xref: /linux/block/blk-mq.c (revision 44f57d78)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block multiqueue core code
4  *
5  * Copyright (C) 2013-2014 Jens Axboe
6  * Copyright (C) 2013-2014 Christoph Hellwig
7  */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/kmemleak.h>
14 #include <linux/mm.h>
15 #include <linux/init.h>
16 #include <linux/slab.h>
17 #include <linux/workqueue.h>
18 #include <linux/smp.h>
19 #include <linux/llist.h>
20 #include <linux/list_sort.h>
21 #include <linux/cpu.h>
22 #include <linux/cache.h>
23 #include <linux/sched/sysctl.h>
24 #include <linux/sched/topology.h>
25 #include <linux/sched/signal.h>
26 #include <linux/delay.h>
27 #include <linux/crash_dump.h>
28 #include <linux/prefetch.h>
29 
30 #include <trace/events/block.h>
31 
32 #include <linux/blk-mq.h>
33 #include "blk.h"
34 #include "blk-mq.h"
35 #include "blk-mq-debugfs.h"
36 #include "blk-mq-tag.h"
37 #include "blk-pm.h"
38 #include "blk-stat.h"
39 #include "blk-mq-sched.h"
40 #include "blk-rq-qos.h"
41 
42 static void blk_mq_poll_stats_start(struct request_queue *q);
43 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
44 
45 static int blk_mq_poll_stats_bkt(const struct request *rq)
46 {
47 	int ddir, bytes, bucket;
48 
49 	ddir = rq_data_dir(rq);
50 	bytes = blk_rq_bytes(rq);
51 
52 	bucket = ddir + 2*(ilog2(bytes) - 9);
53 
54 	if (bucket < 0)
55 		return -1;
56 	else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
57 		return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
58 
59 	return bucket;
60 }
61 
62 /*
63  * Check if any of the ctx, dispatch list or elevator
64  * have pending work in this hardware queue.
65  */
66 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
67 {
68 	return !list_empty_careful(&hctx->dispatch) ||
69 		sbitmap_any_bit_set(&hctx->ctx_map) ||
70 			blk_mq_sched_has_work(hctx);
71 }
72 
73 /*
74  * Mark this ctx as having pending work in this hardware queue
75  */
76 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
77 				     struct blk_mq_ctx *ctx)
78 {
79 	const int bit = ctx->index_hw[hctx->type];
80 
81 	if (!sbitmap_test_bit(&hctx->ctx_map, bit))
82 		sbitmap_set_bit(&hctx->ctx_map, bit);
83 }
84 
85 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
86 				      struct blk_mq_ctx *ctx)
87 {
88 	const int bit = ctx->index_hw[hctx->type];
89 
90 	sbitmap_clear_bit(&hctx->ctx_map, bit);
91 }
92 
93 struct mq_inflight {
94 	struct hd_struct *part;
95 	unsigned int *inflight;
96 };
97 
98 static bool blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
99 				  struct request *rq, void *priv,
100 				  bool reserved)
101 {
102 	struct mq_inflight *mi = priv;
103 
104 	/*
105 	 * index[0] counts the specific partition that was asked for.
106 	 */
107 	if (rq->part == mi->part)
108 		mi->inflight[0]++;
109 
110 	return true;
111 }
112 
113 unsigned int blk_mq_in_flight(struct request_queue *q, struct hd_struct *part)
114 {
115 	unsigned inflight[2];
116 	struct mq_inflight mi = { .part = part, .inflight = inflight, };
117 
118 	inflight[0] = inflight[1] = 0;
119 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
120 
121 	return inflight[0];
122 }
123 
124 static bool blk_mq_check_inflight_rw(struct blk_mq_hw_ctx *hctx,
125 				     struct request *rq, void *priv,
126 				     bool reserved)
127 {
128 	struct mq_inflight *mi = priv;
129 
130 	if (rq->part == mi->part)
131 		mi->inflight[rq_data_dir(rq)]++;
132 
133 	return true;
134 }
135 
136 void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part,
137 			 unsigned int inflight[2])
138 {
139 	struct mq_inflight mi = { .part = part, .inflight = inflight, };
140 
141 	inflight[0] = inflight[1] = 0;
142 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight_rw, &mi);
143 }
144 
145 void blk_freeze_queue_start(struct request_queue *q)
146 {
147 	mutex_lock(&q->mq_freeze_lock);
148 	if (++q->mq_freeze_depth == 1) {
149 		percpu_ref_kill(&q->q_usage_counter);
150 		mutex_unlock(&q->mq_freeze_lock);
151 		if (queue_is_mq(q))
152 			blk_mq_run_hw_queues(q, false);
153 	} else {
154 		mutex_unlock(&q->mq_freeze_lock);
155 	}
156 }
157 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
158 
159 void blk_mq_freeze_queue_wait(struct request_queue *q)
160 {
161 	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
162 }
163 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
164 
165 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
166 				     unsigned long timeout)
167 {
168 	return wait_event_timeout(q->mq_freeze_wq,
169 					percpu_ref_is_zero(&q->q_usage_counter),
170 					timeout);
171 }
172 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
173 
174 /*
175  * Guarantee no request is in use, so we can change any data structure of
176  * the queue afterward.
177  */
178 void blk_freeze_queue(struct request_queue *q)
179 {
180 	/*
181 	 * In the !blk_mq case we are only calling this to kill the
182 	 * q_usage_counter, otherwise this increases the freeze depth
183 	 * and waits for it to return to zero.  For this reason there is
184 	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
185 	 * exported to drivers as the only user for unfreeze is blk_mq.
186 	 */
187 	blk_freeze_queue_start(q);
188 	blk_mq_freeze_queue_wait(q);
189 }
190 
191 void blk_mq_freeze_queue(struct request_queue *q)
192 {
193 	/*
194 	 * ...just an alias to keep freeze and unfreeze actions balanced
195 	 * in the blk_mq_* namespace
196 	 */
197 	blk_freeze_queue(q);
198 }
199 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
200 
201 void blk_mq_unfreeze_queue(struct request_queue *q)
202 {
203 	mutex_lock(&q->mq_freeze_lock);
204 	q->mq_freeze_depth--;
205 	WARN_ON_ONCE(q->mq_freeze_depth < 0);
206 	if (!q->mq_freeze_depth) {
207 		percpu_ref_resurrect(&q->q_usage_counter);
208 		wake_up_all(&q->mq_freeze_wq);
209 	}
210 	mutex_unlock(&q->mq_freeze_lock);
211 }
212 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
213 
214 /*
215  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
216  * mpt3sas driver such that this function can be removed.
217  */
218 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
219 {
220 	blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
221 }
222 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
223 
224 /**
225  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
226  * @q: request queue.
227  *
228  * Note: this function does not prevent that the struct request end_io()
229  * callback function is invoked. Once this function is returned, we make
230  * sure no dispatch can happen until the queue is unquiesced via
231  * blk_mq_unquiesce_queue().
232  */
233 void blk_mq_quiesce_queue(struct request_queue *q)
234 {
235 	struct blk_mq_hw_ctx *hctx;
236 	unsigned int i;
237 	bool rcu = false;
238 
239 	blk_mq_quiesce_queue_nowait(q);
240 
241 	queue_for_each_hw_ctx(q, hctx, i) {
242 		if (hctx->flags & BLK_MQ_F_BLOCKING)
243 			synchronize_srcu(hctx->srcu);
244 		else
245 			rcu = true;
246 	}
247 	if (rcu)
248 		synchronize_rcu();
249 }
250 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
251 
252 /*
253  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
254  * @q: request queue.
255  *
256  * This function recovers queue into the state before quiescing
257  * which is done by blk_mq_quiesce_queue.
258  */
259 void blk_mq_unquiesce_queue(struct request_queue *q)
260 {
261 	blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
262 
263 	/* dispatch requests which are inserted during quiescing */
264 	blk_mq_run_hw_queues(q, true);
265 }
266 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
267 
268 void blk_mq_wake_waiters(struct request_queue *q)
269 {
270 	struct blk_mq_hw_ctx *hctx;
271 	unsigned int i;
272 
273 	queue_for_each_hw_ctx(q, hctx, i)
274 		if (blk_mq_hw_queue_mapped(hctx))
275 			blk_mq_tag_wakeup_all(hctx->tags, true);
276 }
277 
278 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
279 {
280 	return blk_mq_has_free_tags(hctx->tags);
281 }
282 EXPORT_SYMBOL(blk_mq_can_queue);
283 
284 /*
285  * Only need start/end time stamping if we have stats enabled, or using
286  * an IO scheduler.
287  */
288 static inline bool blk_mq_need_time_stamp(struct request *rq)
289 {
290 	return (rq->rq_flags & RQF_IO_STAT) || rq->q->elevator;
291 }
292 
293 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
294 		unsigned int tag, unsigned int op)
295 {
296 	struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
297 	struct request *rq = tags->static_rqs[tag];
298 	req_flags_t rq_flags = 0;
299 
300 	if (data->flags & BLK_MQ_REQ_INTERNAL) {
301 		rq->tag = -1;
302 		rq->internal_tag = tag;
303 	} else {
304 		if (data->hctx->flags & BLK_MQ_F_TAG_SHARED) {
305 			rq_flags = RQF_MQ_INFLIGHT;
306 			atomic_inc(&data->hctx->nr_active);
307 		}
308 		rq->tag = tag;
309 		rq->internal_tag = -1;
310 		data->hctx->tags->rqs[rq->tag] = rq;
311 	}
312 
313 	/* csd/requeue_work/fifo_time is initialized before use */
314 	rq->q = data->q;
315 	rq->mq_ctx = data->ctx;
316 	rq->mq_hctx = data->hctx;
317 	rq->rq_flags = rq_flags;
318 	rq->cmd_flags = op;
319 	if (data->flags & BLK_MQ_REQ_PREEMPT)
320 		rq->rq_flags |= RQF_PREEMPT;
321 	if (blk_queue_io_stat(data->q))
322 		rq->rq_flags |= RQF_IO_STAT;
323 	INIT_LIST_HEAD(&rq->queuelist);
324 	INIT_HLIST_NODE(&rq->hash);
325 	RB_CLEAR_NODE(&rq->rb_node);
326 	rq->rq_disk = NULL;
327 	rq->part = NULL;
328 	if (blk_mq_need_time_stamp(rq))
329 		rq->start_time_ns = ktime_get_ns();
330 	else
331 		rq->start_time_ns = 0;
332 	rq->io_start_time_ns = 0;
333 	rq->nr_phys_segments = 0;
334 #if defined(CONFIG_BLK_DEV_INTEGRITY)
335 	rq->nr_integrity_segments = 0;
336 #endif
337 	/* tag was already set */
338 	rq->extra_len = 0;
339 	WRITE_ONCE(rq->deadline, 0);
340 
341 	rq->timeout = 0;
342 
343 	rq->end_io = NULL;
344 	rq->end_io_data = NULL;
345 
346 	data->ctx->rq_dispatched[op_is_sync(op)]++;
347 	refcount_set(&rq->ref, 1);
348 	return rq;
349 }
350 
351 static struct request *blk_mq_get_request(struct request_queue *q,
352 					  struct bio *bio,
353 					  struct blk_mq_alloc_data *data)
354 {
355 	struct elevator_queue *e = q->elevator;
356 	struct request *rq;
357 	unsigned int tag;
358 	bool put_ctx_on_error = false;
359 
360 	blk_queue_enter_live(q);
361 	data->q = q;
362 	if (likely(!data->ctx)) {
363 		data->ctx = blk_mq_get_ctx(q);
364 		put_ctx_on_error = true;
365 	}
366 	if (likely(!data->hctx))
367 		data->hctx = blk_mq_map_queue(q, data->cmd_flags,
368 						data->ctx);
369 	if (data->cmd_flags & REQ_NOWAIT)
370 		data->flags |= BLK_MQ_REQ_NOWAIT;
371 
372 	if (e) {
373 		data->flags |= BLK_MQ_REQ_INTERNAL;
374 
375 		/*
376 		 * Flush requests are special and go directly to the
377 		 * dispatch list. Don't include reserved tags in the
378 		 * limiting, as it isn't useful.
379 		 */
380 		if (!op_is_flush(data->cmd_flags) &&
381 		    e->type->ops.limit_depth &&
382 		    !(data->flags & BLK_MQ_REQ_RESERVED))
383 			e->type->ops.limit_depth(data->cmd_flags, data);
384 	} else {
385 		blk_mq_tag_busy(data->hctx);
386 	}
387 
388 	tag = blk_mq_get_tag(data);
389 	if (tag == BLK_MQ_TAG_FAIL) {
390 		if (put_ctx_on_error) {
391 			blk_mq_put_ctx(data->ctx);
392 			data->ctx = NULL;
393 		}
394 		blk_queue_exit(q);
395 		return NULL;
396 	}
397 
398 	rq = blk_mq_rq_ctx_init(data, tag, data->cmd_flags);
399 	if (!op_is_flush(data->cmd_flags)) {
400 		rq->elv.icq = NULL;
401 		if (e && e->type->ops.prepare_request) {
402 			if (e->type->icq_cache)
403 				blk_mq_sched_assign_ioc(rq);
404 
405 			e->type->ops.prepare_request(rq, bio);
406 			rq->rq_flags |= RQF_ELVPRIV;
407 		}
408 	}
409 	data->hctx->queued++;
410 	return rq;
411 }
412 
413 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
414 		blk_mq_req_flags_t flags)
415 {
416 	struct blk_mq_alloc_data alloc_data = { .flags = flags, .cmd_flags = op };
417 	struct request *rq;
418 	int ret;
419 
420 	ret = blk_queue_enter(q, flags);
421 	if (ret)
422 		return ERR_PTR(ret);
423 
424 	rq = blk_mq_get_request(q, NULL, &alloc_data);
425 	blk_queue_exit(q);
426 
427 	if (!rq)
428 		return ERR_PTR(-EWOULDBLOCK);
429 
430 	blk_mq_put_ctx(alloc_data.ctx);
431 
432 	rq->__data_len = 0;
433 	rq->__sector = (sector_t) -1;
434 	rq->bio = rq->biotail = NULL;
435 	return rq;
436 }
437 EXPORT_SYMBOL(blk_mq_alloc_request);
438 
439 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
440 	unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
441 {
442 	struct blk_mq_alloc_data alloc_data = { .flags = flags, .cmd_flags = op };
443 	struct request *rq;
444 	unsigned int cpu;
445 	int ret;
446 
447 	/*
448 	 * If the tag allocator sleeps we could get an allocation for a
449 	 * different hardware context.  No need to complicate the low level
450 	 * allocator for this for the rare use case of a command tied to
451 	 * a specific queue.
452 	 */
453 	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
454 		return ERR_PTR(-EINVAL);
455 
456 	if (hctx_idx >= q->nr_hw_queues)
457 		return ERR_PTR(-EIO);
458 
459 	ret = blk_queue_enter(q, flags);
460 	if (ret)
461 		return ERR_PTR(ret);
462 
463 	/*
464 	 * Check if the hardware context is actually mapped to anything.
465 	 * If not tell the caller that it should skip this queue.
466 	 */
467 	alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
468 	if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
469 		blk_queue_exit(q);
470 		return ERR_PTR(-EXDEV);
471 	}
472 	cpu = cpumask_first_and(alloc_data.hctx->cpumask, cpu_online_mask);
473 	alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
474 
475 	rq = blk_mq_get_request(q, NULL, &alloc_data);
476 	blk_queue_exit(q);
477 
478 	if (!rq)
479 		return ERR_PTR(-EWOULDBLOCK);
480 
481 	return rq;
482 }
483 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
484 
485 static void __blk_mq_free_request(struct request *rq)
486 {
487 	struct request_queue *q = rq->q;
488 	struct blk_mq_ctx *ctx = rq->mq_ctx;
489 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
490 	const int sched_tag = rq->internal_tag;
491 
492 	blk_pm_mark_last_busy(rq);
493 	rq->mq_hctx = NULL;
494 	if (rq->tag != -1)
495 		blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
496 	if (sched_tag != -1)
497 		blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
498 	blk_mq_sched_restart(hctx);
499 	blk_queue_exit(q);
500 }
501 
502 void blk_mq_free_request(struct request *rq)
503 {
504 	struct request_queue *q = rq->q;
505 	struct elevator_queue *e = q->elevator;
506 	struct blk_mq_ctx *ctx = rq->mq_ctx;
507 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
508 
509 	if (rq->rq_flags & RQF_ELVPRIV) {
510 		if (e && e->type->ops.finish_request)
511 			e->type->ops.finish_request(rq);
512 		if (rq->elv.icq) {
513 			put_io_context(rq->elv.icq->ioc);
514 			rq->elv.icq = NULL;
515 		}
516 	}
517 
518 	ctx->rq_completed[rq_is_sync(rq)]++;
519 	if (rq->rq_flags & RQF_MQ_INFLIGHT)
520 		atomic_dec(&hctx->nr_active);
521 
522 	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
523 		laptop_io_completion(q->backing_dev_info);
524 
525 	rq_qos_done(q, rq);
526 
527 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
528 	if (refcount_dec_and_test(&rq->ref))
529 		__blk_mq_free_request(rq);
530 }
531 EXPORT_SYMBOL_GPL(blk_mq_free_request);
532 
533 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
534 {
535 	u64 now = 0;
536 
537 	if (blk_mq_need_time_stamp(rq))
538 		now = ktime_get_ns();
539 
540 	if (rq->rq_flags & RQF_STATS) {
541 		blk_mq_poll_stats_start(rq->q);
542 		blk_stat_add(rq, now);
543 	}
544 
545 	if (rq->internal_tag != -1)
546 		blk_mq_sched_completed_request(rq, now);
547 
548 	blk_account_io_done(rq, now);
549 
550 	if (rq->end_io) {
551 		rq_qos_done(rq->q, rq);
552 		rq->end_io(rq, error);
553 	} else {
554 		blk_mq_free_request(rq);
555 	}
556 }
557 EXPORT_SYMBOL(__blk_mq_end_request);
558 
559 void blk_mq_end_request(struct request *rq, blk_status_t error)
560 {
561 	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
562 		BUG();
563 	__blk_mq_end_request(rq, error);
564 }
565 EXPORT_SYMBOL(blk_mq_end_request);
566 
567 static void __blk_mq_complete_request_remote(void *data)
568 {
569 	struct request *rq = data;
570 	struct request_queue *q = rq->q;
571 
572 	q->mq_ops->complete(rq);
573 }
574 
575 static void __blk_mq_complete_request(struct request *rq)
576 {
577 	struct blk_mq_ctx *ctx = rq->mq_ctx;
578 	struct request_queue *q = rq->q;
579 	bool shared = false;
580 	int cpu;
581 
582 	WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
583 	/*
584 	 * Most of single queue controllers, there is only one irq vector
585 	 * for handling IO completion, and the only irq's affinity is set
586 	 * as all possible CPUs. On most of ARCHs, this affinity means the
587 	 * irq is handled on one specific CPU.
588 	 *
589 	 * So complete IO reqeust in softirq context in case of single queue
590 	 * for not degrading IO performance by irqsoff latency.
591 	 */
592 	if (q->nr_hw_queues == 1) {
593 		__blk_complete_request(rq);
594 		return;
595 	}
596 
597 	/*
598 	 * For a polled request, always complete locallly, it's pointless
599 	 * to redirect the completion.
600 	 */
601 	if ((rq->cmd_flags & REQ_HIPRI) ||
602 	    !test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags)) {
603 		q->mq_ops->complete(rq);
604 		return;
605 	}
606 
607 	cpu = get_cpu();
608 	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &q->queue_flags))
609 		shared = cpus_share_cache(cpu, ctx->cpu);
610 
611 	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
612 		rq->csd.func = __blk_mq_complete_request_remote;
613 		rq->csd.info = rq;
614 		rq->csd.flags = 0;
615 		smp_call_function_single_async(ctx->cpu, &rq->csd);
616 	} else {
617 		q->mq_ops->complete(rq);
618 	}
619 	put_cpu();
620 }
621 
622 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
623 	__releases(hctx->srcu)
624 {
625 	if (!(hctx->flags & BLK_MQ_F_BLOCKING))
626 		rcu_read_unlock();
627 	else
628 		srcu_read_unlock(hctx->srcu, srcu_idx);
629 }
630 
631 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
632 	__acquires(hctx->srcu)
633 {
634 	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
635 		/* shut up gcc false positive */
636 		*srcu_idx = 0;
637 		rcu_read_lock();
638 	} else
639 		*srcu_idx = srcu_read_lock(hctx->srcu);
640 }
641 
642 /**
643  * blk_mq_complete_request - end I/O on a request
644  * @rq:		the request being processed
645  *
646  * Description:
647  *	Ends all I/O on a request. It does not handle partial completions.
648  *	The actual completion happens out-of-order, through a IPI handler.
649  **/
650 bool blk_mq_complete_request(struct request *rq)
651 {
652 	if (unlikely(blk_should_fake_timeout(rq->q)))
653 		return false;
654 	__blk_mq_complete_request(rq);
655 	return true;
656 }
657 EXPORT_SYMBOL(blk_mq_complete_request);
658 
659 void blk_mq_complete_request_sync(struct request *rq)
660 {
661 	WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
662 	rq->q->mq_ops->complete(rq);
663 }
664 EXPORT_SYMBOL_GPL(blk_mq_complete_request_sync);
665 
666 int blk_mq_request_started(struct request *rq)
667 {
668 	return blk_mq_rq_state(rq) != MQ_RQ_IDLE;
669 }
670 EXPORT_SYMBOL_GPL(blk_mq_request_started);
671 
672 void blk_mq_start_request(struct request *rq)
673 {
674 	struct request_queue *q = rq->q;
675 
676 	blk_mq_sched_started_request(rq);
677 
678 	trace_block_rq_issue(q, rq);
679 
680 	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
681 		rq->io_start_time_ns = ktime_get_ns();
682 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
683 		rq->throtl_size = blk_rq_sectors(rq);
684 #endif
685 		rq->rq_flags |= RQF_STATS;
686 		rq_qos_issue(q, rq);
687 	}
688 
689 	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
690 
691 	blk_add_timer(rq);
692 	WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
693 
694 	if (q->dma_drain_size && blk_rq_bytes(rq)) {
695 		/*
696 		 * Make sure space for the drain appears.  We know we can do
697 		 * this because max_hw_segments has been adjusted to be one
698 		 * fewer than the device can handle.
699 		 */
700 		rq->nr_phys_segments++;
701 	}
702 }
703 EXPORT_SYMBOL(blk_mq_start_request);
704 
705 static void __blk_mq_requeue_request(struct request *rq)
706 {
707 	struct request_queue *q = rq->q;
708 
709 	blk_mq_put_driver_tag(rq);
710 
711 	trace_block_rq_requeue(q, rq);
712 	rq_qos_requeue(q, rq);
713 
714 	if (blk_mq_request_started(rq)) {
715 		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
716 		rq->rq_flags &= ~RQF_TIMED_OUT;
717 		if (q->dma_drain_size && blk_rq_bytes(rq))
718 			rq->nr_phys_segments--;
719 	}
720 }
721 
722 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
723 {
724 	__blk_mq_requeue_request(rq);
725 
726 	/* this request will be re-inserted to io scheduler queue */
727 	blk_mq_sched_requeue_request(rq);
728 
729 	BUG_ON(!list_empty(&rq->queuelist));
730 	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
731 }
732 EXPORT_SYMBOL(blk_mq_requeue_request);
733 
734 static void blk_mq_requeue_work(struct work_struct *work)
735 {
736 	struct request_queue *q =
737 		container_of(work, struct request_queue, requeue_work.work);
738 	LIST_HEAD(rq_list);
739 	struct request *rq, *next;
740 
741 	spin_lock_irq(&q->requeue_lock);
742 	list_splice_init(&q->requeue_list, &rq_list);
743 	spin_unlock_irq(&q->requeue_lock);
744 
745 	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
746 		if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
747 			continue;
748 
749 		rq->rq_flags &= ~RQF_SOFTBARRIER;
750 		list_del_init(&rq->queuelist);
751 		/*
752 		 * If RQF_DONTPREP, rq has contained some driver specific
753 		 * data, so insert it to hctx dispatch list to avoid any
754 		 * merge.
755 		 */
756 		if (rq->rq_flags & RQF_DONTPREP)
757 			blk_mq_request_bypass_insert(rq, false);
758 		else
759 			blk_mq_sched_insert_request(rq, true, false, false);
760 	}
761 
762 	while (!list_empty(&rq_list)) {
763 		rq = list_entry(rq_list.next, struct request, queuelist);
764 		list_del_init(&rq->queuelist);
765 		blk_mq_sched_insert_request(rq, false, false, false);
766 	}
767 
768 	blk_mq_run_hw_queues(q, false);
769 }
770 
771 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
772 				bool kick_requeue_list)
773 {
774 	struct request_queue *q = rq->q;
775 	unsigned long flags;
776 
777 	/*
778 	 * We abuse this flag that is otherwise used by the I/O scheduler to
779 	 * request head insertion from the workqueue.
780 	 */
781 	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
782 
783 	spin_lock_irqsave(&q->requeue_lock, flags);
784 	if (at_head) {
785 		rq->rq_flags |= RQF_SOFTBARRIER;
786 		list_add(&rq->queuelist, &q->requeue_list);
787 	} else {
788 		list_add_tail(&rq->queuelist, &q->requeue_list);
789 	}
790 	spin_unlock_irqrestore(&q->requeue_lock, flags);
791 
792 	if (kick_requeue_list)
793 		blk_mq_kick_requeue_list(q);
794 }
795 
796 void blk_mq_kick_requeue_list(struct request_queue *q)
797 {
798 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
799 }
800 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
801 
802 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
803 				    unsigned long msecs)
804 {
805 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
806 				    msecs_to_jiffies(msecs));
807 }
808 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
809 
810 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
811 {
812 	if (tag < tags->nr_tags) {
813 		prefetch(tags->rqs[tag]);
814 		return tags->rqs[tag];
815 	}
816 
817 	return NULL;
818 }
819 EXPORT_SYMBOL(blk_mq_tag_to_rq);
820 
821 static bool blk_mq_rq_inflight(struct blk_mq_hw_ctx *hctx, struct request *rq,
822 			       void *priv, bool reserved)
823 {
824 	/*
825 	 * If we find a request that is inflight and the queue matches,
826 	 * we know the queue is busy. Return false to stop the iteration.
827 	 */
828 	if (rq->state == MQ_RQ_IN_FLIGHT && rq->q == hctx->queue) {
829 		bool *busy = priv;
830 
831 		*busy = true;
832 		return false;
833 	}
834 
835 	return true;
836 }
837 
838 bool blk_mq_queue_inflight(struct request_queue *q)
839 {
840 	bool busy = false;
841 
842 	blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
843 	return busy;
844 }
845 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
846 
847 static void blk_mq_rq_timed_out(struct request *req, bool reserved)
848 {
849 	req->rq_flags |= RQF_TIMED_OUT;
850 	if (req->q->mq_ops->timeout) {
851 		enum blk_eh_timer_return ret;
852 
853 		ret = req->q->mq_ops->timeout(req, reserved);
854 		if (ret == BLK_EH_DONE)
855 			return;
856 		WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
857 	}
858 
859 	blk_add_timer(req);
860 }
861 
862 static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
863 {
864 	unsigned long deadline;
865 
866 	if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
867 		return false;
868 	if (rq->rq_flags & RQF_TIMED_OUT)
869 		return false;
870 
871 	deadline = READ_ONCE(rq->deadline);
872 	if (time_after_eq(jiffies, deadline))
873 		return true;
874 
875 	if (*next == 0)
876 		*next = deadline;
877 	else if (time_after(*next, deadline))
878 		*next = deadline;
879 	return false;
880 }
881 
882 static bool blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
883 		struct request *rq, void *priv, bool reserved)
884 {
885 	unsigned long *next = priv;
886 
887 	/*
888 	 * Just do a quick check if it is expired before locking the request in
889 	 * so we're not unnecessarilly synchronizing across CPUs.
890 	 */
891 	if (!blk_mq_req_expired(rq, next))
892 		return true;
893 
894 	/*
895 	 * We have reason to believe the request may be expired. Take a
896 	 * reference on the request to lock this request lifetime into its
897 	 * currently allocated context to prevent it from being reallocated in
898 	 * the event the completion by-passes this timeout handler.
899 	 *
900 	 * If the reference was already released, then the driver beat the
901 	 * timeout handler to posting a natural completion.
902 	 */
903 	if (!refcount_inc_not_zero(&rq->ref))
904 		return true;
905 
906 	/*
907 	 * The request is now locked and cannot be reallocated underneath the
908 	 * timeout handler's processing. Re-verify this exact request is truly
909 	 * expired; if it is not expired, then the request was completed and
910 	 * reallocated as a new request.
911 	 */
912 	if (blk_mq_req_expired(rq, next))
913 		blk_mq_rq_timed_out(rq, reserved);
914 	if (refcount_dec_and_test(&rq->ref))
915 		__blk_mq_free_request(rq);
916 
917 	return true;
918 }
919 
920 static void blk_mq_timeout_work(struct work_struct *work)
921 {
922 	struct request_queue *q =
923 		container_of(work, struct request_queue, timeout_work);
924 	unsigned long next = 0;
925 	struct blk_mq_hw_ctx *hctx;
926 	int i;
927 
928 	/* A deadlock might occur if a request is stuck requiring a
929 	 * timeout at the same time a queue freeze is waiting
930 	 * completion, since the timeout code would not be able to
931 	 * acquire the queue reference here.
932 	 *
933 	 * That's why we don't use blk_queue_enter here; instead, we use
934 	 * percpu_ref_tryget directly, because we need to be able to
935 	 * obtain a reference even in the short window between the queue
936 	 * starting to freeze, by dropping the first reference in
937 	 * blk_freeze_queue_start, and the moment the last request is
938 	 * consumed, marked by the instant q_usage_counter reaches
939 	 * zero.
940 	 */
941 	if (!percpu_ref_tryget(&q->q_usage_counter))
942 		return;
943 
944 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
945 
946 	if (next != 0) {
947 		mod_timer(&q->timeout, next);
948 	} else {
949 		/*
950 		 * Request timeouts are handled as a forward rolling timer. If
951 		 * we end up here it means that no requests are pending and
952 		 * also that no request has been pending for a while. Mark
953 		 * each hctx as idle.
954 		 */
955 		queue_for_each_hw_ctx(q, hctx, i) {
956 			/* the hctx may be unmapped, so check it here */
957 			if (blk_mq_hw_queue_mapped(hctx))
958 				blk_mq_tag_idle(hctx);
959 		}
960 	}
961 	blk_queue_exit(q);
962 }
963 
964 struct flush_busy_ctx_data {
965 	struct blk_mq_hw_ctx *hctx;
966 	struct list_head *list;
967 };
968 
969 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
970 {
971 	struct flush_busy_ctx_data *flush_data = data;
972 	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
973 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
974 	enum hctx_type type = hctx->type;
975 
976 	spin_lock(&ctx->lock);
977 	list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
978 	sbitmap_clear_bit(sb, bitnr);
979 	spin_unlock(&ctx->lock);
980 	return true;
981 }
982 
983 /*
984  * Process software queues that have been marked busy, splicing them
985  * to the for-dispatch
986  */
987 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
988 {
989 	struct flush_busy_ctx_data data = {
990 		.hctx = hctx,
991 		.list = list,
992 	};
993 
994 	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
995 }
996 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
997 
998 struct dispatch_rq_data {
999 	struct blk_mq_hw_ctx *hctx;
1000 	struct request *rq;
1001 };
1002 
1003 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1004 		void *data)
1005 {
1006 	struct dispatch_rq_data *dispatch_data = data;
1007 	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1008 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1009 	enum hctx_type type = hctx->type;
1010 
1011 	spin_lock(&ctx->lock);
1012 	if (!list_empty(&ctx->rq_lists[type])) {
1013 		dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1014 		list_del_init(&dispatch_data->rq->queuelist);
1015 		if (list_empty(&ctx->rq_lists[type]))
1016 			sbitmap_clear_bit(sb, bitnr);
1017 	}
1018 	spin_unlock(&ctx->lock);
1019 
1020 	return !dispatch_data->rq;
1021 }
1022 
1023 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1024 					struct blk_mq_ctx *start)
1025 {
1026 	unsigned off = start ? start->index_hw[hctx->type] : 0;
1027 	struct dispatch_rq_data data = {
1028 		.hctx = hctx,
1029 		.rq   = NULL,
1030 	};
1031 
1032 	__sbitmap_for_each_set(&hctx->ctx_map, off,
1033 			       dispatch_rq_from_ctx, &data);
1034 
1035 	return data.rq;
1036 }
1037 
1038 static inline unsigned int queued_to_index(unsigned int queued)
1039 {
1040 	if (!queued)
1041 		return 0;
1042 
1043 	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1044 }
1045 
1046 bool blk_mq_get_driver_tag(struct request *rq)
1047 {
1048 	struct blk_mq_alloc_data data = {
1049 		.q = rq->q,
1050 		.hctx = rq->mq_hctx,
1051 		.flags = BLK_MQ_REQ_NOWAIT,
1052 		.cmd_flags = rq->cmd_flags,
1053 	};
1054 	bool shared;
1055 
1056 	if (rq->tag != -1)
1057 		goto done;
1058 
1059 	if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
1060 		data.flags |= BLK_MQ_REQ_RESERVED;
1061 
1062 	shared = blk_mq_tag_busy(data.hctx);
1063 	rq->tag = blk_mq_get_tag(&data);
1064 	if (rq->tag >= 0) {
1065 		if (shared) {
1066 			rq->rq_flags |= RQF_MQ_INFLIGHT;
1067 			atomic_inc(&data.hctx->nr_active);
1068 		}
1069 		data.hctx->tags->rqs[rq->tag] = rq;
1070 	}
1071 
1072 done:
1073 	return rq->tag != -1;
1074 }
1075 
1076 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1077 				int flags, void *key)
1078 {
1079 	struct blk_mq_hw_ctx *hctx;
1080 
1081 	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1082 
1083 	spin_lock(&hctx->dispatch_wait_lock);
1084 	if (!list_empty(&wait->entry)) {
1085 		struct sbitmap_queue *sbq;
1086 
1087 		list_del_init(&wait->entry);
1088 		sbq = &hctx->tags->bitmap_tags;
1089 		atomic_dec(&sbq->ws_active);
1090 	}
1091 	spin_unlock(&hctx->dispatch_wait_lock);
1092 
1093 	blk_mq_run_hw_queue(hctx, true);
1094 	return 1;
1095 }
1096 
1097 /*
1098  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1099  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1100  * restart. For both cases, take care to check the condition again after
1101  * marking us as waiting.
1102  */
1103 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1104 				 struct request *rq)
1105 {
1106 	struct sbitmap_queue *sbq = &hctx->tags->bitmap_tags;
1107 	struct wait_queue_head *wq;
1108 	wait_queue_entry_t *wait;
1109 	bool ret;
1110 
1111 	if (!(hctx->flags & BLK_MQ_F_TAG_SHARED)) {
1112 		blk_mq_sched_mark_restart_hctx(hctx);
1113 
1114 		/*
1115 		 * It's possible that a tag was freed in the window between the
1116 		 * allocation failure and adding the hardware queue to the wait
1117 		 * queue.
1118 		 *
1119 		 * Don't clear RESTART here, someone else could have set it.
1120 		 * At most this will cost an extra queue run.
1121 		 */
1122 		return blk_mq_get_driver_tag(rq);
1123 	}
1124 
1125 	wait = &hctx->dispatch_wait;
1126 	if (!list_empty_careful(&wait->entry))
1127 		return false;
1128 
1129 	wq = &bt_wait_ptr(sbq, hctx)->wait;
1130 
1131 	spin_lock_irq(&wq->lock);
1132 	spin_lock(&hctx->dispatch_wait_lock);
1133 	if (!list_empty(&wait->entry)) {
1134 		spin_unlock(&hctx->dispatch_wait_lock);
1135 		spin_unlock_irq(&wq->lock);
1136 		return false;
1137 	}
1138 
1139 	atomic_inc(&sbq->ws_active);
1140 	wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1141 	__add_wait_queue(wq, wait);
1142 
1143 	/*
1144 	 * It's possible that a tag was freed in the window between the
1145 	 * allocation failure and adding the hardware queue to the wait
1146 	 * queue.
1147 	 */
1148 	ret = blk_mq_get_driver_tag(rq);
1149 	if (!ret) {
1150 		spin_unlock(&hctx->dispatch_wait_lock);
1151 		spin_unlock_irq(&wq->lock);
1152 		return false;
1153 	}
1154 
1155 	/*
1156 	 * We got a tag, remove ourselves from the wait queue to ensure
1157 	 * someone else gets the wakeup.
1158 	 */
1159 	list_del_init(&wait->entry);
1160 	atomic_dec(&sbq->ws_active);
1161 	spin_unlock(&hctx->dispatch_wait_lock);
1162 	spin_unlock_irq(&wq->lock);
1163 
1164 	return true;
1165 }
1166 
1167 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1168 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1169 /*
1170  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1171  * - EWMA is one simple way to compute running average value
1172  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1173  * - take 4 as factor for avoiding to get too small(0) result, and this
1174  *   factor doesn't matter because EWMA decreases exponentially
1175  */
1176 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1177 {
1178 	unsigned int ewma;
1179 
1180 	if (hctx->queue->elevator)
1181 		return;
1182 
1183 	ewma = hctx->dispatch_busy;
1184 
1185 	if (!ewma && !busy)
1186 		return;
1187 
1188 	ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1189 	if (busy)
1190 		ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1191 	ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1192 
1193 	hctx->dispatch_busy = ewma;
1194 }
1195 
1196 #define BLK_MQ_RESOURCE_DELAY	3		/* ms units */
1197 
1198 /*
1199  * Returns true if we did some work AND can potentially do more.
1200  */
1201 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
1202 			     bool got_budget)
1203 {
1204 	struct blk_mq_hw_ctx *hctx;
1205 	struct request *rq, *nxt;
1206 	bool no_tag = false;
1207 	int errors, queued;
1208 	blk_status_t ret = BLK_STS_OK;
1209 
1210 	if (list_empty(list))
1211 		return false;
1212 
1213 	WARN_ON(!list_is_singular(list) && got_budget);
1214 
1215 	/*
1216 	 * Now process all the entries, sending them to the driver.
1217 	 */
1218 	errors = queued = 0;
1219 	do {
1220 		struct blk_mq_queue_data bd;
1221 
1222 		rq = list_first_entry(list, struct request, queuelist);
1223 
1224 		hctx = rq->mq_hctx;
1225 		if (!got_budget && !blk_mq_get_dispatch_budget(hctx))
1226 			break;
1227 
1228 		if (!blk_mq_get_driver_tag(rq)) {
1229 			/*
1230 			 * The initial allocation attempt failed, so we need to
1231 			 * rerun the hardware queue when a tag is freed. The
1232 			 * waitqueue takes care of that. If the queue is run
1233 			 * before we add this entry back on the dispatch list,
1234 			 * we'll re-run it below.
1235 			 */
1236 			if (!blk_mq_mark_tag_wait(hctx, rq)) {
1237 				blk_mq_put_dispatch_budget(hctx);
1238 				/*
1239 				 * For non-shared tags, the RESTART check
1240 				 * will suffice.
1241 				 */
1242 				if (hctx->flags & BLK_MQ_F_TAG_SHARED)
1243 					no_tag = true;
1244 				break;
1245 			}
1246 		}
1247 
1248 		list_del_init(&rq->queuelist);
1249 
1250 		bd.rq = rq;
1251 
1252 		/*
1253 		 * Flag last if we have no more requests, or if we have more
1254 		 * but can't assign a driver tag to it.
1255 		 */
1256 		if (list_empty(list))
1257 			bd.last = true;
1258 		else {
1259 			nxt = list_first_entry(list, struct request, queuelist);
1260 			bd.last = !blk_mq_get_driver_tag(nxt);
1261 		}
1262 
1263 		ret = q->mq_ops->queue_rq(hctx, &bd);
1264 		if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) {
1265 			/*
1266 			 * If an I/O scheduler has been configured and we got a
1267 			 * driver tag for the next request already, free it
1268 			 * again.
1269 			 */
1270 			if (!list_empty(list)) {
1271 				nxt = list_first_entry(list, struct request, queuelist);
1272 				blk_mq_put_driver_tag(nxt);
1273 			}
1274 			list_add(&rq->queuelist, list);
1275 			__blk_mq_requeue_request(rq);
1276 			break;
1277 		}
1278 
1279 		if (unlikely(ret != BLK_STS_OK)) {
1280 			errors++;
1281 			blk_mq_end_request(rq, BLK_STS_IOERR);
1282 			continue;
1283 		}
1284 
1285 		queued++;
1286 	} while (!list_empty(list));
1287 
1288 	hctx->dispatched[queued_to_index(queued)]++;
1289 
1290 	/*
1291 	 * Any items that need requeuing? Stuff them into hctx->dispatch,
1292 	 * that is where we will continue on next queue run.
1293 	 */
1294 	if (!list_empty(list)) {
1295 		bool needs_restart;
1296 
1297 		/*
1298 		 * If we didn't flush the entire list, we could have told
1299 		 * the driver there was more coming, but that turned out to
1300 		 * be a lie.
1301 		 */
1302 		if (q->mq_ops->commit_rqs)
1303 			q->mq_ops->commit_rqs(hctx);
1304 
1305 		spin_lock(&hctx->lock);
1306 		list_splice_init(list, &hctx->dispatch);
1307 		spin_unlock(&hctx->lock);
1308 
1309 		/*
1310 		 * If SCHED_RESTART was set by the caller of this function and
1311 		 * it is no longer set that means that it was cleared by another
1312 		 * thread and hence that a queue rerun is needed.
1313 		 *
1314 		 * If 'no_tag' is set, that means that we failed getting
1315 		 * a driver tag with an I/O scheduler attached. If our dispatch
1316 		 * waitqueue is no longer active, ensure that we run the queue
1317 		 * AFTER adding our entries back to the list.
1318 		 *
1319 		 * If no I/O scheduler has been configured it is possible that
1320 		 * the hardware queue got stopped and restarted before requests
1321 		 * were pushed back onto the dispatch list. Rerun the queue to
1322 		 * avoid starvation. Notes:
1323 		 * - blk_mq_run_hw_queue() checks whether or not a queue has
1324 		 *   been stopped before rerunning a queue.
1325 		 * - Some but not all block drivers stop a queue before
1326 		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1327 		 *   and dm-rq.
1328 		 *
1329 		 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1330 		 * bit is set, run queue after a delay to avoid IO stalls
1331 		 * that could otherwise occur if the queue is idle.
1332 		 */
1333 		needs_restart = blk_mq_sched_needs_restart(hctx);
1334 		if (!needs_restart ||
1335 		    (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1336 			blk_mq_run_hw_queue(hctx, true);
1337 		else if (needs_restart && (ret == BLK_STS_RESOURCE))
1338 			blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1339 
1340 		blk_mq_update_dispatch_busy(hctx, true);
1341 		return false;
1342 	} else
1343 		blk_mq_update_dispatch_busy(hctx, false);
1344 
1345 	/*
1346 	 * If the host/device is unable to accept more work, inform the
1347 	 * caller of that.
1348 	 */
1349 	if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1350 		return false;
1351 
1352 	return (queued + errors) != 0;
1353 }
1354 
1355 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1356 {
1357 	int srcu_idx;
1358 
1359 	/*
1360 	 * We should be running this queue from one of the CPUs that
1361 	 * are mapped to it.
1362 	 *
1363 	 * There are at least two related races now between setting
1364 	 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
1365 	 * __blk_mq_run_hw_queue():
1366 	 *
1367 	 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
1368 	 *   but later it becomes online, then this warning is harmless
1369 	 *   at all
1370 	 *
1371 	 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
1372 	 *   but later it becomes offline, then the warning can't be
1373 	 *   triggered, and we depend on blk-mq timeout handler to
1374 	 *   handle dispatched requests to this hctx
1375 	 */
1376 	if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1377 		cpu_online(hctx->next_cpu)) {
1378 		printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
1379 			raw_smp_processor_id(),
1380 			cpumask_empty(hctx->cpumask) ? "inactive": "active");
1381 		dump_stack();
1382 	}
1383 
1384 	/*
1385 	 * We can't run the queue inline with ints disabled. Ensure that
1386 	 * we catch bad users of this early.
1387 	 */
1388 	WARN_ON_ONCE(in_interrupt());
1389 
1390 	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1391 
1392 	hctx_lock(hctx, &srcu_idx);
1393 	blk_mq_sched_dispatch_requests(hctx);
1394 	hctx_unlock(hctx, srcu_idx);
1395 }
1396 
1397 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1398 {
1399 	int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1400 
1401 	if (cpu >= nr_cpu_ids)
1402 		cpu = cpumask_first(hctx->cpumask);
1403 	return cpu;
1404 }
1405 
1406 /*
1407  * It'd be great if the workqueue API had a way to pass
1408  * in a mask and had some smarts for more clever placement.
1409  * For now we just round-robin here, switching for every
1410  * BLK_MQ_CPU_WORK_BATCH queued items.
1411  */
1412 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1413 {
1414 	bool tried = false;
1415 	int next_cpu = hctx->next_cpu;
1416 
1417 	if (hctx->queue->nr_hw_queues == 1)
1418 		return WORK_CPU_UNBOUND;
1419 
1420 	if (--hctx->next_cpu_batch <= 0) {
1421 select_cpu:
1422 		next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1423 				cpu_online_mask);
1424 		if (next_cpu >= nr_cpu_ids)
1425 			next_cpu = blk_mq_first_mapped_cpu(hctx);
1426 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1427 	}
1428 
1429 	/*
1430 	 * Do unbound schedule if we can't find a online CPU for this hctx,
1431 	 * and it should only happen in the path of handling CPU DEAD.
1432 	 */
1433 	if (!cpu_online(next_cpu)) {
1434 		if (!tried) {
1435 			tried = true;
1436 			goto select_cpu;
1437 		}
1438 
1439 		/*
1440 		 * Make sure to re-select CPU next time once after CPUs
1441 		 * in hctx->cpumask become online again.
1442 		 */
1443 		hctx->next_cpu = next_cpu;
1444 		hctx->next_cpu_batch = 1;
1445 		return WORK_CPU_UNBOUND;
1446 	}
1447 
1448 	hctx->next_cpu = next_cpu;
1449 	return next_cpu;
1450 }
1451 
1452 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1453 					unsigned long msecs)
1454 {
1455 	if (unlikely(blk_mq_hctx_stopped(hctx)))
1456 		return;
1457 
1458 	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1459 		int cpu = get_cpu();
1460 		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1461 			__blk_mq_run_hw_queue(hctx);
1462 			put_cpu();
1463 			return;
1464 		}
1465 
1466 		put_cpu();
1467 	}
1468 
1469 	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1470 				    msecs_to_jiffies(msecs));
1471 }
1472 
1473 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1474 {
1475 	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
1476 }
1477 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1478 
1479 bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1480 {
1481 	int srcu_idx;
1482 	bool need_run;
1483 
1484 	/*
1485 	 * When queue is quiesced, we may be switching io scheduler, or
1486 	 * updating nr_hw_queues, or other things, and we can't run queue
1487 	 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1488 	 *
1489 	 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1490 	 * quiesced.
1491 	 */
1492 	hctx_lock(hctx, &srcu_idx);
1493 	need_run = !blk_queue_quiesced(hctx->queue) &&
1494 		blk_mq_hctx_has_pending(hctx);
1495 	hctx_unlock(hctx, srcu_idx);
1496 
1497 	if (need_run) {
1498 		__blk_mq_delay_run_hw_queue(hctx, async, 0);
1499 		return true;
1500 	}
1501 
1502 	return false;
1503 }
1504 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1505 
1506 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1507 {
1508 	struct blk_mq_hw_ctx *hctx;
1509 	int i;
1510 
1511 	queue_for_each_hw_ctx(q, hctx, i) {
1512 		if (blk_mq_hctx_stopped(hctx))
1513 			continue;
1514 
1515 		blk_mq_run_hw_queue(hctx, async);
1516 	}
1517 }
1518 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1519 
1520 /**
1521  * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1522  * @q: request queue.
1523  *
1524  * The caller is responsible for serializing this function against
1525  * blk_mq_{start,stop}_hw_queue().
1526  */
1527 bool blk_mq_queue_stopped(struct request_queue *q)
1528 {
1529 	struct blk_mq_hw_ctx *hctx;
1530 	int i;
1531 
1532 	queue_for_each_hw_ctx(q, hctx, i)
1533 		if (blk_mq_hctx_stopped(hctx))
1534 			return true;
1535 
1536 	return false;
1537 }
1538 EXPORT_SYMBOL(blk_mq_queue_stopped);
1539 
1540 /*
1541  * This function is often used for pausing .queue_rq() by driver when
1542  * there isn't enough resource or some conditions aren't satisfied, and
1543  * BLK_STS_RESOURCE is usually returned.
1544  *
1545  * We do not guarantee that dispatch can be drained or blocked
1546  * after blk_mq_stop_hw_queue() returns. Please use
1547  * blk_mq_quiesce_queue() for that requirement.
1548  */
1549 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1550 {
1551 	cancel_delayed_work(&hctx->run_work);
1552 
1553 	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1554 }
1555 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1556 
1557 /*
1558  * This function is often used for pausing .queue_rq() by driver when
1559  * there isn't enough resource or some conditions aren't satisfied, and
1560  * BLK_STS_RESOURCE is usually returned.
1561  *
1562  * We do not guarantee that dispatch can be drained or blocked
1563  * after blk_mq_stop_hw_queues() returns. Please use
1564  * blk_mq_quiesce_queue() for that requirement.
1565  */
1566 void blk_mq_stop_hw_queues(struct request_queue *q)
1567 {
1568 	struct blk_mq_hw_ctx *hctx;
1569 	int i;
1570 
1571 	queue_for_each_hw_ctx(q, hctx, i)
1572 		blk_mq_stop_hw_queue(hctx);
1573 }
1574 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1575 
1576 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1577 {
1578 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1579 
1580 	blk_mq_run_hw_queue(hctx, false);
1581 }
1582 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1583 
1584 void blk_mq_start_hw_queues(struct request_queue *q)
1585 {
1586 	struct blk_mq_hw_ctx *hctx;
1587 	int i;
1588 
1589 	queue_for_each_hw_ctx(q, hctx, i)
1590 		blk_mq_start_hw_queue(hctx);
1591 }
1592 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1593 
1594 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1595 {
1596 	if (!blk_mq_hctx_stopped(hctx))
1597 		return;
1598 
1599 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1600 	blk_mq_run_hw_queue(hctx, async);
1601 }
1602 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1603 
1604 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1605 {
1606 	struct blk_mq_hw_ctx *hctx;
1607 	int i;
1608 
1609 	queue_for_each_hw_ctx(q, hctx, i)
1610 		blk_mq_start_stopped_hw_queue(hctx, async);
1611 }
1612 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1613 
1614 static void blk_mq_run_work_fn(struct work_struct *work)
1615 {
1616 	struct blk_mq_hw_ctx *hctx;
1617 
1618 	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1619 
1620 	/*
1621 	 * If we are stopped, don't run the queue.
1622 	 */
1623 	if (test_bit(BLK_MQ_S_STOPPED, &hctx->state))
1624 		return;
1625 
1626 	__blk_mq_run_hw_queue(hctx);
1627 }
1628 
1629 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1630 					    struct request *rq,
1631 					    bool at_head)
1632 {
1633 	struct blk_mq_ctx *ctx = rq->mq_ctx;
1634 	enum hctx_type type = hctx->type;
1635 
1636 	lockdep_assert_held(&ctx->lock);
1637 
1638 	trace_block_rq_insert(hctx->queue, rq);
1639 
1640 	if (at_head)
1641 		list_add(&rq->queuelist, &ctx->rq_lists[type]);
1642 	else
1643 		list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
1644 }
1645 
1646 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1647 			     bool at_head)
1648 {
1649 	struct blk_mq_ctx *ctx = rq->mq_ctx;
1650 
1651 	lockdep_assert_held(&ctx->lock);
1652 
1653 	__blk_mq_insert_req_list(hctx, rq, at_head);
1654 	blk_mq_hctx_mark_pending(hctx, ctx);
1655 }
1656 
1657 /*
1658  * Should only be used carefully, when the caller knows we want to
1659  * bypass a potential IO scheduler on the target device.
1660  */
1661 void blk_mq_request_bypass_insert(struct request *rq, bool run_queue)
1662 {
1663 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1664 
1665 	spin_lock(&hctx->lock);
1666 	list_add_tail(&rq->queuelist, &hctx->dispatch);
1667 	spin_unlock(&hctx->lock);
1668 
1669 	if (run_queue)
1670 		blk_mq_run_hw_queue(hctx, false);
1671 }
1672 
1673 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1674 			    struct list_head *list)
1675 
1676 {
1677 	struct request *rq;
1678 	enum hctx_type type = hctx->type;
1679 
1680 	/*
1681 	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1682 	 * offline now
1683 	 */
1684 	list_for_each_entry(rq, list, queuelist) {
1685 		BUG_ON(rq->mq_ctx != ctx);
1686 		trace_block_rq_insert(hctx->queue, rq);
1687 	}
1688 
1689 	spin_lock(&ctx->lock);
1690 	list_splice_tail_init(list, &ctx->rq_lists[type]);
1691 	blk_mq_hctx_mark_pending(hctx, ctx);
1692 	spin_unlock(&ctx->lock);
1693 }
1694 
1695 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
1696 {
1697 	struct request *rqa = container_of(a, struct request, queuelist);
1698 	struct request *rqb = container_of(b, struct request, queuelist);
1699 
1700 	if (rqa->mq_ctx < rqb->mq_ctx)
1701 		return -1;
1702 	else if (rqa->mq_ctx > rqb->mq_ctx)
1703 		return 1;
1704 	else if (rqa->mq_hctx < rqb->mq_hctx)
1705 		return -1;
1706 	else if (rqa->mq_hctx > rqb->mq_hctx)
1707 		return 1;
1708 
1709 	return blk_rq_pos(rqa) > blk_rq_pos(rqb);
1710 }
1711 
1712 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1713 {
1714 	struct blk_mq_hw_ctx *this_hctx;
1715 	struct blk_mq_ctx *this_ctx;
1716 	struct request_queue *this_q;
1717 	struct request *rq;
1718 	LIST_HEAD(list);
1719 	LIST_HEAD(rq_list);
1720 	unsigned int depth;
1721 
1722 	list_splice_init(&plug->mq_list, &list);
1723 
1724 	if (plug->rq_count > 2 && plug->multiple_queues)
1725 		list_sort(NULL, &list, plug_rq_cmp);
1726 
1727 	plug->rq_count = 0;
1728 
1729 	this_q = NULL;
1730 	this_hctx = NULL;
1731 	this_ctx = NULL;
1732 	depth = 0;
1733 
1734 	while (!list_empty(&list)) {
1735 		rq = list_entry_rq(list.next);
1736 		list_del_init(&rq->queuelist);
1737 		BUG_ON(!rq->q);
1738 		if (rq->mq_hctx != this_hctx || rq->mq_ctx != this_ctx) {
1739 			if (this_hctx) {
1740 				trace_block_unplug(this_q, depth, !from_schedule);
1741 				blk_mq_sched_insert_requests(this_hctx, this_ctx,
1742 								&rq_list,
1743 								from_schedule);
1744 			}
1745 
1746 			this_q = rq->q;
1747 			this_ctx = rq->mq_ctx;
1748 			this_hctx = rq->mq_hctx;
1749 			depth = 0;
1750 		}
1751 
1752 		depth++;
1753 		list_add_tail(&rq->queuelist, &rq_list);
1754 	}
1755 
1756 	/*
1757 	 * If 'this_hctx' is set, we know we have entries to complete
1758 	 * on 'rq_list'. Do those.
1759 	 */
1760 	if (this_hctx) {
1761 		trace_block_unplug(this_q, depth, !from_schedule);
1762 		blk_mq_sched_insert_requests(this_hctx, this_ctx, &rq_list,
1763 						from_schedule);
1764 	}
1765 }
1766 
1767 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1768 {
1769 	blk_init_request_from_bio(rq, bio);
1770 
1771 	blk_account_io_start(rq, true);
1772 }
1773 
1774 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
1775 					    struct request *rq,
1776 					    blk_qc_t *cookie, bool last)
1777 {
1778 	struct request_queue *q = rq->q;
1779 	struct blk_mq_queue_data bd = {
1780 		.rq = rq,
1781 		.last = last,
1782 	};
1783 	blk_qc_t new_cookie;
1784 	blk_status_t ret;
1785 
1786 	new_cookie = request_to_qc_t(hctx, rq);
1787 
1788 	/*
1789 	 * For OK queue, we are done. For error, caller may kill it.
1790 	 * Any other error (busy), just add it to our list as we
1791 	 * previously would have done.
1792 	 */
1793 	ret = q->mq_ops->queue_rq(hctx, &bd);
1794 	switch (ret) {
1795 	case BLK_STS_OK:
1796 		blk_mq_update_dispatch_busy(hctx, false);
1797 		*cookie = new_cookie;
1798 		break;
1799 	case BLK_STS_RESOURCE:
1800 	case BLK_STS_DEV_RESOURCE:
1801 		blk_mq_update_dispatch_busy(hctx, true);
1802 		__blk_mq_requeue_request(rq);
1803 		break;
1804 	default:
1805 		blk_mq_update_dispatch_busy(hctx, false);
1806 		*cookie = BLK_QC_T_NONE;
1807 		break;
1808 	}
1809 
1810 	return ret;
1811 }
1812 
1813 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1814 						struct request *rq,
1815 						blk_qc_t *cookie,
1816 						bool bypass_insert, bool last)
1817 {
1818 	struct request_queue *q = rq->q;
1819 	bool run_queue = true;
1820 
1821 	/*
1822 	 * RCU or SRCU read lock is needed before checking quiesced flag.
1823 	 *
1824 	 * When queue is stopped or quiesced, ignore 'bypass_insert' from
1825 	 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
1826 	 * and avoid driver to try to dispatch again.
1827 	 */
1828 	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
1829 		run_queue = false;
1830 		bypass_insert = false;
1831 		goto insert;
1832 	}
1833 
1834 	if (q->elevator && !bypass_insert)
1835 		goto insert;
1836 
1837 	if (!blk_mq_get_dispatch_budget(hctx))
1838 		goto insert;
1839 
1840 	if (!blk_mq_get_driver_tag(rq)) {
1841 		blk_mq_put_dispatch_budget(hctx);
1842 		goto insert;
1843 	}
1844 
1845 	return __blk_mq_issue_directly(hctx, rq, cookie, last);
1846 insert:
1847 	if (bypass_insert)
1848 		return BLK_STS_RESOURCE;
1849 
1850 	blk_mq_request_bypass_insert(rq, run_queue);
1851 	return BLK_STS_OK;
1852 }
1853 
1854 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1855 		struct request *rq, blk_qc_t *cookie)
1856 {
1857 	blk_status_t ret;
1858 	int srcu_idx;
1859 
1860 	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1861 
1862 	hctx_lock(hctx, &srcu_idx);
1863 
1864 	ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false, true);
1865 	if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1866 		blk_mq_request_bypass_insert(rq, true);
1867 	else if (ret != BLK_STS_OK)
1868 		blk_mq_end_request(rq, ret);
1869 
1870 	hctx_unlock(hctx, srcu_idx);
1871 }
1872 
1873 blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
1874 {
1875 	blk_status_t ret;
1876 	int srcu_idx;
1877 	blk_qc_t unused_cookie;
1878 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1879 
1880 	hctx_lock(hctx, &srcu_idx);
1881 	ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true, last);
1882 	hctx_unlock(hctx, srcu_idx);
1883 
1884 	return ret;
1885 }
1886 
1887 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
1888 		struct list_head *list)
1889 {
1890 	while (!list_empty(list)) {
1891 		blk_status_t ret;
1892 		struct request *rq = list_first_entry(list, struct request,
1893 				queuelist);
1894 
1895 		list_del_init(&rq->queuelist);
1896 		ret = blk_mq_request_issue_directly(rq, list_empty(list));
1897 		if (ret != BLK_STS_OK) {
1898 			if (ret == BLK_STS_RESOURCE ||
1899 					ret == BLK_STS_DEV_RESOURCE) {
1900 				blk_mq_request_bypass_insert(rq,
1901 							list_empty(list));
1902 				break;
1903 			}
1904 			blk_mq_end_request(rq, ret);
1905 		}
1906 	}
1907 
1908 	/*
1909 	 * If we didn't flush the entire list, we could have told
1910 	 * the driver there was more coming, but that turned out to
1911 	 * be a lie.
1912 	 */
1913 	if (!list_empty(list) && hctx->queue->mq_ops->commit_rqs)
1914 		hctx->queue->mq_ops->commit_rqs(hctx);
1915 }
1916 
1917 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
1918 {
1919 	list_add_tail(&rq->queuelist, &plug->mq_list);
1920 	plug->rq_count++;
1921 	if (!plug->multiple_queues && !list_is_singular(&plug->mq_list)) {
1922 		struct request *tmp;
1923 
1924 		tmp = list_first_entry(&plug->mq_list, struct request,
1925 						queuelist);
1926 		if (tmp->q != rq->q)
1927 			plug->multiple_queues = true;
1928 	}
1929 }
1930 
1931 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1932 {
1933 	const int is_sync = op_is_sync(bio->bi_opf);
1934 	const int is_flush_fua = op_is_flush(bio->bi_opf);
1935 	struct blk_mq_alloc_data data = { .flags = 0};
1936 	struct request *rq;
1937 	struct blk_plug *plug;
1938 	struct request *same_queue_rq = NULL;
1939 	blk_qc_t cookie;
1940 
1941 	blk_queue_bounce(q, &bio);
1942 
1943 	blk_queue_split(q, &bio);
1944 
1945 	if (!bio_integrity_prep(bio))
1946 		return BLK_QC_T_NONE;
1947 
1948 	if (!is_flush_fua && !blk_queue_nomerges(q) &&
1949 	    blk_attempt_plug_merge(q, bio, &same_queue_rq))
1950 		return BLK_QC_T_NONE;
1951 
1952 	if (blk_mq_sched_bio_merge(q, bio))
1953 		return BLK_QC_T_NONE;
1954 
1955 	rq_qos_throttle(q, bio);
1956 
1957 	data.cmd_flags = bio->bi_opf;
1958 	rq = blk_mq_get_request(q, bio, &data);
1959 	if (unlikely(!rq)) {
1960 		rq_qos_cleanup(q, bio);
1961 		if (bio->bi_opf & REQ_NOWAIT)
1962 			bio_wouldblock_error(bio);
1963 		return BLK_QC_T_NONE;
1964 	}
1965 
1966 	trace_block_getrq(q, bio, bio->bi_opf);
1967 
1968 	rq_qos_track(q, rq, bio);
1969 
1970 	cookie = request_to_qc_t(data.hctx, rq);
1971 
1972 	plug = current->plug;
1973 	if (unlikely(is_flush_fua)) {
1974 		blk_mq_put_ctx(data.ctx);
1975 		blk_mq_bio_to_request(rq, bio);
1976 
1977 		/* bypass scheduler for flush rq */
1978 		blk_insert_flush(rq);
1979 		blk_mq_run_hw_queue(data.hctx, true);
1980 	} else if (plug && (q->nr_hw_queues == 1 || q->mq_ops->commit_rqs)) {
1981 		/*
1982 		 * Use plugging if we have a ->commit_rqs() hook as well, as
1983 		 * we know the driver uses bd->last in a smart fashion.
1984 		 */
1985 		unsigned int request_count = plug->rq_count;
1986 		struct request *last = NULL;
1987 
1988 		blk_mq_put_ctx(data.ctx);
1989 		blk_mq_bio_to_request(rq, bio);
1990 
1991 		if (!request_count)
1992 			trace_block_plug(q);
1993 		else
1994 			last = list_entry_rq(plug->mq_list.prev);
1995 
1996 		if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1997 		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1998 			blk_flush_plug_list(plug, false);
1999 			trace_block_plug(q);
2000 		}
2001 
2002 		blk_add_rq_to_plug(plug, rq);
2003 	} else if (plug && !blk_queue_nomerges(q)) {
2004 		blk_mq_bio_to_request(rq, bio);
2005 
2006 		/*
2007 		 * We do limited plugging. If the bio can be merged, do that.
2008 		 * Otherwise the existing request in the plug list will be
2009 		 * issued. So the plug list will have one request at most
2010 		 * The plug list might get flushed before this. If that happens,
2011 		 * the plug list is empty, and same_queue_rq is invalid.
2012 		 */
2013 		if (list_empty(&plug->mq_list))
2014 			same_queue_rq = NULL;
2015 		if (same_queue_rq) {
2016 			list_del_init(&same_queue_rq->queuelist);
2017 			plug->rq_count--;
2018 		}
2019 		blk_add_rq_to_plug(plug, rq);
2020 		trace_block_plug(q);
2021 
2022 		blk_mq_put_ctx(data.ctx);
2023 
2024 		if (same_queue_rq) {
2025 			data.hctx = same_queue_rq->mq_hctx;
2026 			trace_block_unplug(q, 1, true);
2027 			blk_mq_try_issue_directly(data.hctx, same_queue_rq,
2028 					&cookie);
2029 		}
2030 	} else if ((q->nr_hw_queues > 1 && is_sync) || (!q->elevator &&
2031 			!data.hctx->dispatch_busy)) {
2032 		blk_mq_put_ctx(data.ctx);
2033 		blk_mq_bio_to_request(rq, bio);
2034 		blk_mq_try_issue_directly(data.hctx, rq, &cookie);
2035 	} else {
2036 		blk_mq_put_ctx(data.ctx);
2037 		blk_mq_bio_to_request(rq, bio);
2038 		blk_mq_sched_insert_request(rq, false, true, true);
2039 	}
2040 
2041 	return cookie;
2042 }
2043 
2044 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2045 		     unsigned int hctx_idx)
2046 {
2047 	struct page *page;
2048 
2049 	if (tags->rqs && set->ops->exit_request) {
2050 		int i;
2051 
2052 		for (i = 0; i < tags->nr_tags; i++) {
2053 			struct request *rq = tags->static_rqs[i];
2054 
2055 			if (!rq)
2056 				continue;
2057 			set->ops->exit_request(set, rq, hctx_idx);
2058 			tags->static_rqs[i] = NULL;
2059 		}
2060 	}
2061 
2062 	while (!list_empty(&tags->page_list)) {
2063 		page = list_first_entry(&tags->page_list, struct page, lru);
2064 		list_del_init(&page->lru);
2065 		/*
2066 		 * Remove kmemleak object previously allocated in
2067 		 * blk_mq_alloc_rqs().
2068 		 */
2069 		kmemleak_free(page_address(page));
2070 		__free_pages(page, page->private);
2071 	}
2072 }
2073 
2074 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
2075 {
2076 	kfree(tags->rqs);
2077 	tags->rqs = NULL;
2078 	kfree(tags->static_rqs);
2079 	tags->static_rqs = NULL;
2080 
2081 	blk_mq_free_tags(tags);
2082 }
2083 
2084 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
2085 					unsigned int hctx_idx,
2086 					unsigned int nr_tags,
2087 					unsigned int reserved_tags)
2088 {
2089 	struct blk_mq_tags *tags;
2090 	int node;
2091 
2092 	node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2093 	if (node == NUMA_NO_NODE)
2094 		node = set->numa_node;
2095 
2096 	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
2097 				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
2098 	if (!tags)
2099 		return NULL;
2100 
2101 	tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2102 				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2103 				 node);
2104 	if (!tags->rqs) {
2105 		blk_mq_free_tags(tags);
2106 		return NULL;
2107 	}
2108 
2109 	tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2110 					GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2111 					node);
2112 	if (!tags->static_rqs) {
2113 		kfree(tags->rqs);
2114 		blk_mq_free_tags(tags);
2115 		return NULL;
2116 	}
2117 
2118 	return tags;
2119 }
2120 
2121 static size_t order_to_size(unsigned int order)
2122 {
2123 	return (size_t)PAGE_SIZE << order;
2124 }
2125 
2126 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2127 			       unsigned int hctx_idx, int node)
2128 {
2129 	int ret;
2130 
2131 	if (set->ops->init_request) {
2132 		ret = set->ops->init_request(set, rq, hctx_idx, node);
2133 		if (ret)
2134 			return ret;
2135 	}
2136 
2137 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
2138 	return 0;
2139 }
2140 
2141 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2142 		     unsigned int hctx_idx, unsigned int depth)
2143 {
2144 	unsigned int i, j, entries_per_page, max_order = 4;
2145 	size_t rq_size, left;
2146 	int node;
2147 
2148 	node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2149 	if (node == NUMA_NO_NODE)
2150 		node = set->numa_node;
2151 
2152 	INIT_LIST_HEAD(&tags->page_list);
2153 
2154 	/*
2155 	 * rq_size is the size of the request plus driver payload, rounded
2156 	 * to the cacheline size
2157 	 */
2158 	rq_size = round_up(sizeof(struct request) + set->cmd_size,
2159 				cache_line_size());
2160 	left = rq_size * depth;
2161 
2162 	for (i = 0; i < depth; ) {
2163 		int this_order = max_order;
2164 		struct page *page;
2165 		int to_do;
2166 		void *p;
2167 
2168 		while (this_order && left < order_to_size(this_order - 1))
2169 			this_order--;
2170 
2171 		do {
2172 			page = alloc_pages_node(node,
2173 				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2174 				this_order);
2175 			if (page)
2176 				break;
2177 			if (!this_order--)
2178 				break;
2179 			if (order_to_size(this_order) < rq_size)
2180 				break;
2181 		} while (1);
2182 
2183 		if (!page)
2184 			goto fail;
2185 
2186 		page->private = this_order;
2187 		list_add_tail(&page->lru, &tags->page_list);
2188 
2189 		p = page_address(page);
2190 		/*
2191 		 * Allow kmemleak to scan these pages as they contain pointers
2192 		 * to additional allocations like via ops->init_request().
2193 		 */
2194 		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2195 		entries_per_page = order_to_size(this_order) / rq_size;
2196 		to_do = min(entries_per_page, depth - i);
2197 		left -= to_do * rq_size;
2198 		for (j = 0; j < to_do; j++) {
2199 			struct request *rq = p;
2200 
2201 			tags->static_rqs[i] = rq;
2202 			if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2203 				tags->static_rqs[i] = NULL;
2204 				goto fail;
2205 			}
2206 
2207 			p += rq_size;
2208 			i++;
2209 		}
2210 	}
2211 	return 0;
2212 
2213 fail:
2214 	blk_mq_free_rqs(set, tags, hctx_idx);
2215 	return -ENOMEM;
2216 }
2217 
2218 /*
2219  * 'cpu' is going away. splice any existing rq_list entries from this
2220  * software queue to the hw queue dispatch list, and ensure that it
2221  * gets run.
2222  */
2223 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2224 {
2225 	struct blk_mq_hw_ctx *hctx;
2226 	struct blk_mq_ctx *ctx;
2227 	LIST_HEAD(tmp);
2228 	enum hctx_type type;
2229 
2230 	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
2231 	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2232 	type = hctx->type;
2233 
2234 	spin_lock(&ctx->lock);
2235 	if (!list_empty(&ctx->rq_lists[type])) {
2236 		list_splice_init(&ctx->rq_lists[type], &tmp);
2237 		blk_mq_hctx_clear_pending(hctx, ctx);
2238 	}
2239 	spin_unlock(&ctx->lock);
2240 
2241 	if (list_empty(&tmp))
2242 		return 0;
2243 
2244 	spin_lock(&hctx->lock);
2245 	list_splice_tail_init(&tmp, &hctx->dispatch);
2246 	spin_unlock(&hctx->lock);
2247 
2248 	blk_mq_run_hw_queue(hctx, true);
2249 	return 0;
2250 }
2251 
2252 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2253 {
2254 	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2255 					    &hctx->cpuhp_dead);
2256 }
2257 
2258 /* hctx->ctxs will be freed in queue's release handler */
2259 static void blk_mq_exit_hctx(struct request_queue *q,
2260 		struct blk_mq_tag_set *set,
2261 		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2262 {
2263 	if (blk_mq_hw_queue_mapped(hctx))
2264 		blk_mq_tag_idle(hctx);
2265 
2266 	if (set->ops->exit_request)
2267 		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2268 
2269 	if (set->ops->exit_hctx)
2270 		set->ops->exit_hctx(hctx, hctx_idx);
2271 
2272 	blk_mq_remove_cpuhp(hctx);
2273 
2274 	spin_lock(&q->unused_hctx_lock);
2275 	list_add(&hctx->hctx_list, &q->unused_hctx_list);
2276 	spin_unlock(&q->unused_hctx_lock);
2277 }
2278 
2279 static void blk_mq_exit_hw_queues(struct request_queue *q,
2280 		struct blk_mq_tag_set *set, int nr_queue)
2281 {
2282 	struct blk_mq_hw_ctx *hctx;
2283 	unsigned int i;
2284 
2285 	queue_for_each_hw_ctx(q, hctx, i) {
2286 		if (i == nr_queue)
2287 			break;
2288 		blk_mq_debugfs_unregister_hctx(hctx);
2289 		blk_mq_exit_hctx(q, set, hctx, i);
2290 	}
2291 }
2292 
2293 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2294 {
2295 	int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2296 
2297 	BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2298 			   __alignof__(struct blk_mq_hw_ctx)) !=
2299 		     sizeof(struct blk_mq_hw_ctx));
2300 
2301 	if (tag_set->flags & BLK_MQ_F_BLOCKING)
2302 		hw_ctx_size += sizeof(struct srcu_struct);
2303 
2304 	return hw_ctx_size;
2305 }
2306 
2307 static int blk_mq_init_hctx(struct request_queue *q,
2308 		struct blk_mq_tag_set *set,
2309 		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2310 {
2311 	hctx->queue_num = hctx_idx;
2312 
2313 	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2314 
2315 	hctx->tags = set->tags[hctx_idx];
2316 
2317 	if (set->ops->init_hctx &&
2318 	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2319 		goto unregister_cpu_notifier;
2320 
2321 	if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
2322 				hctx->numa_node))
2323 		goto exit_hctx;
2324 	return 0;
2325 
2326  exit_hctx:
2327 	if (set->ops->exit_hctx)
2328 		set->ops->exit_hctx(hctx, hctx_idx);
2329  unregister_cpu_notifier:
2330 	blk_mq_remove_cpuhp(hctx);
2331 	return -1;
2332 }
2333 
2334 static struct blk_mq_hw_ctx *
2335 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
2336 		int node)
2337 {
2338 	struct blk_mq_hw_ctx *hctx;
2339 	gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
2340 
2341 	hctx = kzalloc_node(blk_mq_hw_ctx_size(set), gfp, node);
2342 	if (!hctx)
2343 		goto fail_alloc_hctx;
2344 
2345 	if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
2346 		goto free_hctx;
2347 
2348 	atomic_set(&hctx->nr_active, 0);
2349 	if (node == NUMA_NO_NODE)
2350 		node = set->numa_node;
2351 	hctx->numa_node = node;
2352 
2353 	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2354 	spin_lock_init(&hctx->lock);
2355 	INIT_LIST_HEAD(&hctx->dispatch);
2356 	hctx->queue = q;
2357 	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
2358 
2359 	INIT_LIST_HEAD(&hctx->hctx_list);
2360 
2361 	/*
2362 	 * Allocate space for all possible cpus to avoid allocation at
2363 	 * runtime
2364 	 */
2365 	hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2366 			gfp, node);
2367 	if (!hctx->ctxs)
2368 		goto free_cpumask;
2369 
2370 	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
2371 				gfp, node))
2372 		goto free_ctxs;
2373 	hctx->nr_ctx = 0;
2374 
2375 	spin_lock_init(&hctx->dispatch_wait_lock);
2376 	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2377 	INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2378 
2379 	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size,
2380 			gfp);
2381 	if (!hctx->fq)
2382 		goto free_bitmap;
2383 
2384 	if (hctx->flags & BLK_MQ_F_BLOCKING)
2385 		init_srcu_struct(hctx->srcu);
2386 	blk_mq_hctx_kobj_init(hctx);
2387 
2388 	return hctx;
2389 
2390  free_bitmap:
2391 	sbitmap_free(&hctx->ctx_map);
2392  free_ctxs:
2393 	kfree(hctx->ctxs);
2394  free_cpumask:
2395 	free_cpumask_var(hctx->cpumask);
2396  free_hctx:
2397 	kfree(hctx);
2398  fail_alloc_hctx:
2399 	return NULL;
2400 }
2401 
2402 static void blk_mq_init_cpu_queues(struct request_queue *q,
2403 				   unsigned int nr_hw_queues)
2404 {
2405 	struct blk_mq_tag_set *set = q->tag_set;
2406 	unsigned int i, j;
2407 
2408 	for_each_possible_cpu(i) {
2409 		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2410 		struct blk_mq_hw_ctx *hctx;
2411 		int k;
2412 
2413 		__ctx->cpu = i;
2414 		spin_lock_init(&__ctx->lock);
2415 		for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
2416 			INIT_LIST_HEAD(&__ctx->rq_lists[k]);
2417 
2418 		__ctx->queue = q;
2419 
2420 		/*
2421 		 * Set local node, IFF we have more than one hw queue. If
2422 		 * not, we remain on the home node of the device
2423 		 */
2424 		for (j = 0; j < set->nr_maps; j++) {
2425 			hctx = blk_mq_map_queue_type(q, j, i);
2426 			if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2427 				hctx->numa_node = local_memory_node(cpu_to_node(i));
2428 		}
2429 	}
2430 }
2431 
2432 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
2433 {
2434 	int ret = 0;
2435 
2436 	set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2437 					set->queue_depth, set->reserved_tags);
2438 	if (!set->tags[hctx_idx])
2439 		return false;
2440 
2441 	ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2442 				set->queue_depth);
2443 	if (!ret)
2444 		return true;
2445 
2446 	blk_mq_free_rq_map(set->tags[hctx_idx]);
2447 	set->tags[hctx_idx] = NULL;
2448 	return false;
2449 }
2450 
2451 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2452 					 unsigned int hctx_idx)
2453 {
2454 	if (set->tags && set->tags[hctx_idx]) {
2455 		blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2456 		blk_mq_free_rq_map(set->tags[hctx_idx]);
2457 		set->tags[hctx_idx] = NULL;
2458 	}
2459 }
2460 
2461 static void blk_mq_map_swqueue(struct request_queue *q)
2462 {
2463 	unsigned int i, j, hctx_idx;
2464 	struct blk_mq_hw_ctx *hctx;
2465 	struct blk_mq_ctx *ctx;
2466 	struct blk_mq_tag_set *set = q->tag_set;
2467 
2468 	/*
2469 	 * Avoid others reading imcomplete hctx->cpumask through sysfs
2470 	 */
2471 	mutex_lock(&q->sysfs_lock);
2472 
2473 	queue_for_each_hw_ctx(q, hctx, i) {
2474 		cpumask_clear(hctx->cpumask);
2475 		hctx->nr_ctx = 0;
2476 		hctx->dispatch_from = NULL;
2477 	}
2478 
2479 	/*
2480 	 * Map software to hardware queues.
2481 	 *
2482 	 * If the cpu isn't present, the cpu is mapped to first hctx.
2483 	 */
2484 	for_each_possible_cpu(i) {
2485 		hctx_idx = set->map[HCTX_TYPE_DEFAULT].mq_map[i];
2486 		/* unmapped hw queue can be remapped after CPU topo changed */
2487 		if (!set->tags[hctx_idx] &&
2488 		    !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2489 			/*
2490 			 * If tags initialization fail for some hctx,
2491 			 * that hctx won't be brought online.  In this
2492 			 * case, remap the current ctx to hctx[0] which
2493 			 * is guaranteed to always have tags allocated
2494 			 */
2495 			set->map[HCTX_TYPE_DEFAULT].mq_map[i] = 0;
2496 		}
2497 
2498 		ctx = per_cpu_ptr(q->queue_ctx, i);
2499 		for (j = 0; j < set->nr_maps; j++) {
2500 			if (!set->map[j].nr_queues) {
2501 				ctx->hctxs[j] = blk_mq_map_queue_type(q,
2502 						HCTX_TYPE_DEFAULT, i);
2503 				continue;
2504 			}
2505 
2506 			hctx = blk_mq_map_queue_type(q, j, i);
2507 			ctx->hctxs[j] = hctx;
2508 			/*
2509 			 * If the CPU is already set in the mask, then we've
2510 			 * mapped this one already. This can happen if
2511 			 * devices share queues across queue maps.
2512 			 */
2513 			if (cpumask_test_cpu(i, hctx->cpumask))
2514 				continue;
2515 
2516 			cpumask_set_cpu(i, hctx->cpumask);
2517 			hctx->type = j;
2518 			ctx->index_hw[hctx->type] = hctx->nr_ctx;
2519 			hctx->ctxs[hctx->nr_ctx++] = ctx;
2520 
2521 			/*
2522 			 * If the nr_ctx type overflows, we have exceeded the
2523 			 * amount of sw queues we can support.
2524 			 */
2525 			BUG_ON(!hctx->nr_ctx);
2526 		}
2527 
2528 		for (; j < HCTX_MAX_TYPES; j++)
2529 			ctx->hctxs[j] = blk_mq_map_queue_type(q,
2530 					HCTX_TYPE_DEFAULT, i);
2531 	}
2532 
2533 	mutex_unlock(&q->sysfs_lock);
2534 
2535 	queue_for_each_hw_ctx(q, hctx, i) {
2536 		/*
2537 		 * If no software queues are mapped to this hardware queue,
2538 		 * disable it and free the request entries.
2539 		 */
2540 		if (!hctx->nr_ctx) {
2541 			/* Never unmap queue 0.  We need it as a
2542 			 * fallback in case of a new remap fails
2543 			 * allocation
2544 			 */
2545 			if (i && set->tags[i])
2546 				blk_mq_free_map_and_requests(set, i);
2547 
2548 			hctx->tags = NULL;
2549 			continue;
2550 		}
2551 
2552 		hctx->tags = set->tags[i];
2553 		WARN_ON(!hctx->tags);
2554 
2555 		/*
2556 		 * Set the map size to the number of mapped software queues.
2557 		 * This is more accurate and more efficient than looping
2558 		 * over all possibly mapped software queues.
2559 		 */
2560 		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2561 
2562 		/*
2563 		 * Initialize batch roundrobin counts
2564 		 */
2565 		hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2566 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2567 	}
2568 }
2569 
2570 /*
2571  * Caller needs to ensure that we're either frozen/quiesced, or that
2572  * the queue isn't live yet.
2573  */
2574 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2575 {
2576 	struct blk_mq_hw_ctx *hctx;
2577 	int i;
2578 
2579 	queue_for_each_hw_ctx(q, hctx, i) {
2580 		if (shared)
2581 			hctx->flags |= BLK_MQ_F_TAG_SHARED;
2582 		else
2583 			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2584 	}
2585 }
2586 
2587 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
2588 					bool shared)
2589 {
2590 	struct request_queue *q;
2591 
2592 	lockdep_assert_held(&set->tag_list_lock);
2593 
2594 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
2595 		blk_mq_freeze_queue(q);
2596 		queue_set_hctx_shared(q, shared);
2597 		blk_mq_unfreeze_queue(q);
2598 	}
2599 }
2600 
2601 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2602 {
2603 	struct blk_mq_tag_set *set = q->tag_set;
2604 
2605 	mutex_lock(&set->tag_list_lock);
2606 	list_del_rcu(&q->tag_set_list);
2607 	if (list_is_singular(&set->tag_list)) {
2608 		/* just transitioned to unshared */
2609 		set->flags &= ~BLK_MQ_F_TAG_SHARED;
2610 		/* update existing queue */
2611 		blk_mq_update_tag_set_depth(set, false);
2612 	}
2613 	mutex_unlock(&set->tag_list_lock);
2614 	INIT_LIST_HEAD(&q->tag_set_list);
2615 }
2616 
2617 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2618 				     struct request_queue *q)
2619 {
2620 	mutex_lock(&set->tag_list_lock);
2621 
2622 	/*
2623 	 * Check to see if we're transitioning to shared (from 1 to 2 queues).
2624 	 */
2625 	if (!list_empty(&set->tag_list) &&
2626 	    !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2627 		set->flags |= BLK_MQ_F_TAG_SHARED;
2628 		/* update existing queue */
2629 		blk_mq_update_tag_set_depth(set, true);
2630 	}
2631 	if (set->flags & BLK_MQ_F_TAG_SHARED)
2632 		queue_set_hctx_shared(q, true);
2633 	list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2634 
2635 	mutex_unlock(&set->tag_list_lock);
2636 }
2637 
2638 /* All allocations will be freed in release handler of q->mq_kobj */
2639 static int blk_mq_alloc_ctxs(struct request_queue *q)
2640 {
2641 	struct blk_mq_ctxs *ctxs;
2642 	int cpu;
2643 
2644 	ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
2645 	if (!ctxs)
2646 		return -ENOMEM;
2647 
2648 	ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2649 	if (!ctxs->queue_ctx)
2650 		goto fail;
2651 
2652 	for_each_possible_cpu(cpu) {
2653 		struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
2654 		ctx->ctxs = ctxs;
2655 	}
2656 
2657 	q->mq_kobj = &ctxs->kobj;
2658 	q->queue_ctx = ctxs->queue_ctx;
2659 
2660 	return 0;
2661  fail:
2662 	kfree(ctxs);
2663 	return -ENOMEM;
2664 }
2665 
2666 /*
2667  * It is the actual release handler for mq, but we do it from
2668  * request queue's release handler for avoiding use-after-free
2669  * and headache because q->mq_kobj shouldn't have been introduced,
2670  * but we can't group ctx/kctx kobj without it.
2671  */
2672 void blk_mq_release(struct request_queue *q)
2673 {
2674 	struct blk_mq_hw_ctx *hctx, *next;
2675 	int i;
2676 
2677 	cancel_delayed_work_sync(&q->requeue_work);
2678 
2679 	queue_for_each_hw_ctx(q, hctx, i)
2680 		WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
2681 
2682 	/* all hctx are in .unused_hctx_list now */
2683 	list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
2684 		list_del_init(&hctx->hctx_list);
2685 		kobject_put(&hctx->kobj);
2686 	}
2687 
2688 	kfree(q->queue_hw_ctx);
2689 
2690 	/*
2691 	 * release .mq_kobj and sw queue's kobject now because
2692 	 * both share lifetime with request queue.
2693 	 */
2694 	blk_mq_sysfs_deinit(q);
2695 }
2696 
2697 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2698 {
2699 	struct request_queue *uninit_q, *q;
2700 
2701 	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2702 	if (!uninit_q)
2703 		return ERR_PTR(-ENOMEM);
2704 
2705 	q = blk_mq_init_allocated_queue(set, uninit_q);
2706 	if (IS_ERR(q))
2707 		blk_cleanup_queue(uninit_q);
2708 
2709 	return q;
2710 }
2711 EXPORT_SYMBOL(blk_mq_init_queue);
2712 
2713 /*
2714  * Helper for setting up a queue with mq ops, given queue depth, and
2715  * the passed in mq ops flags.
2716  */
2717 struct request_queue *blk_mq_init_sq_queue(struct blk_mq_tag_set *set,
2718 					   const struct blk_mq_ops *ops,
2719 					   unsigned int queue_depth,
2720 					   unsigned int set_flags)
2721 {
2722 	struct request_queue *q;
2723 	int ret;
2724 
2725 	memset(set, 0, sizeof(*set));
2726 	set->ops = ops;
2727 	set->nr_hw_queues = 1;
2728 	set->nr_maps = 1;
2729 	set->queue_depth = queue_depth;
2730 	set->numa_node = NUMA_NO_NODE;
2731 	set->flags = set_flags;
2732 
2733 	ret = blk_mq_alloc_tag_set(set);
2734 	if (ret)
2735 		return ERR_PTR(ret);
2736 
2737 	q = blk_mq_init_queue(set);
2738 	if (IS_ERR(q)) {
2739 		blk_mq_free_tag_set(set);
2740 		return q;
2741 	}
2742 
2743 	return q;
2744 }
2745 EXPORT_SYMBOL(blk_mq_init_sq_queue);
2746 
2747 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
2748 		struct blk_mq_tag_set *set, struct request_queue *q,
2749 		int hctx_idx, int node)
2750 {
2751 	struct blk_mq_hw_ctx *hctx = NULL, *tmp;
2752 
2753 	/* reuse dead hctx first */
2754 	spin_lock(&q->unused_hctx_lock);
2755 	list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
2756 		if (tmp->numa_node == node) {
2757 			hctx = tmp;
2758 			break;
2759 		}
2760 	}
2761 	if (hctx)
2762 		list_del_init(&hctx->hctx_list);
2763 	spin_unlock(&q->unused_hctx_lock);
2764 
2765 	if (!hctx)
2766 		hctx = blk_mq_alloc_hctx(q, set, node);
2767 	if (!hctx)
2768 		goto fail;
2769 
2770 	if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
2771 		goto free_hctx;
2772 
2773 	return hctx;
2774 
2775  free_hctx:
2776 	kobject_put(&hctx->kobj);
2777  fail:
2778 	return NULL;
2779 }
2780 
2781 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2782 						struct request_queue *q)
2783 {
2784 	int i, j, end;
2785 	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2786 
2787 	/* protect against switching io scheduler  */
2788 	mutex_lock(&q->sysfs_lock);
2789 	for (i = 0; i < set->nr_hw_queues; i++) {
2790 		int node;
2791 		struct blk_mq_hw_ctx *hctx;
2792 
2793 		node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], i);
2794 		/*
2795 		 * If the hw queue has been mapped to another numa node,
2796 		 * we need to realloc the hctx. If allocation fails, fallback
2797 		 * to use the previous one.
2798 		 */
2799 		if (hctxs[i] && (hctxs[i]->numa_node == node))
2800 			continue;
2801 
2802 		hctx = blk_mq_alloc_and_init_hctx(set, q, i, node);
2803 		if (hctx) {
2804 			if (hctxs[i])
2805 				blk_mq_exit_hctx(q, set, hctxs[i], i);
2806 			hctxs[i] = hctx;
2807 		} else {
2808 			if (hctxs[i])
2809 				pr_warn("Allocate new hctx on node %d fails,\
2810 						fallback to previous one on node %d\n",
2811 						node, hctxs[i]->numa_node);
2812 			else
2813 				break;
2814 		}
2815 	}
2816 	/*
2817 	 * Increasing nr_hw_queues fails. Free the newly allocated
2818 	 * hctxs and keep the previous q->nr_hw_queues.
2819 	 */
2820 	if (i != set->nr_hw_queues) {
2821 		j = q->nr_hw_queues;
2822 		end = i;
2823 	} else {
2824 		j = i;
2825 		end = q->nr_hw_queues;
2826 		q->nr_hw_queues = set->nr_hw_queues;
2827 	}
2828 
2829 	for (; j < end; j++) {
2830 		struct blk_mq_hw_ctx *hctx = hctxs[j];
2831 
2832 		if (hctx) {
2833 			if (hctx->tags)
2834 				blk_mq_free_map_and_requests(set, j);
2835 			blk_mq_exit_hctx(q, set, hctx, j);
2836 			hctxs[j] = NULL;
2837 		}
2838 	}
2839 	mutex_unlock(&q->sysfs_lock);
2840 }
2841 
2842 /*
2843  * Maximum number of hardware queues we support. For single sets, we'll never
2844  * have more than the CPUs (software queues). For multiple sets, the tag_set
2845  * user may have set ->nr_hw_queues larger.
2846  */
2847 static unsigned int nr_hw_queues(struct blk_mq_tag_set *set)
2848 {
2849 	if (set->nr_maps == 1)
2850 		return nr_cpu_ids;
2851 
2852 	return max(set->nr_hw_queues, nr_cpu_ids);
2853 }
2854 
2855 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2856 						  struct request_queue *q)
2857 {
2858 	/* mark the queue as mq asap */
2859 	q->mq_ops = set->ops;
2860 
2861 	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2862 					     blk_mq_poll_stats_bkt,
2863 					     BLK_MQ_POLL_STATS_BKTS, q);
2864 	if (!q->poll_cb)
2865 		goto err_exit;
2866 
2867 	if (blk_mq_alloc_ctxs(q))
2868 		goto err_poll;
2869 
2870 	/* init q->mq_kobj and sw queues' kobjects */
2871 	blk_mq_sysfs_init(q);
2872 
2873 	q->nr_queues = nr_hw_queues(set);
2874 	q->queue_hw_ctx = kcalloc_node(q->nr_queues, sizeof(*(q->queue_hw_ctx)),
2875 						GFP_KERNEL, set->numa_node);
2876 	if (!q->queue_hw_ctx)
2877 		goto err_sys_init;
2878 
2879 	INIT_LIST_HEAD(&q->unused_hctx_list);
2880 	spin_lock_init(&q->unused_hctx_lock);
2881 
2882 	blk_mq_realloc_hw_ctxs(set, q);
2883 	if (!q->nr_hw_queues)
2884 		goto err_hctxs;
2885 
2886 	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2887 	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2888 
2889 	q->tag_set = set;
2890 
2891 	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2892 	if (set->nr_maps > HCTX_TYPE_POLL &&
2893 	    set->map[HCTX_TYPE_POLL].nr_queues)
2894 		blk_queue_flag_set(QUEUE_FLAG_POLL, q);
2895 
2896 	q->sg_reserved_size = INT_MAX;
2897 
2898 	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2899 	INIT_LIST_HEAD(&q->requeue_list);
2900 	spin_lock_init(&q->requeue_lock);
2901 
2902 	blk_queue_make_request(q, blk_mq_make_request);
2903 
2904 	/*
2905 	 * Do this after blk_queue_make_request() overrides it...
2906 	 */
2907 	q->nr_requests = set->queue_depth;
2908 
2909 	/*
2910 	 * Default to classic polling
2911 	 */
2912 	q->poll_nsec = BLK_MQ_POLL_CLASSIC;
2913 
2914 	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2915 	blk_mq_add_queue_tag_set(set, q);
2916 	blk_mq_map_swqueue(q);
2917 
2918 	if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2919 		int ret;
2920 
2921 		ret = elevator_init_mq(q);
2922 		if (ret)
2923 			return ERR_PTR(ret);
2924 	}
2925 
2926 	return q;
2927 
2928 err_hctxs:
2929 	kfree(q->queue_hw_ctx);
2930 err_sys_init:
2931 	blk_mq_sysfs_deinit(q);
2932 err_poll:
2933 	blk_stat_free_callback(q->poll_cb);
2934 	q->poll_cb = NULL;
2935 err_exit:
2936 	q->mq_ops = NULL;
2937 	return ERR_PTR(-ENOMEM);
2938 }
2939 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2940 
2941 /* tags can _not_ be used after returning from blk_mq_exit_queue */
2942 void blk_mq_exit_queue(struct request_queue *q)
2943 {
2944 	struct blk_mq_tag_set	*set = q->tag_set;
2945 
2946 	blk_mq_del_queue_tag_set(q);
2947 	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2948 }
2949 
2950 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2951 {
2952 	int i;
2953 
2954 	for (i = 0; i < set->nr_hw_queues; i++)
2955 		if (!__blk_mq_alloc_rq_map(set, i))
2956 			goto out_unwind;
2957 
2958 	return 0;
2959 
2960 out_unwind:
2961 	while (--i >= 0)
2962 		blk_mq_free_rq_map(set->tags[i]);
2963 
2964 	return -ENOMEM;
2965 }
2966 
2967 /*
2968  * Allocate the request maps associated with this tag_set. Note that this
2969  * may reduce the depth asked for, if memory is tight. set->queue_depth
2970  * will be updated to reflect the allocated depth.
2971  */
2972 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2973 {
2974 	unsigned int depth;
2975 	int err;
2976 
2977 	depth = set->queue_depth;
2978 	do {
2979 		err = __blk_mq_alloc_rq_maps(set);
2980 		if (!err)
2981 			break;
2982 
2983 		set->queue_depth >>= 1;
2984 		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2985 			err = -ENOMEM;
2986 			break;
2987 		}
2988 	} while (set->queue_depth);
2989 
2990 	if (!set->queue_depth || err) {
2991 		pr_err("blk-mq: failed to allocate request map\n");
2992 		return -ENOMEM;
2993 	}
2994 
2995 	if (depth != set->queue_depth)
2996 		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2997 						depth, set->queue_depth);
2998 
2999 	return 0;
3000 }
3001 
3002 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
3003 {
3004 	if (set->ops->map_queues && !is_kdump_kernel()) {
3005 		int i;
3006 
3007 		/*
3008 		 * transport .map_queues is usually done in the following
3009 		 * way:
3010 		 *
3011 		 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
3012 		 * 	mask = get_cpu_mask(queue)
3013 		 * 	for_each_cpu(cpu, mask)
3014 		 * 		set->map[x].mq_map[cpu] = queue;
3015 		 * }
3016 		 *
3017 		 * When we need to remap, the table has to be cleared for
3018 		 * killing stale mapping since one CPU may not be mapped
3019 		 * to any hw queue.
3020 		 */
3021 		for (i = 0; i < set->nr_maps; i++)
3022 			blk_mq_clear_mq_map(&set->map[i]);
3023 
3024 		return set->ops->map_queues(set);
3025 	} else {
3026 		BUG_ON(set->nr_maps > 1);
3027 		return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3028 	}
3029 }
3030 
3031 /*
3032  * Alloc a tag set to be associated with one or more request queues.
3033  * May fail with EINVAL for various error conditions. May adjust the
3034  * requested depth down, if it's too large. In that case, the set
3035  * value will be stored in set->queue_depth.
3036  */
3037 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
3038 {
3039 	int i, ret;
3040 
3041 	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
3042 
3043 	if (!set->nr_hw_queues)
3044 		return -EINVAL;
3045 	if (!set->queue_depth)
3046 		return -EINVAL;
3047 	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
3048 		return -EINVAL;
3049 
3050 	if (!set->ops->queue_rq)
3051 		return -EINVAL;
3052 
3053 	if (!set->ops->get_budget ^ !set->ops->put_budget)
3054 		return -EINVAL;
3055 
3056 	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
3057 		pr_info("blk-mq: reduced tag depth to %u\n",
3058 			BLK_MQ_MAX_DEPTH);
3059 		set->queue_depth = BLK_MQ_MAX_DEPTH;
3060 	}
3061 
3062 	if (!set->nr_maps)
3063 		set->nr_maps = 1;
3064 	else if (set->nr_maps > HCTX_MAX_TYPES)
3065 		return -EINVAL;
3066 
3067 	/*
3068 	 * If a crashdump is active, then we are potentially in a very
3069 	 * memory constrained environment. Limit us to 1 queue and
3070 	 * 64 tags to prevent using too much memory.
3071 	 */
3072 	if (is_kdump_kernel()) {
3073 		set->nr_hw_queues = 1;
3074 		set->nr_maps = 1;
3075 		set->queue_depth = min(64U, set->queue_depth);
3076 	}
3077 	/*
3078 	 * There is no use for more h/w queues than cpus if we just have
3079 	 * a single map
3080 	 */
3081 	if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
3082 		set->nr_hw_queues = nr_cpu_ids;
3083 
3084 	set->tags = kcalloc_node(nr_hw_queues(set), sizeof(struct blk_mq_tags *),
3085 				 GFP_KERNEL, set->numa_node);
3086 	if (!set->tags)
3087 		return -ENOMEM;
3088 
3089 	ret = -ENOMEM;
3090 	for (i = 0; i < set->nr_maps; i++) {
3091 		set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
3092 						  sizeof(set->map[i].mq_map[0]),
3093 						  GFP_KERNEL, set->numa_node);
3094 		if (!set->map[i].mq_map)
3095 			goto out_free_mq_map;
3096 		set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
3097 	}
3098 
3099 	ret = blk_mq_update_queue_map(set);
3100 	if (ret)
3101 		goto out_free_mq_map;
3102 
3103 	ret = blk_mq_alloc_rq_maps(set);
3104 	if (ret)
3105 		goto out_free_mq_map;
3106 
3107 	mutex_init(&set->tag_list_lock);
3108 	INIT_LIST_HEAD(&set->tag_list);
3109 
3110 	return 0;
3111 
3112 out_free_mq_map:
3113 	for (i = 0; i < set->nr_maps; i++) {
3114 		kfree(set->map[i].mq_map);
3115 		set->map[i].mq_map = NULL;
3116 	}
3117 	kfree(set->tags);
3118 	set->tags = NULL;
3119 	return ret;
3120 }
3121 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
3122 
3123 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
3124 {
3125 	int i, j;
3126 
3127 	for (i = 0; i < nr_hw_queues(set); i++)
3128 		blk_mq_free_map_and_requests(set, i);
3129 
3130 	for (j = 0; j < set->nr_maps; j++) {
3131 		kfree(set->map[j].mq_map);
3132 		set->map[j].mq_map = NULL;
3133 	}
3134 
3135 	kfree(set->tags);
3136 	set->tags = NULL;
3137 }
3138 EXPORT_SYMBOL(blk_mq_free_tag_set);
3139 
3140 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
3141 {
3142 	struct blk_mq_tag_set *set = q->tag_set;
3143 	struct blk_mq_hw_ctx *hctx;
3144 	int i, ret;
3145 
3146 	if (!set)
3147 		return -EINVAL;
3148 
3149 	if (q->nr_requests == nr)
3150 		return 0;
3151 
3152 	blk_mq_freeze_queue(q);
3153 	blk_mq_quiesce_queue(q);
3154 
3155 	ret = 0;
3156 	queue_for_each_hw_ctx(q, hctx, i) {
3157 		if (!hctx->tags)
3158 			continue;
3159 		/*
3160 		 * If we're using an MQ scheduler, just update the scheduler
3161 		 * queue depth. This is similar to what the old code would do.
3162 		 */
3163 		if (!hctx->sched_tags) {
3164 			ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
3165 							false);
3166 		} else {
3167 			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
3168 							nr, true);
3169 		}
3170 		if (ret)
3171 			break;
3172 		if (q->elevator && q->elevator->type->ops.depth_updated)
3173 			q->elevator->type->ops.depth_updated(hctx);
3174 	}
3175 
3176 	if (!ret)
3177 		q->nr_requests = nr;
3178 
3179 	blk_mq_unquiesce_queue(q);
3180 	blk_mq_unfreeze_queue(q);
3181 
3182 	return ret;
3183 }
3184 
3185 /*
3186  * request_queue and elevator_type pair.
3187  * It is just used by __blk_mq_update_nr_hw_queues to cache
3188  * the elevator_type associated with a request_queue.
3189  */
3190 struct blk_mq_qe_pair {
3191 	struct list_head node;
3192 	struct request_queue *q;
3193 	struct elevator_type *type;
3194 };
3195 
3196 /*
3197  * Cache the elevator_type in qe pair list and switch the
3198  * io scheduler to 'none'
3199  */
3200 static bool blk_mq_elv_switch_none(struct list_head *head,
3201 		struct request_queue *q)
3202 {
3203 	struct blk_mq_qe_pair *qe;
3204 
3205 	if (!q->elevator)
3206 		return true;
3207 
3208 	qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
3209 	if (!qe)
3210 		return false;
3211 
3212 	INIT_LIST_HEAD(&qe->node);
3213 	qe->q = q;
3214 	qe->type = q->elevator->type;
3215 	list_add(&qe->node, head);
3216 
3217 	mutex_lock(&q->sysfs_lock);
3218 	/*
3219 	 * After elevator_switch_mq, the previous elevator_queue will be
3220 	 * released by elevator_release. The reference of the io scheduler
3221 	 * module get by elevator_get will also be put. So we need to get
3222 	 * a reference of the io scheduler module here to prevent it to be
3223 	 * removed.
3224 	 */
3225 	__module_get(qe->type->elevator_owner);
3226 	elevator_switch_mq(q, NULL);
3227 	mutex_unlock(&q->sysfs_lock);
3228 
3229 	return true;
3230 }
3231 
3232 static void blk_mq_elv_switch_back(struct list_head *head,
3233 		struct request_queue *q)
3234 {
3235 	struct blk_mq_qe_pair *qe;
3236 	struct elevator_type *t = NULL;
3237 
3238 	list_for_each_entry(qe, head, node)
3239 		if (qe->q == q) {
3240 			t = qe->type;
3241 			break;
3242 		}
3243 
3244 	if (!t)
3245 		return;
3246 
3247 	list_del(&qe->node);
3248 	kfree(qe);
3249 
3250 	mutex_lock(&q->sysfs_lock);
3251 	elevator_switch_mq(q, t);
3252 	mutex_unlock(&q->sysfs_lock);
3253 }
3254 
3255 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
3256 							int nr_hw_queues)
3257 {
3258 	struct request_queue *q;
3259 	LIST_HEAD(head);
3260 	int prev_nr_hw_queues;
3261 
3262 	lockdep_assert_held(&set->tag_list_lock);
3263 
3264 	if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
3265 		nr_hw_queues = nr_cpu_ids;
3266 	if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
3267 		return;
3268 
3269 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3270 		blk_mq_freeze_queue(q);
3271 	/*
3272 	 * Sync with blk_mq_queue_tag_busy_iter.
3273 	 */
3274 	synchronize_rcu();
3275 	/*
3276 	 * Switch IO scheduler to 'none', cleaning up the data associated
3277 	 * with the previous scheduler. We will switch back once we are done
3278 	 * updating the new sw to hw queue mappings.
3279 	 */
3280 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3281 		if (!blk_mq_elv_switch_none(&head, q))
3282 			goto switch_back;
3283 
3284 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3285 		blk_mq_debugfs_unregister_hctxs(q);
3286 		blk_mq_sysfs_unregister(q);
3287 	}
3288 
3289 	prev_nr_hw_queues = set->nr_hw_queues;
3290 	set->nr_hw_queues = nr_hw_queues;
3291 	blk_mq_update_queue_map(set);
3292 fallback:
3293 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3294 		blk_mq_realloc_hw_ctxs(set, q);
3295 		if (q->nr_hw_queues != set->nr_hw_queues) {
3296 			pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
3297 					nr_hw_queues, prev_nr_hw_queues);
3298 			set->nr_hw_queues = prev_nr_hw_queues;
3299 			blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3300 			goto fallback;
3301 		}
3302 		blk_mq_map_swqueue(q);
3303 	}
3304 
3305 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3306 		blk_mq_sysfs_register(q);
3307 		blk_mq_debugfs_register_hctxs(q);
3308 	}
3309 
3310 switch_back:
3311 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3312 		blk_mq_elv_switch_back(&head, q);
3313 
3314 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3315 		blk_mq_unfreeze_queue(q);
3316 }
3317 
3318 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
3319 {
3320 	mutex_lock(&set->tag_list_lock);
3321 	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
3322 	mutex_unlock(&set->tag_list_lock);
3323 }
3324 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
3325 
3326 /* Enable polling stats and return whether they were already enabled. */
3327 static bool blk_poll_stats_enable(struct request_queue *q)
3328 {
3329 	if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3330 	    blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
3331 		return true;
3332 	blk_stat_add_callback(q, q->poll_cb);
3333 	return false;
3334 }
3335 
3336 static void blk_mq_poll_stats_start(struct request_queue *q)
3337 {
3338 	/*
3339 	 * We don't arm the callback if polling stats are not enabled or the
3340 	 * callback is already active.
3341 	 */
3342 	if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3343 	    blk_stat_is_active(q->poll_cb))
3344 		return;
3345 
3346 	blk_stat_activate_msecs(q->poll_cb, 100);
3347 }
3348 
3349 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
3350 {
3351 	struct request_queue *q = cb->data;
3352 	int bucket;
3353 
3354 	for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
3355 		if (cb->stat[bucket].nr_samples)
3356 			q->poll_stat[bucket] = cb->stat[bucket];
3357 	}
3358 }
3359 
3360 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
3361 				       struct blk_mq_hw_ctx *hctx,
3362 				       struct request *rq)
3363 {
3364 	unsigned long ret = 0;
3365 	int bucket;
3366 
3367 	/*
3368 	 * If stats collection isn't on, don't sleep but turn it on for
3369 	 * future users
3370 	 */
3371 	if (!blk_poll_stats_enable(q))
3372 		return 0;
3373 
3374 	/*
3375 	 * As an optimistic guess, use half of the mean service time
3376 	 * for this type of request. We can (and should) make this smarter.
3377 	 * For instance, if the completion latencies are tight, we can
3378 	 * get closer than just half the mean. This is especially
3379 	 * important on devices where the completion latencies are longer
3380 	 * than ~10 usec. We do use the stats for the relevant IO size
3381 	 * if available which does lead to better estimates.
3382 	 */
3383 	bucket = blk_mq_poll_stats_bkt(rq);
3384 	if (bucket < 0)
3385 		return ret;
3386 
3387 	if (q->poll_stat[bucket].nr_samples)
3388 		ret = (q->poll_stat[bucket].mean + 1) / 2;
3389 
3390 	return ret;
3391 }
3392 
3393 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
3394 				     struct blk_mq_hw_ctx *hctx,
3395 				     struct request *rq)
3396 {
3397 	struct hrtimer_sleeper hs;
3398 	enum hrtimer_mode mode;
3399 	unsigned int nsecs;
3400 	ktime_t kt;
3401 
3402 	if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
3403 		return false;
3404 
3405 	/*
3406 	 * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
3407 	 *
3408 	 *  0:	use half of prev avg
3409 	 * >0:	use this specific value
3410 	 */
3411 	if (q->poll_nsec > 0)
3412 		nsecs = q->poll_nsec;
3413 	else
3414 		nsecs = blk_mq_poll_nsecs(q, hctx, rq);
3415 
3416 	if (!nsecs)
3417 		return false;
3418 
3419 	rq->rq_flags |= RQF_MQ_POLL_SLEPT;
3420 
3421 	/*
3422 	 * This will be replaced with the stats tracking code, using
3423 	 * 'avg_completion_time / 2' as the pre-sleep target.
3424 	 */
3425 	kt = nsecs;
3426 
3427 	mode = HRTIMER_MODE_REL;
3428 	hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
3429 	hrtimer_set_expires(&hs.timer, kt);
3430 
3431 	hrtimer_init_sleeper(&hs, current);
3432 	do {
3433 		if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
3434 			break;
3435 		set_current_state(TASK_UNINTERRUPTIBLE);
3436 		hrtimer_start_expires(&hs.timer, mode);
3437 		if (hs.task)
3438 			io_schedule();
3439 		hrtimer_cancel(&hs.timer);
3440 		mode = HRTIMER_MODE_ABS;
3441 	} while (hs.task && !signal_pending(current));
3442 
3443 	__set_current_state(TASK_RUNNING);
3444 	destroy_hrtimer_on_stack(&hs.timer);
3445 	return true;
3446 }
3447 
3448 static bool blk_mq_poll_hybrid(struct request_queue *q,
3449 			       struct blk_mq_hw_ctx *hctx, blk_qc_t cookie)
3450 {
3451 	struct request *rq;
3452 
3453 	if (q->poll_nsec == BLK_MQ_POLL_CLASSIC)
3454 		return false;
3455 
3456 	if (!blk_qc_t_is_internal(cookie))
3457 		rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3458 	else {
3459 		rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3460 		/*
3461 		 * With scheduling, if the request has completed, we'll
3462 		 * get a NULL return here, as we clear the sched tag when
3463 		 * that happens. The request still remains valid, like always,
3464 		 * so we should be safe with just the NULL check.
3465 		 */
3466 		if (!rq)
3467 			return false;
3468 	}
3469 
3470 	return blk_mq_poll_hybrid_sleep(q, hctx, rq);
3471 }
3472 
3473 /**
3474  * blk_poll - poll for IO completions
3475  * @q:  the queue
3476  * @cookie: cookie passed back at IO submission time
3477  * @spin: whether to spin for completions
3478  *
3479  * Description:
3480  *    Poll for completions on the passed in queue. Returns number of
3481  *    completed entries found. If @spin is true, then blk_poll will continue
3482  *    looping until at least one completion is found, unless the task is
3483  *    otherwise marked running (or we need to reschedule).
3484  */
3485 int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin)
3486 {
3487 	struct blk_mq_hw_ctx *hctx;
3488 	long state;
3489 
3490 	if (!blk_qc_t_valid(cookie) ||
3491 	    !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3492 		return 0;
3493 
3494 	if (current->plug)
3495 		blk_flush_plug_list(current->plug, false);
3496 
3497 	hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3498 
3499 	/*
3500 	 * If we sleep, have the caller restart the poll loop to reset
3501 	 * the state. Like for the other success return cases, the
3502 	 * caller is responsible for checking if the IO completed. If
3503 	 * the IO isn't complete, we'll get called again and will go
3504 	 * straight to the busy poll loop.
3505 	 */
3506 	if (blk_mq_poll_hybrid(q, hctx, cookie))
3507 		return 1;
3508 
3509 	hctx->poll_considered++;
3510 
3511 	state = current->state;
3512 	do {
3513 		int ret;
3514 
3515 		hctx->poll_invoked++;
3516 
3517 		ret = q->mq_ops->poll(hctx);
3518 		if (ret > 0) {
3519 			hctx->poll_success++;
3520 			__set_current_state(TASK_RUNNING);
3521 			return ret;
3522 		}
3523 
3524 		if (signal_pending_state(state, current))
3525 			__set_current_state(TASK_RUNNING);
3526 
3527 		if (current->state == TASK_RUNNING)
3528 			return 1;
3529 		if (ret < 0 || !spin)
3530 			break;
3531 		cpu_relax();
3532 	} while (!need_resched());
3533 
3534 	__set_current_state(TASK_RUNNING);
3535 	return 0;
3536 }
3537 EXPORT_SYMBOL_GPL(blk_poll);
3538 
3539 unsigned int blk_mq_rq_cpu(struct request *rq)
3540 {
3541 	return rq->mq_ctx->cpu;
3542 }
3543 EXPORT_SYMBOL(blk_mq_rq_cpu);
3544 
3545 static int __init blk_mq_init(void)
3546 {
3547 	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
3548 				blk_mq_hctx_notify_dead);
3549 	return 0;
3550 }
3551 subsys_initcall(blk_mq_init);
3552