 
2415 	blk_mq_run_hw_queue(hctx, hctx->flags & BLK_MQ_F_BLOCKING);
2416 }
2417 EXPORT_SYMBOL(blk_mq_start_hw_queue);
2418 
2419 void blk_mq_start_hw_queues(struct request_queue *q)
2420 {
2421 	struct blk_mq_hw_ctx *hctx;
2422 	unsigned long i;
2423 
2424 	queue_for_each_hw_ctx(q, hctx, i)
2425 		blk_mq_start_hw_queue(hctx);
2426 }
2427 EXPORT_SYMBOL(blk_mq_start_hw_queues);
2428 
2429 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2430 {
2431 	if (!blk_mq_hctx_stopped(hctx))
2432 		return;
2433 
2434 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2435 	blk_mq_run_hw_queue(hctx, async);
2436 }
2437 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
2438 
2439 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
2440 {
2441 	struct blk_mq_hw_ctx *hctx;
2442 	unsigned long i;
2443 
2444 	queue_for_each_hw_ctx(q, hctx, i)
2445 		blk_mq_start_stopped_hw_queue(hctx, async ||
2446 					(hctx->flags & BLK_MQ_F_BLOCKING));
2447 }
2448 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
2449 
2450 static void blk_mq_run_work_fn(struct work_struct *work)
2451 {
2452 	struct blk_mq_hw_ctx *hctx =
2453 		container_of(work, struct blk_mq_hw_ctx, run_work.work);
2454 
2455 	blk_mq_run_dispatch_ops(hctx->queue,
2456 				blk_mq_sched_dispatch_requests(hctx));
2457 }
2458 
2459 /**
2460  * blk_mq_request_bypass_insert - Insert a request at dispatch list.
2461  * @rq: Pointer to request to be inserted.
2462  * @flags: BLK_MQ_INSERT_*
2463  *
2464  * Should only be used carefully, when the caller knows we want to
2465  * bypass a potential IO scheduler on the target device.
2466  */
2467 static void blk_mq_request_bypass_insert(struct request *rq, blk_insert_t flags)
2468 {
2469 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2470 
2471 	spin_lock(&hctx->lock);
2472 	if (flags & BLK_MQ_INSERT_AT_HEAD)
2473 		list_add(&rq->queuelist, &hctx->dispatch);
2474 	else
2475 		list_add_tail(&rq->queuelist, &hctx->dispatch);
2476 	spin_unlock(&hctx->lock);
2477 }
2478 
2479 static void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx,
2480 		struct blk_mq_ctx *ctx, struct list_head *list,
2481 		bool run_queue_async)
2482 {
2483 	struct request *rq;
2484 	enum hctx_type type = hctx->type;
2485 
2486 	/*
2487 	 * Try to issue requests directly if the hw queue isn't busy to save an
2488 	 * extra enqueue & dequeue to the sw queue.
2489 	 */
2490 	if (!hctx->dispatch_busy && !run_queue_async) {
2491 		blk_mq_run_dispatch_ops(hctx->queue,
2492 			blk_mq_try_issue_list_directly(hctx, list));
2493 		if (list_empty(list))
2494 			goto out;
2495 	}
2496 
2497 	/*
2498 	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
2499 	 * offline now
2500 	 */
2501 	list_for_each_entry(rq, list, queuelist) {
2502 		BUG_ON(rq->mq_ctx != ctx);
2503 		trace_block_rq_insert(rq);
2504 		if (rq->cmd_flags & REQ_NOWAIT)
2505 			run_queue_async = true;
2506 	}
2507 
2508 	spin_lock(&ctx->lock);
2509 	list_splice_tail_init(list, &ctx->rq_lists[type]);
2510 	blk_mq_hctx_mark_pending(hctx, ctx);
2511 	spin_unlock(&ctx->lock);
2512 out:
2513 	blk_mq_run_hw_queue(hctx, run_queue_async);
2514 }
2515 
2516 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags)
2517 {
2518 	struct request_queue *q = rq->q;
2519 	struct blk_mq_ctx *ctx = rq->mq_ctx;
2520 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2521 
2522 	if (blk_rq_is_passthrough(rq)) {
2523 		/*
2524 		 * Passthrough request have to be added to hctx->dispatch
2525 		 * directly.  The device may be in a situation where it can't
2526 		 * handle FS request, and always returns BLK_STS_RESOURCE for
2527 		 * them, which gets them added to hctx->dispatch.
2528 		 *
2529 		 * If a passthrough request is required to unblock the queues,
2530 		 * and it is added to the scheduler queue, there is no chance to
2531 		 * dispatch it given we prioritize requests in hctx->dispatch.
2532 		 */
2533 		blk_mq_request_bypass_insert(rq, flags);
2534 	} else if (req_op(rq) == REQ_OP_FLUSH) {
2535 		/*
2536 		 * Firstly normal IO request is inserted to scheduler queue or
2537 		 * sw queue, meantime we add flush request to dispatch queue(
2538 		 * hctx->dispatch) directly and there is at most one in-flight
2539 		 * flush request for each hw queue, so it doesn't matter to add
2540 		 * flush request to tail or front of the dispatch queue.
2541 		 *
2542 		 * Secondly in case of NCQ, flush request belongs to non-NCQ
2543 		 * command, and queueing it will fail when there is any
2544 		 * in-flight normal IO request(NCQ command). When adding flush
2545 		 * rq to the front of hctx->dispatch, it is easier to introduce
2546 		 * extra time to flush rq's latency because of S_SCHED_RESTART
2547 		 * compared with adding to the tail of dispatch queue, then
2548 		 * chance of flush merge is increased, and less flush requests
2549 		 * will be issued to controller. It is observed that ~10% time
2550 		 * is saved in blktests block/004 on disk attached to AHCI/NCQ
2551 		 * drive when adding flush rq to the front of hctx->dispatch.
2552 		 *
2553 		 * Simply queue flush rq to the front of hctx->dispatch so that
2554 		 * intensive flush workloads can benefit in case of NCQ HW.
2555 		 */
2556 		blk_mq_request_bypass_insert(rq, BLK_MQ_INSERT_AT_HEAD);
2557 	} else if (q->elevator) {
2558 		LIST_HEAD(list);
2559 
2560 		WARN_ON_ONCE(rq->tag != BLK_MQ_NO_TAG);
2561 
2562 		list_add(&rq->queuelist, &list);
2563 		q->elevator->type->ops.insert_requests(hctx, &list, flags);
2564 	} else {
2565 		trace_block_rq_insert(rq);
2566 
2567 		spin_lock(&ctx->lock);
2568 		if (flags & BLK_MQ_INSERT_AT_HEAD)
2569 			list_add(&rq->queuelist, &ctx->rq_lists[hctx->type]);
2570 		else
2571 			list_add_tail(&rq->queuelist,
2572 				      &ctx->rq_lists[hctx->type]);
2573 		blk_mq_hctx_mark_pending(hctx, ctx);
2574 		spin_unlock(&ctx->lock);
2575 	}
2576 }
2577 
2578 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
2579 		unsigned int nr_segs)
2580 {
2581 	int err;
2582 
2583 	if (bio->bi_opf & REQ_RAHEAD)
2584 		rq->cmd_flags |= REQ_FAILFAST_MASK;
2585 
2586 	rq->__sector = bio->bi_iter.bi_sector;
2587 	blk_rq_bio_prep(rq, bio, nr_segs);
2588 
2589 	/* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
2590 	err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
2591 	WARN_ON_ONCE(err);
2592 
2593 	blk_account_io_start(rq);
2594 }
2595 
2596 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
2597 					    struct request *rq, bool last)
2598 {
2599 	struct request_queue *q = rq->q;
2600 	struct blk_mq_queue_data bd = {
2601 		.rq = rq,
2602 		.last = last,
2603 	};
2604 	blk_status_t ret;
2605 
2606 	/*
2607 	 * For OK queue, we are done. For error, caller may kill it.
2608 	 * Any other error (busy), just add it to our list as we
2609 	 * previously would have done.
2610 	 */
2611 	ret = q->mq_ops->queue_rq(hctx, &bd);
2612 	switch (ret) {
2613 	case BLK_STS_OK:
2614 		blk_mq_update_dispatch_busy(hctx, false);
2615 		break;
2616 	case BLK_STS_RESOURCE:
2617 	case BLK_STS_DEV_RESOURCE:
2618 		blk_mq_update_dispatch_busy(hctx, true);
2619 		__blk_mq_requeue_request(rq);
2620 		break;
2621 	default:
2622 		blk_mq_update_dispatch_busy(hctx, false);
2623 		break;
2624 	}
2625 
2626 	return ret;
2627 }
2628 
2629 static bool blk_mq_get_budget_and_tag(struct request *rq)
2630 {
2631 	int budget_token;
2632 
2633 	budget_token = blk_mq_get_dispatch_budget(rq->q);
2634 	if (budget_token < 0)
2635 		return false;
2636 	blk_mq_set_rq_budget_token(rq, budget_token);
2637 	if (!blk_mq_get_driver_tag(rq)) {
2638 		blk_mq_put_dispatch_budget(rq->q, budget_token);
2639 		return false;
2640 	}
2641 	return true;
2642 }
2643 
2644 /**
2645  * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2646  * @hctx: Pointer of the associated hardware queue.
2647  * @rq: Pointer to request to be sent.
2648  *
2649  * If the device has enough resources to accept a new request now, send the
2650  * request directly to device driver. Else, insert at hctx->dispatch queue, so
2651  * we can try send it another time in the future. Requests inserted at this
2652  * queue have higher priority.
2653  */
2654 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2655 		struct request *rq)
2656 {
2657 	blk_status_t ret;
2658 
2659 	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) {
2660 		blk_mq_insert_request(rq, 0);
2661 		return;
2662 	}
2663 
2664 	if ((rq->rq_flags & RQF_USE_SCHED) || !blk_mq_get_budget_and_tag(rq)) {
2665 		blk_mq_insert_request(rq, 0);
2666 		blk_mq_run_hw_queue(hctx, rq->cmd_flags & REQ_NOWAIT);
2667 		return;
2668 	}
2669 
2670 	ret = __blk_mq_issue_directly(hctx, rq, true);
2671 	switch (ret) {
2672 	case BLK_STS_OK:
2673 		break;
2674 	case BLK_STS_RESOURCE:
2675 	case BLK_STS_DEV_RESOURCE:
2676 		blk_mq_request_bypass_insert(rq, 0);
2677 		blk_mq_run_hw_queue(hctx, false);
2678 		break;
2679 	default:
2680 		blk_mq_end_request(rq, ret);
2681 		break;
2682 	}
2683 }
2684 
2685 static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2686 {
2687 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2688 
2689 	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) {
2690 		blk_mq_insert_request(rq, 0);
2691 		return BLK_STS_OK;
2692 	}
2693 
2694 	if (!blk_mq_get_budget_and_tag(rq))
2695 		return BLK_STS_RESOURCE;
2696 	return __blk_mq_issue_directly(hctx, rq, last);
2697 }
2698 
2699 static void blk_mq_plug_issue_direct(struct blk_plug *plug)
2700 {
2701 	struct blk_mq_hw_ctx *hctx = NULL;
2702 	struct request *rq;
2703 	int queued = 0;
2704 	blk_status_t ret = BLK_STS_OK;
2705 
2706 	while ((rq = rq_list_pop(&plug->mq_list))) {
2707 		bool last = rq_list_empty(plug->mq_list);
2708 
2709 		if (hctx != rq->mq_hctx) {
2710 			if (hctx) {
2711 				blk_mq_commit_rqs(hctx, queued, false);
2712 				queued = 0;
2713 			}
2714 			hctx = rq->mq_hctx;
2715 		}
2716 
2717 		ret = blk_mq_request_issue_directly(rq, last);
2718 		switch (ret) {
2719 		case BLK_STS_OK:
2720 			queued++;
2721 			break;
2722 		case BLK_STS_RESOURCE:
2723 		case BLK_STS_DEV_RESOURCE:
2724 			blk_mq_request_bypass_insert(rq, 0);
2725 			blk_mq_run_hw_queue(hctx, false);
2726 			goto out;
2727 		default:
2728 			blk_mq_end_request(rq, ret);
2729 			break;
2730 		}
2731 	}
2732 
2733 out:
2734 	if (ret != BLK_STS_OK)
2735 		blk_mq_commit_rqs(hctx, queued, false);
2736 }
2737 
2738 static void __blk_mq_flush_plug_list(struct request_queue *q,
2739 				     struct blk_plug *plug)
2740 {
2741 	if (blk_queue_quiesced(q))
2742 		return;
2743 	q->mq_ops->queue_rqs(&plug->mq_list);
2744 }
2745 
2746 static void blk_mq_dispatch_plug_list(struct blk_plug *plug, bool from_sched)
2747 {
2748 	struct blk_mq_hw_ctx *this_hctx = NULL;
2749 	struct blk_mq_ctx *this_ctx = NULL;
2750 	struct request *requeue_list = NULL;
2751 	struct request **requeue_lastp = &requeue_list;
2752 	unsigned int depth = 0;
2753 	bool is_passthrough = false;
2754 	LIST_HEAD(list);
2755 
2756 	do {
2757 		struct request *rq = rq_list_pop(&plug->mq_list);
2758 
2759 		if (!this_hctx) {
2760 			this_hctx = rq->mq_hctx;
2761 			this_ctx = rq->mq_ctx;
2762 			is_passthrough = blk_rq_is_passthrough(rq);
2763 		} else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx ||
2764 			   is_passthrough != blk_rq_is_passthrough(rq)) {
2765 			rq_list_add_tail(&requeue_lastp, rq);
2766 			continue;
2767 		}
2768 		list_add(&rq->queuelist, &list);
2769 		depth++;
2770 	} while (!rq_list_empty(plug->mq_list));
2771 
2772 	plug->mq_list = requeue_list;
2773 	trace_block_unplug(this_hctx->queue, depth, !from_sched);
2774 
2775 	percpu_ref_get(&this_hctx->queue->q_usage_counter);
2776 	/* passthrough requests should never be issued to the I/O scheduler */
2777 	if (is_passthrough) {
2778 		spin_lock(&this_hctx->lock);
2779 		list_splice_tail_init(&list, &this_hctx->dispatch);
2780 		spin_unlock(&this_hctx->lock);
2781 		blk_mq_run_hw_queue(this_hctx, from_sched);
2782 	} else if (this_hctx->queue->elevator) {
2783 		this_hctx->queue->elevator->type->ops.insert_requests(this_hctx,
2784 				&list, 0);
2785 		blk_mq_run_hw_queue(this_hctx, from_sched);
2786 	} else {
2787 		blk_mq_insert_requests(this_hctx, this_ctx, &list, from_sched);
2788 	}
2789 	percpu_ref_put(&this_hctx->queue->q_usage_counter);
2790 }
2791 
2792 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2793 {
2794 	struct request *rq;
2795 
2796 	/*
2797 	 * We may have been called recursively midway through handling
2798 	 * plug->mq_list via a schedule() in the driver's queue_rq() callback.
2799 	 * To avoid mq_list changing under our feet, clear rq_count early and
2800 	 * bail out specifically if rq_count is 0 rather than checking
2801 	 * whether the mq_list is empty.
2802 	 */
2803 	if (plug->rq_count == 0)
2804 		return;
2805 	plug->rq_count = 0;
2806 
2807 	if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) {
2808 		struct request_queue *q;
2809 
2810 		rq = rq_list_peek(&plug->mq_list);
2811 		q = rq->q;
2812 
2813 		/*
2814 		 * Peek first request and see if we have a ->queue_rqs() hook.
2815 		 * If we do, we can dispatch the whole plug list in one go. We
2816 		 * already know at this point that all requests belong to the
2817 		 * same queue, caller must ensure that's the case.
2818 		 */
2819 		if (q->mq_ops->queue_rqs) {
2820 			blk_mq_run_dispatch_ops(q,
2821 				__blk_mq_flush_plug_list(q, plug));
2822 			if (rq_list_empty(plug->mq_list))
2823 				return;
2824 		}
2825 
2826 		blk_mq_run_dispatch_ops(q,
2827 				blk_mq_plug_issue_direct(plug));
2828 		if (rq_list_empty(plug->mq_list))
2829 			return;
2830 	}
2831 
2832 	do {
2833 		blk_mq_dispatch_plug_list(plug, from_schedule);
2834 	} while (!rq_list_empty(plug->mq_list));
2835 }
2836 
2837 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2838 		struct list_head *list)
2839 {
2840 	int queued = 0;
2841 	blk_status_t ret = BLK_STS_OK;
2842 
2843 	while (!list_empty(list)) {
2844 		struct request *rq = list_first_entry(list, struct request,
2845 				queuelist);
2846 
2847 		list_del_init(&rq->queuelist);
2848 		ret = blk_mq_request_issue_directly(rq, list_empty(list));
2849 		switch (ret) {
2850 		case BLK_STS_OK:
2851 			queued++;
2852 			break;
2853 		case BLK_STS_RESOURCE:
2854 		case BLK_STS_DEV_RESOURCE:
2855 			blk_mq_request_bypass_insert(rq, 0);
2856 			if (list_empty(list))
2857 				blk_mq_run_hw_queue(hctx, false);
2858 			goto out;
2859 		default:
2860 			blk_mq_end_request(rq, ret);
2861 			break;
2862 		}
2863 	}
2864 
2865 out:
2866 	if (ret != BLK_STS_OK)
2867 		blk_mq_commit_rqs(hctx, queued, false);
2868 }
2869 
2870 static bool blk_mq_attempt_bio_merge(struct request_queue *q,
2871 				     struct bio *bio, unsigned int nr_segs)
2872 {
2873 	if (!blk_queue_nomerges(q) && bio_mergeable(bio)) {
2874 		if (blk_attempt_plug_merge(q, bio, nr_segs))
2875 			return true;
2876 		if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2877 			return true;
2878 	}
2879 	return false;
2880 }
2881 
2882 static struct request *blk_mq_get_new_requests(struct request_queue *q,
2883 					       struct blk_plug *plug,
2884 					       struct bio *bio,
2885 					       unsigned int nsegs)
2886 {
2887 	struct blk_mq_alloc_data data = {
2888 		.q		= q,
2889 		.nr_tags	= 1,
2890 		.cmd_flags	= bio->bi_opf,
2891 	};
2892 	struct request *rq;
2893 
2894 	if (blk_mq_attempt_bio_merge(q, bio, nsegs))
2895 		return NULL;
2896 
2897 	rq_qos_throttle(q, bio);
2898 
2899 	if (plug) {
2900 		data.nr_tags = plug->nr_ios;
2901 		plug->nr_ios = 1;
2902 		data.cached_rq = &plug->cached_rq;
2903 	}
2904 
2905 	rq = __blk_mq_alloc_requests(&data);
2906 	if (rq)
2907 		return rq;
2908 	rq_qos_cleanup(q, bio);
2909 	if (bio->bi_opf & REQ_NOWAIT)
2910 		bio_wouldblock_error(bio);
2911 	return NULL;
2912 }
2913 
2914 /*
2915  * Check if we can use the passed on request for submitting the passed in bio,
2916  * and remove it from the request list if it can be used.
2917  */
2918 static bool blk_mq_use_cached_rq(struct request *rq, struct blk_plug *plug,
2919 		struct bio *bio)
2920 {
2921 	enum hctx_type type = blk_mq_get_hctx_type(bio->bi_opf);
2922 	enum hctx_type hctx_type = rq->mq_hctx->type;
2923 
2924 	WARN_ON_ONCE(rq_list_peek(&plug->cached_rq) != rq);
2925 
2926 	if (type != hctx_type &&
2927 	    !(type == HCTX_TYPE_READ && hctx_type == HCTX_TYPE_DEFAULT))
2928 		return false;
2929 	if (op_is_flush(rq->cmd_flags) != op_is_flush(bio->bi_opf))
2930 		return false;
2931 
2932 	/*
2933 	 * If any qos ->throttle() end up blocking, we will have flushed the
2934 	 * plug and hence killed the cached_rq list as well. Pop this entry
2935 	 * before we throttle.
2936 	 */
2937 	plug->cached_rq = rq_list_next(rq);
2938 	rq_qos_throttle(rq->q, bio);
2939 
2940 	blk_mq_rq_time_init(rq, 0);
2941 	rq->cmd_flags = bio->bi_opf;
2942 	INIT_LIST_HEAD(&rq->queuelist);
2943 	return true;
2944 }
2945 
2946 /**
2947  * blk_mq_submit_bio - Create and send a request to block device.
2948  * @bio: Bio pointer.
2949  *
2950  * Builds up a request structure from @q and @bio and send to the device. The
2951  * request may not be queued directly to hardware if:
2952  * * This request can be merged with another one
2953  * * We want to place request at plug queue for possible future merging
2954  * * There is an IO scheduler active at this queue
2955  *
2956  * It will not queue the request if there is an error with the bio, or at the
2957  * request creation.
2958  */
2959 void blk_mq_submit_bio(struct bio *bio)
2960 {
2961 	struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2962 	struct blk_plug *plug = blk_mq_plug(bio);
2963 	const int is_sync = op_is_sync(bio->bi_opf);
2964 	struct blk_mq_hw_ctx *hctx;
2965 	struct request *rq = NULL;
2966 	unsigned int nr_segs = 1;
2967 	blk_status_t ret;
2968 
2969 	bio = blk_queue_bounce(bio, q);
2970 
2971 	if (plug) {
2972 		rq = rq_list_peek(&plug->cached_rq);
2973 		if (rq && rq->q != q)
2974 			rq = NULL;
2975 	}
2976 	if (rq) {
2977 		if (unlikely(bio_may_exceed_limits(bio, &q->limits))) {
2978 			bio = __bio_split_to_limits(bio, &q->limits, &nr_segs);
2979 			if (!bio)
2980 				return;
2981 		}
2982 		if (!bio_integrity_prep(bio))
2983 			return;
2984 		if (blk_mq_attempt_bio_merge(q, bio, nr_segs))
2985 			return;
2986 		if (blk_mq_use_cached_rq(rq, plug, bio))
2987 			goto done;
2988 		percpu_ref_get(&q->q_usage_counter);
2989 	} else {
2990 		if (unlikely(bio_queue_enter(bio)))
2991 			return;
2992 		if (unlikely(bio_may_exceed_limits(bio, &q->limits))) {
2993 			bio = __bio_split_to_limits(bio, &q->limits, &nr_segs);
2994 			if (!bio)
2995 				goto fail;
2996 		}
2997 		if (!bio_integrity_prep(bio))
2998 			goto fail;
2999 	}
3000 
3001 	rq = blk_mq_get_new_requests(q, plug, bio, nr_segs);
3002 	if (unlikely(!rq)) {
3003 fail:
3004 		blk_queue_exit(q);
3005 		return;
3006 	}
3007 
3008 done:
3009 	trace_block_getrq(bio);
3010 
3011 	rq_qos_track(q, rq, bio);
3012 
3013 	blk_mq_bio_to_request(rq, bio, nr_segs);
3014 
3015 	ret = blk_crypto_rq_get_keyslot(rq);
3016 	if (ret != BLK_STS_OK) {
3017 		bio->bi_status = ret;
3018 		bio_endio(bio);
3019 		blk_mq_free_request(rq);
3020 		return;
3021 	}
3022 
3023 	if (op_is_flush(bio->bi_opf) && blk_insert_flush(rq))
3024 		return;
3025 
3026 	if (plug) {
3027 		blk_add_rq_to_plug(plug, rq);
3028 		return;
3029 	}
3030 
3031 	hctx = rq->mq_hctx;
3032 	if ((rq->rq_flags & RQF_USE_SCHED) ||
3033 	    (hctx->dispatch_busy && (q->nr_hw_queues == 1 || !is_sync))) {
3034 		blk_mq_insert_request(rq, 0);
3035 		blk_mq_run_hw_queue(hctx, true);
3036 	} else {
3037 		blk_mq_run_dispatch_ops(q, blk_mq_try_issue_directly(hctx, rq));
3038 	}
3039 }
3040 
3041 #ifdef CONFIG_BLK_MQ_STACKING
3042 /**
3043  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
3044  * @rq: the request being queued
3045  */
3046 blk_status_t blk_insert_cloned_request(struct request *rq)
3047 {
3048 	struct request_queue *q = rq->q;
3049 	unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq));
3050 	unsigned int max_segments = blk_rq_get_max_segments(rq);
3051 	blk_status_t ret;
3052 
3053 	if (blk_rq_sectors(rq) > max_sectors) {
3054 		/*
3055 		 * SCSI device does not have a good way to return if
3056 		 * Write Same/Zero is actually supported. If a device rejects
3057 		 * a non-read/write command (discard, write same,etc.) the
3058 		 * low-level device driver will set the relevant queue limit to
3059 		 * 0 to prevent blk-lib from issuing more of the offending
3060 		 * operations. Commands queued prior to the queue limit being
3061 		 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
3062 		 * errors being propagated to upper layers.
3063 		 */
3064 		if (max_sectors == 0)
3065 			return BLK_STS_NOTSUPP;
3066 
3067 		printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
3068 			__func__, blk_rq_sectors(rq), max_sectors);
3069 		return BLK_STS_IOERR;
3070 	}
3071 
3072 	/*
3073 	 * The queue settings related to segment counting may differ from the
3074 	 * original queue.
3075 	 */
3076 	rq->nr_phys_segments = blk_recalc_rq_segments(rq);
3077 	if (rq->nr_phys_segments > max_segments) {
3078 		printk(KERN_ERR "%s: over max segments limit. (%u > %u)\n",
3079 			__func__, rq->nr_phys_segments, max_segments);
3080 		return BLK_STS_IOERR;
3081 	}
3082 
3083 	if (q->disk && should_fail_request(q->disk->part0, blk_rq_bytes(rq)))
3084 		return BLK_STS_IOERR;
3085 
3086 	ret = blk_crypto_rq_get_keyslot(rq);
3087 	if (ret != BLK_STS_OK)
3088 		return ret;
3089 
3090 	blk_account_io_start(rq);
3091 
3092 	/*
3093 	 * Since we have a scheduler attached on the top device,
3094 	 * bypass a potential scheduler on the bottom device for
3095 	 * insert.
3096 	 */
3097 	blk_mq_run_dispatch_ops(q,
3098 			ret = blk_mq_request_issue_directly(rq, true));
3099 	if (ret)
3100 		blk_account_io_done(rq, ktime_get_ns());
3101 	return ret;
3102 }
3103 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
3104 
3105 /**
3106  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3107  * @rq: the clone request to be cleaned up
3108  *
3109  * Description:
3110  *     Free all bios in @rq for a cloned request.
3111  */
3112 void blk_rq_unprep_clone(struct request *rq)
3113 {
3114 	struct bio *bio;
3115 
3116 	while ((bio = rq->bio) != NULL) {
3117 		rq->bio = bio->bi_next;
3118 
3119 		bio_put(bio);
3120 	}
3121 }
3122 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3123 
3124 /**
3125  * blk_rq_prep_clone - Helper function to setup clone request
3126  * @rq: the request to be setup
3127  * @rq_src: original request to be cloned
3128  * @bs: bio_set that bios for clone are allocated from
3129  * @gfp_mask: memory allocation mask for bio
3130  * @bio_ctr: setup function to be called for each clone bio.
3131  *           Returns %0 for success, non %0 for failure.
3132  * @data: private data to be passed to @bio_ctr
3133  *
3134  * Description:
3135  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3136  *     Also, pages which the original bios are pointing to are not copied
3137  *     and the cloned bios just point same pages.
3138  *     So cloned bios must be completed before original bios, which means
3139  *     the caller must complete @rq before @rq_src.
3140  */
3141 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3142 		      struct bio_set *bs, gfp_t gfp_mask,
3143 		      int (*bio_ctr)(struct bio *, struct bio *, void *),
3144 		      void *data)
3145 {
3146 	struct bio *bio, *bio_src;
3147 
3148 	if (!bs)
3149 		bs = &fs_bio_set;
3150 
3151 	__rq_for_each_bio(bio_src, rq_src) {
3152 		bio = bio_alloc_clone(rq->q->disk->part0, bio_src, gfp_mask,
3153 				      bs);
3154 		if (!bio)
3155 			goto free_and_out;
3156 
3157 		if (bio_ctr && bio_ctr(bio, bio_src, data))
3158 			goto free_and_out;
3159 
3160 		if (rq->bio) {
3161 			rq->biotail->bi_next = bio;
3162 			rq->biotail = bio;
3163 		} else {
3164 			rq->bio = rq->biotail = bio;
3165 		}
3166 		bio = NULL;
3167 	}
3168 
3169 	/* Copy attributes of the original request to the clone request. */
3170 	rq->__sector = blk_rq_pos(rq_src);
3171 	rq->__data_len = blk_rq_bytes(rq_src);
3172 	if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
3173 		rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
3174 		rq->special_vec = rq_src->special_vec;
3175 	}
3176 	rq->nr_phys_segments = rq_src->nr_phys_segments;
3177 	rq->ioprio = rq_src->ioprio;
3178 
3179 	if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
3180 		goto free_and_out;
3181 
3182 	return 0;
3183 
3184 free_and_out:
3185 	if (bio)
3186 		bio_put(bio);
3187 	blk_rq_unprep_clone(rq);
3188 
3189 	return -ENOMEM;
3190 }
3191 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3192 #endif /* CONFIG_BLK_MQ_STACKING */
3193 
3194 /*
3195  * Steal bios from a request and add them to a bio list.
3196  * The request must not have been partially completed before.
3197  */
3198 void blk_steal_bios(struct bio_list *list, struct request *rq)
3199 {
3200 	if (rq->bio) {
3201 		if (list->tail)
3202 			list->tail->bi_next = rq->bio;
3203 		else
3204 			list->head = rq->bio;
3205 		list->tail = rq->biotail;
3206 
3207 		rq->bio = NULL;
3208 		rq->biotail = NULL;
3209 	}
3210 
3211 	rq->__data_len = 0;
3212 }
3213 EXPORT_SYMBOL_GPL(blk_steal_bios);
3214 
3215 static size_t order_to_size(unsigned int order)
3216 {
3217 	return (size_t)PAGE_SIZE << order;
3218 }
3219 
3220 /* called before freeing request pool in @tags */
3221 static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags,
3222 				    struct blk_mq_tags *tags)
3223 {
3224 	struct page *page;
3225 	unsigned long flags;
3226 
3227 	/*
3228 	 * There is no need to clear mapping if driver tags is not initialized
3229 	 * or the mapping belongs to the driver tags.
3230 	 */
3231 	if (!drv_tags || drv_tags == tags)
3232 		return;
3233 
3234 	list_for_each_entry(page, &tags->page_list, lru) {
3235 		unsigned long start = (unsigned long)page_address(page);
3236 		unsigned long end = start + order_to_size(page->private);
3237 		int i;
3238 
3239 		for (i = 0; i < drv_tags->nr_tags; i++) {
3240 			struct request *rq = drv_tags->rqs[i];
3241 			unsigned long rq_addr = (unsigned long)rq;
3242 
3243 			if (rq_addr >= start && rq_addr < end) {
3244 				WARN_ON_ONCE(req_ref_read(rq) != 0);
3245 				cmpxchg(&drv_tags->rqs[i], rq, NULL);
3246 			}
3247 		}
3248 	}
3249 
3250 	/*
3251 	 * Wait until all pending iteration is done.
3252 	 *
3253 	 * Request reference is cleared and it is guaranteed to be observed
3254 	 * after the ->lock is released.
3255 	 */
3256 	spin_lock_irqsave(&drv_tags->lock, flags);
3257 	spin_unlock_irqrestore(&drv_tags->lock, flags);
3258 }
3259 
3260 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
3261 		     unsigned int hctx_idx)
3262 {
3263 	struct blk_mq_tags *drv_tags;
3264 	struct page *page;
3265 
3266 	if (list_empty(&tags->page_list))
3267 		return;
3268 
3269 	if (blk_mq_is_shared_tags(set->flags))
3270 		drv_tags = set->shared_tags;
3271 	else
3272 		drv_tags = set->tags[hctx_idx];
3273 
3274 	if (tags->static_rqs && set->ops->exit_request) {
3275 		int i;
3276 
3277 		for (i = 0; i < tags->nr_tags; i++) {
3278 			struct request *rq = tags->static_rqs[i];
3279 
3280 			if (!rq)
3281 				continue;
3282 			set->ops->exit_request(set, rq, hctx_idx);
3283 			tags->static_rqs[i] = NULL;
3284 		}
3285 	}
3286 
3287 	blk_mq_clear_rq_mapping(drv_tags, tags);
3288 
3289 	while (!list_empty(&tags->page_list)) {
3290 		page = list_first_entry(&tags->page_list, struct page, lru);
3291 		list_del_init(&page->lru);
3292 		/*
3293 		 * Remove kmemleak object previously allocated in
3294 		 * blk_mq_alloc_rqs().
3295 		 */
3296 		kmemleak_free(page_address(page));
3297 		__free_pages(page, page->private);
3298 	}
3299 }
3300 
3301 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
3302 {
3303 	kfree(tags->rqs);
3304 	tags->rqs = NULL;
3305 	kfree(tags->static_rqs);
3306 	tags->static_rqs = NULL;
3307 
3308 	blk_mq_free_tags(tags);
3309 }
3310 
3311 static enum hctx_type hctx_idx_to_type(struct blk_mq_tag_set *set,
3312 		unsigned int hctx_idx)
3313 {
3314 	int i;
3315 
3316 	for (i = 0; i < set->nr_maps; i++) {
3317 		unsigned int start = set->map[i].queue_offset;
3318 		unsigned int end = start + set->map[i].nr_queues;
3319 
3320 		if (hctx_idx >= start && hctx_idx < end)
3321 			break;
3322 	}
3323 
3324 	if (i >= set->nr_maps)
3325 		i = HCTX_TYPE_DEFAULT;
3326 
3327 	return i;
3328 }
3329 
3330 static int blk_mq_get_hctx_node(struct blk_mq_tag_set *set,
3331 		unsigned int hctx_idx)
3332 {
3333 	enum hctx_type type = hctx_idx_to_type(set, hctx_idx);
3334 
3335 	return blk_mq_hw_queue_to_node(&set->map[type], hctx_idx);
3336 }
3337 
3338 static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
3339 					       unsigned int hctx_idx,
3340 					       unsigned int nr_tags,
3341 					       unsigned int reserved_tags)
3342 {
3343 	int node = blk_mq_get_hctx_node(set, hctx_idx);
3344 	struct blk_mq_tags *tags;
3345 
3346 	if (node == NUMA_NO_NODE)
3347 		node = set->numa_node;
3348 
3349 	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
3350 				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
3351 	if (!tags)
3352 		return NULL;
3353 
3354 	tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3355 				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3356 				 node);
3357 	if (!tags->rqs)
3358 		goto err_free_tags;
3359 
3360 	tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3361 					GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3362 					node);
3363 	if (!tags->static_rqs)
3364 		goto err_free_rqs;
3365 
3366 	return tags;
3367 
3368 err_free_rqs:
3369 	kfree(tags->rqs);
3370 err_free_tags:
3371 	blk_mq_free_tags(tags);
3372 	return NULL;
3373 }
3374 
3375 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
3376 			       unsigned int hctx_idx, int node)
3377 {
3378 	int ret;
3379 
3380 	if (set->ops->init_request) {
3381 		ret = set->ops->init_request(set, rq, hctx_idx, node);
3382 		if (ret)
3383 			return ret;
3384 	}
3385 
3386 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
3387 	return 0;
3388 }
3389 
3390 static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set,
3391 			    struct blk_mq_tags *tags,
3392 			    unsigned int hctx_idx, unsigned int depth)
3393 {
3394 	unsigned int i, j, entries_per_page, max_order = 4;
3395 	int node = blk_mq_get_hctx_node(set, hctx_idx);
3396 	size_t rq_size, left;
3397 
3398 	if (node == NUMA_NO_NODE)
3399 		node = set->numa_node;
3400 
3401 	INIT_LIST_HEAD(&tags->page_list);
3402 
3403 	/*
3404 	 * rq_size is the size of the request plus driver payload, rounded
3405 	 * to the cacheline size
3406 	 */
3407 	rq_size = round_up(sizeof(struct request) + set->cmd_size,
3408 				cache_line_size());
3409 	left = rq_size * depth;
3410 
3411 	for (i = 0; i < depth; ) {
3412 		int this_order = max_order;
3413 		struct page *page;
3414 		int to_do;
3415 		void *p;
3416 
3417 		while (this_order && left < order_to_size(this_order - 1))
3418 			this_order--;
3419 
3420 		do {
3421 			page = alloc_pages_node(node,
3422 				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
3423 				this_order);
3424 			if (page)
3425 				break;
3426 			if (!this_order--)
3427 				break;
3428 			if (order_to_size(this_order) < rq_size)
3429 				break;
3430 		} while (1);
3431 
3432 		if (!page)
3433 			goto fail;
3434 
3435 		page->private = this_order;
3436 		list_add_tail(&page->lru, &tags->page_list);
3437 
3438 		p = page_address(page);
3439 		/*
3440 		 * Allow kmemleak to scan these pages as they contain pointers
3441 		 * to additional allocations like via ops->init_request().
3442 		 */
3443 		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
3444 		entries_per_page = order_to_size(this_order) / rq_size;
3445 		to_do = min(entries_per_page, depth - i);
3446 		left -= to_do * rq_size;
3447 		for (j = 0; j < to_do; j++) {
3448 			struct request *rq = p;
3449 
3450 			tags->static_rqs[i] = rq;
3451 			if (blk_mq_init_request(set, rq, hctx_idx, node)) {
3452 				tags->static_rqs[i] = NULL;
3453 				goto fail;
3454 			}
3455 
3456 			p += rq_size;
3457 			i++;
3458 		}
3459 	}
3460 	return 0;
3461 
3462 fail:
3463 	blk_mq_free_rqs(set, tags, hctx_idx);
3464 	return -ENOMEM;
3465 }
3466 
3467 struct rq_iter_data {
3468 	struct blk_mq_hw_ctx *hctx;
3469 	bool has_rq;
3470 };
3471 
3472 static bool blk_mq_has_request(struct request *rq, void *data)
3473 {
3474 	struct rq_iter_data *iter_data = data;
3475 
3476 	if (rq->mq_hctx != iter_data->hctx)
3477 		return true;
3478 	iter_data->has_rq = true;
3479 	return false;
3480 }
3481 
3482 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
3483 {
3484 	struct blk_mq_tags *tags = hctx->sched_tags ?
3485 			hctx->sched_tags : hctx->tags;
3486 	struct rq_iter_data data = {
3487 		.hctx	= hctx,
3488 	};
3489 
3490 	blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
3491 	return data.has_rq;
3492 }
3493 
3494 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
3495 		struct blk_mq_hw_ctx *hctx)
3496 {
3497 	if (cpumask_first_and(hctx->cpumask, cpu_online_mask) != cpu)
3498 		return false;
3499 	if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
3500 		return false;
3501 	return true;
3502 }
3503 
3504 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
3505 {
3506 	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3507 			struct blk_mq_hw_ctx, cpuhp_online);
3508 
3509 	if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
3510 	    !blk_mq_last_cpu_in_hctx(cpu, hctx))
3511 		return 0;
3512 
3513 	/*
3514 	 * Prevent new request from being allocated on the current hctx.
3515 	 *
3516 	 * The smp_mb__after_atomic() Pairs with the implied barrier in
3517 	 * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
3518 	 * seen once we return from the tag allocator.
3519 	 */
3520 	set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3521 	smp_mb__after_atomic();
3522 
3523 	/*
3524 	 * Try to grab a reference to the queue and wait for any outstanding
3525 	 * requests.  If we could not grab a reference the queue has been
3526 	 * frozen and there are no requests.
3527 	 */
3528 	if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
3529 		while (blk_mq_hctx_has_requests(hctx))
3530 			msleep(5);
3531 		percpu_ref_put(&hctx->queue->q_usage_counter);
3532 	}
3533 
3534 	return 0;
3535 }
3536 
3537 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
3538 {
3539 	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3540 			struct blk_mq_hw_ctx, cpuhp_online);
3541 
3542 	if (cpumask_test_cpu(cpu, hctx->cpumask))
3543 		clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3544 	return 0;
3545 }
3546 
3547 /*
3548  * 'cpu' is going away. splice any existing rq_list entries from this
3549  * software queue to the hw queue dispatch list, and ensure that it
3550  * gets run.
3551  */
3552 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
3553 {
3554 	struct blk_mq_hw_ctx *hctx;
3555 	struct blk_mq_ctx *ctx;
3556 	LIST_HEAD(tmp);
3557 	enum hctx_type type;
3558 
3559 	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
3560 	if (!cpumask_test_cpu(cpu, hctx->cpumask))
3561 		return 0;
3562 
3563 	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
3564 	type = hctx->type;
3565 
3566 	spin_lock(&ctx->lock);
3567 	if (!list_empty(&ctx->rq_lists[type])) {
3568 		list_splice_init(&ctx->rq_lists[type], &tmp);
3569 		blk_mq_hctx_clear_pending(hctx, ctx);
3570 	}
3571 	spin_unlock(&ctx->lock);
3572 
3573 	if (list_empty(&tmp))
3574 		return 0;
3575 
3576 	spin_lock(&hctx->lock);
3577 	list_splice_tail_init(&tmp, &hctx->dispatch);
3578 	spin_unlock(&hctx->lock);
3579 
3580 	blk_mq_run_hw_queue(hctx, true);
3581 	return 0;
3582 }
3583 
3584 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
3585 {
3586 	if (!(hctx->flags & BLK_MQ_F_STACKING))
3587 		cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3588 						    &hctx->cpuhp_online);
3589 	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
3590 					    &hctx->cpuhp_dead);
3591 }
3592 
3593 /*
3594  * Before freeing hw queue, clearing the flush request reference in
3595  * tags->rqs[] for avoiding potential UAF.
3596  */
3597 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
3598 		unsigned int queue_depth, struct request *flush_rq)
3599 {
3600 	int i;
3601 	unsigned long flags;
3602 
3603 	/* The hw queue may not be mapped yet */
3604 	if (!tags)
3605 		return;
3606 
3607 	WARN_ON_ONCE(req_ref_read(flush_rq) != 0);
3608 
3609 	for (i = 0; i < queue_depth; i++)
3610 		cmpxchg(&tags->rqs[i], flush_rq, NULL);
3611 
3612 	/*
3613 	 * Wait until all pending iteration is done.
3614 	 *
3615 	 * Request reference is cleared and it is guaranteed to be observed
3616 	 * after the ->lock is released.
3617 	 */
3618 	spin_lock_irqsave(&tags->lock, flags);
3619 	spin_unlock_irqrestore(&tags->lock, flags);
3620 }
3621 
3622 /* hctx->ctxs will be freed in queue's release handler */
3623 static void blk_mq_exit_hctx(struct request_queue *q,
3624 		struct blk_mq_tag_set *set,
3625 		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
3626 {
3627 	struct request *flush_rq = hctx->fq->flush_rq;
3628 
3629 	if (blk_mq_hw_queue_mapped(hctx))
3630 		blk_mq_tag_idle(hctx);
3631 
3632 	if (blk_queue_init_done(q))
3633 		blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
3634 				set->queue_depth, flush_rq);
3635 	if (set->ops->exit_request)
3636 		set->ops->exit_request(set, flush_rq, hctx_idx);
3637 
3638 	if (set->ops->exit_hctx)
3639 		set->ops->exit_hctx(hctx, hctx_idx);
3640 
3641 	blk_mq_remove_cpuhp(hctx);
3642 
3643 	xa_erase(&q->hctx_table, hctx_idx);
3644 
3645 	spin_lock(&q->unused_hctx_lock);
3646 	list_add(&hctx->hctx_list, &q->unused_hctx_list);
3647 	spin_unlock(&q->unused_hctx_lock);
3648 }
3649 
3650 static void blk_mq_exit_hw_queues(struct request_queue *q,
3651 		struct blk_mq_tag_set *set, int nr_queue)
3652 {
3653 	struct blk_mq_hw_ctx *hctx;
3654 	unsigned long i;
3655 
3656 	queue_for_each_hw_ctx(q, hctx, i) {
3657 		if (i == nr_queue)
3658 			break;
3659 		blk_mq_exit_hctx(q, set, hctx, i);
3660 	}
3661 }
3662 
3663 static int blk_mq_init_hctx(struct request_queue *q,
3664 		struct blk_mq_tag_set *set,
3665 		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
3666 {
3667 	hctx->queue_num = hctx_idx;
3668 
3669 	if (!(hctx->flags & BLK_MQ_F_STACKING))
3670 		cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3671 				&hctx->cpuhp_online);
3672 	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
3673 
3674 	hctx->tags = set->tags[hctx_idx];
3675 
3676 	if (set->ops->init_hctx &&
3677 	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
3678 		goto unregister_cpu_notifier;
3679 
3680 	if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
3681 				hctx->numa_node))
3682 		goto exit_hctx;
3683 
3684 	if (xa_insert(&q->hctx_table, hctx_idx, hctx, GFP_KERNEL))
3685 		goto exit_flush_rq;
3686 
3687 	return 0;
3688 
3689  exit_flush_rq:
3690 	if (set->ops->exit_request)
3691 		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
3692  exit_hctx:
3693 	if (set->ops->exit_hctx)
3694 		set->ops->exit_hctx(hctx, hctx_idx);
3695  unregister_cpu_notifier:
3696 	blk_mq_remove_cpuhp(hctx);
3697 	return -1;
3698 }
3699 
3700 static struct blk_mq_hw_ctx *
3701 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
3702 		int node)
3703 {
3704 	struct blk_mq_hw_ctx *hctx;
3705 	gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
3706 
3707 	hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node);
3708 	if (!hctx)
3709 		goto fail_alloc_hctx;
3710 
3711 	if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
3712 		goto free_hctx;
3713 
3714 	atomic_set(&hctx->nr_active, 0);
3715 	if (node == NUMA_NO_NODE)
3716 		node = set->numa_node;
3717 	hctx->numa_node = node;
3718 
3719 	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
3720 	spin_lock_init(&hctx->lock);
3721 	INIT_LIST_HEAD(&hctx->dispatch);
3722 	hctx->queue = q;
3723 	hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
3724 
3725 	INIT_LIST_HEAD(&hctx->hctx_list);
3726 
3727 	/*
3728 	 * Allocate space for all possible cpus to avoid allocation at
3729 	 * runtime
3730 	 */
3731 	hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
3732 			gfp, node);
3733 	if (!hctx->ctxs)
3734 		goto free_cpumask;
3735 
3736 	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
3737 				gfp, node, false, false))
3738 		goto free_ctxs;
3739 	hctx->nr_ctx = 0;
3740 
3741 	spin_lock_init(&hctx->dispatch_wait_lock);
3742 	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
3743 	INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
3744 
3745 	hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
3746 	if (!hctx->fq)
3747 		goto free_bitmap;
3748 
3749 	blk_mq_hctx_kobj_init(hctx);
3750 
3751 	return hctx;
3752 
3753  free_bitmap:
3754 	sbitmap_free(&hctx->ctx_map);
3755  free_ctxs:
3756 	kfree(hctx->ctxs);
3757  free_cpumask:
3758 	free_cpumask_var(hctx->cpumask);
3759  free_hctx:
3760 	kfree(hctx);
3761  fail_alloc_hctx:
3762 	return NULL;
3763 }
3764 
3765 static void blk_mq_init_cpu_queues(struct request_queue *q,
3766 				   unsigned int nr_hw_queues)
3767 {
3768 	struct blk_mq_tag_set *set = q->tag_set;
3769 	unsigned int i, j;
3770 
3771 	for_each_possible_cpu(i) {
3772 		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
3773 		struct blk_mq_hw_ctx *hctx;
3774 		int k;
3775 
3776 		__ctx->cpu = i;
3777 		spin_lock_init(&__ctx->lock);
3778 		for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
3779 			INIT_LIST_HEAD(&__ctx->rq_lists[k]);
3780 
3781 		__ctx->queue = q;
3782 
3783 		/*
3784 		 * Set local node, IFF we have more than one hw queue. If
3785 		 * not, we remain on the home node of the device
3786 		 */
3787 		for (j = 0; j < set->nr_maps; j++) {
3788 			hctx = blk_mq_map_queue_type(q, j, i);
3789 			if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
3790 				hctx->numa_node = cpu_to_node(i);
3791 		}
3792 	}
3793 }
3794 
3795 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3796 					     unsigned int hctx_idx,
3797 					     unsigned int depth)
3798 {
3799 	struct blk_mq_tags *tags;
3800 	int ret;
3801 
3802 	tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags);
3803 	if (!tags)
3804 		return NULL;
3805 
3806 	ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth);
3807 	if (ret) {
3808 		blk_mq_free_rq_map(tags);
3809 		return NULL;
3810 	}
3811 
3812 	return tags;
3813 }
3814 
3815 static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3816 				       int hctx_idx)
3817 {
3818 	if (blk_mq_is_shared_tags(set->flags)) {
3819 		set->tags[hctx_idx] = set->shared_tags;
3820 
3821 		return true;
3822 	}
3823 
3824 	set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx,
3825 						       set->queue_depth);
3826 
3827 	return set->tags[hctx_idx];
3828 }
3829 
3830 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3831 			     struct blk_mq_tags *tags,
3832 			     unsigned int hctx_idx)
3833 {
3834 	if (tags) {
3835 		blk_mq_free_rqs(set, tags, hctx_idx);
3836 		blk_mq_free_rq_map(tags);
3837 	}
3838 }
3839 
3840 static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3841 				      unsigned int hctx_idx)
3842 {
3843 	if (!blk_mq_is_shared_tags(set->flags))
3844 		blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx);
3845 
3846 	set->tags[hctx_idx] = NULL;
3847 }
3848 
3849 static void blk_mq_map_swqueue(struct request_queue *q)
3850 {
3851 	unsigned int j, hctx_idx;
3852 	unsigned long i;
3853 	struct blk_mq_hw_ctx *hctx;
3854 	struct blk_mq_ctx *ctx;
3855 	struct blk_mq_tag_set *set = q->tag_set;
3856 
3857 	queue_for_each_hw_ctx(q, hctx, i) {
3858 		cpumask_clear(hctx->cpumask);
3859 		hctx->nr_ctx = 0;
3860 		hctx->dispatch_from = NULL;
3861 	}
3862 
3863 	/*
3864 	 * Map software to hardware queues.
3865 	 *
3866 	 * If the cpu isn't present, the cpu is mapped to first hctx.
3867 	 */
3868 	for_each_possible_cpu(i) {
3869 
3870 		ctx = per_cpu_ptr(q->queue_ctx, i);
3871 		for (j = 0; j < set->nr_maps; j++) {
3872 			if (!set->map[j].nr_queues) {
3873 				ctx->hctxs[j] = blk_mq_map_queue_type(q,
3874 						HCTX_TYPE_DEFAULT, i);
3875 				continue;
3876 			}
3877 			hctx_idx = set->map[j].mq_map[i];
3878 			/* unmapped hw queue can be remapped after CPU topo changed */
3879 			if (!set->tags[hctx_idx] &&
3880 			    !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) {
3881 				/*
3882 				 * If tags initialization fail for some hctx,
3883 				 * that hctx won't be brought online.  In this
3884 				 * case, remap the current ctx to hctx[0] which
3885 				 * is guaranteed to always have tags allocated
3886 				 */
3887 				set->map[j].mq_map[i] = 0;
3888 			}
3889 
3890 			hctx = blk_mq_map_queue_type(q, j, i);
3891 			ctx->hctxs[j] = hctx;
3892 			/*
3893 			 * If the CPU is already set in the mask, then we've
3894 			 * mapped this one already. This can happen if
3895 			 * devices share queues across queue maps.
3896 			 */
3897 			if (cpumask_test_cpu(i, hctx->cpumask))
3898 				continue;
3899 
3900 			cpumask_set_cpu(i, hctx->cpumask);
3901 			hctx->type = j;
3902 			ctx->index_hw[hctx->type] = hctx->nr_ctx;
3903 			hctx->ctxs[hctx->nr_ctx++] = ctx;
3904 
3905 			/*
3906 			 * If the nr_ctx type overflows, we have exceeded the
3907 			 * amount of sw queues we can support.
3908 			 */
3909 			BUG_ON(!hctx->nr_ctx);
3910 		}
3911 
3912 		for (; j < HCTX_MAX_TYPES; j++)
3913 			ctx->hctxs[j] = blk_mq_map_queue_type(q,
3914 					HCTX_TYPE_DEFAULT, i);
3915 	}
3916 
3917 	queue_for_each_hw_ctx(q, hctx, i) {
3918 		/*
3919 		 * If no software queues are mapped to this hardware queue,
3920 		 * disable it and free the request entries.
3921 		 */
3922 		if (!hctx->nr_ctx) {
3923 			/* Never unmap queue 0.  We need it as a
3924 			 * fallback in case of a new remap fails
3925 			 * allocation
3926 			 */
3927 			if (i)
3928 				__blk_mq_free_map_and_rqs(set, i);
3929 
3930 			hctx->tags = NULL;
3931 			continue;
3932 		}
3933 
3934 		hctx->tags = set->tags[i];
3935 		WARN_ON(!hctx->tags);
3936 
3937 		/*
3938 		 * Set the map size to the number of mapped software queues.
3939 		 * This is more accurate and more efficient than looping
3940 		 * over all possibly mapped software queues.
3941 		 */
3942 		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
3943 
3944 		/*
3945 		 * Initialize batch roundrobin counts
3946 		 */
3947 		hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
3948 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
3949 	}
3950 }
3951 
3952 /*
3953  * Caller needs to ensure that we're either frozen/quiesced, or that
3954  * the queue isn't live yet.
3955  */
3956 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
3957 {
3958 	struct blk_mq_hw_ctx *hctx;
3959 	unsigned long i;
3960 
3961 	queue_for_each_hw_ctx(q, hctx, i) {
3962 		if (shared) {
3963 			hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3964 		} else {
3965 			blk_mq_tag_idle(hctx);
3966 			hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3967 		}
3968 	}
3969 }
3970 
3971 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
3972 					 bool shared)
3973 {
3974 	struct request_queue *q;
3975 
3976 	lockdep_assert_held(&set->tag_list_lock);
3977 
3978 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3979 		blk_mq_freeze_queue(q);
3980 		queue_set_hctx_shared(q, shared);
3981 		blk_mq_unfreeze_queue(q);
3982 	}
3983 }
3984 
3985 static void blk_mq_del_queue_tag_set(struct request_queue *q)
3986 {
3987 	struct blk_mq_tag_set *set = q->tag_set;
3988 
3989 	mutex_lock(&set->tag_list_lock);
3990 	list_del(&q->tag_set_list);
3991 	if (list_is_singular(&set->tag_list)) {
3992 		/* just transitioned to unshared */
3993 		set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3994 		/* update existing queue */
3995 		blk_mq_update_tag_set_shared(set, false);
3996 	}
3997 	mutex_unlock(&set->tag_list_lock);
3998 	INIT_LIST_HEAD(&q->tag_set_list);
3999 }
4000 
4001 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
4002 				     struct request_queue *q)
4003 {
4004 	mutex_lock(&set->tag_list_lock);
4005 
4006 	/*
4007 	 * Check to see if we're transitioning to shared (from 1 to 2 queues).
4008 	 */
4009 	if (!list_empty(&set->tag_list) &&
4010 	    !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
4011 		set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
4012 		/* update existing queue */
4013 		blk_mq_update_tag_set_shared(set, true);
4014 	}
4015 	if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
4016 		queue_set_hctx_shared(q, true);
4017 	list_add_tail(&q->tag_set_list, &set->tag_list);
4018 
4019 	mutex_unlock(&set->tag_list_lock);
4020 }
4021 
4022 /* All allocations will be freed in release handler of q->mq_kobj */
4023 static int blk_mq_alloc_ctxs(struct request_queue *q)
4024 {
4025 	struct blk_mq_ctxs *ctxs;
4026 	int cpu;
4027 
4028 	ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
4029 	if (!ctxs)
4030 		return -ENOMEM;
4031 
4032 	ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
4033 	if (!ctxs->queue_ctx)
4034 		goto fail;
4035 
4036 	for_each_possible_cpu(cpu) {
4037 		struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
4038 		ctx->ctxs = ctxs;
4039 	}
4040 
4041 	q->mq_kobj = &ctxs->kobj;
4042 	q->queue_ctx = ctxs->queue_ctx;
4043 
4044 	return 0;
4045  fail:
4046 	kfree(ctxs);
4047 	return -ENOMEM;
4048 }
4049 
4050 /*
4051  * It is the actual release handler for mq, but we do it from
4052  * request queue's release handler for avoiding use-after-free
4053  * and headache because q->mq_kobj shouldn't have been introduced,
4054  * but we can't group ctx/kctx kobj without it.
4055  */
4056 void blk_mq_release(struct request_queue *q)
4057 {
4058 	struct blk_mq_hw_ctx *hctx, *next;
4059 	unsigned long i;
4060 
4061 	queue_for_each_hw_ctx(q, hctx, i)
4062 		WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
4063 
4064 	/* all hctx are in .unused_hctx_list now */
4065 	list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
4066 		list_del_init(&hctx->hctx_list);
4067 		kobject_put(&hctx->kobj);
4068 	}
4069 
4070 	xa_destroy(&q->hctx_table);
4071 
4072 	/*
4073 	 * release .mq_kobj and sw queue's kobject now because
4074 	 * both share lifetime with request queue.
4075 	 */
4076 	blk_mq_sysfs_deinit(q);
4077 }
4078 
4079 static struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
4080 		void *queuedata)
4081 {
4082 	struct request_queue *q;
4083 	int ret;
4084 
4085 	q = blk_alloc_queue(set->numa_node);
4086 	if (!q)
4087 		return ERR_PTR(-ENOMEM);
4088 	q->queuedata = queuedata;
4089 	ret = blk_mq_init_allocated_queue(set, q);
4090 	if (ret) {
4091 		blk_put_queue(q);
4092 		return ERR_PTR(ret);
4093 	}
4094 	return q;
4095 }
4096 
4097 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
4098 {
4099 	return blk_mq_init_queue_data(set, NULL);
4100 }
4101 EXPORT_SYMBOL(blk_mq_init_queue);
4102 
4103 /**
4104  * blk_mq_destroy_queue - shutdown a request queue
4105  * @q: request queue to shutdown
4106  *
4107  * This shuts down a request queue allocated by blk_mq_init_queue(). All future
4108  * requests will be failed with -ENODEV. The caller is responsible for dropping
4109  * the reference from blk_mq_init_queue() by calling blk_put_queue().
4110  *
4111  * Context: can sleep
4112  */
4113 void blk_mq_destroy_queue(struct request_queue *q)
4114 {
4115 	WARN_ON_ONCE(!queue_is_mq(q));
4116 	WARN_ON_ONCE(blk_queue_registered(q));
4117 
4118 	might_sleep();
4119 
4120 	blk_queue_flag_set(QUEUE_FLAG_DYING, q);
4121 	blk_queue_start_drain(q);
4122 	blk_mq_freeze_queue_wait(q);
4123 
4124 	blk_sync_queue(q);
4125 	blk_mq_cancel_work_sync(q);
4126 	blk_mq_exit_queue(q);
4127 }
4128 EXPORT_SYMBOL(blk_mq_destroy_queue);
4129 
4130 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata,
4131 		struct lock_class_key *lkclass)
4132 {
4133 	struct request_queue *q;
4134 	struct gendisk *disk;
4135 
4136 	q = blk_mq_init_queue_data(set, queuedata);
4137 	if (IS_ERR(q))
4138 		return ERR_CAST(q);
4139 
4140 	disk = __alloc_disk_node(q, set->numa_node, lkclass);
4141 	if (!disk) {
4142 		blk_mq_destroy_queue(q);
4143 		blk_put_queue(q);
4144 		return ERR_PTR(-ENOMEM);
4145 	}
4146 	set_bit(GD_OWNS_QUEUE, &disk->state);
4147 	return disk;
4148 }
4149 EXPORT_SYMBOL(__blk_mq_alloc_disk);
4150 
4151 struct gendisk *blk_mq_alloc_disk_for_queue(struct request_queue *q,
4152 		struct lock_class_key *lkclass)
4153 {
4154 	struct gendisk *disk;
4155 
4156 	if (!blk_get_queue(q))
4157 		return NULL;
4158 	disk = __alloc_disk_node(q, NUMA_NO_NODE, lkclass);
4159 	if (!disk)
4160 		blk_put_queue(q);
4161 	return disk;
4162 }
4163 EXPORT_SYMBOL(blk_mq_alloc_disk_for_queue);
4164 
4165 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
4166 		struct blk_mq_tag_set *set, struct request_queue *q,
4167 		int hctx_idx, int node)
4168 {
4169 	struct blk_mq_hw_ctx *hctx = NULL, *tmp;
4170 
4171 	/* reuse dead hctx first */
4172 	spin_lock(&q->unused_hctx_lock);
4173 	list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
4174 		if (tmp->numa_node == node) {
4175 			hctx = tmp;
4176 			break;
4177 		}
4178 	}
4179 	if (hctx)
4180 		list_del_init(&hctx->hctx_list);
4181 	spin_unlock(&q->unused_hctx_lock);
4182 
4183 	if (!hctx)
4184 		hctx = blk_mq_alloc_hctx(q, set, node);
4185 	if (!hctx)
4186 		goto fail;
4187 
4188 	if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
4189 		goto free_hctx;
4190 
4191 	return hctx;
4192 
4193  free_hctx:
4194 	kobject_put(&hctx->kobj);
4195  fail:
4196 	return NULL;
4197 }
4198 
4199 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
4200 						struct request_queue *q)
4201 {
4202 	struct blk_mq_hw_ctx *hctx;
4203 	unsigned long i, j;
4204 
4205 	/* protect against switching io scheduler  */
4206 	mutex_lock(&q->sysfs_lock);
4207 	for (i = 0; i < set->nr_hw_queues; i++) {
4208 		int old_node;
4209 		int node = blk_mq_get_hctx_node(set, i);
4210 		struct blk_mq_hw_ctx *old_hctx = xa_load(&q->hctx_table, i);
4211 
4212 		if (old_hctx) {
4213 			old_node = old_hctx->numa_node;
4214 			blk_mq_exit_hctx(q, set, old_hctx, i);
4215 		}
4216 
4217 		if (!blk_mq_alloc_and_init_hctx(set, q, i, node)) {
4218 			if (!old_hctx)
4219 				break;
4220 			pr_warn("Allocate new hctx on node %d fails, fallback to previous one on node %d\n",
4221 					node, old_node);
4222 			hctx = blk_mq_alloc_and_init_hctx(set, q, i, old_node);
4223 			WARN_ON_ONCE(!hctx);
4224 		}
4225 	}
4226 	/*
4227 	 * Increasing nr_hw_queues fails. Free the newly allocated
4228 	 * hctxs and keep the previous q->nr_hw_queues.
4229 	 */
4230 	if (i != set->nr_hw_queues) {
4231 		j = q->nr_hw_queues;
4232 	} else {
4233 		j = i;
4234 		q->nr_hw_queues = set->nr_hw_queues;
4235 	}
4236 
4237 	xa_for_each_start(&q->hctx_table, j, hctx, j)
4238 		blk_mq_exit_hctx(q, set, hctx, j);
4239 	mutex_unlock(&q->sysfs_lock);
4240 }
4241 
4242 static void blk_mq_update_poll_flag(struct request_queue *q)
4243 {
4244 	struct blk_mq_tag_set *set = q->tag_set;
4245 
4246 	if (set->nr_maps > HCTX_TYPE_POLL &&
4247 	    set->map[HCTX_TYPE_POLL].nr_queues)
4248 		blk_queue_flag_set(QUEUE_FLAG_POLL, q);
4249 	else
4250 		blk_queue_flag_clear(QUEUE_FLAG_POLL, q);
4251 }
4252 
4253 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
4254 		struct request_queue *q)
4255 {
4256 	/* mark the queue as mq asap */
4257 	q->mq_ops = set->ops;
4258 
4259 	if (blk_mq_alloc_ctxs(q))
4260 		goto err_exit;
4261 
4262 	/* init q->mq_kobj and sw queues' kobjects */
4263 	blk_mq_sysfs_init(q);
4264 
4265 	INIT_LIST_HEAD(&q->unused_hctx_list);
4266 	spin_lock_init(&q->unused_hctx_lock);
4267 
4268 	xa_init(&q->hctx_table);
4269 
4270 	blk_mq_realloc_hw_ctxs(set, q);
4271 	if (!q->nr_hw_queues)
4272 		goto err_hctxs;
4273 
4274 	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
4275 	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
4276 
4277 	q->tag_set = set;
4278 
4279 	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
4280 	blk_mq_update_poll_flag(q);
4281 
4282 	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
4283 	INIT_LIST_HEAD(&q->flush_list);
4284 	INIT_LIST_HEAD(&q->requeue_list);
4285 	spin_lock_init(&q->requeue_lock);
4286 
4287 	q->nr_requests = set->queue_depth;
4288 
4289 	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
4290 	blk_mq_add_queue_tag_set(set, q);
4291 	blk_mq_map_swqueue(q);
4292 	return 0;
4293 
4294 err_hctxs:
4295 	blk_mq_release(q);
4296 err_exit:
4297 	q->mq_ops = NULL;
4298 	return -ENOMEM;
4299 }
4300 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
4301 
4302 /* tags can _not_ be used after returning from blk_mq_exit_queue */
4303 void blk_mq_exit_queue(struct request_queue *q)
4304 {
4305 	struct blk_mq_tag_set *set = q->tag_set;
4306 
4307 	/* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
4308 	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
4309 	/* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
4310 	blk_mq_del_queue_tag_set(q);
4311 }
4312 
4313 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
4314 {
4315 	int i;
4316 
4317 	if (blk_mq_is_shared_tags(set->flags)) {
4318 		set->shared_tags = blk_mq_alloc_map_and_rqs(set,
4319 						BLK_MQ_NO_HCTX_IDX,
4320 						set->queue_depth);
4321 		if (!set->shared_tags)
4322 			return -ENOMEM;
4323 	}
4324 
4325 	for (i = 0; i < set->nr_hw_queues; i++) {
4326 		if (!__blk_mq_alloc_map_and_rqs(set, i))
4327 			goto out_unwind;
4328 		cond_resched();
4329 	}
4330 
4331 	return 0;
4332 
4333 out_unwind:
4334 	while (--i >= 0)
4335 		__blk_mq_free_map_and_rqs(set, i);
4336 
4337 	if (blk_mq_is_shared_tags(set->flags)) {
4338 		blk_mq_free_map_and_rqs(set, set->shared_tags,
4339 					BLK_MQ_NO_HCTX_IDX);
4340 	}
4341 
4342 	return -ENOMEM;
4343 }
4344 
4345 /*
4346  * Allocate the request maps associated with this tag_set. Note that this
4347  * may reduce the depth asked for, if memory is tight. set->queue_depth
4348  * will be updated to reflect the allocated depth.
4349  */
4350 static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set)
4351 {
4352 	unsigned int depth;
4353 	int err;
4354 
4355 	depth = set->queue_depth;
4356 	do {
4357 		err = __blk_mq_alloc_rq_maps(set);
4358 		if (!err)
4359 			break;
4360 
4361 		set->queue_depth >>= 1;
4362 		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
4363 			err = -ENOMEM;
4364 			break;
4365 		}
4366 	} while (set->queue_depth);
4367 
4368 	if (!set->queue_depth || err) {
4369 		pr_err("blk-mq: failed to allocate request map\n");
4370 		return -ENOMEM;
4371 	}
4372 
4373 	if (depth != set->queue_depth)
4374 		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
4375 						depth, set->queue_depth);
4376 
4377 	return 0;
4378 }
4379 
4380 static void blk_mq_update_queue_map(struct blk_mq_tag_set *set)
4381 {
4382 	/*
4383 	 * blk_mq_map_queues() and multiple .map_queues() implementations
4384 	 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
4385 	 * number of hardware queues.
4386 	 */
4387 	if (set->nr_maps == 1)
4388 		set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
4389 
4390 	if (set->ops->map_queues && !is_kdump_kernel()) {
4391 		int i;
4392 
4393 		/*
4394 		 * transport .map_queues is usually done in the following
4395 		 * way:
4396 		 *
4397 		 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
4398 		 * 	mask = get_cpu_mask(queue)
4399 		 * 	for_each_cpu(cpu, mask)
4400 		 * 		set->map[x].mq_map[cpu] = queue;
4401 		 * }
4402 		 *
4403 		 * When we need to remap, the table has to be cleared for
4404 		 * killing stale mapping since one CPU may not be mapped
4405 		 * to any hw queue.
4406 		 */
4407 		for (i = 0; i < set->nr_maps; i++)
4408 			blk_mq_clear_mq_map(&set->map[i]);
4409 
4410 		set->ops->map_queues(set);
4411 	} else {
4412 		BUG_ON(set->nr_maps > 1);
4413 		blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4414 	}
4415 }
4416 
4417 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
4418 				       int new_nr_hw_queues)
4419 {
4420 	struct blk_mq_tags **new_tags;
4421 	int i;
4422 
4423 	if (set->nr_hw_queues >= new_nr_hw_queues)
4424 		goto done;
4425 
4426 	new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
4427 				GFP_KERNEL, set->numa_node);
4428 	if (!new_tags)
4429 		return -ENOMEM;
4430 
4431 	if (set->tags)
4432 		memcpy(new_tags, set->tags, set->nr_hw_queues *
4433 		       sizeof(*set->tags));
4434 	kfree(set->tags);
4435 	set->tags = new_tags;
4436 
4437 	for (i = set->nr_hw_queues; i < new_nr_hw_queues; i++) {
4438 		if (!__blk_mq_alloc_map_and_rqs(set, i)) {
4439 			while (--i >= set->nr_hw_queues)
4440 				__blk_mq_free_map_and_rqs(set, i);
4441 			return -ENOMEM;
4442 		}
4443 		cond_resched();
4444 	}
4445 
4446 done:
4447 	set->nr_hw_queues = new_nr_hw_queues;
4448 	return 0;
4449 }
4450 
4451 /*
4452  * Alloc a tag set to be associated with one or more request queues.
4453  * May fail with EINVAL for various error conditions. May adjust the
4454  * requested depth down, if it's too large. In that case, the set
4455  * value will be stored in set->queue_depth.
4456  */
4457 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
4458 {
4459 	int i, ret;
4460 
4461 	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
4462 
4463 	if (!set->nr_hw_queues)
4464 		return -EINVAL;
4465 	if (!set->queue_depth)
4466 		return -EINVAL;
4467 	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
4468 		return -EINVAL;
4469 
4470 	if (!set->ops->queue_rq)
4471 		return -EINVAL;
4472 
4473 	if (!set->ops->get_budget ^ !set->ops->put_budget)
4474 		return -EINVAL;
4475 
4476 	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
4477 		pr_info("blk-mq: reduced tag depth to %u\n",
4478 			BLK_MQ_MAX_DEPTH);
4479 		set->queue_depth = BLK_MQ_MAX_DEPTH;
4480 	}
4481 
4482 	if (!set->nr_maps)
4483 		set->nr_maps = 1;
4484 	else if (set->nr_maps > HCTX_MAX_TYPES)
4485 		return -EINVAL;
4486 
4487 	/*
4488 	 * If a crashdump is active, then we are potentially in a very
4489 	 * memory constrained environment. Limit us to 1 queue and
4490 	 * 64 tags to prevent using too much memory.
4491 	 */
4492 	if (is_kdump_kernel()) {
4493 		set->nr_hw_queues = 1;
4494 		set->nr_maps = 1;
4495 		set->queue_depth = min(64U, set->queue_depth);
4496 	}
4497 	/*
4498 	 * There is no use for more h/w queues than cpus if we just have
4499 	 * a single map
4500 	 */
4501 	if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
4502 		set->nr_hw_queues = nr_cpu_ids;
4503 
4504 	if (set->flags & BLK_MQ_F_BLOCKING) {
4505 		set->srcu = kmalloc(sizeof(*set->srcu), GFP_KERNEL);
4506 		if (!set->srcu)
4507 			return -ENOMEM;
4508 		ret = init_srcu_struct(set->srcu);
4509 		if (ret)
4510 			goto out_free_srcu;
4511 	}
4512 
4513 	ret = -ENOMEM;
4514 	set->tags = kcalloc_node(set->nr_hw_queues,
4515 				 sizeof(struct blk_mq_tags *), GFP_KERNEL,
4516 				 set->numa_node);
4517 	if (!set->tags)
4518 		goto out_cleanup_srcu;
4519 
4520 	for (i = 0; i < set->nr_maps; i++) {
4521 		set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
4522 						  sizeof(set->map[i].mq_map[0]),
4523 						  GFP_KERNEL, set->numa_node);
4524 		if (!set->map[i].mq_map)
4525 			goto out_free_mq_map;
4526 		set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
4527 	}
4528 
4529 	blk_mq_update_queue_map(set);
4530 
4531 	ret = blk_mq_alloc_set_map_and_rqs(set);
4532 	if (ret)
4533 		goto out_free_mq_map;
4534 
4535 	mutex_init(&set->tag_list_lock);
4536 	INIT_LIST_HEAD(&set->tag_list);
4537 
4538 	return 0;
4539 
4540 out_free_mq_map:
4541 	for (i = 0; i < set->nr_maps; i++) {
4542 		kfree(set->map[i].mq_map);
4543 		set->map[i].mq_map = NULL;
4544 	}
4545 	kfree(set->tags);
4546 	set->tags = NULL;
4547 out_cleanup_srcu:
4548 	if (set->flags & BLK_MQ_F_BLOCKING)
4549 		cleanup_srcu_struct(set->srcu);
4550 out_free_srcu:
4551 	if (set->flags & BLK_MQ_F_BLOCKING)
4552 		kfree(set->srcu);
4553 	return ret;
4554 }
4555 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
4556 
4557 /* allocate and initialize a tagset for a simple single-queue device */
4558 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
4559 		const struct blk_mq_ops *ops, unsigned int queue_depth,
4560 		unsigned int set_flags)
4561 {
4562 	memset(set, 0, sizeof(*set));
4563 	set->ops = ops;
4564 	set->nr_hw_queues = 1;
4565 	set->nr_maps = 1;
4566 	set->queue_depth = queue_depth;
4567 	set->numa_node = NUMA_NO_NODE;
4568 	set->flags = set_flags;
4569 	return blk_mq_alloc_tag_set(set);
4570 }
4571 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);
4572 
4573 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
4574 {
4575 	int i, j;
4576 
4577 	for (i = 0; i < set->nr_hw_queues; i++)
4578 		__blk_mq_free_map_and_rqs(set, i);
4579 
4580 	if (blk_mq_is_shared_tags(set->flags)) {
4581 		blk_mq_free_map_and_rqs(set, set->shared_tags,
4582 					BLK_MQ_NO_HCTX_IDX);
4583 	}
4584 
4585 	for (j = 0; j < set->nr_maps; j++) {
4586 		kfree(set->map[j].mq_map);
4587 		set->map[j].mq_map = NULL;
4588 	}
4589 
4590 	kfree(set->tags);
4591 	set->tags = NULL;
4592 	if (set->flags & BLK_MQ_F_BLOCKING) {
4593 		cleanup_srcu_struct(set->srcu);
4594 		kfree(set->srcu);
4595 	}
4596 }
4597 EXPORT_SYMBOL(blk_mq_free_tag_set);
4598 
4599 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
4600 {
4601 	struct blk_mq_tag_set *set = q->tag_set;
4602 	struct blk_mq_hw_ctx *hctx;
4603 	int ret;
4604 	unsigned long i;
4605 
4606 	if (!set)
4607 		return -EINVAL;
4608 
4609 	if (q->nr_requests == nr)
4610 		return 0;
4611 
4612 	blk_mq_freeze_queue(q);
4613 	blk_mq_quiesce_queue(q);
4614 
4615 	ret = 0;
4616 	queue_for_each_hw_ctx(q, hctx, i) {
4617 		if (!hctx->tags)
4618 			continue;
4619 		/*
4620 		 * If we're using an MQ scheduler, just update the scheduler
4621 		 * queue depth. This is similar to what the old code would do.
4622 		 */
4623 		if (hctx->sched_tags) {
4624 			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
4625 						      nr, true);
4626 		} else {
4627 			ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
4628 						      false);
4629 		}
4630 		if (ret)
4631 			break;
4632 		if (q->elevator && q->elevator->type->ops.depth_updated)
4633 			q->elevator->type->ops.depth_updated(hctx);
4634 	}
4635 	if (!ret) {
4636 		q->nr_requests = nr;
4637 		if (blk_mq_is_shared_tags(set->flags)) {
4638 			if (q->elevator)
4639 				blk_mq_tag_update_sched_shared_tags(q);
4640 			else
4641 				blk_mq_tag_resize_shared_tags(set, nr);
4642 		}
4643 	}
4644 
4645 	blk_mq_unquiesce_queue(q);
4646 	blk_mq_unfreeze_queue(q);
4647 
4648 	return ret;
4649 }
4650 
4651 /*
4652  * request_queue and elevator_type pair.
4653  * It is just used by __blk_mq_update_nr_hw_queues to cache
4654  * the elevator_type associated with a request_queue.
4655  */
4656 struct blk_mq_qe_pair {
4657 	struct list_head node;
4658 	struct request_queue *q;
4659 	struct elevator_type *type;
4660 };
4661 
4662 /*
4663  * Cache the elevator_type in qe pair list and switch the
4664  * io scheduler to 'none'
4665  */
4666 static bool blk_mq_elv_switch_none(struct list_head *head,
4667 		struct request_queue *q)
4668 {
4669 	struct blk_mq_qe_pair *qe;
4670 
4671 	qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
4672 	if (!qe)
4673 		return false;
4674 
4675 	/* q->elevator needs protection from ->sysfs_lock */
4676 	mutex_lock(&q->sysfs_lock);
4677 
4678 	/* the check has to be done with holding sysfs_lock */
4679 	if (!q->elevator) {
4680 		kfree(qe);
4681 		goto unlock;
4682 	}
4683 
4684 	INIT_LIST_HEAD(&qe->node);
4685 	qe->q = q;
4686 	qe->type = q->elevator->type;
4687 	/* keep a reference to the elevator module as we'll switch back */
4688 	__elevator_get(qe->type);
4689 	list_add(&qe->node, head);
4690 	elevator_disable(q);
4691 unlock:
4692 	mutex_unlock(&q->sysfs_lock);
4693 
4694 	return true;
4695 }
4696 
4697 static struct blk_mq_qe_pair *blk_lookup_qe_pair(struct list_head *head,
4698 						struct request_queue *q)
4699 {
4700 	struct blk_mq_qe_pair *qe;
4701 
4702 	list_for_each_entry(qe, head, node)
4703 		if (qe->q == q)
4704 			return qe;
4705 
4706 	return NULL;
4707 }
4708 
4709 static void blk_mq_elv_switch_back(struct list_head *head,
4710 				  struct request_queue *q)
4711 {
4712 	struct blk_mq_qe_pair *qe;
4713 	struct elevator_type *t;
4714 
4715 	qe = blk_lookup_qe_pair(head, q);
4716 	if (!qe)
4717 		return;
4718 	t = qe->type;
4719 	list_del(&qe->node);
4720 	kfree(qe);
4721 
4722 	mutex_lock(&q->sysfs_lock);
4723 	elevator_switch(q, t);
4724 	/* drop the reference acquired in blk_mq_elv_switch_none */
4725 	elevator_put(t);
4726 	mutex_unlock(&q->sysfs_lock);
4727 }
4728 
4729 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
4730 							int nr_hw_queues)
4731 {
4732 	struct request_queue *q;
4733 	LIST_HEAD(head);
4734 	int prev_nr_hw_queues = set->nr_hw_queues;
4735 	int i;
4736 
4737 	lockdep_assert_held(&set->tag_list_lock);
4738 
4739 	if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
4740 		nr_hw_queues = nr_cpu_ids;
4741 	if (nr_hw_queues < 1)
4742 		return;
4743 	if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
4744 		return;
4745 
4746 	list_for_each_entry(q, &set->tag_list, tag_set_list)
4747 		blk_mq_freeze_queue(q);
4748 	/*
4749 	 * Switch IO scheduler to 'none', cleaning up the data associated
4750 	 * with the previous scheduler. We will switch back once we are done
4751 	 * updating the new sw to hw queue mappings.
4752 	 */
4753 	list_for_each_entry(q, &set->tag_list, tag_set_list)
4754 		if (!blk_mq_elv_switch_none(&head, q))
4755 			goto switch_back;
4756 
4757 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
4758 		blk_mq_debugfs_unregister_hctxs(q);
4759 		blk_mq_sysfs_unregister_hctxs(q);
4760 	}
4761 
4762 	if (blk_mq_realloc_tag_set_tags(set, nr_hw_queues) < 0)
4763 		goto reregister;
4764 
4765 fallback:
4766 	blk_mq_update_queue_map(set);
4767 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
4768 		blk_mq_realloc_hw_ctxs(set, q);
4769 		blk_mq_update_poll_flag(q);
4770 		if (q->nr_hw_queues != set->nr_hw_queues) {
4771 			int i = prev_nr_hw_queues;
4772 
4773 			pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
4774 					nr_hw_queues, prev_nr_hw_queues);
4775 			for (; i < set->nr_hw_queues; i++)
4776 				__blk_mq_free_map_and_rqs(set, i);
4777 
4778 			set->nr_hw_queues = prev_nr_hw_queues;
4779 			goto fallback;
4780 		}
4781 		blk_mq_map_swqueue(q);
4782 	}
4783 
4784 reregister:
4785 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
4786 		blk_mq_sysfs_register_hctxs(q);
4787 		blk_mq_debugfs_register_hctxs(q);
4788 	}
4789 
4790 switch_back:
4791 	list_for_each_entry(q, &set->tag_list, tag_set_list)
4792 		blk_mq_elv_switch_back(&head, q);
4793 
4794 	list_for_each_entry(q, &set->tag_list, tag_set_list)
4795 		blk_mq_unfreeze_queue(q);
4796 
4797 	/* Free the excess tags when nr_hw_queues shrink. */
4798 	for (i = set->nr_hw_queues; i < prev_nr_hw_queues; i++)
4799 		__blk_mq_free_map_and_rqs(set, i);
4800 }
4801 
4802 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
4803 {
4804 	mutex_lock(&set->tag_list_lock);
4805 	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
4806 	mutex_unlock(&set->tag_list_lock);
4807 }
4808 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
4809 
4810 static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
4811 			 struct io_comp_batch *iob, unsigned int flags)
4812 {
4813 	long state = get_current_state();
4814 	int ret;
4815 
4816 	do {
4817 		ret = q->mq_ops->poll(hctx, iob);
4818 		if (ret > 0) {
4819 			__set_current_state(TASK_RUNNING);
4820 			return ret;
4821 		}
4822 
4823 		if (signal_pending_state(state, current))
4824 			__set_current_state(TASK_RUNNING);
4825 		if (task_is_running(current))
4826 			return 1;
4827 
4828 		if (ret < 0 || (flags & BLK_POLL_ONESHOT))
4829 			break;
4830 		cpu_relax();
4831 	} while (!need_resched());
4832 
4833 	__set_current_state(TASK_RUNNING);
4834 	return 0;
4835 }
4836 
4837 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie,
4838 		struct io_comp_batch *iob, unsigned int flags)
4839 {
4840 	struct blk_mq_hw_ctx *hctx = xa_load(&q->hctx_table, cookie);
4841 
4842 	return blk_hctx_poll(q, hctx, iob, flags);
4843 }
4844 
4845 int blk_rq_poll(struct request *rq, struct io_comp_batch *iob,
4846 		unsigned int poll_flags)
4847 {
4848 	struct request_queue *q = rq->q;
4849 	int ret;
4850 
4851 	if (!blk_rq_is_poll(rq))
4852 		return 0;
4853 	if (!percpu_ref_tryget(&q->q_usage_counter))
4854 		return 0;
4855 
4856 	ret = blk_hctx_poll(q, rq->mq_hctx, iob, poll_flags);
4857 	blk_queue_exit(q);
4858 
4859 	return ret;
4860 }
4861 EXPORT_SYMBOL_GPL(blk_rq_poll);
4862 
4863 unsigned int blk_mq_rq_cpu(struct request *rq)
4864 {
4865 	return rq->mq_ctx->cpu;
4866 }
4867 EXPORT_SYMBOL(blk_mq_rq_cpu);
4868 
4869 void blk_mq_cancel_work_sync(struct request_queue *q)
4870 {
4871 	struct blk_mq_hw_ctx *hctx;
4872 	unsigned long i;
4873 
4874 	cancel_delayed_work_sync(&q->requeue_work);
4875 
4876 	queue_for_each_hw_ctx(q, hctx, i)
4877 		cancel_delayed_work_sync(&hctx->run_work);
4878 }
4879 
4880 static int __init blk_mq_init(void)
4881 {
4882 	int i;
4883 
4884 	for_each_possible_cpu(i)
4885 		init_llist_head(&per_cpu(blk_cpu_done, i));
4886 	for_each_possible_cpu(i)
4887 		INIT_CSD(&per_cpu(blk_cpu_csd, i),
4888 			 __blk_mq_complete_request_remote, NULL);
4889 	open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
4890 
4891 	cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
4892 				  "block/softirq:dead", NULL,
4893 				  blk_softirq_cpu_dead);
4894 	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
4895 				blk_mq_hctx_notify_dead);
4896 	cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
4897 				blk_mq_hctx_notify_online,
4898 				blk_mq_hctx_notify_offline);
4899 	return 0;
4900 }
4901 subsys_initcall(blk_mq_init);
4902