xref: /linux/block/blk-mq.c (revision 52338415)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block multiqueue core code
4  *
5  * Copyright (C) 2013-2014 Jens Axboe
6  * Copyright (C) 2013-2014 Christoph Hellwig
7  */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/kmemleak.h>
14 #include <linux/mm.h>
15 #include <linux/init.h>
16 #include <linux/slab.h>
17 #include <linux/workqueue.h>
18 #include <linux/smp.h>
19 #include <linux/llist.h>
20 #include <linux/list_sort.h>
21 #include <linux/cpu.h>
22 #include <linux/cache.h>
23 #include <linux/sched/sysctl.h>
24 #include <linux/sched/topology.h>
25 #include <linux/sched/signal.h>
26 #include <linux/delay.h>
27 #include <linux/crash_dump.h>
28 #include <linux/prefetch.h>
29 
30 #include <trace/events/block.h>
31 
32 #include <linux/blk-mq.h>
33 #include <linux/t10-pi.h>
34 #include "blk.h"
35 #include "blk-mq.h"
36 #include "blk-mq-debugfs.h"
37 #include "blk-mq-tag.h"
38 #include "blk-pm.h"
39 #include "blk-stat.h"
40 #include "blk-mq-sched.h"
41 #include "blk-rq-qos.h"
42 
43 static void blk_mq_poll_stats_start(struct request_queue *q);
44 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
45 
46 static int blk_mq_poll_stats_bkt(const struct request *rq)
47 {
48 	int ddir, sectors, bucket;
49 
50 	ddir = rq_data_dir(rq);
51 	sectors = blk_rq_stats_sectors(rq);
52 
53 	bucket = ddir + 2 * ilog2(sectors);
54 
55 	if (bucket < 0)
56 		return -1;
57 	else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
58 		return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
59 
60 	return bucket;
61 }
62 
63 /*
64  * Check if any of the ctx, dispatch list or elevator
65  * have pending work in this hardware queue.
66  */
67 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
68 {
69 	return !list_empty_careful(&hctx->dispatch) ||
70 		sbitmap_any_bit_set(&hctx->ctx_map) ||
71 			blk_mq_sched_has_work(hctx);
72 }
73 
74 /*
75  * Mark this ctx as having pending work in this hardware queue
76  */
77 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
78 				     struct blk_mq_ctx *ctx)
79 {
80 	const int bit = ctx->index_hw[hctx->type];
81 
82 	if (!sbitmap_test_bit(&hctx->ctx_map, bit))
83 		sbitmap_set_bit(&hctx->ctx_map, bit);
84 }
85 
86 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
87 				      struct blk_mq_ctx *ctx)
88 {
89 	const int bit = ctx->index_hw[hctx->type];
90 
91 	sbitmap_clear_bit(&hctx->ctx_map, bit);
92 }
93 
94 struct mq_inflight {
95 	struct hd_struct *part;
96 	unsigned int *inflight;
97 };
98 
99 static bool blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
100 				  struct request *rq, void *priv,
101 				  bool reserved)
102 {
103 	struct mq_inflight *mi = priv;
104 
105 	/*
106 	 * index[0] counts the specific partition that was asked for.
107 	 */
108 	if (rq->part == mi->part)
109 		mi->inflight[0]++;
110 
111 	return true;
112 }
113 
114 unsigned int blk_mq_in_flight(struct request_queue *q, struct hd_struct *part)
115 {
116 	unsigned inflight[2];
117 	struct mq_inflight mi = { .part = part, .inflight = inflight, };
118 
119 	inflight[0] = inflight[1] = 0;
120 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
121 
122 	return inflight[0];
123 }
124 
125 static bool blk_mq_check_inflight_rw(struct blk_mq_hw_ctx *hctx,
126 				     struct request *rq, void *priv,
127 				     bool reserved)
128 {
129 	struct mq_inflight *mi = priv;
130 
131 	if (rq->part == mi->part)
132 		mi->inflight[rq_data_dir(rq)]++;
133 
134 	return true;
135 }
136 
137 void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part,
138 			 unsigned int inflight[2])
139 {
140 	struct mq_inflight mi = { .part = part, .inflight = inflight, };
141 
142 	inflight[0] = inflight[1] = 0;
143 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight_rw, &mi);
144 }
145 
146 void blk_freeze_queue_start(struct request_queue *q)
147 {
148 	mutex_lock(&q->mq_freeze_lock);
149 	if (++q->mq_freeze_depth == 1) {
150 		percpu_ref_kill(&q->q_usage_counter);
151 		mutex_unlock(&q->mq_freeze_lock);
152 		if (queue_is_mq(q))
153 			blk_mq_run_hw_queues(q, false);
154 	} else {
155 		mutex_unlock(&q->mq_freeze_lock);
156 	}
157 }
158 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
159 
160 void blk_mq_freeze_queue_wait(struct request_queue *q)
161 {
162 	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
163 }
164 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
165 
166 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
167 				     unsigned long timeout)
168 {
169 	return wait_event_timeout(q->mq_freeze_wq,
170 					percpu_ref_is_zero(&q->q_usage_counter),
171 					timeout);
172 }
173 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
174 
175 /*
176  * Guarantee no request is in use, so we can change any data structure of
177  * the queue afterward.
178  */
179 void blk_freeze_queue(struct request_queue *q)
180 {
181 	/*
182 	 * In the !blk_mq case we are only calling this to kill the
183 	 * q_usage_counter, otherwise this increases the freeze depth
184 	 * and waits for it to return to zero.  For this reason there is
185 	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
186 	 * exported to drivers as the only user for unfreeze is blk_mq.
187 	 */
188 	blk_freeze_queue_start(q);
189 	blk_mq_freeze_queue_wait(q);
190 }
191 
192 void blk_mq_freeze_queue(struct request_queue *q)
193 {
194 	/*
195 	 * ...just an alias to keep freeze and unfreeze actions balanced
196 	 * in the blk_mq_* namespace
197 	 */
198 	blk_freeze_queue(q);
199 }
200 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
201 
202 void blk_mq_unfreeze_queue(struct request_queue *q)
203 {
204 	mutex_lock(&q->mq_freeze_lock);
205 	q->mq_freeze_depth--;
206 	WARN_ON_ONCE(q->mq_freeze_depth < 0);
207 	if (!q->mq_freeze_depth) {
208 		percpu_ref_resurrect(&q->q_usage_counter);
209 		wake_up_all(&q->mq_freeze_wq);
210 	}
211 	mutex_unlock(&q->mq_freeze_lock);
212 }
213 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
214 
215 /*
216  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
217  * mpt3sas driver such that this function can be removed.
218  */
219 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
220 {
221 	blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
222 }
223 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
224 
225 /**
226  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
227  * @q: request queue.
228  *
229  * Note: this function does not prevent that the struct request end_io()
230  * callback function is invoked. Once this function is returned, we make
231  * sure no dispatch can happen until the queue is unquiesced via
232  * blk_mq_unquiesce_queue().
233  */
234 void blk_mq_quiesce_queue(struct request_queue *q)
235 {
236 	struct blk_mq_hw_ctx *hctx;
237 	unsigned int i;
238 	bool rcu = false;
239 
240 	blk_mq_quiesce_queue_nowait(q);
241 
242 	queue_for_each_hw_ctx(q, hctx, i) {
243 		if (hctx->flags & BLK_MQ_F_BLOCKING)
244 			synchronize_srcu(hctx->srcu);
245 		else
246 			rcu = true;
247 	}
248 	if (rcu)
249 		synchronize_rcu();
250 }
251 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
252 
253 /*
254  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
255  * @q: request queue.
256  *
257  * This function recovers queue into the state before quiescing
258  * which is done by blk_mq_quiesce_queue.
259  */
260 void blk_mq_unquiesce_queue(struct request_queue *q)
261 {
262 	blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
263 
264 	/* dispatch requests which are inserted during quiescing */
265 	blk_mq_run_hw_queues(q, true);
266 }
267 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
268 
269 void blk_mq_wake_waiters(struct request_queue *q)
270 {
271 	struct blk_mq_hw_ctx *hctx;
272 	unsigned int i;
273 
274 	queue_for_each_hw_ctx(q, hctx, i)
275 		if (blk_mq_hw_queue_mapped(hctx))
276 			blk_mq_tag_wakeup_all(hctx->tags, true);
277 }
278 
279 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
280 {
281 	return blk_mq_has_free_tags(hctx->tags);
282 }
283 EXPORT_SYMBOL(blk_mq_can_queue);
284 
285 /*
286  * Only need start/end time stamping if we have iostat or
287  * blk stats enabled, or using an IO scheduler.
288  */
289 static inline bool blk_mq_need_time_stamp(struct request *rq)
290 {
291 	return (rq->rq_flags & (RQF_IO_STAT | RQF_STATS)) || rq->q->elevator;
292 }
293 
294 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
295 		unsigned int tag, unsigned int op, u64 alloc_time_ns)
296 {
297 	struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
298 	struct request *rq = tags->static_rqs[tag];
299 	req_flags_t rq_flags = 0;
300 
301 	if (data->flags & BLK_MQ_REQ_INTERNAL) {
302 		rq->tag = -1;
303 		rq->internal_tag = tag;
304 	} else {
305 		if (data->hctx->flags & BLK_MQ_F_TAG_SHARED) {
306 			rq_flags = RQF_MQ_INFLIGHT;
307 			atomic_inc(&data->hctx->nr_active);
308 		}
309 		rq->tag = tag;
310 		rq->internal_tag = -1;
311 		data->hctx->tags->rqs[rq->tag] = rq;
312 	}
313 
314 	/* csd/requeue_work/fifo_time is initialized before use */
315 	rq->q = data->q;
316 	rq->mq_ctx = data->ctx;
317 	rq->mq_hctx = data->hctx;
318 	rq->rq_flags = rq_flags;
319 	rq->cmd_flags = op;
320 	if (data->flags & BLK_MQ_REQ_PREEMPT)
321 		rq->rq_flags |= RQF_PREEMPT;
322 	if (blk_queue_io_stat(data->q))
323 		rq->rq_flags |= RQF_IO_STAT;
324 	INIT_LIST_HEAD(&rq->queuelist);
325 	INIT_HLIST_NODE(&rq->hash);
326 	RB_CLEAR_NODE(&rq->rb_node);
327 	rq->rq_disk = NULL;
328 	rq->part = NULL;
329 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
330 	rq->alloc_time_ns = alloc_time_ns;
331 #endif
332 	if (blk_mq_need_time_stamp(rq))
333 		rq->start_time_ns = ktime_get_ns();
334 	else
335 		rq->start_time_ns = 0;
336 	rq->io_start_time_ns = 0;
337 	rq->stats_sectors = 0;
338 	rq->nr_phys_segments = 0;
339 #if defined(CONFIG_BLK_DEV_INTEGRITY)
340 	rq->nr_integrity_segments = 0;
341 #endif
342 	/* tag was already set */
343 	rq->extra_len = 0;
344 	WRITE_ONCE(rq->deadline, 0);
345 
346 	rq->timeout = 0;
347 
348 	rq->end_io = NULL;
349 	rq->end_io_data = NULL;
350 
351 	data->ctx->rq_dispatched[op_is_sync(op)]++;
352 	refcount_set(&rq->ref, 1);
353 	return rq;
354 }
355 
356 static struct request *blk_mq_get_request(struct request_queue *q,
357 					  struct bio *bio,
358 					  struct blk_mq_alloc_data *data)
359 {
360 	struct elevator_queue *e = q->elevator;
361 	struct request *rq;
362 	unsigned int tag;
363 	bool clear_ctx_on_error = false;
364 	u64 alloc_time_ns = 0;
365 
366 	blk_queue_enter_live(q);
367 
368 	/* alloc_time includes depth and tag waits */
369 	if (blk_queue_rq_alloc_time(q))
370 		alloc_time_ns = ktime_get_ns();
371 
372 	data->q = q;
373 	if (likely(!data->ctx)) {
374 		data->ctx = blk_mq_get_ctx(q);
375 		clear_ctx_on_error = true;
376 	}
377 	if (likely(!data->hctx))
378 		data->hctx = blk_mq_map_queue(q, data->cmd_flags,
379 						data->ctx);
380 	if (data->cmd_flags & REQ_NOWAIT)
381 		data->flags |= BLK_MQ_REQ_NOWAIT;
382 
383 	if (e) {
384 		data->flags |= BLK_MQ_REQ_INTERNAL;
385 
386 		/*
387 		 * Flush requests are special and go directly to the
388 		 * dispatch list. Don't include reserved tags in the
389 		 * limiting, as it isn't useful.
390 		 */
391 		if (!op_is_flush(data->cmd_flags) &&
392 		    e->type->ops.limit_depth &&
393 		    !(data->flags & BLK_MQ_REQ_RESERVED))
394 			e->type->ops.limit_depth(data->cmd_flags, data);
395 	} else {
396 		blk_mq_tag_busy(data->hctx);
397 	}
398 
399 	tag = blk_mq_get_tag(data);
400 	if (tag == BLK_MQ_TAG_FAIL) {
401 		if (clear_ctx_on_error)
402 			data->ctx = NULL;
403 		blk_queue_exit(q);
404 		return NULL;
405 	}
406 
407 	rq = blk_mq_rq_ctx_init(data, tag, data->cmd_flags, alloc_time_ns);
408 	if (!op_is_flush(data->cmd_flags)) {
409 		rq->elv.icq = NULL;
410 		if (e && e->type->ops.prepare_request) {
411 			if (e->type->icq_cache)
412 				blk_mq_sched_assign_ioc(rq);
413 
414 			e->type->ops.prepare_request(rq, bio);
415 			rq->rq_flags |= RQF_ELVPRIV;
416 		}
417 	}
418 	data->hctx->queued++;
419 	return rq;
420 }
421 
422 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
423 		blk_mq_req_flags_t flags)
424 {
425 	struct blk_mq_alloc_data alloc_data = { .flags = flags, .cmd_flags = op };
426 	struct request *rq;
427 	int ret;
428 
429 	ret = blk_queue_enter(q, flags);
430 	if (ret)
431 		return ERR_PTR(ret);
432 
433 	rq = blk_mq_get_request(q, NULL, &alloc_data);
434 	blk_queue_exit(q);
435 
436 	if (!rq)
437 		return ERR_PTR(-EWOULDBLOCK);
438 
439 	rq->__data_len = 0;
440 	rq->__sector = (sector_t) -1;
441 	rq->bio = rq->biotail = NULL;
442 	return rq;
443 }
444 EXPORT_SYMBOL(blk_mq_alloc_request);
445 
446 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
447 	unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
448 {
449 	struct blk_mq_alloc_data alloc_data = { .flags = flags, .cmd_flags = op };
450 	struct request *rq;
451 	unsigned int cpu;
452 	int ret;
453 
454 	/*
455 	 * If the tag allocator sleeps we could get an allocation for a
456 	 * different hardware context.  No need to complicate the low level
457 	 * allocator for this for the rare use case of a command tied to
458 	 * a specific queue.
459 	 */
460 	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
461 		return ERR_PTR(-EINVAL);
462 
463 	if (hctx_idx >= q->nr_hw_queues)
464 		return ERR_PTR(-EIO);
465 
466 	ret = blk_queue_enter(q, flags);
467 	if (ret)
468 		return ERR_PTR(ret);
469 
470 	/*
471 	 * Check if the hardware context is actually mapped to anything.
472 	 * If not tell the caller that it should skip this queue.
473 	 */
474 	alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
475 	if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
476 		blk_queue_exit(q);
477 		return ERR_PTR(-EXDEV);
478 	}
479 	cpu = cpumask_first_and(alloc_data.hctx->cpumask, cpu_online_mask);
480 	alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
481 
482 	rq = blk_mq_get_request(q, NULL, &alloc_data);
483 	blk_queue_exit(q);
484 
485 	if (!rq)
486 		return ERR_PTR(-EWOULDBLOCK);
487 
488 	return rq;
489 }
490 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
491 
492 static void __blk_mq_free_request(struct request *rq)
493 {
494 	struct request_queue *q = rq->q;
495 	struct blk_mq_ctx *ctx = rq->mq_ctx;
496 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
497 	const int sched_tag = rq->internal_tag;
498 
499 	blk_pm_mark_last_busy(rq);
500 	rq->mq_hctx = NULL;
501 	if (rq->tag != -1)
502 		blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
503 	if (sched_tag != -1)
504 		blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
505 	blk_mq_sched_restart(hctx);
506 	blk_queue_exit(q);
507 }
508 
509 void blk_mq_free_request(struct request *rq)
510 {
511 	struct request_queue *q = rq->q;
512 	struct elevator_queue *e = q->elevator;
513 	struct blk_mq_ctx *ctx = rq->mq_ctx;
514 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
515 
516 	if (rq->rq_flags & RQF_ELVPRIV) {
517 		if (e && e->type->ops.finish_request)
518 			e->type->ops.finish_request(rq);
519 		if (rq->elv.icq) {
520 			put_io_context(rq->elv.icq->ioc);
521 			rq->elv.icq = NULL;
522 		}
523 	}
524 
525 	ctx->rq_completed[rq_is_sync(rq)]++;
526 	if (rq->rq_flags & RQF_MQ_INFLIGHT)
527 		atomic_dec(&hctx->nr_active);
528 
529 	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
530 		laptop_io_completion(q->backing_dev_info);
531 
532 	rq_qos_done(q, rq);
533 
534 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
535 	if (refcount_dec_and_test(&rq->ref))
536 		__blk_mq_free_request(rq);
537 }
538 EXPORT_SYMBOL_GPL(blk_mq_free_request);
539 
540 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
541 {
542 	u64 now = 0;
543 
544 	if (blk_mq_need_time_stamp(rq))
545 		now = ktime_get_ns();
546 
547 	if (rq->rq_flags & RQF_STATS) {
548 		blk_mq_poll_stats_start(rq->q);
549 		blk_stat_add(rq, now);
550 	}
551 
552 	if (rq->internal_tag != -1)
553 		blk_mq_sched_completed_request(rq, now);
554 
555 	blk_account_io_done(rq, now);
556 
557 	if (rq->end_io) {
558 		rq_qos_done(rq->q, rq);
559 		rq->end_io(rq, error);
560 	} else {
561 		blk_mq_free_request(rq);
562 	}
563 }
564 EXPORT_SYMBOL(__blk_mq_end_request);
565 
566 void blk_mq_end_request(struct request *rq, blk_status_t error)
567 {
568 	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
569 		BUG();
570 	__blk_mq_end_request(rq, error);
571 }
572 EXPORT_SYMBOL(blk_mq_end_request);
573 
574 static void __blk_mq_complete_request_remote(void *data)
575 {
576 	struct request *rq = data;
577 	struct request_queue *q = rq->q;
578 
579 	q->mq_ops->complete(rq);
580 }
581 
582 static void __blk_mq_complete_request(struct request *rq)
583 {
584 	struct blk_mq_ctx *ctx = rq->mq_ctx;
585 	struct request_queue *q = rq->q;
586 	bool shared = false;
587 	int cpu;
588 
589 	WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
590 	/*
591 	 * Most of single queue controllers, there is only one irq vector
592 	 * for handling IO completion, and the only irq's affinity is set
593 	 * as all possible CPUs. On most of ARCHs, this affinity means the
594 	 * irq is handled on one specific CPU.
595 	 *
596 	 * So complete IO reqeust in softirq context in case of single queue
597 	 * for not degrading IO performance by irqsoff latency.
598 	 */
599 	if (q->nr_hw_queues == 1) {
600 		__blk_complete_request(rq);
601 		return;
602 	}
603 
604 	/*
605 	 * For a polled request, always complete locallly, it's pointless
606 	 * to redirect the completion.
607 	 */
608 	if ((rq->cmd_flags & REQ_HIPRI) ||
609 	    !test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags)) {
610 		q->mq_ops->complete(rq);
611 		return;
612 	}
613 
614 	cpu = get_cpu();
615 	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &q->queue_flags))
616 		shared = cpus_share_cache(cpu, ctx->cpu);
617 
618 	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
619 		rq->csd.func = __blk_mq_complete_request_remote;
620 		rq->csd.info = rq;
621 		rq->csd.flags = 0;
622 		smp_call_function_single_async(ctx->cpu, &rq->csd);
623 	} else {
624 		q->mq_ops->complete(rq);
625 	}
626 	put_cpu();
627 }
628 
629 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
630 	__releases(hctx->srcu)
631 {
632 	if (!(hctx->flags & BLK_MQ_F_BLOCKING))
633 		rcu_read_unlock();
634 	else
635 		srcu_read_unlock(hctx->srcu, srcu_idx);
636 }
637 
638 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
639 	__acquires(hctx->srcu)
640 {
641 	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
642 		/* shut up gcc false positive */
643 		*srcu_idx = 0;
644 		rcu_read_lock();
645 	} else
646 		*srcu_idx = srcu_read_lock(hctx->srcu);
647 }
648 
649 /**
650  * blk_mq_complete_request - end I/O on a request
651  * @rq:		the request being processed
652  *
653  * Description:
654  *	Ends all I/O on a request. It does not handle partial completions.
655  *	The actual completion happens out-of-order, through a IPI handler.
656  **/
657 bool blk_mq_complete_request(struct request *rq)
658 {
659 	if (unlikely(blk_should_fake_timeout(rq->q)))
660 		return false;
661 	__blk_mq_complete_request(rq);
662 	return true;
663 }
664 EXPORT_SYMBOL(blk_mq_complete_request);
665 
666 int blk_mq_request_started(struct request *rq)
667 {
668 	return blk_mq_rq_state(rq) != MQ_RQ_IDLE;
669 }
670 EXPORT_SYMBOL_GPL(blk_mq_request_started);
671 
672 int blk_mq_request_completed(struct request *rq)
673 {
674 	return blk_mq_rq_state(rq) == MQ_RQ_COMPLETE;
675 }
676 EXPORT_SYMBOL_GPL(blk_mq_request_completed);
677 
678 void blk_mq_start_request(struct request *rq)
679 {
680 	struct request_queue *q = rq->q;
681 
682 	trace_block_rq_issue(q, rq);
683 
684 	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
685 		rq->io_start_time_ns = ktime_get_ns();
686 		rq->stats_sectors = blk_rq_sectors(rq);
687 		rq->rq_flags |= RQF_STATS;
688 		rq_qos_issue(q, rq);
689 	}
690 
691 	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
692 
693 	blk_add_timer(rq);
694 	WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
695 
696 	if (q->dma_drain_size && blk_rq_bytes(rq)) {
697 		/*
698 		 * Make sure space for the drain appears.  We know we can do
699 		 * this because max_hw_segments has been adjusted to be one
700 		 * fewer than the device can handle.
701 		 */
702 		rq->nr_phys_segments++;
703 	}
704 
705 #ifdef CONFIG_BLK_DEV_INTEGRITY
706 	if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
707 		q->integrity.profile->prepare_fn(rq);
708 #endif
709 }
710 EXPORT_SYMBOL(blk_mq_start_request);
711 
712 static void __blk_mq_requeue_request(struct request *rq)
713 {
714 	struct request_queue *q = rq->q;
715 
716 	blk_mq_put_driver_tag(rq);
717 
718 	trace_block_rq_requeue(q, rq);
719 	rq_qos_requeue(q, rq);
720 
721 	if (blk_mq_request_started(rq)) {
722 		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
723 		rq->rq_flags &= ~RQF_TIMED_OUT;
724 		if (q->dma_drain_size && blk_rq_bytes(rq))
725 			rq->nr_phys_segments--;
726 	}
727 }
728 
729 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
730 {
731 	__blk_mq_requeue_request(rq);
732 
733 	/* this request will be re-inserted to io scheduler queue */
734 	blk_mq_sched_requeue_request(rq);
735 
736 	BUG_ON(!list_empty(&rq->queuelist));
737 	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
738 }
739 EXPORT_SYMBOL(blk_mq_requeue_request);
740 
741 static void blk_mq_requeue_work(struct work_struct *work)
742 {
743 	struct request_queue *q =
744 		container_of(work, struct request_queue, requeue_work.work);
745 	LIST_HEAD(rq_list);
746 	struct request *rq, *next;
747 
748 	spin_lock_irq(&q->requeue_lock);
749 	list_splice_init(&q->requeue_list, &rq_list);
750 	spin_unlock_irq(&q->requeue_lock);
751 
752 	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
753 		if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
754 			continue;
755 
756 		rq->rq_flags &= ~RQF_SOFTBARRIER;
757 		list_del_init(&rq->queuelist);
758 		/*
759 		 * If RQF_DONTPREP, rq has contained some driver specific
760 		 * data, so insert it to hctx dispatch list to avoid any
761 		 * merge.
762 		 */
763 		if (rq->rq_flags & RQF_DONTPREP)
764 			blk_mq_request_bypass_insert(rq, false);
765 		else
766 			blk_mq_sched_insert_request(rq, true, false, false);
767 	}
768 
769 	while (!list_empty(&rq_list)) {
770 		rq = list_entry(rq_list.next, struct request, queuelist);
771 		list_del_init(&rq->queuelist);
772 		blk_mq_sched_insert_request(rq, false, false, false);
773 	}
774 
775 	blk_mq_run_hw_queues(q, false);
776 }
777 
778 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
779 				bool kick_requeue_list)
780 {
781 	struct request_queue *q = rq->q;
782 	unsigned long flags;
783 
784 	/*
785 	 * We abuse this flag that is otherwise used by the I/O scheduler to
786 	 * request head insertion from the workqueue.
787 	 */
788 	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
789 
790 	spin_lock_irqsave(&q->requeue_lock, flags);
791 	if (at_head) {
792 		rq->rq_flags |= RQF_SOFTBARRIER;
793 		list_add(&rq->queuelist, &q->requeue_list);
794 	} else {
795 		list_add_tail(&rq->queuelist, &q->requeue_list);
796 	}
797 	spin_unlock_irqrestore(&q->requeue_lock, flags);
798 
799 	if (kick_requeue_list)
800 		blk_mq_kick_requeue_list(q);
801 }
802 
803 void blk_mq_kick_requeue_list(struct request_queue *q)
804 {
805 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
806 }
807 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
808 
809 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
810 				    unsigned long msecs)
811 {
812 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
813 				    msecs_to_jiffies(msecs));
814 }
815 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
816 
817 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
818 {
819 	if (tag < tags->nr_tags) {
820 		prefetch(tags->rqs[tag]);
821 		return tags->rqs[tag];
822 	}
823 
824 	return NULL;
825 }
826 EXPORT_SYMBOL(blk_mq_tag_to_rq);
827 
828 static bool blk_mq_rq_inflight(struct blk_mq_hw_ctx *hctx, struct request *rq,
829 			       void *priv, bool reserved)
830 {
831 	/*
832 	 * If we find a request that is inflight and the queue matches,
833 	 * we know the queue is busy. Return false to stop the iteration.
834 	 */
835 	if (rq->state == MQ_RQ_IN_FLIGHT && rq->q == hctx->queue) {
836 		bool *busy = priv;
837 
838 		*busy = true;
839 		return false;
840 	}
841 
842 	return true;
843 }
844 
845 bool blk_mq_queue_inflight(struct request_queue *q)
846 {
847 	bool busy = false;
848 
849 	blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
850 	return busy;
851 }
852 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
853 
854 static void blk_mq_rq_timed_out(struct request *req, bool reserved)
855 {
856 	req->rq_flags |= RQF_TIMED_OUT;
857 	if (req->q->mq_ops->timeout) {
858 		enum blk_eh_timer_return ret;
859 
860 		ret = req->q->mq_ops->timeout(req, reserved);
861 		if (ret == BLK_EH_DONE)
862 			return;
863 		WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
864 	}
865 
866 	blk_add_timer(req);
867 }
868 
869 static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
870 {
871 	unsigned long deadline;
872 
873 	if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
874 		return false;
875 	if (rq->rq_flags & RQF_TIMED_OUT)
876 		return false;
877 
878 	deadline = READ_ONCE(rq->deadline);
879 	if (time_after_eq(jiffies, deadline))
880 		return true;
881 
882 	if (*next == 0)
883 		*next = deadline;
884 	else if (time_after(*next, deadline))
885 		*next = deadline;
886 	return false;
887 }
888 
889 static bool blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
890 		struct request *rq, void *priv, bool reserved)
891 {
892 	unsigned long *next = priv;
893 
894 	/*
895 	 * Just do a quick check if it is expired before locking the request in
896 	 * so we're not unnecessarilly synchronizing across CPUs.
897 	 */
898 	if (!blk_mq_req_expired(rq, next))
899 		return true;
900 
901 	/*
902 	 * We have reason to believe the request may be expired. Take a
903 	 * reference on the request to lock this request lifetime into its
904 	 * currently allocated context to prevent it from being reallocated in
905 	 * the event the completion by-passes this timeout handler.
906 	 *
907 	 * If the reference was already released, then the driver beat the
908 	 * timeout handler to posting a natural completion.
909 	 */
910 	if (!refcount_inc_not_zero(&rq->ref))
911 		return true;
912 
913 	/*
914 	 * The request is now locked and cannot be reallocated underneath the
915 	 * timeout handler's processing. Re-verify this exact request is truly
916 	 * expired; if it is not expired, then the request was completed and
917 	 * reallocated as a new request.
918 	 */
919 	if (blk_mq_req_expired(rq, next))
920 		blk_mq_rq_timed_out(rq, reserved);
921 
922 	if (is_flush_rq(rq, hctx))
923 		rq->end_io(rq, 0);
924 	else if (refcount_dec_and_test(&rq->ref))
925 		__blk_mq_free_request(rq);
926 
927 	return true;
928 }
929 
930 static void blk_mq_timeout_work(struct work_struct *work)
931 {
932 	struct request_queue *q =
933 		container_of(work, struct request_queue, timeout_work);
934 	unsigned long next = 0;
935 	struct blk_mq_hw_ctx *hctx;
936 	int i;
937 
938 	/* A deadlock might occur if a request is stuck requiring a
939 	 * timeout at the same time a queue freeze is waiting
940 	 * completion, since the timeout code would not be able to
941 	 * acquire the queue reference here.
942 	 *
943 	 * That's why we don't use blk_queue_enter here; instead, we use
944 	 * percpu_ref_tryget directly, because we need to be able to
945 	 * obtain a reference even in the short window between the queue
946 	 * starting to freeze, by dropping the first reference in
947 	 * blk_freeze_queue_start, and the moment the last request is
948 	 * consumed, marked by the instant q_usage_counter reaches
949 	 * zero.
950 	 */
951 	if (!percpu_ref_tryget(&q->q_usage_counter))
952 		return;
953 
954 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
955 
956 	if (next != 0) {
957 		mod_timer(&q->timeout, next);
958 	} else {
959 		/*
960 		 * Request timeouts are handled as a forward rolling timer. If
961 		 * we end up here it means that no requests are pending and
962 		 * also that no request has been pending for a while. Mark
963 		 * each hctx as idle.
964 		 */
965 		queue_for_each_hw_ctx(q, hctx, i) {
966 			/* the hctx may be unmapped, so check it here */
967 			if (blk_mq_hw_queue_mapped(hctx))
968 				blk_mq_tag_idle(hctx);
969 		}
970 	}
971 	blk_queue_exit(q);
972 }
973 
974 struct flush_busy_ctx_data {
975 	struct blk_mq_hw_ctx *hctx;
976 	struct list_head *list;
977 };
978 
979 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
980 {
981 	struct flush_busy_ctx_data *flush_data = data;
982 	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
983 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
984 	enum hctx_type type = hctx->type;
985 
986 	spin_lock(&ctx->lock);
987 	list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
988 	sbitmap_clear_bit(sb, bitnr);
989 	spin_unlock(&ctx->lock);
990 	return true;
991 }
992 
993 /*
994  * Process software queues that have been marked busy, splicing them
995  * to the for-dispatch
996  */
997 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
998 {
999 	struct flush_busy_ctx_data data = {
1000 		.hctx = hctx,
1001 		.list = list,
1002 	};
1003 
1004 	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1005 }
1006 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1007 
1008 struct dispatch_rq_data {
1009 	struct blk_mq_hw_ctx *hctx;
1010 	struct request *rq;
1011 };
1012 
1013 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1014 		void *data)
1015 {
1016 	struct dispatch_rq_data *dispatch_data = data;
1017 	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1018 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1019 	enum hctx_type type = hctx->type;
1020 
1021 	spin_lock(&ctx->lock);
1022 	if (!list_empty(&ctx->rq_lists[type])) {
1023 		dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1024 		list_del_init(&dispatch_data->rq->queuelist);
1025 		if (list_empty(&ctx->rq_lists[type]))
1026 			sbitmap_clear_bit(sb, bitnr);
1027 	}
1028 	spin_unlock(&ctx->lock);
1029 
1030 	return !dispatch_data->rq;
1031 }
1032 
1033 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1034 					struct blk_mq_ctx *start)
1035 {
1036 	unsigned off = start ? start->index_hw[hctx->type] : 0;
1037 	struct dispatch_rq_data data = {
1038 		.hctx = hctx,
1039 		.rq   = NULL,
1040 	};
1041 
1042 	__sbitmap_for_each_set(&hctx->ctx_map, off,
1043 			       dispatch_rq_from_ctx, &data);
1044 
1045 	return data.rq;
1046 }
1047 
1048 static inline unsigned int queued_to_index(unsigned int queued)
1049 {
1050 	if (!queued)
1051 		return 0;
1052 
1053 	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1054 }
1055 
1056 bool blk_mq_get_driver_tag(struct request *rq)
1057 {
1058 	struct blk_mq_alloc_data data = {
1059 		.q = rq->q,
1060 		.hctx = rq->mq_hctx,
1061 		.flags = BLK_MQ_REQ_NOWAIT,
1062 		.cmd_flags = rq->cmd_flags,
1063 	};
1064 	bool shared;
1065 
1066 	if (rq->tag != -1)
1067 		goto done;
1068 
1069 	if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
1070 		data.flags |= BLK_MQ_REQ_RESERVED;
1071 
1072 	shared = blk_mq_tag_busy(data.hctx);
1073 	rq->tag = blk_mq_get_tag(&data);
1074 	if (rq->tag >= 0) {
1075 		if (shared) {
1076 			rq->rq_flags |= RQF_MQ_INFLIGHT;
1077 			atomic_inc(&data.hctx->nr_active);
1078 		}
1079 		data.hctx->tags->rqs[rq->tag] = rq;
1080 	}
1081 
1082 done:
1083 	return rq->tag != -1;
1084 }
1085 
1086 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1087 				int flags, void *key)
1088 {
1089 	struct blk_mq_hw_ctx *hctx;
1090 
1091 	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1092 
1093 	spin_lock(&hctx->dispatch_wait_lock);
1094 	if (!list_empty(&wait->entry)) {
1095 		struct sbitmap_queue *sbq;
1096 
1097 		list_del_init(&wait->entry);
1098 		sbq = &hctx->tags->bitmap_tags;
1099 		atomic_dec(&sbq->ws_active);
1100 	}
1101 	spin_unlock(&hctx->dispatch_wait_lock);
1102 
1103 	blk_mq_run_hw_queue(hctx, true);
1104 	return 1;
1105 }
1106 
1107 /*
1108  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1109  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1110  * restart. For both cases, take care to check the condition again after
1111  * marking us as waiting.
1112  */
1113 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1114 				 struct request *rq)
1115 {
1116 	struct sbitmap_queue *sbq = &hctx->tags->bitmap_tags;
1117 	struct wait_queue_head *wq;
1118 	wait_queue_entry_t *wait;
1119 	bool ret;
1120 
1121 	if (!(hctx->flags & BLK_MQ_F_TAG_SHARED)) {
1122 		blk_mq_sched_mark_restart_hctx(hctx);
1123 
1124 		/*
1125 		 * It's possible that a tag was freed in the window between the
1126 		 * allocation failure and adding the hardware queue to the wait
1127 		 * queue.
1128 		 *
1129 		 * Don't clear RESTART here, someone else could have set it.
1130 		 * At most this will cost an extra queue run.
1131 		 */
1132 		return blk_mq_get_driver_tag(rq);
1133 	}
1134 
1135 	wait = &hctx->dispatch_wait;
1136 	if (!list_empty_careful(&wait->entry))
1137 		return false;
1138 
1139 	wq = &bt_wait_ptr(sbq, hctx)->wait;
1140 
1141 	spin_lock_irq(&wq->lock);
1142 	spin_lock(&hctx->dispatch_wait_lock);
1143 	if (!list_empty(&wait->entry)) {
1144 		spin_unlock(&hctx->dispatch_wait_lock);
1145 		spin_unlock_irq(&wq->lock);
1146 		return false;
1147 	}
1148 
1149 	atomic_inc(&sbq->ws_active);
1150 	wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1151 	__add_wait_queue(wq, wait);
1152 
1153 	/*
1154 	 * It's possible that a tag was freed in the window between the
1155 	 * allocation failure and adding the hardware queue to the wait
1156 	 * queue.
1157 	 */
1158 	ret = blk_mq_get_driver_tag(rq);
1159 	if (!ret) {
1160 		spin_unlock(&hctx->dispatch_wait_lock);
1161 		spin_unlock_irq(&wq->lock);
1162 		return false;
1163 	}
1164 
1165 	/*
1166 	 * We got a tag, remove ourselves from the wait queue to ensure
1167 	 * someone else gets the wakeup.
1168 	 */
1169 	list_del_init(&wait->entry);
1170 	atomic_dec(&sbq->ws_active);
1171 	spin_unlock(&hctx->dispatch_wait_lock);
1172 	spin_unlock_irq(&wq->lock);
1173 
1174 	return true;
1175 }
1176 
1177 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1178 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1179 /*
1180  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1181  * - EWMA is one simple way to compute running average value
1182  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1183  * - take 4 as factor for avoiding to get too small(0) result, and this
1184  *   factor doesn't matter because EWMA decreases exponentially
1185  */
1186 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1187 {
1188 	unsigned int ewma;
1189 
1190 	if (hctx->queue->elevator)
1191 		return;
1192 
1193 	ewma = hctx->dispatch_busy;
1194 
1195 	if (!ewma && !busy)
1196 		return;
1197 
1198 	ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1199 	if (busy)
1200 		ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1201 	ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1202 
1203 	hctx->dispatch_busy = ewma;
1204 }
1205 
1206 #define BLK_MQ_RESOURCE_DELAY	3		/* ms units */
1207 
1208 /*
1209  * Returns true if we did some work AND can potentially do more.
1210  */
1211 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
1212 			     bool got_budget)
1213 {
1214 	struct blk_mq_hw_ctx *hctx;
1215 	struct request *rq, *nxt;
1216 	bool no_tag = false;
1217 	int errors, queued;
1218 	blk_status_t ret = BLK_STS_OK;
1219 
1220 	if (list_empty(list))
1221 		return false;
1222 
1223 	WARN_ON(!list_is_singular(list) && got_budget);
1224 
1225 	/*
1226 	 * Now process all the entries, sending them to the driver.
1227 	 */
1228 	errors = queued = 0;
1229 	do {
1230 		struct blk_mq_queue_data bd;
1231 
1232 		rq = list_first_entry(list, struct request, queuelist);
1233 
1234 		hctx = rq->mq_hctx;
1235 		if (!got_budget && !blk_mq_get_dispatch_budget(hctx))
1236 			break;
1237 
1238 		if (!blk_mq_get_driver_tag(rq)) {
1239 			/*
1240 			 * The initial allocation attempt failed, so we need to
1241 			 * rerun the hardware queue when a tag is freed. The
1242 			 * waitqueue takes care of that. If the queue is run
1243 			 * before we add this entry back on the dispatch list,
1244 			 * we'll re-run it below.
1245 			 */
1246 			if (!blk_mq_mark_tag_wait(hctx, rq)) {
1247 				blk_mq_put_dispatch_budget(hctx);
1248 				/*
1249 				 * For non-shared tags, the RESTART check
1250 				 * will suffice.
1251 				 */
1252 				if (hctx->flags & BLK_MQ_F_TAG_SHARED)
1253 					no_tag = true;
1254 				break;
1255 			}
1256 		}
1257 
1258 		list_del_init(&rq->queuelist);
1259 
1260 		bd.rq = rq;
1261 
1262 		/*
1263 		 * Flag last if we have no more requests, or if we have more
1264 		 * but can't assign a driver tag to it.
1265 		 */
1266 		if (list_empty(list))
1267 			bd.last = true;
1268 		else {
1269 			nxt = list_first_entry(list, struct request, queuelist);
1270 			bd.last = !blk_mq_get_driver_tag(nxt);
1271 		}
1272 
1273 		ret = q->mq_ops->queue_rq(hctx, &bd);
1274 		if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) {
1275 			/*
1276 			 * If an I/O scheduler has been configured and we got a
1277 			 * driver tag for the next request already, free it
1278 			 * again.
1279 			 */
1280 			if (!list_empty(list)) {
1281 				nxt = list_first_entry(list, struct request, queuelist);
1282 				blk_mq_put_driver_tag(nxt);
1283 			}
1284 			list_add(&rq->queuelist, list);
1285 			__blk_mq_requeue_request(rq);
1286 			break;
1287 		}
1288 
1289 		if (unlikely(ret != BLK_STS_OK)) {
1290 			errors++;
1291 			blk_mq_end_request(rq, BLK_STS_IOERR);
1292 			continue;
1293 		}
1294 
1295 		queued++;
1296 	} while (!list_empty(list));
1297 
1298 	hctx->dispatched[queued_to_index(queued)]++;
1299 
1300 	/*
1301 	 * Any items that need requeuing? Stuff them into hctx->dispatch,
1302 	 * that is where we will continue on next queue run.
1303 	 */
1304 	if (!list_empty(list)) {
1305 		bool needs_restart;
1306 
1307 		/*
1308 		 * If we didn't flush the entire list, we could have told
1309 		 * the driver there was more coming, but that turned out to
1310 		 * be a lie.
1311 		 */
1312 		if (q->mq_ops->commit_rqs)
1313 			q->mq_ops->commit_rqs(hctx);
1314 
1315 		spin_lock(&hctx->lock);
1316 		list_splice_init(list, &hctx->dispatch);
1317 		spin_unlock(&hctx->lock);
1318 
1319 		/*
1320 		 * If SCHED_RESTART was set by the caller of this function and
1321 		 * it is no longer set that means that it was cleared by another
1322 		 * thread and hence that a queue rerun is needed.
1323 		 *
1324 		 * If 'no_tag' is set, that means that we failed getting
1325 		 * a driver tag with an I/O scheduler attached. If our dispatch
1326 		 * waitqueue is no longer active, ensure that we run the queue
1327 		 * AFTER adding our entries back to the list.
1328 		 *
1329 		 * If no I/O scheduler has been configured it is possible that
1330 		 * the hardware queue got stopped and restarted before requests
1331 		 * were pushed back onto the dispatch list. Rerun the queue to
1332 		 * avoid starvation. Notes:
1333 		 * - blk_mq_run_hw_queue() checks whether or not a queue has
1334 		 *   been stopped before rerunning a queue.
1335 		 * - Some but not all block drivers stop a queue before
1336 		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1337 		 *   and dm-rq.
1338 		 *
1339 		 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1340 		 * bit is set, run queue after a delay to avoid IO stalls
1341 		 * that could otherwise occur if the queue is idle.
1342 		 */
1343 		needs_restart = blk_mq_sched_needs_restart(hctx);
1344 		if (!needs_restart ||
1345 		    (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1346 			blk_mq_run_hw_queue(hctx, true);
1347 		else if (needs_restart && (ret == BLK_STS_RESOURCE))
1348 			blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1349 
1350 		blk_mq_update_dispatch_busy(hctx, true);
1351 		return false;
1352 	} else
1353 		blk_mq_update_dispatch_busy(hctx, false);
1354 
1355 	/*
1356 	 * If the host/device is unable to accept more work, inform the
1357 	 * caller of that.
1358 	 */
1359 	if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1360 		return false;
1361 
1362 	return (queued + errors) != 0;
1363 }
1364 
1365 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1366 {
1367 	int srcu_idx;
1368 
1369 	/*
1370 	 * We should be running this queue from one of the CPUs that
1371 	 * are mapped to it.
1372 	 *
1373 	 * There are at least two related races now between setting
1374 	 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
1375 	 * __blk_mq_run_hw_queue():
1376 	 *
1377 	 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
1378 	 *   but later it becomes online, then this warning is harmless
1379 	 *   at all
1380 	 *
1381 	 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
1382 	 *   but later it becomes offline, then the warning can't be
1383 	 *   triggered, and we depend on blk-mq timeout handler to
1384 	 *   handle dispatched requests to this hctx
1385 	 */
1386 	if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1387 		cpu_online(hctx->next_cpu)) {
1388 		printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
1389 			raw_smp_processor_id(),
1390 			cpumask_empty(hctx->cpumask) ? "inactive": "active");
1391 		dump_stack();
1392 	}
1393 
1394 	/*
1395 	 * We can't run the queue inline with ints disabled. Ensure that
1396 	 * we catch bad users of this early.
1397 	 */
1398 	WARN_ON_ONCE(in_interrupt());
1399 
1400 	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1401 
1402 	hctx_lock(hctx, &srcu_idx);
1403 	blk_mq_sched_dispatch_requests(hctx);
1404 	hctx_unlock(hctx, srcu_idx);
1405 }
1406 
1407 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1408 {
1409 	int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1410 
1411 	if (cpu >= nr_cpu_ids)
1412 		cpu = cpumask_first(hctx->cpumask);
1413 	return cpu;
1414 }
1415 
1416 /*
1417  * It'd be great if the workqueue API had a way to pass
1418  * in a mask and had some smarts for more clever placement.
1419  * For now we just round-robin here, switching for every
1420  * BLK_MQ_CPU_WORK_BATCH queued items.
1421  */
1422 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1423 {
1424 	bool tried = false;
1425 	int next_cpu = hctx->next_cpu;
1426 
1427 	if (hctx->queue->nr_hw_queues == 1)
1428 		return WORK_CPU_UNBOUND;
1429 
1430 	if (--hctx->next_cpu_batch <= 0) {
1431 select_cpu:
1432 		next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1433 				cpu_online_mask);
1434 		if (next_cpu >= nr_cpu_ids)
1435 			next_cpu = blk_mq_first_mapped_cpu(hctx);
1436 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1437 	}
1438 
1439 	/*
1440 	 * Do unbound schedule if we can't find a online CPU for this hctx,
1441 	 * and it should only happen in the path of handling CPU DEAD.
1442 	 */
1443 	if (!cpu_online(next_cpu)) {
1444 		if (!tried) {
1445 			tried = true;
1446 			goto select_cpu;
1447 		}
1448 
1449 		/*
1450 		 * Make sure to re-select CPU next time once after CPUs
1451 		 * in hctx->cpumask become online again.
1452 		 */
1453 		hctx->next_cpu = next_cpu;
1454 		hctx->next_cpu_batch = 1;
1455 		return WORK_CPU_UNBOUND;
1456 	}
1457 
1458 	hctx->next_cpu = next_cpu;
1459 	return next_cpu;
1460 }
1461 
1462 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1463 					unsigned long msecs)
1464 {
1465 	if (unlikely(blk_mq_hctx_stopped(hctx)))
1466 		return;
1467 
1468 	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1469 		int cpu = get_cpu();
1470 		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1471 			__blk_mq_run_hw_queue(hctx);
1472 			put_cpu();
1473 			return;
1474 		}
1475 
1476 		put_cpu();
1477 	}
1478 
1479 	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1480 				    msecs_to_jiffies(msecs));
1481 }
1482 
1483 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1484 {
1485 	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
1486 }
1487 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1488 
1489 bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1490 {
1491 	int srcu_idx;
1492 	bool need_run;
1493 
1494 	/*
1495 	 * When queue is quiesced, we may be switching io scheduler, or
1496 	 * updating nr_hw_queues, or other things, and we can't run queue
1497 	 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1498 	 *
1499 	 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1500 	 * quiesced.
1501 	 */
1502 	hctx_lock(hctx, &srcu_idx);
1503 	need_run = !blk_queue_quiesced(hctx->queue) &&
1504 		blk_mq_hctx_has_pending(hctx);
1505 	hctx_unlock(hctx, srcu_idx);
1506 
1507 	if (need_run) {
1508 		__blk_mq_delay_run_hw_queue(hctx, async, 0);
1509 		return true;
1510 	}
1511 
1512 	return false;
1513 }
1514 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1515 
1516 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1517 {
1518 	struct blk_mq_hw_ctx *hctx;
1519 	int i;
1520 
1521 	queue_for_each_hw_ctx(q, hctx, i) {
1522 		if (blk_mq_hctx_stopped(hctx))
1523 			continue;
1524 
1525 		blk_mq_run_hw_queue(hctx, async);
1526 	}
1527 }
1528 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1529 
1530 /**
1531  * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1532  * @q: request queue.
1533  *
1534  * The caller is responsible for serializing this function against
1535  * blk_mq_{start,stop}_hw_queue().
1536  */
1537 bool blk_mq_queue_stopped(struct request_queue *q)
1538 {
1539 	struct blk_mq_hw_ctx *hctx;
1540 	int i;
1541 
1542 	queue_for_each_hw_ctx(q, hctx, i)
1543 		if (blk_mq_hctx_stopped(hctx))
1544 			return true;
1545 
1546 	return false;
1547 }
1548 EXPORT_SYMBOL(blk_mq_queue_stopped);
1549 
1550 /*
1551  * This function is often used for pausing .queue_rq() by driver when
1552  * there isn't enough resource or some conditions aren't satisfied, and
1553  * BLK_STS_RESOURCE is usually returned.
1554  *
1555  * We do not guarantee that dispatch can be drained or blocked
1556  * after blk_mq_stop_hw_queue() returns. Please use
1557  * blk_mq_quiesce_queue() for that requirement.
1558  */
1559 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1560 {
1561 	cancel_delayed_work(&hctx->run_work);
1562 
1563 	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1564 }
1565 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1566 
1567 /*
1568  * This function is often used for pausing .queue_rq() by driver when
1569  * there isn't enough resource or some conditions aren't satisfied, and
1570  * BLK_STS_RESOURCE is usually returned.
1571  *
1572  * We do not guarantee that dispatch can be drained or blocked
1573  * after blk_mq_stop_hw_queues() returns. Please use
1574  * blk_mq_quiesce_queue() for that requirement.
1575  */
1576 void blk_mq_stop_hw_queues(struct request_queue *q)
1577 {
1578 	struct blk_mq_hw_ctx *hctx;
1579 	int i;
1580 
1581 	queue_for_each_hw_ctx(q, hctx, i)
1582 		blk_mq_stop_hw_queue(hctx);
1583 }
1584 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1585 
1586 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1587 {
1588 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1589 
1590 	blk_mq_run_hw_queue(hctx, false);
1591 }
1592 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1593 
1594 void blk_mq_start_hw_queues(struct request_queue *q)
1595 {
1596 	struct blk_mq_hw_ctx *hctx;
1597 	int i;
1598 
1599 	queue_for_each_hw_ctx(q, hctx, i)
1600 		blk_mq_start_hw_queue(hctx);
1601 }
1602 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1603 
1604 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1605 {
1606 	if (!blk_mq_hctx_stopped(hctx))
1607 		return;
1608 
1609 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1610 	blk_mq_run_hw_queue(hctx, async);
1611 }
1612 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1613 
1614 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1615 {
1616 	struct blk_mq_hw_ctx *hctx;
1617 	int i;
1618 
1619 	queue_for_each_hw_ctx(q, hctx, i)
1620 		blk_mq_start_stopped_hw_queue(hctx, async);
1621 }
1622 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1623 
1624 static void blk_mq_run_work_fn(struct work_struct *work)
1625 {
1626 	struct blk_mq_hw_ctx *hctx;
1627 
1628 	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1629 
1630 	/*
1631 	 * If we are stopped, don't run the queue.
1632 	 */
1633 	if (test_bit(BLK_MQ_S_STOPPED, &hctx->state))
1634 		return;
1635 
1636 	__blk_mq_run_hw_queue(hctx);
1637 }
1638 
1639 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1640 					    struct request *rq,
1641 					    bool at_head)
1642 {
1643 	struct blk_mq_ctx *ctx = rq->mq_ctx;
1644 	enum hctx_type type = hctx->type;
1645 
1646 	lockdep_assert_held(&ctx->lock);
1647 
1648 	trace_block_rq_insert(hctx->queue, rq);
1649 
1650 	if (at_head)
1651 		list_add(&rq->queuelist, &ctx->rq_lists[type]);
1652 	else
1653 		list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
1654 }
1655 
1656 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1657 			     bool at_head)
1658 {
1659 	struct blk_mq_ctx *ctx = rq->mq_ctx;
1660 
1661 	lockdep_assert_held(&ctx->lock);
1662 
1663 	__blk_mq_insert_req_list(hctx, rq, at_head);
1664 	blk_mq_hctx_mark_pending(hctx, ctx);
1665 }
1666 
1667 /*
1668  * Should only be used carefully, when the caller knows we want to
1669  * bypass a potential IO scheduler on the target device.
1670  */
1671 void blk_mq_request_bypass_insert(struct request *rq, bool run_queue)
1672 {
1673 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1674 
1675 	spin_lock(&hctx->lock);
1676 	list_add_tail(&rq->queuelist, &hctx->dispatch);
1677 	spin_unlock(&hctx->lock);
1678 
1679 	if (run_queue)
1680 		blk_mq_run_hw_queue(hctx, false);
1681 }
1682 
1683 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1684 			    struct list_head *list)
1685 
1686 {
1687 	struct request *rq;
1688 	enum hctx_type type = hctx->type;
1689 
1690 	/*
1691 	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1692 	 * offline now
1693 	 */
1694 	list_for_each_entry(rq, list, queuelist) {
1695 		BUG_ON(rq->mq_ctx != ctx);
1696 		trace_block_rq_insert(hctx->queue, rq);
1697 	}
1698 
1699 	spin_lock(&ctx->lock);
1700 	list_splice_tail_init(list, &ctx->rq_lists[type]);
1701 	blk_mq_hctx_mark_pending(hctx, ctx);
1702 	spin_unlock(&ctx->lock);
1703 }
1704 
1705 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
1706 {
1707 	struct request *rqa = container_of(a, struct request, queuelist);
1708 	struct request *rqb = container_of(b, struct request, queuelist);
1709 
1710 	if (rqa->mq_ctx < rqb->mq_ctx)
1711 		return -1;
1712 	else if (rqa->mq_ctx > rqb->mq_ctx)
1713 		return 1;
1714 	else if (rqa->mq_hctx < rqb->mq_hctx)
1715 		return -1;
1716 	else if (rqa->mq_hctx > rqb->mq_hctx)
1717 		return 1;
1718 
1719 	return blk_rq_pos(rqa) > blk_rq_pos(rqb);
1720 }
1721 
1722 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1723 {
1724 	struct blk_mq_hw_ctx *this_hctx;
1725 	struct blk_mq_ctx *this_ctx;
1726 	struct request_queue *this_q;
1727 	struct request *rq;
1728 	LIST_HEAD(list);
1729 	LIST_HEAD(rq_list);
1730 	unsigned int depth;
1731 
1732 	list_splice_init(&plug->mq_list, &list);
1733 
1734 	if (plug->rq_count > 2 && plug->multiple_queues)
1735 		list_sort(NULL, &list, plug_rq_cmp);
1736 
1737 	plug->rq_count = 0;
1738 
1739 	this_q = NULL;
1740 	this_hctx = NULL;
1741 	this_ctx = NULL;
1742 	depth = 0;
1743 
1744 	while (!list_empty(&list)) {
1745 		rq = list_entry_rq(list.next);
1746 		list_del_init(&rq->queuelist);
1747 		BUG_ON(!rq->q);
1748 		if (rq->mq_hctx != this_hctx || rq->mq_ctx != this_ctx) {
1749 			if (this_hctx) {
1750 				trace_block_unplug(this_q, depth, !from_schedule);
1751 				blk_mq_sched_insert_requests(this_hctx, this_ctx,
1752 								&rq_list,
1753 								from_schedule);
1754 			}
1755 
1756 			this_q = rq->q;
1757 			this_ctx = rq->mq_ctx;
1758 			this_hctx = rq->mq_hctx;
1759 			depth = 0;
1760 		}
1761 
1762 		depth++;
1763 		list_add_tail(&rq->queuelist, &rq_list);
1764 	}
1765 
1766 	/*
1767 	 * If 'this_hctx' is set, we know we have entries to complete
1768 	 * on 'rq_list'. Do those.
1769 	 */
1770 	if (this_hctx) {
1771 		trace_block_unplug(this_q, depth, !from_schedule);
1772 		blk_mq_sched_insert_requests(this_hctx, this_ctx, &rq_list,
1773 						from_schedule);
1774 	}
1775 }
1776 
1777 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
1778 		unsigned int nr_segs)
1779 {
1780 	if (bio->bi_opf & REQ_RAHEAD)
1781 		rq->cmd_flags |= REQ_FAILFAST_MASK;
1782 
1783 	rq->__sector = bio->bi_iter.bi_sector;
1784 	rq->write_hint = bio->bi_write_hint;
1785 	blk_rq_bio_prep(rq, bio, nr_segs);
1786 
1787 	blk_account_io_start(rq, true);
1788 }
1789 
1790 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
1791 					    struct request *rq,
1792 					    blk_qc_t *cookie, bool last)
1793 {
1794 	struct request_queue *q = rq->q;
1795 	struct blk_mq_queue_data bd = {
1796 		.rq = rq,
1797 		.last = last,
1798 	};
1799 	blk_qc_t new_cookie;
1800 	blk_status_t ret;
1801 
1802 	new_cookie = request_to_qc_t(hctx, rq);
1803 
1804 	/*
1805 	 * For OK queue, we are done. For error, caller may kill it.
1806 	 * Any other error (busy), just add it to our list as we
1807 	 * previously would have done.
1808 	 */
1809 	ret = q->mq_ops->queue_rq(hctx, &bd);
1810 	switch (ret) {
1811 	case BLK_STS_OK:
1812 		blk_mq_update_dispatch_busy(hctx, false);
1813 		*cookie = new_cookie;
1814 		break;
1815 	case BLK_STS_RESOURCE:
1816 	case BLK_STS_DEV_RESOURCE:
1817 		blk_mq_update_dispatch_busy(hctx, true);
1818 		__blk_mq_requeue_request(rq);
1819 		break;
1820 	default:
1821 		blk_mq_update_dispatch_busy(hctx, false);
1822 		*cookie = BLK_QC_T_NONE;
1823 		break;
1824 	}
1825 
1826 	return ret;
1827 }
1828 
1829 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1830 						struct request *rq,
1831 						blk_qc_t *cookie,
1832 						bool bypass_insert, bool last)
1833 {
1834 	struct request_queue *q = rq->q;
1835 	bool run_queue = true;
1836 
1837 	/*
1838 	 * RCU or SRCU read lock is needed before checking quiesced flag.
1839 	 *
1840 	 * When queue is stopped or quiesced, ignore 'bypass_insert' from
1841 	 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
1842 	 * and avoid driver to try to dispatch again.
1843 	 */
1844 	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
1845 		run_queue = false;
1846 		bypass_insert = false;
1847 		goto insert;
1848 	}
1849 
1850 	if (q->elevator && !bypass_insert)
1851 		goto insert;
1852 
1853 	if (!blk_mq_get_dispatch_budget(hctx))
1854 		goto insert;
1855 
1856 	if (!blk_mq_get_driver_tag(rq)) {
1857 		blk_mq_put_dispatch_budget(hctx);
1858 		goto insert;
1859 	}
1860 
1861 	return __blk_mq_issue_directly(hctx, rq, cookie, last);
1862 insert:
1863 	if (bypass_insert)
1864 		return BLK_STS_RESOURCE;
1865 
1866 	blk_mq_request_bypass_insert(rq, run_queue);
1867 	return BLK_STS_OK;
1868 }
1869 
1870 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1871 		struct request *rq, blk_qc_t *cookie)
1872 {
1873 	blk_status_t ret;
1874 	int srcu_idx;
1875 
1876 	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1877 
1878 	hctx_lock(hctx, &srcu_idx);
1879 
1880 	ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false, true);
1881 	if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1882 		blk_mq_request_bypass_insert(rq, true);
1883 	else if (ret != BLK_STS_OK)
1884 		blk_mq_end_request(rq, ret);
1885 
1886 	hctx_unlock(hctx, srcu_idx);
1887 }
1888 
1889 blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
1890 {
1891 	blk_status_t ret;
1892 	int srcu_idx;
1893 	blk_qc_t unused_cookie;
1894 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1895 
1896 	hctx_lock(hctx, &srcu_idx);
1897 	ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true, last);
1898 	hctx_unlock(hctx, srcu_idx);
1899 
1900 	return ret;
1901 }
1902 
1903 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
1904 		struct list_head *list)
1905 {
1906 	while (!list_empty(list)) {
1907 		blk_status_t ret;
1908 		struct request *rq = list_first_entry(list, struct request,
1909 				queuelist);
1910 
1911 		list_del_init(&rq->queuelist);
1912 		ret = blk_mq_request_issue_directly(rq, list_empty(list));
1913 		if (ret != BLK_STS_OK) {
1914 			if (ret == BLK_STS_RESOURCE ||
1915 					ret == BLK_STS_DEV_RESOURCE) {
1916 				blk_mq_request_bypass_insert(rq,
1917 							list_empty(list));
1918 				break;
1919 			}
1920 			blk_mq_end_request(rq, ret);
1921 		}
1922 	}
1923 
1924 	/*
1925 	 * If we didn't flush the entire list, we could have told
1926 	 * the driver there was more coming, but that turned out to
1927 	 * be a lie.
1928 	 */
1929 	if (!list_empty(list) && hctx->queue->mq_ops->commit_rqs)
1930 		hctx->queue->mq_ops->commit_rqs(hctx);
1931 }
1932 
1933 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
1934 {
1935 	list_add_tail(&rq->queuelist, &plug->mq_list);
1936 	plug->rq_count++;
1937 	if (!plug->multiple_queues && !list_is_singular(&plug->mq_list)) {
1938 		struct request *tmp;
1939 
1940 		tmp = list_first_entry(&plug->mq_list, struct request,
1941 						queuelist);
1942 		if (tmp->q != rq->q)
1943 			plug->multiple_queues = true;
1944 	}
1945 }
1946 
1947 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1948 {
1949 	const int is_sync = op_is_sync(bio->bi_opf);
1950 	const int is_flush_fua = op_is_flush(bio->bi_opf);
1951 	struct blk_mq_alloc_data data = { .flags = 0};
1952 	struct request *rq;
1953 	struct blk_plug *plug;
1954 	struct request *same_queue_rq = NULL;
1955 	unsigned int nr_segs;
1956 	blk_qc_t cookie;
1957 
1958 	blk_queue_bounce(q, &bio);
1959 	__blk_queue_split(q, &bio, &nr_segs);
1960 
1961 	if (!bio_integrity_prep(bio))
1962 		return BLK_QC_T_NONE;
1963 
1964 	if (!is_flush_fua && !blk_queue_nomerges(q) &&
1965 	    blk_attempt_plug_merge(q, bio, nr_segs, &same_queue_rq))
1966 		return BLK_QC_T_NONE;
1967 
1968 	if (blk_mq_sched_bio_merge(q, bio, nr_segs))
1969 		return BLK_QC_T_NONE;
1970 
1971 	rq_qos_throttle(q, bio);
1972 
1973 	data.cmd_flags = bio->bi_opf;
1974 	rq = blk_mq_get_request(q, bio, &data);
1975 	if (unlikely(!rq)) {
1976 		rq_qos_cleanup(q, bio);
1977 		if (bio->bi_opf & REQ_NOWAIT)
1978 			bio_wouldblock_error(bio);
1979 		return BLK_QC_T_NONE;
1980 	}
1981 
1982 	trace_block_getrq(q, bio, bio->bi_opf);
1983 
1984 	rq_qos_track(q, rq, bio);
1985 
1986 	cookie = request_to_qc_t(data.hctx, rq);
1987 
1988 	blk_mq_bio_to_request(rq, bio, nr_segs);
1989 
1990 	plug = blk_mq_plug(q, bio);
1991 	if (unlikely(is_flush_fua)) {
1992 		/* bypass scheduler for flush rq */
1993 		blk_insert_flush(rq);
1994 		blk_mq_run_hw_queue(data.hctx, true);
1995 	} else if (plug && (q->nr_hw_queues == 1 || q->mq_ops->commit_rqs ||
1996 				!blk_queue_nonrot(q))) {
1997 		/*
1998 		 * Use plugging if we have a ->commit_rqs() hook as well, as
1999 		 * we know the driver uses bd->last in a smart fashion.
2000 		 *
2001 		 * Use normal plugging if this disk is slow HDD, as sequential
2002 		 * IO may benefit a lot from plug merging.
2003 		 */
2004 		unsigned int request_count = plug->rq_count;
2005 		struct request *last = NULL;
2006 
2007 		if (!request_count)
2008 			trace_block_plug(q);
2009 		else
2010 			last = list_entry_rq(plug->mq_list.prev);
2011 
2012 		if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
2013 		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
2014 			blk_flush_plug_list(plug, false);
2015 			trace_block_plug(q);
2016 		}
2017 
2018 		blk_add_rq_to_plug(plug, rq);
2019 	} else if (q->elevator) {
2020 		blk_mq_sched_insert_request(rq, false, true, true);
2021 	} else if (plug && !blk_queue_nomerges(q)) {
2022 		/*
2023 		 * We do limited plugging. If the bio can be merged, do that.
2024 		 * Otherwise the existing request in the plug list will be
2025 		 * issued. So the plug list will have one request at most
2026 		 * The plug list might get flushed before this. If that happens,
2027 		 * the plug list is empty, and same_queue_rq is invalid.
2028 		 */
2029 		if (list_empty(&plug->mq_list))
2030 			same_queue_rq = NULL;
2031 		if (same_queue_rq) {
2032 			list_del_init(&same_queue_rq->queuelist);
2033 			plug->rq_count--;
2034 		}
2035 		blk_add_rq_to_plug(plug, rq);
2036 		trace_block_plug(q);
2037 
2038 		if (same_queue_rq) {
2039 			data.hctx = same_queue_rq->mq_hctx;
2040 			trace_block_unplug(q, 1, true);
2041 			blk_mq_try_issue_directly(data.hctx, same_queue_rq,
2042 					&cookie);
2043 		}
2044 	} else if ((q->nr_hw_queues > 1 && is_sync) ||
2045 			!data.hctx->dispatch_busy) {
2046 		blk_mq_try_issue_directly(data.hctx, rq, &cookie);
2047 	} else {
2048 		blk_mq_sched_insert_request(rq, false, true, true);
2049 	}
2050 
2051 	return cookie;
2052 }
2053 
2054 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2055 		     unsigned int hctx_idx)
2056 {
2057 	struct page *page;
2058 
2059 	if (tags->rqs && set->ops->exit_request) {
2060 		int i;
2061 
2062 		for (i = 0; i < tags->nr_tags; i++) {
2063 			struct request *rq = tags->static_rqs[i];
2064 
2065 			if (!rq)
2066 				continue;
2067 			set->ops->exit_request(set, rq, hctx_idx);
2068 			tags->static_rqs[i] = NULL;
2069 		}
2070 	}
2071 
2072 	while (!list_empty(&tags->page_list)) {
2073 		page = list_first_entry(&tags->page_list, struct page, lru);
2074 		list_del_init(&page->lru);
2075 		/*
2076 		 * Remove kmemleak object previously allocated in
2077 		 * blk_mq_alloc_rqs().
2078 		 */
2079 		kmemleak_free(page_address(page));
2080 		__free_pages(page, page->private);
2081 	}
2082 }
2083 
2084 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
2085 {
2086 	kfree(tags->rqs);
2087 	tags->rqs = NULL;
2088 	kfree(tags->static_rqs);
2089 	tags->static_rqs = NULL;
2090 
2091 	blk_mq_free_tags(tags);
2092 }
2093 
2094 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
2095 					unsigned int hctx_idx,
2096 					unsigned int nr_tags,
2097 					unsigned int reserved_tags)
2098 {
2099 	struct blk_mq_tags *tags;
2100 	int node;
2101 
2102 	node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2103 	if (node == NUMA_NO_NODE)
2104 		node = set->numa_node;
2105 
2106 	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
2107 				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
2108 	if (!tags)
2109 		return NULL;
2110 
2111 	tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2112 				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2113 				 node);
2114 	if (!tags->rqs) {
2115 		blk_mq_free_tags(tags);
2116 		return NULL;
2117 	}
2118 
2119 	tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2120 					GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2121 					node);
2122 	if (!tags->static_rqs) {
2123 		kfree(tags->rqs);
2124 		blk_mq_free_tags(tags);
2125 		return NULL;
2126 	}
2127 
2128 	return tags;
2129 }
2130 
2131 static size_t order_to_size(unsigned int order)
2132 {
2133 	return (size_t)PAGE_SIZE << order;
2134 }
2135 
2136 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2137 			       unsigned int hctx_idx, int node)
2138 {
2139 	int ret;
2140 
2141 	if (set->ops->init_request) {
2142 		ret = set->ops->init_request(set, rq, hctx_idx, node);
2143 		if (ret)
2144 			return ret;
2145 	}
2146 
2147 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
2148 	return 0;
2149 }
2150 
2151 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2152 		     unsigned int hctx_idx, unsigned int depth)
2153 {
2154 	unsigned int i, j, entries_per_page, max_order = 4;
2155 	size_t rq_size, left;
2156 	int node;
2157 
2158 	node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2159 	if (node == NUMA_NO_NODE)
2160 		node = set->numa_node;
2161 
2162 	INIT_LIST_HEAD(&tags->page_list);
2163 
2164 	/*
2165 	 * rq_size is the size of the request plus driver payload, rounded
2166 	 * to the cacheline size
2167 	 */
2168 	rq_size = round_up(sizeof(struct request) + set->cmd_size,
2169 				cache_line_size());
2170 	left = rq_size * depth;
2171 
2172 	for (i = 0; i < depth; ) {
2173 		int this_order = max_order;
2174 		struct page *page;
2175 		int to_do;
2176 		void *p;
2177 
2178 		while (this_order && left < order_to_size(this_order - 1))
2179 			this_order--;
2180 
2181 		do {
2182 			page = alloc_pages_node(node,
2183 				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2184 				this_order);
2185 			if (page)
2186 				break;
2187 			if (!this_order--)
2188 				break;
2189 			if (order_to_size(this_order) < rq_size)
2190 				break;
2191 		} while (1);
2192 
2193 		if (!page)
2194 			goto fail;
2195 
2196 		page->private = this_order;
2197 		list_add_tail(&page->lru, &tags->page_list);
2198 
2199 		p = page_address(page);
2200 		/*
2201 		 * Allow kmemleak to scan these pages as they contain pointers
2202 		 * to additional allocations like via ops->init_request().
2203 		 */
2204 		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2205 		entries_per_page = order_to_size(this_order) / rq_size;
2206 		to_do = min(entries_per_page, depth - i);
2207 		left -= to_do * rq_size;
2208 		for (j = 0; j < to_do; j++) {
2209 			struct request *rq = p;
2210 
2211 			tags->static_rqs[i] = rq;
2212 			if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2213 				tags->static_rqs[i] = NULL;
2214 				goto fail;
2215 			}
2216 
2217 			p += rq_size;
2218 			i++;
2219 		}
2220 	}
2221 	return 0;
2222 
2223 fail:
2224 	blk_mq_free_rqs(set, tags, hctx_idx);
2225 	return -ENOMEM;
2226 }
2227 
2228 /*
2229  * 'cpu' is going away. splice any existing rq_list entries from this
2230  * software queue to the hw queue dispatch list, and ensure that it
2231  * gets run.
2232  */
2233 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2234 {
2235 	struct blk_mq_hw_ctx *hctx;
2236 	struct blk_mq_ctx *ctx;
2237 	LIST_HEAD(tmp);
2238 	enum hctx_type type;
2239 
2240 	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
2241 	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2242 	type = hctx->type;
2243 
2244 	spin_lock(&ctx->lock);
2245 	if (!list_empty(&ctx->rq_lists[type])) {
2246 		list_splice_init(&ctx->rq_lists[type], &tmp);
2247 		blk_mq_hctx_clear_pending(hctx, ctx);
2248 	}
2249 	spin_unlock(&ctx->lock);
2250 
2251 	if (list_empty(&tmp))
2252 		return 0;
2253 
2254 	spin_lock(&hctx->lock);
2255 	list_splice_tail_init(&tmp, &hctx->dispatch);
2256 	spin_unlock(&hctx->lock);
2257 
2258 	blk_mq_run_hw_queue(hctx, true);
2259 	return 0;
2260 }
2261 
2262 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2263 {
2264 	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2265 					    &hctx->cpuhp_dead);
2266 }
2267 
2268 /* hctx->ctxs will be freed in queue's release handler */
2269 static void blk_mq_exit_hctx(struct request_queue *q,
2270 		struct blk_mq_tag_set *set,
2271 		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2272 {
2273 	if (blk_mq_hw_queue_mapped(hctx))
2274 		blk_mq_tag_idle(hctx);
2275 
2276 	if (set->ops->exit_request)
2277 		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2278 
2279 	if (set->ops->exit_hctx)
2280 		set->ops->exit_hctx(hctx, hctx_idx);
2281 
2282 	blk_mq_remove_cpuhp(hctx);
2283 
2284 	spin_lock(&q->unused_hctx_lock);
2285 	list_add(&hctx->hctx_list, &q->unused_hctx_list);
2286 	spin_unlock(&q->unused_hctx_lock);
2287 }
2288 
2289 static void blk_mq_exit_hw_queues(struct request_queue *q,
2290 		struct blk_mq_tag_set *set, int nr_queue)
2291 {
2292 	struct blk_mq_hw_ctx *hctx;
2293 	unsigned int i;
2294 
2295 	queue_for_each_hw_ctx(q, hctx, i) {
2296 		if (i == nr_queue)
2297 			break;
2298 		blk_mq_debugfs_unregister_hctx(hctx);
2299 		blk_mq_exit_hctx(q, set, hctx, i);
2300 	}
2301 }
2302 
2303 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2304 {
2305 	int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2306 
2307 	BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2308 			   __alignof__(struct blk_mq_hw_ctx)) !=
2309 		     sizeof(struct blk_mq_hw_ctx));
2310 
2311 	if (tag_set->flags & BLK_MQ_F_BLOCKING)
2312 		hw_ctx_size += sizeof(struct srcu_struct);
2313 
2314 	return hw_ctx_size;
2315 }
2316 
2317 static int blk_mq_init_hctx(struct request_queue *q,
2318 		struct blk_mq_tag_set *set,
2319 		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2320 {
2321 	hctx->queue_num = hctx_idx;
2322 
2323 	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2324 
2325 	hctx->tags = set->tags[hctx_idx];
2326 
2327 	if (set->ops->init_hctx &&
2328 	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2329 		goto unregister_cpu_notifier;
2330 
2331 	if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
2332 				hctx->numa_node))
2333 		goto exit_hctx;
2334 	return 0;
2335 
2336  exit_hctx:
2337 	if (set->ops->exit_hctx)
2338 		set->ops->exit_hctx(hctx, hctx_idx);
2339  unregister_cpu_notifier:
2340 	blk_mq_remove_cpuhp(hctx);
2341 	return -1;
2342 }
2343 
2344 static struct blk_mq_hw_ctx *
2345 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
2346 		int node)
2347 {
2348 	struct blk_mq_hw_ctx *hctx;
2349 	gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
2350 
2351 	hctx = kzalloc_node(blk_mq_hw_ctx_size(set), gfp, node);
2352 	if (!hctx)
2353 		goto fail_alloc_hctx;
2354 
2355 	if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
2356 		goto free_hctx;
2357 
2358 	atomic_set(&hctx->nr_active, 0);
2359 	if (node == NUMA_NO_NODE)
2360 		node = set->numa_node;
2361 	hctx->numa_node = node;
2362 
2363 	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2364 	spin_lock_init(&hctx->lock);
2365 	INIT_LIST_HEAD(&hctx->dispatch);
2366 	hctx->queue = q;
2367 	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
2368 
2369 	INIT_LIST_HEAD(&hctx->hctx_list);
2370 
2371 	/*
2372 	 * Allocate space for all possible cpus to avoid allocation at
2373 	 * runtime
2374 	 */
2375 	hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2376 			gfp, node);
2377 	if (!hctx->ctxs)
2378 		goto free_cpumask;
2379 
2380 	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
2381 				gfp, node))
2382 		goto free_ctxs;
2383 	hctx->nr_ctx = 0;
2384 
2385 	spin_lock_init(&hctx->dispatch_wait_lock);
2386 	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2387 	INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2388 
2389 	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size,
2390 			gfp);
2391 	if (!hctx->fq)
2392 		goto free_bitmap;
2393 
2394 	if (hctx->flags & BLK_MQ_F_BLOCKING)
2395 		init_srcu_struct(hctx->srcu);
2396 	blk_mq_hctx_kobj_init(hctx);
2397 
2398 	return hctx;
2399 
2400  free_bitmap:
2401 	sbitmap_free(&hctx->ctx_map);
2402  free_ctxs:
2403 	kfree(hctx->ctxs);
2404  free_cpumask:
2405 	free_cpumask_var(hctx->cpumask);
2406  free_hctx:
2407 	kfree(hctx);
2408  fail_alloc_hctx:
2409 	return NULL;
2410 }
2411 
2412 static void blk_mq_init_cpu_queues(struct request_queue *q,
2413 				   unsigned int nr_hw_queues)
2414 {
2415 	struct blk_mq_tag_set *set = q->tag_set;
2416 	unsigned int i, j;
2417 
2418 	for_each_possible_cpu(i) {
2419 		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2420 		struct blk_mq_hw_ctx *hctx;
2421 		int k;
2422 
2423 		__ctx->cpu = i;
2424 		spin_lock_init(&__ctx->lock);
2425 		for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
2426 			INIT_LIST_HEAD(&__ctx->rq_lists[k]);
2427 
2428 		__ctx->queue = q;
2429 
2430 		/*
2431 		 * Set local node, IFF we have more than one hw queue. If
2432 		 * not, we remain on the home node of the device
2433 		 */
2434 		for (j = 0; j < set->nr_maps; j++) {
2435 			hctx = blk_mq_map_queue_type(q, j, i);
2436 			if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2437 				hctx->numa_node = local_memory_node(cpu_to_node(i));
2438 		}
2439 	}
2440 }
2441 
2442 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
2443 {
2444 	int ret = 0;
2445 
2446 	set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2447 					set->queue_depth, set->reserved_tags);
2448 	if (!set->tags[hctx_idx])
2449 		return false;
2450 
2451 	ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2452 				set->queue_depth);
2453 	if (!ret)
2454 		return true;
2455 
2456 	blk_mq_free_rq_map(set->tags[hctx_idx]);
2457 	set->tags[hctx_idx] = NULL;
2458 	return false;
2459 }
2460 
2461 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2462 					 unsigned int hctx_idx)
2463 {
2464 	if (set->tags && set->tags[hctx_idx]) {
2465 		blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2466 		blk_mq_free_rq_map(set->tags[hctx_idx]);
2467 		set->tags[hctx_idx] = NULL;
2468 	}
2469 }
2470 
2471 static void blk_mq_map_swqueue(struct request_queue *q)
2472 {
2473 	unsigned int i, j, hctx_idx;
2474 	struct blk_mq_hw_ctx *hctx;
2475 	struct blk_mq_ctx *ctx;
2476 	struct blk_mq_tag_set *set = q->tag_set;
2477 
2478 	queue_for_each_hw_ctx(q, hctx, i) {
2479 		cpumask_clear(hctx->cpumask);
2480 		hctx->nr_ctx = 0;
2481 		hctx->dispatch_from = NULL;
2482 	}
2483 
2484 	/*
2485 	 * Map software to hardware queues.
2486 	 *
2487 	 * If the cpu isn't present, the cpu is mapped to first hctx.
2488 	 */
2489 	for_each_possible_cpu(i) {
2490 		hctx_idx = set->map[HCTX_TYPE_DEFAULT].mq_map[i];
2491 		/* unmapped hw queue can be remapped after CPU topo changed */
2492 		if (!set->tags[hctx_idx] &&
2493 		    !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2494 			/*
2495 			 * If tags initialization fail for some hctx,
2496 			 * that hctx won't be brought online.  In this
2497 			 * case, remap the current ctx to hctx[0] which
2498 			 * is guaranteed to always have tags allocated
2499 			 */
2500 			set->map[HCTX_TYPE_DEFAULT].mq_map[i] = 0;
2501 		}
2502 
2503 		ctx = per_cpu_ptr(q->queue_ctx, i);
2504 		for (j = 0; j < set->nr_maps; j++) {
2505 			if (!set->map[j].nr_queues) {
2506 				ctx->hctxs[j] = blk_mq_map_queue_type(q,
2507 						HCTX_TYPE_DEFAULT, i);
2508 				continue;
2509 			}
2510 
2511 			hctx = blk_mq_map_queue_type(q, j, i);
2512 			ctx->hctxs[j] = hctx;
2513 			/*
2514 			 * If the CPU is already set in the mask, then we've
2515 			 * mapped this one already. This can happen if
2516 			 * devices share queues across queue maps.
2517 			 */
2518 			if (cpumask_test_cpu(i, hctx->cpumask))
2519 				continue;
2520 
2521 			cpumask_set_cpu(i, hctx->cpumask);
2522 			hctx->type = j;
2523 			ctx->index_hw[hctx->type] = hctx->nr_ctx;
2524 			hctx->ctxs[hctx->nr_ctx++] = ctx;
2525 
2526 			/*
2527 			 * If the nr_ctx type overflows, we have exceeded the
2528 			 * amount of sw queues we can support.
2529 			 */
2530 			BUG_ON(!hctx->nr_ctx);
2531 		}
2532 
2533 		for (; j < HCTX_MAX_TYPES; j++)
2534 			ctx->hctxs[j] = blk_mq_map_queue_type(q,
2535 					HCTX_TYPE_DEFAULT, i);
2536 	}
2537 
2538 	queue_for_each_hw_ctx(q, hctx, i) {
2539 		/*
2540 		 * If no software queues are mapped to this hardware queue,
2541 		 * disable it and free the request entries.
2542 		 */
2543 		if (!hctx->nr_ctx) {
2544 			/* Never unmap queue 0.  We need it as a
2545 			 * fallback in case of a new remap fails
2546 			 * allocation
2547 			 */
2548 			if (i && set->tags[i])
2549 				blk_mq_free_map_and_requests(set, i);
2550 
2551 			hctx->tags = NULL;
2552 			continue;
2553 		}
2554 
2555 		hctx->tags = set->tags[i];
2556 		WARN_ON(!hctx->tags);
2557 
2558 		/*
2559 		 * Set the map size to the number of mapped software queues.
2560 		 * This is more accurate and more efficient than looping
2561 		 * over all possibly mapped software queues.
2562 		 */
2563 		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2564 
2565 		/*
2566 		 * Initialize batch roundrobin counts
2567 		 */
2568 		hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2569 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2570 	}
2571 }
2572 
2573 /*
2574  * Caller needs to ensure that we're either frozen/quiesced, or that
2575  * the queue isn't live yet.
2576  */
2577 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2578 {
2579 	struct blk_mq_hw_ctx *hctx;
2580 	int i;
2581 
2582 	queue_for_each_hw_ctx(q, hctx, i) {
2583 		if (shared)
2584 			hctx->flags |= BLK_MQ_F_TAG_SHARED;
2585 		else
2586 			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2587 	}
2588 }
2589 
2590 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
2591 					bool shared)
2592 {
2593 	struct request_queue *q;
2594 
2595 	lockdep_assert_held(&set->tag_list_lock);
2596 
2597 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
2598 		blk_mq_freeze_queue(q);
2599 		queue_set_hctx_shared(q, shared);
2600 		blk_mq_unfreeze_queue(q);
2601 	}
2602 }
2603 
2604 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2605 {
2606 	struct blk_mq_tag_set *set = q->tag_set;
2607 
2608 	mutex_lock(&set->tag_list_lock);
2609 	list_del_rcu(&q->tag_set_list);
2610 	if (list_is_singular(&set->tag_list)) {
2611 		/* just transitioned to unshared */
2612 		set->flags &= ~BLK_MQ_F_TAG_SHARED;
2613 		/* update existing queue */
2614 		blk_mq_update_tag_set_depth(set, false);
2615 	}
2616 	mutex_unlock(&set->tag_list_lock);
2617 	INIT_LIST_HEAD(&q->tag_set_list);
2618 }
2619 
2620 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2621 				     struct request_queue *q)
2622 {
2623 	mutex_lock(&set->tag_list_lock);
2624 
2625 	/*
2626 	 * Check to see if we're transitioning to shared (from 1 to 2 queues).
2627 	 */
2628 	if (!list_empty(&set->tag_list) &&
2629 	    !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2630 		set->flags |= BLK_MQ_F_TAG_SHARED;
2631 		/* update existing queue */
2632 		blk_mq_update_tag_set_depth(set, true);
2633 	}
2634 	if (set->flags & BLK_MQ_F_TAG_SHARED)
2635 		queue_set_hctx_shared(q, true);
2636 	list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2637 
2638 	mutex_unlock(&set->tag_list_lock);
2639 }
2640 
2641 /* All allocations will be freed in release handler of q->mq_kobj */
2642 static int blk_mq_alloc_ctxs(struct request_queue *q)
2643 {
2644 	struct blk_mq_ctxs *ctxs;
2645 	int cpu;
2646 
2647 	ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
2648 	if (!ctxs)
2649 		return -ENOMEM;
2650 
2651 	ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2652 	if (!ctxs->queue_ctx)
2653 		goto fail;
2654 
2655 	for_each_possible_cpu(cpu) {
2656 		struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
2657 		ctx->ctxs = ctxs;
2658 	}
2659 
2660 	q->mq_kobj = &ctxs->kobj;
2661 	q->queue_ctx = ctxs->queue_ctx;
2662 
2663 	return 0;
2664  fail:
2665 	kfree(ctxs);
2666 	return -ENOMEM;
2667 }
2668 
2669 /*
2670  * It is the actual release handler for mq, but we do it from
2671  * request queue's release handler for avoiding use-after-free
2672  * and headache because q->mq_kobj shouldn't have been introduced,
2673  * but we can't group ctx/kctx kobj without it.
2674  */
2675 void blk_mq_release(struct request_queue *q)
2676 {
2677 	struct blk_mq_hw_ctx *hctx, *next;
2678 	int i;
2679 
2680 	queue_for_each_hw_ctx(q, hctx, i)
2681 		WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
2682 
2683 	/* all hctx are in .unused_hctx_list now */
2684 	list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
2685 		list_del_init(&hctx->hctx_list);
2686 		kobject_put(&hctx->kobj);
2687 	}
2688 
2689 	kfree(q->queue_hw_ctx);
2690 
2691 	/*
2692 	 * release .mq_kobj and sw queue's kobject now because
2693 	 * both share lifetime with request queue.
2694 	 */
2695 	blk_mq_sysfs_deinit(q);
2696 }
2697 
2698 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2699 {
2700 	struct request_queue *uninit_q, *q;
2701 
2702 	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2703 	if (!uninit_q)
2704 		return ERR_PTR(-ENOMEM);
2705 
2706 	/*
2707 	 * Initialize the queue without an elevator. device_add_disk() will do
2708 	 * the initialization.
2709 	 */
2710 	q = blk_mq_init_allocated_queue(set, uninit_q, false);
2711 	if (IS_ERR(q))
2712 		blk_cleanup_queue(uninit_q);
2713 
2714 	return q;
2715 }
2716 EXPORT_SYMBOL(blk_mq_init_queue);
2717 
2718 /*
2719  * Helper for setting up a queue with mq ops, given queue depth, and
2720  * the passed in mq ops flags.
2721  */
2722 struct request_queue *blk_mq_init_sq_queue(struct blk_mq_tag_set *set,
2723 					   const struct blk_mq_ops *ops,
2724 					   unsigned int queue_depth,
2725 					   unsigned int set_flags)
2726 {
2727 	struct request_queue *q;
2728 	int ret;
2729 
2730 	memset(set, 0, sizeof(*set));
2731 	set->ops = ops;
2732 	set->nr_hw_queues = 1;
2733 	set->nr_maps = 1;
2734 	set->queue_depth = queue_depth;
2735 	set->numa_node = NUMA_NO_NODE;
2736 	set->flags = set_flags;
2737 
2738 	ret = blk_mq_alloc_tag_set(set);
2739 	if (ret)
2740 		return ERR_PTR(ret);
2741 
2742 	q = blk_mq_init_queue(set);
2743 	if (IS_ERR(q)) {
2744 		blk_mq_free_tag_set(set);
2745 		return q;
2746 	}
2747 
2748 	return q;
2749 }
2750 EXPORT_SYMBOL(blk_mq_init_sq_queue);
2751 
2752 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
2753 		struct blk_mq_tag_set *set, struct request_queue *q,
2754 		int hctx_idx, int node)
2755 {
2756 	struct blk_mq_hw_ctx *hctx = NULL, *tmp;
2757 
2758 	/* reuse dead hctx first */
2759 	spin_lock(&q->unused_hctx_lock);
2760 	list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
2761 		if (tmp->numa_node == node) {
2762 			hctx = tmp;
2763 			break;
2764 		}
2765 	}
2766 	if (hctx)
2767 		list_del_init(&hctx->hctx_list);
2768 	spin_unlock(&q->unused_hctx_lock);
2769 
2770 	if (!hctx)
2771 		hctx = blk_mq_alloc_hctx(q, set, node);
2772 	if (!hctx)
2773 		goto fail;
2774 
2775 	if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
2776 		goto free_hctx;
2777 
2778 	return hctx;
2779 
2780  free_hctx:
2781 	kobject_put(&hctx->kobj);
2782  fail:
2783 	return NULL;
2784 }
2785 
2786 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2787 						struct request_queue *q)
2788 {
2789 	int i, j, end;
2790 	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2791 
2792 	/* protect against switching io scheduler  */
2793 	mutex_lock(&q->sysfs_lock);
2794 	for (i = 0; i < set->nr_hw_queues; i++) {
2795 		int node;
2796 		struct blk_mq_hw_ctx *hctx;
2797 
2798 		node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], i);
2799 		/*
2800 		 * If the hw queue has been mapped to another numa node,
2801 		 * we need to realloc the hctx. If allocation fails, fallback
2802 		 * to use the previous one.
2803 		 */
2804 		if (hctxs[i] && (hctxs[i]->numa_node == node))
2805 			continue;
2806 
2807 		hctx = blk_mq_alloc_and_init_hctx(set, q, i, node);
2808 		if (hctx) {
2809 			if (hctxs[i])
2810 				blk_mq_exit_hctx(q, set, hctxs[i], i);
2811 			hctxs[i] = hctx;
2812 		} else {
2813 			if (hctxs[i])
2814 				pr_warn("Allocate new hctx on node %d fails,\
2815 						fallback to previous one on node %d\n",
2816 						node, hctxs[i]->numa_node);
2817 			else
2818 				break;
2819 		}
2820 	}
2821 	/*
2822 	 * Increasing nr_hw_queues fails. Free the newly allocated
2823 	 * hctxs and keep the previous q->nr_hw_queues.
2824 	 */
2825 	if (i != set->nr_hw_queues) {
2826 		j = q->nr_hw_queues;
2827 		end = i;
2828 	} else {
2829 		j = i;
2830 		end = q->nr_hw_queues;
2831 		q->nr_hw_queues = set->nr_hw_queues;
2832 	}
2833 
2834 	for (; j < end; j++) {
2835 		struct blk_mq_hw_ctx *hctx = hctxs[j];
2836 
2837 		if (hctx) {
2838 			if (hctx->tags)
2839 				blk_mq_free_map_and_requests(set, j);
2840 			blk_mq_exit_hctx(q, set, hctx, j);
2841 			hctxs[j] = NULL;
2842 		}
2843 	}
2844 	mutex_unlock(&q->sysfs_lock);
2845 }
2846 
2847 /*
2848  * Maximum number of hardware queues we support. For single sets, we'll never
2849  * have more than the CPUs (software queues). For multiple sets, the tag_set
2850  * user may have set ->nr_hw_queues larger.
2851  */
2852 static unsigned int nr_hw_queues(struct blk_mq_tag_set *set)
2853 {
2854 	if (set->nr_maps == 1)
2855 		return nr_cpu_ids;
2856 
2857 	return max(set->nr_hw_queues, nr_cpu_ids);
2858 }
2859 
2860 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2861 						  struct request_queue *q,
2862 						  bool elevator_init)
2863 {
2864 	/* mark the queue as mq asap */
2865 	q->mq_ops = set->ops;
2866 
2867 	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2868 					     blk_mq_poll_stats_bkt,
2869 					     BLK_MQ_POLL_STATS_BKTS, q);
2870 	if (!q->poll_cb)
2871 		goto err_exit;
2872 
2873 	if (blk_mq_alloc_ctxs(q))
2874 		goto err_poll;
2875 
2876 	/* init q->mq_kobj and sw queues' kobjects */
2877 	blk_mq_sysfs_init(q);
2878 
2879 	q->nr_queues = nr_hw_queues(set);
2880 	q->queue_hw_ctx = kcalloc_node(q->nr_queues, sizeof(*(q->queue_hw_ctx)),
2881 						GFP_KERNEL, set->numa_node);
2882 	if (!q->queue_hw_ctx)
2883 		goto err_sys_init;
2884 
2885 	INIT_LIST_HEAD(&q->unused_hctx_list);
2886 	spin_lock_init(&q->unused_hctx_lock);
2887 
2888 	blk_mq_realloc_hw_ctxs(set, q);
2889 	if (!q->nr_hw_queues)
2890 		goto err_hctxs;
2891 
2892 	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2893 	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2894 
2895 	q->tag_set = set;
2896 
2897 	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2898 	if (set->nr_maps > HCTX_TYPE_POLL &&
2899 	    set->map[HCTX_TYPE_POLL].nr_queues)
2900 		blk_queue_flag_set(QUEUE_FLAG_POLL, q);
2901 
2902 	q->sg_reserved_size = INT_MAX;
2903 
2904 	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2905 	INIT_LIST_HEAD(&q->requeue_list);
2906 	spin_lock_init(&q->requeue_lock);
2907 
2908 	blk_queue_make_request(q, blk_mq_make_request);
2909 
2910 	/*
2911 	 * Do this after blk_queue_make_request() overrides it...
2912 	 */
2913 	q->nr_requests = set->queue_depth;
2914 
2915 	/*
2916 	 * Default to classic polling
2917 	 */
2918 	q->poll_nsec = BLK_MQ_POLL_CLASSIC;
2919 
2920 	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2921 	blk_mq_add_queue_tag_set(set, q);
2922 	blk_mq_map_swqueue(q);
2923 
2924 	if (elevator_init)
2925 		elevator_init_mq(q);
2926 
2927 	return q;
2928 
2929 err_hctxs:
2930 	kfree(q->queue_hw_ctx);
2931 	q->nr_hw_queues = 0;
2932 err_sys_init:
2933 	blk_mq_sysfs_deinit(q);
2934 err_poll:
2935 	blk_stat_free_callback(q->poll_cb);
2936 	q->poll_cb = NULL;
2937 err_exit:
2938 	q->mq_ops = NULL;
2939 	return ERR_PTR(-ENOMEM);
2940 }
2941 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2942 
2943 /* tags can _not_ be used after returning from blk_mq_exit_queue */
2944 void blk_mq_exit_queue(struct request_queue *q)
2945 {
2946 	struct blk_mq_tag_set	*set = q->tag_set;
2947 
2948 	blk_mq_del_queue_tag_set(q);
2949 	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2950 }
2951 
2952 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2953 {
2954 	int i;
2955 
2956 	for (i = 0; i < set->nr_hw_queues; i++)
2957 		if (!__blk_mq_alloc_rq_map(set, i))
2958 			goto out_unwind;
2959 
2960 	return 0;
2961 
2962 out_unwind:
2963 	while (--i >= 0)
2964 		blk_mq_free_rq_map(set->tags[i]);
2965 
2966 	return -ENOMEM;
2967 }
2968 
2969 /*
2970  * Allocate the request maps associated with this tag_set. Note that this
2971  * may reduce the depth asked for, if memory is tight. set->queue_depth
2972  * will be updated to reflect the allocated depth.
2973  */
2974 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2975 {
2976 	unsigned int depth;
2977 	int err;
2978 
2979 	depth = set->queue_depth;
2980 	do {
2981 		err = __blk_mq_alloc_rq_maps(set);
2982 		if (!err)
2983 			break;
2984 
2985 		set->queue_depth >>= 1;
2986 		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2987 			err = -ENOMEM;
2988 			break;
2989 		}
2990 	} while (set->queue_depth);
2991 
2992 	if (!set->queue_depth || err) {
2993 		pr_err("blk-mq: failed to allocate request map\n");
2994 		return -ENOMEM;
2995 	}
2996 
2997 	if (depth != set->queue_depth)
2998 		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2999 						depth, set->queue_depth);
3000 
3001 	return 0;
3002 }
3003 
3004 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
3005 {
3006 	if (set->ops->map_queues && !is_kdump_kernel()) {
3007 		int i;
3008 
3009 		/*
3010 		 * transport .map_queues is usually done in the following
3011 		 * way:
3012 		 *
3013 		 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
3014 		 * 	mask = get_cpu_mask(queue)
3015 		 * 	for_each_cpu(cpu, mask)
3016 		 * 		set->map[x].mq_map[cpu] = queue;
3017 		 * }
3018 		 *
3019 		 * When we need to remap, the table has to be cleared for
3020 		 * killing stale mapping since one CPU may not be mapped
3021 		 * to any hw queue.
3022 		 */
3023 		for (i = 0; i < set->nr_maps; i++)
3024 			blk_mq_clear_mq_map(&set->map[i]);
3025 
3026 		return set->ops->map_queues(set);
3027 	} else {
3028 		BUG_ON(set->nr_maps > 1);
3029 		return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3030 	}
3031 }
3032 
3033 /*
3034  * Alloc a tag set to be associated with one or more request queues.
3035  * May fail with EINVAL for various error conditions. May adjust the
3036  * requested depth down, if it's too large. In that case, the set
3037  * value will be stored in set->queue_depth.
3038  */
3039 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
3040 {
3041 	int i, ret;
3042 
3043 	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
3044 
3045 	if (!set->nr_hw_queues)
3046 		return -EINVAL;
3047 	if (!set->queue_depth)
3048 		return -EINVAL;
3049 	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
3050 		return -EINVAL;
3051 
3052 	if (!set->ops->queue_rq)
3053 		return -EINVAL;
3054 
3055 	if (!set->ops->get_budget ^ !set->ops->put_budget)
3056 		return -EINVAL;
3057 
3058 	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
3059 		pr_info("blk-mq: reduced tag depth to %u\n",
3060 			BLK_MQ_MAX_DEPTH);
3061 		set->queue_depth = BLK_MQ_MAX_DEPTH;
3062 	}
3063 
3064 	if (!set->nr_maps)
3065 		set->nr_maps = 1;
3066 	else if (set->nr_maps > HCTX_MAX_TYPES)
3067 		return -EINVAL;
3068 
3069 	/*
3070 	 * If a crashdump is active, then we are potentially in a very
3071 	 * memory constrained environment. Limit us to 1 queue and
3072 	 * 64 tags to prevent using too much memory.
3073 	 */
3074 	if (is_kdump_kernel()) {
3075 		set->nr_hw_queues = 1;
3076 		set->nr_maps = 1;
3077 		set->queue_depth = min(64U, set->queue_depth);
3078 	}
3079 	/*
3080 	 * There is no use for more h/w queues than cpus if we just have
3081 	 * a single map
3082 	 */
3083 	if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
3084 		set->nr_hw_queues = nr_cpu_ids;
3085 
3086 	set->tags = kcalloc_node(nr_hw_queues(set), sizeof(struct blk_mq_tags *),
3087 				 GFP_KERNEL, set->numa_node);
3088 	if (!set->tags)
3089 		return -ENOMEM;
3090 
3091 	ret = -ENOMEM;
3092 	for (i = 0; i < set->nr_maps; i++) {
3093 		set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
3094 						  sizeof(set->map[i].mq_map[0]),
3095 						  GFP_KERNEL, set->numa_node);
3096 		if (!set->map[i].mq_map)
3097 			goto out_free_mq_map;
3098 		set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
3099 	}
3100 
3101 	ret = blk_mq_update_queue_map(set);
3102 	if (ret)
3103 		goto out_free_mq_map;
3104 
3105 	ret = blk_mq_alloc_rq_maps(set);
3106 	if (ret)
3107 		goto out_free_mq_map;
3108 
3109 	mutex_init(&set->tag_list_lock);
3110 	INIT_LIST_HEAD(&set->tag_list);
3111 
3112 	return 0;
3113 
3114 out_free_mq_map:
3115 	for (i = 0; i < set->nr_maps; i++) {
3116 		kfree(set->map[i].mq_map);
3117 		set->map[i].mq_map = NULL;
3118 	}
3119 	kfree(set->tags);
3120 	set->tags = NULL;
3121 	return ret;
3122 }
3123 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
3124 
3125 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
3126 {
3127 	int i, j;
3128 
3129 	for (i = 0; i < nr_hw_queues(set); i++)
3130 		blk_mq_free_map_and_requests(set, i);
3131 
3132 	for (j = 0; j < set->nr_maps; j++) {
3133 		kfree(set->map[j].mq_map);
3134 		set->map[j].mq_map = NULL;
3135 	}
3136 
3137 	kfree(set->tags);
3138 	set->tags = NULL;
3139 }
3140 EXPORT_SYMBOL(blk_mq_free_tag_set);
3141 
3142 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
3143 {
3144 	struct blk_mq_tag_set *set = q->tag_set;
3145 	struct blk_mq_hw_ctx *hctx;
3146 	int i, ret;
3147 
3148 	if (!set)
3149 		return -EINVAL;
3150 
3151 	if (q->nr_requests == nr)
3152 		return 0;
3153 
3154 	blk_mq_freeze_queue(q);
3155 	blk_mq_quiesce_queue(q);
3156 
3157 	ret = 0;
3158 	queue_for_each_hw_ctx(q, hctx, i) {
3159 		if (!hctx->tags)
3160 			continue;
3161 		/*
3162 		 * If we're using an MQ scheduler, just update the scheduler
3163 		 * queue depth. This is similar to what the old code would do.
3164 		 */
3165 		if (!hctx->sched_tags) {
3166 			ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
3167 							false);
3168 		} else {
3169 			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
3170 							nr, true);
3171 		}
3172 		if (ret)
3173 			break;
3174 		if (q->elevator && q->elevator->type->ops.depth_updated)
3175 			q->elevator->type->ops.depth_updated(hctx);
3176 	}
3177 
3178 	if (!ret)
3179 		q->nr_requests = nr;
3180 
3181 	blk_mq_unquiesce_queue(q);
3182 	blk_mq_unfreeze_queue(q);
3183 
3184 	return ret;
3185 }
3186 
3187 /*
3188  * request_queue and elevator_type pair.
3189  * It is just used by __blk_mq_update_nr_hw_queues to cache
3190  * the elevator_type associated with a request_queue.
3191  */
3192 struct blk_mq_qe_pair {
3193 	struct list_head node;
3194 	struct request_queue *q;
3195 	struct elevator_type *type;
3196 };
3197 
3198 /*
3199  * Cache the elevator_type in qe pair list and switch the
3200  * io scheduler to 'none'
3201  */
3202 static bool blk_mq_elv_switch_none(struct list_head *head,
3203 		struct request_queue *q)
3204 {
3205 	struct blk_mq_qe_pair *qe;
3206 
3207 	if (!q->elevator)
3208 		return true;
3209 
3210 	qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
3211 	if (!qe)
3212 		return false;
3213 
3214 	INIT_LIST_HEAD(&qe->node);
3215 	qe->q = q;
3216 	qe->type = q->elevator->type;
3217 	list_add(&qe->node, head);
3218 
3219 	mutex_lock(&q->sysfs_lock);
3220 	/*
3221 	 * After elevator_switch_mq, the previous elevator_queue will be
3222 	 * released by elevator_release. The reference of the io scheduler
3223 	 * module get by elevator_get will also be put. So we need to get
3224 	 * a reference of the io scheduler module here to prevent it to be
3225 	 * removed.
3226 	 */
3227 	__module_get(qe->type->elevator_owner);
3228 	elevator_switch_mq(q, NULL);
3229 	mutex_unlock(&q->sysfs_lock);
3230 
3231 	return true;
3232 }
3233 
3234 static void blk_mq_elv_switch_back(struct list_head *head,
3235 		struct request_queue *q)
3236 {
3237 	struct blk_mq_qe_pair *qe;
3238 	struct elevator_type *t = NULL;
3239 
3240 	list_for_each_entry(qe, head, node)
3241 		if (qe->q == q) {
3242 			t = qe->type;
3243 			break;
3244 		}
3245 
3246 	if (!t)
3247 		return;
3248 
3249 	list_del(&qe->node);
3250 	kfree(qe);
3251 
3252 	mutex_lock(&q->sysfs_lock);
3253 	elevator_switch_mq(q, t);
3254 	mutex_unlock(&q->sysfs_lock);
3255 }
3256 
3257 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
3258 							int nr_hw_queues)
3259 {
3260 	struct request_queue *q;
3261 	LIST_HEAD(head);
3262 	int prev_nr_hw_queues;
3263 
3264 	lockdep_assert_held(&set->tag_list_lock);
3265 
3266 	if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
3267 		nr_hw_queues = nr_cpu_ids;
3268 	if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
3269 		return;
3270 
3271 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3272 		blk_mq_freeze_queue(q);
3273 	/*
3274 	 * Sync with blk_mq_queue_tag_busy_iter.
3275 	 */
3276 	synchronize_rcu();
3277 	/*
3278 	 * Switch IO scheduler to 'none', cleaning up the data associated
3279 	 * with the previous scheduler. We will switch back once we are done
3280 	 * updating the new sw to hw queue mappings.
3281 	 */
3282 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3283 		if (!blk_mq_elv_switch_none(&head, q))
3284 			goto switch_back;
3285 
3286 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3287 		blk_mq_debugfs_unregister_hctxs(q);
3288 		blk_mq_sysfs_unregister(q);
3289 	}
3290 
3291 	prev_nr_hw_queues = set->nr_hw_queues;
3292 	set->nr_hw_queues = nr_hw_queues;
3293 	blk_mq_update_queue_map(set);
3294 fallback:
3295 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3296 		blk_mq_realloc_hw_ctxs(set, q);
3297 		if (q->nr_hw_queues != set->nr_hw_queues) {
3298 			pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
3299 					nr_hw_queues, prev_nr_hw_queues);
3300 			set->nr_hw_queues = prev_nr_hw_queues;
3301 			blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3302 			goto fallback;
3303 		}
3304 		blk_mq_map_swqueue(q);
3305 	}
3306 
3307 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3308 		blk_mq_sysfs_register(q);
3309 		blk_mq_debugfs_register_hctxs(q);
3310 	}
3311 
3312 switch_back:
3313 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3314 		blk_mq_elv_switch_back(&head, q);
3315 
3316 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3317 		blk_mq_unfreeze_queue(q);
3318 }
3319 
3320 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
3321 {
3322 	mutex_lock(&set->tag_list_lock);
3323 	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
3324 	mutex_unlock(&set->tag_list_lock);
3325 }
3326 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
3327 
3328 /* Enable polling stats and return whether they were already enabled. */
3329 static bool blk_poll_stats_enable(struct request_queue *q)
3330 {
3331 	if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3332 	    blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
3333 		return true;
3334 	blk_stat_add_callback(q, q->poll_cb);
3335 	return false;
3336 }
3337 
3338 static void blk_mq_poll_stats_start(struct request_queue *q)
3339 {
3340 	/*
3341 	 * We don't arm the callback if polling stats are not enabled or the
3342 	 * callback is already active.
3343 	 */
3344 	if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3345 	    blk_stat_is_active(q->poll_cb))
3346 		return;
3347 
3348 	blk_stat_activate_msecs(q->poll_cb, 100);
3349 }
3350 
3351 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
3352 {
3353 	struct request_queue *q = cb->data;
3354 	int bucket;
3355 
3356 	for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
3357 		if (cb->stat[bucket].nr_samples)
3358 			q->poll_stat[bucket] = cb->stat[bucket];
3359 	}
3360 }
3361 
3362 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
3363 				       struct blk_mq_hw_ctx *hctx,
3364 				       struct request *rq)
3365 {
3366 	unsigned long ret = 0;
3367 	int bucket;
3368 
3369 	/*
3370 	 * If stats collection isn't on, don't sleep but turn it on for
3371 	 * future users
3372 	 */
3373 	if (!blk_poll_stats_enable(q))
3374 		return 0;
3375 
3376 	/*
3377 	 * As an optimistic guess, use half of the mean service time
3378 	 * for this type of request. We can (and should) make this smarter.
3379 	 * For instance, if the completion latencies are tight, we can
3380 	 * get closer than just half the mean. This is especially
3381 	 * important on devices where the completion latencies are longer
3382 	 * than ~10 usec. We do use the stats for the relevant IO size
3383 	 * if available which does lead to better estimates.
3384 	 */
3385 	bucket = blk_mq_poll_stats_bkt(rq);
3386 	if (bucket < 0)
3387 		return ret;
3388 
3389 	if (q->poll_stat[bucket].nr_samples)
3390 		ret = (q->poll_stat[bucket].mean + 1) / 2;
3391 
3392 	return ret;
3393 }
3394 
3395 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
3396 				     struct blk_mq_hw_ctx *hctx,
3397 				     struct request *rq)
3398 {
3399 	struct hrtimer_sleeper hs;
3400 	enum hrtimer_mode mode;
3401 	unsigned int nsecs;
3402 	ktime_t kt;
3403 
3404 	if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
3405 		return false;
3406 
3407 	/*
3408 	 * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
3409 	 *
3410 	 *  0:	use half of prev avg
3411 	 * >0:	use this specific value
3412 	 */
3413 	if (q->poll_nsec > 0)
3414 		nsecs = q->poll_nsec;
3415 	else
3416 		nsecs = blk_mq_poll_nsecs(q, hctx, rq);
3417 
3418 	if (!nsecs)
3419 		return false;
3420 
3421 	rq->rq_flags |= RQF_MQ_POLL_SLEPT;
3422 
3423 	/*
3424 	 * This will be replaced with the stats tracking code, using
3425 	 * 'avg_completion_time / 2' as the pre-sleep target.
3426 	 */
3427 	kt = nsecs;
3428 
3429 	mode = HRTIMER_MODE_REL;
3430 	hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode);
3431 	hrtimer_set_expires(&hs.timer, kt);
3432 
3433 	do {
3434 		if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
3435 			break;
3436 		set_current_state(TASK_UNINTERRUPTIBLE);
3437 		hrtimer_sleeper_start_expires(&hs, mode);
3438 		if (hs.task)
3439 			io_schedule();
3440 		hrtimer_cancel(&hs.timer);
3441 		mode = HRTIMER_MODE_ABS;
3442 	} while (hs.task && !signal_pending(current));
3443 
3444 	__set_current_state(TASK_RUNNING);
3445 	destroy_hrtimer_on_stack(&hs.timer);
3446 	return true;
3447 }
3448 
3449 static bool blk_mq_poll_hybrid(struct request_queue *q,
3450 			       struct blk_mq_hw_ctx *hctx, blk_qc_t cookie)
3451 {
3452 	struct request *rq;
3453 
3454 	if (q->poll_nsec == BLK_MQ_POLL_CLASSIC)
3455 		return false;
3456 
3457 	if (!blk_qc_t_is_internal(cookie))
3458 		rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3459 	else {
3460 		rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3461 		/*
3462 		 * With scheduling, if the request has completed, we'll
3463 		 * get a NULL return here, as we clear the sched tag when
3464 		 * that happens. The request still remains valid, like always,
3465 		 * so we should be safe with just the NULL check.
3466 		 */
3467 		if (!rq)
3468 			return false;
3469 	}
3470 
3471 	return blk_mq_poll_hybrid_sleep(q, hctx, rq);
3472 }
3473 
3474 /**
3475  * blk_poll - poll for IO completions
3476  * @q:  the queue
3477  * @cookie: cookie passed back at IO submission time
3478  * @spin: whether to spin for completions
3479  *
3480  * Description:
3481  *    Poll for completions on the passed in queue. Returns number of
3482  *    completed entries found. If @spin is true, then blk_poll will continue
3483  *    looping until at least one completion is found, unless the task is
3484  *    otherwise marked running (or we need to reschedule).
3485  */
3486 int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin)
3487 {
3488 	struct blk_mq_hw_ctx *hctx;
3489 	long state;
3490 
3491 	if (!blk_qc_t_valid(cookie) ||
3492 	    !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3493 		return 0;
3494 
3495 	if (current->plug)
3496 		blk_flush_plug_list(current->plug, false);
3497 
3498 	hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3499 
3500 	/*
3501 	 * If we sleep, have the caller restart the poll loop to reset
3502 	 * the state. Like for the other success return cases, the
3503 	 * caller is responsible for checking if the IO completed. If
3504 	 * the IO isn't complete, we'll get called again and will go
3505 	 * straight to the busy poll loop.
3506 	 */
3507 	if (blk_mq_poll_hybrid(q, hctx, cookie))
3508 		return 1;
3509 
3510 	hctx->poll_considered++;
3511 
3512 	state = current->state;
3513 	do {
3514 		int ret;
3515 
3516 		hctx->poll_invoked++;
3517 
3518 		ret = q->mq_ops->poll(hctx);
3519 		if (ret > 0) {
3520 			hctx->poll_success++;
3521 			__set_current_state(TASK_RUNNING);
3522 			return ret;
3523 		}
3524 
3525 		if (signal_pending_state(state, current))
3526 			__set_current_state(TASK_RUNNING);
3527 
3528 		if (current->state == TASK_RUNNING)
3529 			return 1;
3530 		if (ret < 0 || !spin)
3531 			break;
3532 		cpu_relax();
3533 	} while (!need_resched());
3534 
3535 	__set_current_state(TASK_RUNNING);
3536 	return 0;
3537 }
3538 EXPORT_SYMBOL_GPL(blk_poll);
3539 
3540 unsigned int blk_mq_rq_cpu(struct request *rq)
3541 {
3542 	return rq->mq_ctx->cpu;
3543 }
3544 EXPORT_SYMBOL(blk_mq_rq_cpu);
3545 
3546 static int __init blk_mq_init(void)
3547 {
3548 	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
3549 				blk_mq_hctx_notify_dead);
3550 	return 0;
3551 }
3552 subsys_initcall(blk_mq_init);
3553