xref: /linux/block/blk-mq.c (revision 96500610)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block multiqueue core code
4  *
5  * Copyright (C) 2013-2014 Jens Axboe
6  * Copyright (C) 2013-2014 Christoph Hellwig
7  */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/blk-integrity.h>
14 #include <linux/kmemleak.h>
15 #include <linux/mm.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/workqueue.h>
19 #include <linux/smp.h>
20 #include <linux/interrupt.h>
21 #include <linux/llist.h>
22 #include <linux/cpu.h>
23 #include <linux/cache.h>
24 #include <linux/sched/sysctl.h>
25 #include <linux/sched/topology.h>
26 #include <linux/sched/signal.h>
27 #include <linux/delay.h>
28 #include <linux/crash_dump.h>
29 #include <linux/prefetch.h>
30 #include <linux/blk-crypto.h>
31 #include <linux/part_stat.h>
32 
33 #include <trace/events/block.h>
34 
35 #include <linux/blk-mq.h>
36 #include <linux/t10-pi.h>
37 #include "blk.h"
38 #include "blk-mq.h"
39 #include "blk-mq-debugfs.h"
40 #include "blk-mq-tag.h"
41 #include "blk-pm.h"
42 #include "blk-stat.h"
43 #include "blk-mq-sched.h"
44 #include "blk-rq-qos.h"
45 #include "blk-ioprio.h"
46 
47 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
48 
49 static void blk_mq_poll_stats_start(struct request_queue *q);
50 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
51 
52 static int blk_mq_poll_stats_bkt(const struct request *rq)
53 {
54 	int ddir, sectors, bucket;
55 
56 	ddir = rq_data_dir(rq);
57 	sectors = blk_rq_stats_sectors(rq);
58 
59 	bucket = ddir + 2 * ilog2(sectors);
60 
61 	if (bucket < 0)
62 		return -1;
63 	else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
64 		return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
65 
66 	return bucket;
67 }
68 
69 #define BLK_QC_T_SHIFT		16
70 #define BLK_QC_T_INTERNAL	(1U << 31)
71 
72 static inline struct blk_mq_hw_ctx *blk_qc_to_hctx(struct request_queue *q,
73 		blk_qc_t qc)
74 {
75 	return xa_load(&q->hctx_table,
76 			(qc & ~BLK_QC_T_INTERNAL) >> BLK_QC_T_SHIFT);
77 }
78 
79 static inline struct request *blk_qc_to_rq(struct blk_mq_hw_ctx *hctx,
80 		blk_qc_t qc)
81 {
82 	unsigned int tag = qc & ((1U << BLK_QC_T_SHIFT) - 1);
83 
84 	if (qc & BLK_QC_T_INTERNAL)
85 		return blk_mq_tag_to_rq(hctx->sched_tags, tag);
86 	return blk_mq_tag_to_rq(hctx->tags, tag);
87 }
88 
89 static inline blk_qc_t blk_rq_to_qc(struct request *rq)
90 {
91 	return (rq->mq_hctx->queue_num << BLK_QC_T_SHIFT) |
92 		(rq->tag != -1 ?
93 		 rq->tag : (rq->internal_tag | BLK_QC_T_INTERNAL));
94 }
95 
96 /*
97  * Check if any of the ctx, dispatch list or elevator
98  * have pending work in this hardware queue.
99  */
100 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
101 {
102 	return !list_empty_careful(&hctx->dispatch) ||
103 		sbitmap_any_bit_set(&hctx->ctx_map) ||
104 			blk_mq_sched_has_work(hctx);
105 }
106 
107 /*
108  * Mark this ctx as having pending work in this hardware queue
109  */
110 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
111 				     struct blk_mq_ctx *ctx)
112 {
113 	const int bit = ctx->index_hw[hctx->type];
114 
115 	if (!sbitmap_test_bit(&hctx->ctx_map, bit))
116 		sbitmap_set_bit(&hctx->ctx_map, bit);
117 }
118 
119 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
120 				      struct blk_mq_ctx *ctx)
121 {
122 	const int bit = ctx->index_hw[hctx->type];
123 
124 	sbitmap_clear_bit(&hctx->ctx_map, bit);
125 }
126 
127 struct mq_inflight {
128 	struct block_device *part;
129 	unsigned int inflight[2];
130 };
131 
132 static bool blk_mq_check_inflight(struct request *rq, void *priv)
133 {
134 	struct mq_inflight *mi = priv;
135 
136 	if (rq->part && blk_do_io_stat(rq) &&
137 	    (!mi->part->bd_partno || rq->part == mi->part) &&
138 	    blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
139 		mi->inflight[rq_data_dir(rq)]++;
140 
141 	return true;
142 }
143 
144 unsigned int blk_mq_in_flight(struct request_queue *q,
145 		struct block_device *part)
146 {
147 	struct mq_inflight mi = { .part = part };
148 
149 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
150 
151 	return mi.inflight[0] + mi.inflight[1];
152 }
153 
154 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
155 		unsigned int inflight[2])
156 {
157 	struct mq_inflight mi = { .part = part };
158 
159 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
160 	inflight[0] = mi.inflight[0];
161 	inflight[1] = mi.inflight[1];
162 }
163 
164 void blk_freeze_queue_start(struct request_queue *q)
165 {
166 	mutex_lock(&q->mq_freeze_lock);
167 	if (++q->mq_freeze_depth == 1) {
168 		percpu_ref_kill(&q->q_usage_counter);
169 		mutex_unlock(&q->mq_freeze_lock);
170 		if (queue_is_mq(q))
171 			blk_mq_run_hw_queues(q, false);
172 	} else {
173 		mutex_unlock(&q->mq_freeze_lock);
174 	}
175 }
176 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
177 
178 void blk_mq_freeze_queue_wait(struct request_queue *q)
179 {
180 	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
181 }
182 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
183 
184 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
185 				     unsigned long timeout)
186 {
187 	return wait_event_timeout(q->mq_freeze_wq,
188 					percpu_ref_is_zero(&q->q_usage_counter),
189 					timeout);
190 }
191 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
192 
193 /*
194  * Guarantee no request is in use, so we can change any data structure of
195  * the queue afterward.
196  */
197 void blk_freeze_queue(struct request_queue *q)
198 {
199 	/*
200 	 * In the !blk_mq case we are only calling this to kill the
201 	 * q_usage_counter, otherwise this increases the freeze depth
202 	 * and waits for it to return to zero.  For this reason there is
203 	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
204 	 * exported to drivers as the only user for unfreeze is blk_mq.
205 	 */
206 	blk_freeze_queue_start(q);
207 	blk_mq_freeze_queue_wait(q);
208 }
209 
210 void blk_mq_freeze_queue(struct request_queue *q)
211 {
212 	/*
213 	 * ...just an alias to keep freeze and unfreeze actions balanced
214 	 * in the blk_mq_* namespace
215 	 */
216 	blk_freeze_queue(q);
217 }
218 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
219 
220 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic)
221 {
222 	mutex_lock(&q->mq_freeze_lock);
223 	if (force_atomic)
224 		q->q_usage_counter.data->force_atomic = true;
225 	q->mq_freeze_depth--;
226 	WARN_ON_ONCE(q->mq_freeze_depth < 0);
227 	if (!q->mq_freeze_depth) {
228 		percpu_ref_resurrect(&q->q_usage_counter);
229 		wake_up_all(&q->mq_freeze_wq);
230 	}
231 	mutex_unlock(&q->mq_freeze_lock);
232 }
233 
234 void blk_mq_unfreeze_queue(struct request_queue *q)
235 {
236 	__blk_mq_unfreeze_queue(q, false);
237 }
238 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
239 
240 /*
241  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
242  * mpt3sas driver such that this function can be removed.
243  */
244 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
245 {
246 	unsigned long flags;
247 
248 	spin_lock_irqsave(&q->queue_lock, flags);
249 	if (!q->quiesce_depth++)
250 		blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
251 	spin_unlock_irqrestore(&q->queue_lock, flags);
252 }
253 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
254 
255 /**
256  * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done
257  * @set: tag_set to wait on
258  *
259  * Note: it is driver's responsibility for making sure that quiesce has
260  * been started on or more of the request_queues of the tag_set.  This
261  * function only waits for the quiesce on those request_queues that had
262  * the quiesce flag set using blk_mq_quiesce_queue_nowait.
263  */
264 void blk_mq_wait_quiesce_done(struct blk_mq_tag_set *set)
265 {
266 	if (set->flags & BLK_MQ_F_BLOCKING)
267 		synchronize_srcu(set->srcu);
268 	else
269 		synchronize_rcu();
270 }
271 EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done);
272 
273 /**
274  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
275  * @q: request queue.
276  *
277  * Note: this function does not prevent that the struct request end_io()
278  * callback function is invoked. Once this function is returned, we make
279  * sure no dispatch can happen until the queue is unquiesced via
280  * blk_mq_unquiesce_queue().
281  */
282 void blk_mq_quiesce_queue(struct request_queue *q)
283 {
284 	blk_mq_quiesce_queue_nowait(q);
285 	/* nothing to wait for non-mq queues */
286 	if (queue_is_mq(q))
287 		blk_mq_wait_quiesce_done(q->tag_set);
288 }
289 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
290 
291 /*
292  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
293  * @q: request queue.
294  *
295  * This function recovers queue into the state before quiescing
296  * which is done by blk_mq_quiesce_queue.
297  */
298 void blk_mq_unquiesce_queue(struct request_queue *q)
299 {
300 	unsigned long flags;
301 	bool run_queue = false;
302 
303 	spin_lock_irqsave(&q->queue_lock, flags);
304 	if (WARN_ON_ONCE(q->quiesce_depth <= 0)) {
305 		;
306 	} else if (!--q->quiesce_depth) {
307 		blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
308 		run_queue = true;
309 	}
310 	spin_unlock_irqrestore(&q->queue_lock, flags);
311 
312 	/* dispatch requests which are inserted during quiescing */
313 	if (run_queue)
314 		blk_mq_run_hw_queues(q, true);
315 }
316 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
317 
318 void blk_mq_quiesce_tagset(struct blk_mq_tag_set *set)
319 {
320 	struct request_queue *q;
321 
322 	mutex_lock(&set->tag_list_lock);
323 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
324 		if (!blk_queue_skip_tagset_quiesce(q))
325 			blk_mq_quiesce_queue_nowait(q);
326 	}
327 	blk_mq_wait_quiesce_done(set);
328 	mutex_unlock(&set->tag_list_lock);
329 }
330 EXPORT_SYMBOL_GPL(blk_mq_quiesce_tagset);
331 
332 void blk_mq_unquiesce_tagset(struct blk_mq_tag_set *set)
333 {
334 	struct request_queue *q;
335 
336 	mutex_lock(&set->tag_list_lock);
337 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
338 		if (!blk_queue_skip_tagset_quiesce(q))
339 			blk_mq_unquiesce_queue(q);
340 	}
341 	mutex_unlock(&set->tag_list_lock);
342 }
343 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_tagset);
344 
345 void blk_mq_wake_waiters(struct request_queue *q)
346 {
347 	struct blk_mq_hw_ctx *hctx;
348 	unsigned long i;
349 
350 	queue_for_each_hw_ctx(q, hctx, i)
351 		if (blk_mq_hw_queue_mapped(hctx))
352 			blk_mq_tag_wakeup_all(hctx->tags, true);
353 }
354 
355 void blk_rq_init(struct request_queue *q, struct request *rq)
356 {
357 	memset(rq, 0, sizeof(*rq));
358 
359 	INIT_LIST_HEAD(&rq->queuelist);
360 	rq->q = q;
361 	rq->__sector = (sector_t) -1;
362 	INIT_HLIST_NODE(&rq->hash);
363 	RB_CLEAR_NODE(&rq->rb_node);
364 	rq->tag = BLK_MQ_NO_TAG;
365 	rq->internal_tag = BLK_MQ_NO_TAG;
366 	rq->start_time_ns = ktime_get_ns();
367 	rq->part = NULL;
368 	blk_crypto_rq_set_defaults(rq);
369 }
370 EXPORT_SYMBOL(blk_rq_init);
371 
372 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
373 		struct blk_mq_tags *tags, unsigned int tag, u64 alloc_time_ns)
374 {
375 	struct blk_mq_ctx *ctx = data->ctx;
376 	struct blk_mq_hw_ctx *hctx = data->hctx;
377 	struct request_queue *q = data->q;
378 	struct request *rq = tags->static_rqs[tag];
379 
380 	rq->q = q;
381 	rq->mq_ctx = ctx;
382 	rq->mq_hctx = hctx;
383 	rq->cmd_flags = data->cmd_flags;
384 
385 	if (data->flags & BLK_MQ_REQ_PM)
386 		data->rq_flags |= RQF_PM;
387 	if (blk_queue_io_stat(q))
388 		data->rq_flags |= RQF_IO_STAT;
389 	rq->rq_flags = data->rq_flags;
390 
391 	if (!(data->rq_flags & RQF_ELV)) {
392 		rq->tag = tag;
393 		rq->internal_tag = BLK_MQ_NO_TAG;
394 	} else {
395 		rq->tag = BLK_MQ_NO_TAG;
396 		rq->internal_tag = tag;
397 	}
398 	rq->timeout = 0;
399 
400 	if (blk_mq_need_time_stamp(rq))
401 		rq->start_time_ns = ktime_get_ns();
402 	else
403 		rq->start_time_ns = 0;
404 	rq->part = NULL;
405 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
406 	rq->alloc_time_ns = alloc_time_ns;
407 #endif
408 	rq->io_start_time_ns = 0;
409 	rq->stats_sectors = 0;
410 	rq->nr_phys_segments = 0;
411 #if defined(CONFIG_BLK_DEV_INTEGRITY)
412 	rq->nr_integrity_segments = 0;
413 #endif
414 	rq->end_io = NULL;
415 	rq->end_io_data = NULL;
416 
417 	blk_crypto_rq_set_defaults(rq);
418 	INIT_LIST_HEAD(&rq->queuelist);
419 	/* tag was already set */
420 	WRITE_ONCE(rq->deadline, 0);
421 	req_ref_set(rq, 1);
422 
423 	if (rq->rq_flags & RQF_ELV) {
424 		struct elevator_queue *e = data->q->elevator;
425 
426 		INIT_HLIST_NODE(&rq->hash);
427 		RB_CLEAR_NODE(&rq->rb_node);
428 
429 		if (!op_is_flush(data->cmd_flags) &&
430 		    e->type->ops.prepare_request) {
431 			e->type->ops.prepare_request(rq);
432 			rq->rq_flags |= RQF_ELVPRIV;
433 		}
434 	}
435 
436 	return rq;
437 }
438 
439 static inline struct request *
440 __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data,
441 		u64 alloc_time_ns)
442 {
443 	unsigned int tag, tag_offset;
444 	struct blk_mq_tags *tags;
445 	struct request *rq;
446 	unsigned long tag_mask;
447 	int i, nr = 0;
448 
449 	tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset);
450 	if (unlikely(!tag_mask))
451 		return NULL;
452 
453 	tags = blk_mq_tags_from_data(data);
454 	for (i = 0; tag_mask; i++) {
455 		if (!(tag_mask & (1UL << i)))
456 			continue;
457 		tag = tag_offset + i;
458 		prefetch(tags->static_rqs[tag]);
459 		tag_mask &= ~(1UL << i);
460 		rq = blk_mq_rq_ctx_init(data, tags, tag, alloc_time_ns);
461 		rq_list_add(data->cached_rq, rq);
462 		nr++;
463 	}
464 	/* caller already holds a reference, add for remainder */
465 	percpu_ref_get_many(&data->q->q_usage_counter, nr - 1);
466 	data->nr_tags -= nr;
467 
468 	return rq_list_pop(data->cached_rq);
469 }
470 
471 static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data)
472 {
473 	struct request_queue *q = data->q;
474 	u64 alloc_time_ns = 0;
475 	struct request *rq;
476 	unsigned int tag;
477 
478 	/* alloc_time includes depth and tag waits */
479 	if (blk_queue_rq_alloc_time(q))
480 		alloc_time_ns = ktime_get_ns();
481 
482 	if (data->cmd_flags & REQ_NOWAIT)
483 		data->flags |= BLK_MQ_REQ_NOWAIT;
484 
485 	if (q->elevator) {
486 		struct elevator_queue *e = q->elevator;
487 
488 		data->rq_flags |= RQF_ELV;
489 
490 		/*
491 		 * Flush/passthrough requests are special and go directly to the
492 		 * dispatch list. Don't include reserved tags in the
493 		 * limiting, as it isn't useful.
494 		 */
495 		if (!op_is_flush(data->cmd_flags) &&
496 		    !blk_op_is_passthrough(data->cmd_flags) &&
497 		    e->type->ops.limit_depth &&
498 		    !(data->flags & BLK_MQ_REQ_RESERVED))
499 			e->type->ops.limit_depth(data->cmd_flags, data);
500 	}
501 
502 retry:
503 	data->ctx = blk_mq_get_ctx(q);
504 	data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
505 	if (!(data->rq_flags & RQF_ELV))
506 		blk_mq_tag_busy(data->hctx);
507 
508 	if (data->flags & BLK_MQ_REQ_RESERVED)
509 		data->rq_flags |= RQF_RESV;
510 
511 	/*
512 	 * Try batched alloc if we want more than 1 tag.
513 	 */
514 	if (data->nr_tags > 1) {
515 		rq = __blk_mq_alloc_requests_batch(data, alloc_time_ns);
516 		if (rq)
517 			return rq;
518 		data->nr_tags = 1;
519 	}
520 
521 	/*
522 	 * Waiting allocations only fail because of an inactive hctx.  In that
523 	 * case just retry the hctx assignment and tag allocation as CPU hotplug
524 	 * should have migrated us to an online CPU by now.
525 	 */
526 	tag = blk_mq_get_tag(data);
527 	if (tag == BLK_MQ_NO_TAG) {
528 		if (data->flags & BLK_MQ_REQ_NOWAIT)
529 			return NULL;
530 		/*
531 		 * Give up the CPU and sleep for a random short time to
532 		 * ensure that thread using a realtime scheduling class
533 		 * are migrated off the CPU, and thus off the hctx that
534 		 * is going away.
535 		 */
536 		msleep(3);
537 		goto retry;
538 	}
539 
540 	return blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag,
541 					alloc_time_ns);
542 }
543 
544 static struct request *blk_mq_rq_cache_fill(struct request_queue *q,
545 					    struct blk_plug *plug,
546 					    blk_opf_t opf,
547 					    blk_mq_req_flags_t flags)
548 {
549 	struct blk_mq_alloc_data data = {
550 		.q		= q,
551 		.flags		= flags,
552 		.cmd_flags	= opf,
553 		.nr_tags	= plug->nr_ios,
554 		.cached_rq	= &plug->cached_rq,
555 	};
556 	struct request *rq;
557 
558 	if (blk_queue_enter(q, flags))
559 		return NULL;
560 
561 	plug->nr_ios = 1;
562 
563 	rq = __blk_mq_alloc_requests(&data);
564 	if (unlikely(!rq))
565 		blk_queue_exit(q);
566 	return rq;
567 }
568 
569 static struct request *blk_mq_alloc_cached_request(struct request_queue *q,
570 						   blk_opf_t opf,
571 						   blk_mq_req_flags_t flags)
572 {
573 	struct blk_plug *plug = current->plug;
574 	struct request *rq;
575 
576 	if (!plug)
577 		return NULL;
578 
579 	if (rq_list_empty(plug->cached_rq)) {
580 		if (plug->nr_ios == 1)
581 			return NULL;
582 		rq = blk_mq_rq_cache_fill(q, plug, opf, flags);
583 		if (!rq)
584 			return NULL;
585 	} else {
586 		rq = rq_list_peek(&plug->cached_rq);
587 		if (!rq || rq->q != q)
588 			return NULL;
589 
590 		if (blk_mq_get_hctx_type(opf) != rq->mq_hctx->type)
591 			return NULL;
592 		if (op_is_flush(rq->cmd_flags) != op_is_flush(opf))
593 			return NULL;
594 
595 		plug->cached_rq = rq_list_next(rq);
596 	}
597 
598 	rq->cmd_flags = opf;
599 	INIT_LIST_HEAD(&rq->queuelist);
600 	return rq;
601 }
602 
603 struct request *blk_mq_alloc_request(struct request_queue *q, blk_opf_t opf,
604 		blk_mq_req_flags_t flags)
605 {
606 	struct request *rq;
607 
608 	rq = blk_mq_alloc_cached_request(q, opf, flags);
609 	if (!rq) {
610 		struct blk_mq_alloc_data data = {
611 			.q		= q,
612 			.flags		= flags,
613 			.cmd_flags	= opf,
614 			.nr_tags	= 1,
615 		};
616 		int ret;
617 
618 		ret = blk_queue_enter(q, flags);
619 		if (ret)
620 			return ERR_PTR(ret);
621 
622 		rq = __blk_mq_alloc_requests(&data);
623 		if (!rq)
624 			goto out_queue_exit;
625 	}
626 	rq->__data_len = 0;
627 	rq->__sector = (sector_t) -1;
628 	rq->bio = rq->biotail = NULL;
629 	return rq;
630 out_queue_exit:
631 	blk_queue_exit(q);
632 	return ERR_PTR(-EWOULDBLOCK);
633 }
634 EXPORT_SYMBOL(blk_mq_alloc_request);
635 
636 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
637 	blk_opf_t opf, blk_mq_req_flags_t flags, unsigned int hctx_idx)
638 {
639 	struct blk_mq_alloc_data data = {
640 		.q		= q,
641 		.flags		= flags,
642 		.cmd_flags	= opf,
643 		.nr_tags	= 1,
644 	};
645 	u64 alloc_time_ns = 0;
646 	struct request *rq;
647 	unsigned int cpu;
648 	unsigned int tag;
649 	int ret;
650 
651 	/* alloc_time includes depth and tag waits */
652 	if (blk_queue_rq_alloc_time(q))
653 		alloc_time_ns = ktime_get_ns();
654 
655 	/*
656 	 * If the tag allocator sleeps we could get an allocation for a
657 	 * different hardware context.  No need to complicate the low level
658 	 * allocator for this for the rare use case of a command tied to
659 	 * a specific queue.
660 	 */
661 	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)) ||
662 	    WARN_ON_ONCE(!(flags & BLK_MQ_REQ_RESERVED)))
663 		return ERR_PTR(-EINVAL);
664 
665 	if (hctx_idx >= q->nr_hw_queues)
666 		return ERR_PTR(-EIO);
667 
668 	ret = blk_queue_enter(q, flags);
669 	if (ret)
670 		return ERR_PTR(ret);
671 
672 	/*
673 	 * Check if the hardware context is actually mapped to anything.
674 	 * If not tell the caller that it should skip this queue.
675 	 */
676 	ret = -EXDEV;
677 	data.hctx = xa_load(&q->hctx_table, hctx_idx);
678 	if (!blk_mq_hw_queue_mapped(data.hctx))
679 		goto out_queue_exit;
680 	cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
681 	if (cpu >= nr_cpu_ids)
682 		goto out_queue_exit;
683 	data.ctx = __blk_mq_get_ctx(q, cpu);
684 
685 	if (!q->elevator)
686 		blk_mq_tag_busy(data.hctx);
687 	else
688 		data.rq_flags |= RQF_ELV;
689 
690 	if (flags & BLK_MQ_REQ_RESERVED)
691 		data.rq_flags |= RQF_RESV;
692 
693 	ret = -EWOULDBLOCK;
694 	tag = blk_mq_get_tag(&data);
695 	if (tag == BLK_MQ_NO_TAG)
696 		goto out_queue_exit;
697 	rq = blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag,
698 					alloc_time_ns);
699 	rq->__data_len = 0;
700 	rq->__sector = (sector_t) -1;
701 	rq->bio = rq->biotail = NULL;
702 	return rq;
703 
704 out_queue_exit:
705 	blk_queue_exit(q);
706 	return ERR_PTR(ret);
707 }
708 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
709 
710 static void __blk_mq_free_request(struct request *rq)
711 {
712 	struct request_queue *q = rq->q;
713 	struct blk_mq_ctx *ctx = rq->mq_ctx;
714 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
715 	const int sched_tag = rq->internal_tag;
716 
717 	blk_crypto_free_request(rq);
718 	blk_pm_mark_last_busy(rq);
719 	rq->mq_hctx = NULL;
720 	if (rq->tag != BLK_MQ_NO_TAG)
721 		blk_mq_put_tag(hctx->tags, ctx, rq->tag);
722 	if (sched_tag != BLK_MQ_NO_TAG)
723 		blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
724 	blk_mq_sched_restart(hctx);
725 	blk_queue_exit(q);
726 }
727 
728 void blk_mq_free_request(struct request *rq)
729 {
730 	struct request_queue *q = rq->q;
731 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
732 
733 	if ((rq->rq_flags & RQF_ELVPRIV) &&
734 	    q->elevator->type->ops.finish_request)
735 		q->elevator->type->ops.finish_request(rq);
736 
737 	if (rq->rq_flags & RQF_MQ_INFLIGHT)
738 		__blk_mq_dec_active_requests(hctx);
739 
740 	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
741 		laptop_io_completion(q->disk->bdi);
742 
743 	rq_qos_done(q, rq);
744 
745 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
746 	if (req_ref_put_and_test(rq))
747 		__blk_mq_free_request(rq);
748 }
749 EXPORT_SYMBOL_GPL(blk_mq_free_request);
750 
751 void blk_mq_free_plug_rqs(struct blk_plug *plug)
752 {
753 	struct request *rq;
754 
755 	while ((rq = rq_list_pop(&plug->cached_rq)) != NULL)
756 		blk_mq_free_request(rq);
757 }
758 
759 void blk_dump_rq_flags(struct request *rq, char *msg)
760 {
761 	printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
762 		rq->q->disk ? rq->q->disk->disk_name : "?",
763 		(__force unsigned long long) rq->cmd_flags);
764 
765 	printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
766 	       (unsigned long long)blk_rq_pos(rq),
767 	       blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
768 	printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
769 	       rq->bio, rq->biotail, blk_rq_bytes(rq));
770 }
771 EXPORT_SYMBOL(blk_dump_rq_flags);
772 
773 static void req_bio_endio(struct request *rq, struct bio *bio,
774 			  unsigned int nbytes, blk_status_t error)
775 {
776 	if (unlikely(error)) {
777 		bio->bi_status = error;
778 	} else if (req_op(rq) == REQ_OP_ZONE_APPEND) {
779 		/*
780 		 * Partial zone append completions cannot be supported as the
781 		 * BIO fragments may end up not being written sequentially.
782 		 */
783 		if (bio->bi_iter.bi_size != nbytes)
784 			bio->bi_status = BLK_STS_IOERR;
785 		else
786 			bio->bi_iter.bi_sector = rq->__sector;
787 	}
788 
789 	bio_advance(bio, nbytes);
790 
791 	if (unlikely(rq->rq_flags & RQF_QUIET))
792 		bio_set_flag(bio, BIO_QUIET);
793 	/* don't actually finish bio if it's part of flush sequence */
794 	if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
795 		bio_endio(bio);
796 }
797 
798 static void blk_account_io_completion(struct request *req, unsigned int bytes)
799 {
800 	if (req->part && blk_do_io_stat(req)) {
801 		const int sgrp = op_stat_group(req_op(req));
802 
803 		part_stat_lock();
804 		part_stat_add(req->part, sectors[sgrp], bytes >> 9);
805 		part_stat_unlock();
806 	}
807 }
808 
809 static void blk_print_req_error(struct request *req, blk_status_t status)
810 {
811 	printk_ratelimited(KERN_ERR
812 		"%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
813 		"phys_seg %u prio class %u\n",
814 		blk_status_to_str(status),
815 		req->q->disk ? req->q->disk->disk_name : "?",
816 		blk_rq_pos(req), (__force u32)req_op(req),
817 		blk_op_str(req_op(req)),
818 		(__force u32)(req->cmd_flags & ~REQ_OP_MASK),
819 		req->nr_phys_segments,
820 		IOPRIO_PRIO_CLASS(req->ioprio));
821 }
822 
823 /*
824  * Fully end IO on a request. Does not support partial completions, or
825  * errors.
826  */
827 static void blk_complete_request(struct request *req)
828 {
829 	const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0;
830 	int total_bytes = blk_rq_bytes(req);
831 	struct bio *bio = req->bio;
832 
833 	trace_block_rq_complete(req, BLK_STS_OK, total_bytes);
834 
835 	if (!bio)
836 		return;
837 
838 #ifdef CONFIG_BLK_DEV_INTEGRITY
839 	if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ)
840 		req->q->integrity.profile->complete_fn(req, total_bytes);
841 #endif
842 
843 	blk_account_io_completion(req, total_bytes);
844 
845 	do {
846 		struct bio *next = bio->bi_next;
847 
848 		/* Completion has already been traced */
849 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
850 
851 		if (req_op(req) == REQ_OP_ZONE_APPEND)
852 			bio->bi_iter.bi_sector = req->__sector;
853 
854 		if (!is_flush)
855 			bio_endio(bio);
856 		bio = next;
857 	} while (bio);
858 
859 	/*
860 	 * Reset counters so that the request stacking driver
861 	 * can find how many bytes remain in the request
862 	 * later.
863 	 */
864 	if (!req->end_io) {
865 		req->bio = NULL;
866 		req->__data_len = 0;
867 	}
868 }
869 
870 /**
871  * blk_update_request - Complete multiple bytes without completing the request
872  * @req:      the request being processed
873  * @error:    block status code
874  * @nr_bytes: number of bytes to complete for @req
875  *
876  * Description:
877  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
878  *     the request structure even if @req doesn't have leftover.
879  *     If @req has leftover, sets it up for the next range of segments.
880  *
881  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
882  *     %false return from this function.
883  *
884  * Note:
885  *	The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function
886  *      except in the consistency check at the end of this function.
887  *
888  * Return:
889  *     %false - this request doesn't have any more data
890  *     %true  - this request has more data
891  **/
892 bool blk_update_request(struct request *req, blk_status_t error,
893 		unsigned int nr_bytes)
894 {
895 	int total_bytes;
896 
897 	trace_block_rq_complete(req, error, nr_bytes);
898 
899 	if (!req->bio)
900 		return false;
901 
902 #ifdef CONFIG_BLK_DEV_INTEGRITY
903 	if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
904 	    error == BLK_STS_OK)
905 		req->q->integrity.profile->complete_fn(req, nr_bytes);
906 #endif
907 
908 	if (unlikely(error && !blk_rq_is_passthrough(req) &&
909 		     !(req->rq_flags & RQF_QUIET)) &&
910 		     !test_bit(GD_DEAD, &req->q->disk->state)) {
911 		blk_print_req_error(req, error);
912 		trace_block_rq_error(req, error, nr_bytes);
913 	}
914 
915 	blk_account_io_completion(req, nr_bytes);
916 
917 	total_bytes = 0;
918 	while (req->bio) {
919 		struct bio *bio = req->bio;
920 		unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
921 
922 		if (bio_bytes == bio->bi_iter.bi_size)
923 			req->bio = bio->bi_next;
924 
925 		/* Completion has already been traced */
926 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
927 		req_bio_endio(req, bio, bio_bytes, error);
928 
929 		total_bytes += bio_bytes;
930 		nr_bytes -= bio_bytes;
931 
932 		if (!nr_bytes)
933 			break;
934 	}
935 
936 	/*
937 	 * completely done
938 	 */
939 	if (!req->bio) {
940 		/*
941 		 * Reset counters so that the request stacking driver
942 		 * can find how many bytes remain in the request
943 		 * later.
944 		 */
945 		req->__data_len = 0;
946 		return false;
947 	}
948 
949 	req->__data_len -= total_bytes;
950 
951 	/* update sector only for requests with clear definition of sector */
952 	if (!blk_rq_is_passthrough(req))
953 		req->__sector += total_bytes >> 9;
954 
955 	/* mixed attributes always follow the first bio */
956 	if (req->rq_flags & RQF_MIXED_MERGE) {
957 		req->cmd_flags &= ~REQ_FAILFAST_MASK;
958 		req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
959 	}
960 
961 	if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
962 		/*
963 		 * If total number of sectors is less than the first segment
964 		 * size, something has gone terribly wrong.
965 		 */
966 		if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
967 			blk_dump_rq_flags(req, "request botched");
968 			req->__data_len = blk_rq_cur_bytes(req);
969 		}
970 
971 		/* recalculate the number of segments */
972 		req->nr_phys_segments = blk_recalc_rq_segments(req);
973 	}
974 
975 	return true;
976 }
977 EXPORT_SYMBOL_GPL(blk_update_request);
978 
979 static void __blk_account_io_done(struct request *req, u64 now)
980 {
981 	const int sgrp = op_stat_group(req_op(req));
982 
983 	part_stat_lock();
984 	update_io_ticks(req->part, jiffies, true);
985 	part_stat_inc(req->part, ios[sgrp]);
986 	part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns);
987 	part_stat_unlock();
988 }
989 
990 static inline void blk_account_io_done(struct request *req, u64 now)
991 {
992 	/*
993 	 * Account IO completion.  flush_rq isn't accounted as a
994 	 * normal IO on queueing nor completion.  Accounting the
995 	 * containing request is enough.
996 	 */
997 	if (blk_do_io_stat(req) && req->part &&
998 	    !(req->rq_flags & RQF_FLUSH_SEQ))
999 		__blk_account_io_done(req, now);
1000 }
1001 
1002 static void __blk_account_io_start(struct request *rq)
1003 {
1004 	/*
1005 	 * All non-passthrough requests are created from a bio with one
1006 	 * exception: when a flush command that is part of a flush sequence
1007 	 * generated by the state machine in blk-flush.c is cloned onto the
1008 	 * lower device by dm-multipath we can get here without a bio.
1009 	 */
1010 	if (rq->bio)
1011 		rq->part = rq->bio->bi_bdev;
1012 	else
1013 		rq->part = rq->q->disk->part0;
1014 
1015 	part_stat_lock();
1016 	update_io_ticks(rq->part, jiffies, false);
1017 	part_stat_unlock();
1018 }
1019 
1020 static inline void blk_account_io_start(struct request *req)
1021 {
1022 	if (blk_do_io_stat(req))
1023 		__blk_account_io_start(req);
1024 }
1025 
1026 static inline void __blk_mq_end_request_acct(struct request *rq, u64 now)
1027 {
1028 	if (rq->rq_flags & RQF_STATS) {
1029 		blk_mq_poll_stats_start(rq->q);
1030 		blk_stat_add(rq, now);
1031 	}
1032 
1033 	blk_mq_sched_completed_request(rq, now);
1034 	blk_account_io_done(rq, now);
1035 }
1036 
1037 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
1038 {
1039 	if (blk_mq_need_time_stamp(rq))
1040 		__blk_mq_end_request_acct(rq, ktime_get_ns());
1041 
1042 	if (rq->end_io) {
1043 		rq_qos_done(rq->q, rq);
1044 		if (rq->end_io(rq, error) == RQ_END_IO_FREE)
1045 			blk_mq_free_request(rq);
1046 	} else {
1047 		blk_mq_free_request(rq);
1048 	}
1049 }
1050 EXPORT_SYMBOL(__blk_mq_end_request);
1051 
1052 void blk_mq_end_request(struct request *rq, blk_status_t error)
1053 {
1054 	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
1055 		BUG();
1056 	__blk_mq_end_request(rq, error);
1057 }
1058 EXPORT_SYMBOL(blk_mq_end_request);
1059 
1060 #define TAG_COMP_BATCH		32
1061 
1062 static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx,
1063 					  int *tag_array, int nr_tags)
1064 {
1065 	struct request_queue *q = hctx->queue;
1066 
1067 	/*
1068 	 * All requests should have been marked as RQF_MQ_INFLIGHT, so
1069 	 * update hctx->nr_active in batch
1070 	 */
1071 	if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
1072 		__blk_mq_sub_active_requests(hctx, nr_tags);
1073 
1074 	blk_mq_put_tags(hctx->tags, tag_array, nr_tags);
1075 	percpu_ref_put_many(&q->q_usage_counter, nr_tags);
1076 }
1077 
1078 void blk_mq_end_request_batch(struct io_comp_batch *iob)
1079 {
1080 	int tags[TAG_COMP_BATCH], nr_tags = 0;
1081 	struct blk_mq_hw_ctx *cur_hctx = NULL;
1082 	struct request *rq;
1083 	u64 now = 0;
1084 
1085 	if (iob->need_ts)
1086 		now = ktime_get_ns();
1087 
1088 	while ((rq = rq_list_pop(&iob->req_list)) != NULL) {
1089 		prefetch(rq->bio);
1090 		prefetch(rq->rq_next);
1091 
1092 		blk_complete_request(rq);
1093 		if (iob->need_ts)
1094 			__blk_mq_end_request_acct(rq, now);
1095 
1096 		rq_qos_done(rq->q, rq);
1097 
1098 		/*
1099 		 * If end_io handler returns NONE, then it still has
1100 		 * ownership of the request.
1101 		 */
1102 		if (rq->end_io && rq->end_io(rq, 0) == RQ_END_IO_NONE)
1103 			continue;
1104 
1105 		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1106 		if (!req_ref_put_and_test(rq))
1107 			continue;
1108 
1109 		blk_crypto_free_request(rq);
1110 		blk_pm_mark_last_busy(rq);
1111 
1112 		if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) {
1113 			if (cur_hctx)
1114 				blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1115 			nr_tags = 0;
1116 			cur_hctx = rq->mq_hctx;
1117 		}
1118 		tags[nr_tags++] = rq->tag;
1119 	}
1120 
1121 	if (nr_tags)
1122 		blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1123 }
1124 EXPORT_SYMBOL_GPL(blk_mq_end_request_batch);
1125 
1126 static void blk_complete_reqs(struct llist_head *list)
1127 {
1128 	struct llist_node *entry = llist_reverse_order(llist_del_all(list));
1129 	struct request *rq, *next;
1130 
1131 	llist_for_each_entry_safe(rq, next, entry, ipi_list)
1132 		rq->q->mq_ops->complete(rq);
1133 }
1134 
1135 static __latent_entropy void blk_done_softirq(struct softirq_action *h)
1136 {
1137 	blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
1138 }
1139 
1140 static int blk_softirq_cpu_dead(unsigned int cpu)
1141 {
1142 	blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
1143 	return 0;
1144 }
1145 
1146 static void __blk_mq_complete_request_remote(void *data)
1147 {
1148 	__raise_softirq_irqoff(BLOCK_SOFTIRQ);
1149 }
1150 
1151 static inline bool blk_mq_complete_need_ipi(struct request *rq)
1152 {
1153 	int cpu = raw_smp_processor_id();
1154 
1155 	if (!IS_ENABLED(CONFIG_SMP) ||
1156 	    !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
1157 		return false;
1158 	/*
1159 	 * With force threaded interrupts enabled, raising softirq from an SMP
1160 	 * function call will always result in waking the ksoftirqd thread.
1161 	 * This is probably worse than completing the request on a different
1162 	 * cache domain.
1163 	 */
1164 	if (force_irqthreads())
1165 		return false;
1166 
1167 	/* same CPU or cache domain?  Complete locally */
1168 	if (cpu == rq->mq_ctx->cpu ||
1169 	    (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
1170 	     cpus_share_cache(cpu, rq->mq_ctx->cpu)))
1171 		return false;
1172 
1173 	/* don't try to IPI to an offline CPU */
1174 	return cpu_online(rq->mq_ctx->cpu);
1175 }
1176 
1177 static void blk_mq_complete_send_ipi(struct request *rq)
1178 {
1179 	struct llist_head *list;
1180 	unsigned int cpu;
1181 
1182 	cpu = rq->mq_ctx->cpu;
1183 	list = &per_cpu(blk_cpu_done, cpu);
1184 	if (llist_add(&rq->ipi_list, list)) {
1185 		INIT_CSD(&rq->csd, __blk_mq_complete_request_remote, rq);
1186 		smp_call_function_single_async(cpu, &rq->csd);
1187 	}
1188 }
1189 
1190 static void blk_mq_raise_softirq(struct request *rq)
1191 {
1192 	struct llist_head *list;
1193 
1194 	preempt_disable();
1195 	list = this_cpu_ptr(&blk_cpu_done);
1196 	if (llist_add(&rq->ipi_list, list))
1197 		raise_softirq(BLOCK_SOFTIRQ);
1198 	preempt_enable();
1199 }
1200 
1201 bool blk_mq_complete_request_remote(struct request *rq)
1202 {
1203 	WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
1204 
1205 	/*
1206 	 * For request which hctx has only one ctx mapping,
1207 	 * or a polled request, always complete locally,
1208 	 * it's pointless to redirect the completion.
1209 	 */
1210 	if (rq->mq_hctx->nr_ctx == 1 ||
1211 		rq->cmd_flags & REQ_POLLED)
1212 		return false;
1213 
1214 	if (blk_mq_complete_need_ipi(rq)) {
1215 		blk_mq_complete_send_ipi(rq);
1216 		return true;
1217 	}
1218 
1219 	if (rq->q->nr_hw_queues == 1) {
1220 		blk_mq_raise_softirq(rq);
1221 		return true;
1222 	}
1223 	return false;
1224 }
1225 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
1226 
1227 /**
1228  * blk_mq_complete_request - end I/O on a request
1229  * @rq:		the request being processed
1230  *
1231  * Description:
1232  *	Complete a request by scheduling the ->complete_rq operation.
1233  **/
1234 void blk_mq_complete_request(struct request *rq)
1235 {
1236 	if (!blk_mq_complete_request_remote(rq))
1237 		rq->q->mq_ops->complete(rq);
1238 }
1239 EXPORT_SYMBOL(blk_mq_complete_request);
1240 
1241 /**
1242  * blk_mq_start_request - Start processing a request
1243  * @rq: Pointer to request to be started
1244  *
1245  * Function used by device drivers to notify the block layer that a request
1246  * is going to be processed now, so blk layer can do proper initializations
1247  * such as starting the timeout timer.
1248  */
1249 void blk_mq_start_request(struct request *rq)
1250 {
1251 	struct request_queue *q = rq->q;
1252 
1253 	trace_block_rq_issue(rq);
1254 
1255 	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
1256 		rq->io_start_time_ns = ktime_get_ns();
1257 		rq->stats_sectors = blk_rq_sectors(rq);
1258 		rq->rq_flags |= RQF_STATS;
1259 		rq_qos_issue(q, rq);
1260 	}
1261 
1262 	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
1263 
1264 	blk_add_timer(rq);
1265 	WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
1266 
1267 #ifdef CONFIG_BLK_DEV_INTEGRITY
1268 	if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
1269 		q->integrity.profile->prepare_fn(rq);
1270 #endif
1271 	if (rq->bio && rq->bio->bi_opf & REQ_POLLED)
1272 	        WRITE_ONCE(rq->bio->bi_cookie, blk_rq_to_qc(rq));
1273 }
1274 EXPORT_SYMBOL(blk_mq_start_request);
1275 
1276 /*
1277  * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
1278  * queues. This is important for md arrays to benefit from merging
1279  * requests.
1280  */
1281 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
1282 {
1283 	if (plug->multiple_queues)
1284 		return BLK_MAX_REQUEST_COUNT * 2;
1285 	return BLK_MAX_REQUEST_COUNT;
1286 }
1287 
1288 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
1289 {
1290 	struct request *last = rq_list_peek(&plug->mq_list);
1291 
1292 	if (!plug->rq_count) {
1293 		trace_block_plug(rq->q);
1294 	} else if (plug->rq_count >= blk_plug_max_rq_count(plug) ||
1295 		   (!blk_queue_nomerges(rq->q) &&
1296 		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1297 		blk_mq_flush_plug_list(plug, false);
1298 		last = NULL;
1299 		trace_block_plug(rq->q);
1300 	}
1301 
1302 	if (!plug->multiple_queues && last && last->q != rq->q)
1303 		plug->multiple_queues = true;
1304 	if (!plug->has_elevator && (rq->rq_flags & RQF_ELV))
1305 		plug->has_elevator = true;
1306 	rq->rq_next = NULL;
1307 	rq_list_add(&plug->mq_list, rq);
1308 	plug->rq_count++;
1309 }
1310 
1311 /**
1312  * blk_execute_rq_nowait - insert a request to I/O scheduler for execution
1313  * @rq:		request to insert
1314  * @at_head:    insert request at head or tail of queue
1315  *
1316  * Description:
1317  *    Insert a fully prepared request at the back of the I/O scheduler queue
1318  *    for execution.  Don't wait for completion.
1319  *
1320  * Note:
1321  *    This function will invoke @done directly if the queue is dead.
1322  */
1323 void blk_execute_rq_nowait(struct request *rq, bool at_head)
1324 {
1325 	WARN_ON(irqs_disabled());
1326 	WARN_ON(!blk_rq_is_passthrough(rq));
1327 
1328 	blk_account_io_start(rq);
1329 
1330 	/*
1331 	 * As plugging can be enabled for passthrough requests on a zoned
1332 	 * device, directly accessing the plug instead of using blk_mq_plug()
1333 	 * should not have any consequences.
1334 	 */
1335 	if (current->plug)
1336 		blk_add_rq_to_plug(current->plug, rq);
1337 	else
1338 		blk_mq_sched_insert_request(rq, at_head, true, false);
1339 }
1340 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
1341 
1342 struct blk_rq_wait {
1343 	struct completion done;
1344 	blk_status_t ret;
1345 };
1346 
1347 static enum rq_end_io_ret blk_end_sync_rq(struct request *rq, blk_status_t ret)
1348 {
1349 	struct blk_rq_wait *wait = rq->end_io_data;
1350 
1351 	wait->ret = ret;
1352 	complete(&wait->done);
1353 	return RQ_END_IO_NONE;
1354 }
1355 
1356 bool blk_rq_is_poll(struct request *rq)
1357 {
1358 	if (!rq->mq_hctx)
1359 		return false;
1360 	if (rq->mq_hctx->type != HCTX_TYPE_POLL)
1361 		return false;
1362 	if (WARN_ON_ONCE(!rq->bio))
1363 		return false;
1364 	return true;
1365 }
1366 EXPORT_SYMBOL_GPL(blk_rq_is_poll);
1367 
1368 static void blk_rq_poll_completion(struct request *rq, struct completion *wait)
1369 {
1370 	do {
1371 		bio_poll(rq->bio, NULL, 0);
1372 		cond_resched();
1373 	} while (!completion_done(wait));
1374 }
1375 
1376 /**
1377  * blk_execute_rq - insert a request into queue for execution
1378  * @rq:		request to insert
1379  * @at_head:    insert request at head or tail of queue
1380  *
1381  * Description:
1382  *    Insert a fully prepared request at the back of the I/O scheduler queue
1383  *    for execution and wait for completion.
1384  * Return: The blk_status_t result provided to blk_mq_end_request().
1385  */
1386 blk_status_t blk_execute_rq(struct request *rq, bool at_head)
1387 {
1388 	struct blk_rq_wait wait = {
1389 		.done = COMPLETION_INITIALIZER_ONSTACK(wait.done),
1390 	};
1391 
1392 	WARN_ON(irqs_disabled());
1393 	WARN_ON(!blk_rq_is_passthrough(rq));
1394 
1395 	rq->end_io_data = &wait;
1396 	rq->end_io = blk_end_sync_rq;
1397 
1398 	blk_account_io_start(rq);
1399 	blk_mq_sched_insert_request(rq, at_head, true, false);
1400 
1401 	if (blk_rq_is_poll(rq)) {
1402 		blk_rq_poll_completion(rq, &wait.done);
1403 	} else {
1404 		/*
1405 		 * Prevent hang_check timer from firing at us during very long
1406 		 * I/O
1407 		 */
1408 		unsigned long hang_check = sysctl_hung_task_timeout_secs;
1409 
1410 		if (hang_check)
1411 			while (!wait_for_completion_io_timeout(&wait.done,
1412 					hang_check * (HZ/2)))
1413 				;
1414 		else
1415 			wait_for_completion_io(&wait.done);
1416 	}
1417 
1418 	return wait.ret;
1419 }
1420 EXPORT_SYMBOL(blk_execute_rq);
1421 
1422 static void __blk_mq_requeue_request(struct request *rq)
1423 {
1424 	struct request_queue *q = rq->q;
1425 
1426 	blk_mq_put_driver_tag(rq);
1427 
1428 	trace_block_rq_requeue(rq);
1429 	rq_qos_requeue(q, rq);
1430 
1431 	if (blk_mq_request_started(rq)) {
1432 		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1433 		rq->rq_flags &= ~RQF_TIMED_OUT;
1434 	}
1435 }
1436 
1437 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
1438 {
1439 	__blk_mq_requeue_request(rq);
1440 
1441 	/* this request will be re-inserted to io scheduler queue */
1442 	blk_mq_sched_requeue_request(rq);
1443 
1444 	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
1445 }
1446 EXPORT_SYMBOL(blk_mq_requeue_request);
1447 
1448 static void blk_mq_requeue_work(struct work_struct *work)
1449 {
1450 	struct request_queue *q =
1451 		container_of(work, struct request_queue, requeue_work.work);
1452 	LIST_HEAD(rq_list);
1453 	struct request *rq, *next;
1454 
1455 	spin_lock_irq(&q->requeue_lock);
1456 	list_splice_init(&q->requeue_list, &rq_list);
1457 	spin_unlock_irq(&q->requeue_lock);
1458 
1459 	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
1460 		if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
1461 			continue;
1462 
1463 		rq->rq_flags &= ~RQF_SOFTBARRIER;
1464 		list_del_init(&rq->queuelist);
1465 		/*
1466 		 * If RQF_DONTPREP, rq has contained some driver specific
1467 		 * data, so insert it to hctx dispatch list to avoid any
1468 		 * merge.
1469 		 */
1470 		if (rq->rq_flags & RQF_DONTPREP)
1471 			blk_mq_request_bypass_insert(rq, false, false);
1472 		else
1473 			blk_mq_sched_insert_request(rq, true, false, false);
1474 	}
1475 
1476 	while (!list_empty(&rq_list)) {
1477 		rq = list_entry(rq_list.next, struct request, queuelist);
1478 		list_del_init(&rq->queuelist);
1479 		blk_mq_sched_insert_request(rq, false, false, false);
1480 	}
1481 
1482 	blk_mq_run_hw_queues(q, false);
1483 }
1484 
1485 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
1486 				bool kick_requeue_list)
1487 {
1488 	struct request_queue *q = rq->q;
1489 	unsigned long flags;
1490 
1491 	/*
1492 	 * We abuse this flag that is otherwise used by the I/O scheduler to
1493 	 * request head insertion from the workqueue.
1494 	 */
1495 	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
1496 
1497 	spin_lock_irqsave(&q->requeue_lock, flags);
1498 	if (at_head) {
1499 		rq->rq_flags |= RQF_SOFTBARRIER;
1500 		list_add(&rq->queuelist, &q->requeue_list);
1501 	} else {
1502 		list_add_tail(&rq->queuelist, &q->requeue_list);
1503 	}
1504 	spin_unlock_irqrestore(&q->requeue_lock, flags);
1505 
1506 	if (kick_requeue_list)
1507 		blk_mq_kick_requeue_list(q);
1508 }
1509 
1510 void blk_mq_kick_requeue_list(struct request_queue *q)
1511 {
1512 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
1513 }
1514 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
1515 
1516 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
1517 				    unsigned long msecs)
1518 {
1519 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
1520 				    msecs_to_jiffies(msecs));
1521 }
1522 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
1523 
1524 static bool blk_mq_rq_inflight(struct request *rq, void *priv)
1525 {
1526 	/*
1527 	 * If we find a request that isn't idle we know the queue is busy
1528 	 * as it's checked in the iter.
1529 	 * Return false to stop the iteration.
1530 	 */
1531 	if (blk_mq_request_started(rq)) {
1532 		bool *busy = priv;
1533 
1534 		*busy = true;
1535 		return false;
1536 	}
1537 
1538 	return true;
1539 }
1540 
1541 bool blk_mq_queue_inflight(struct request_queue *q)
1542 {
1543 	bool busy = false;
1544 
1545 	blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
1546 	return busy;
1547 }
1548 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
1549 
1550 static void blk_mq_rq_timed_out(struct request *req)
1551 {
1552 	req->rq_flags |= RQF_TIMED_OUT;
1553 	if (req->q->mq_ops->timeout) {
1554 		enum blk_eh_timer_return ret;
1555 
1556 		ret = req->q->mq_ops->timeout(req);
1557 		if (ret == BLK_EH_DONE)
1558 			return;
1559 		WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
1560 	}
1561 
1562 	blk_add_timer(req);
1563 }
1564 
1565 struct blk_expired_data {
1566 	bool has_timedout_rq;
1567 	unsigned long next;
1568 	unsigned long timeout_start;
1569 };
1570 
1571 static bool blk_mq_req_expired(struct request *rq, struct blk_expired_data *expired)
1572 {
1573 	unsigned long deadline;
1574 
1575 	if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
1576 		return false;
1577 	if (rq->rq_flags & RQF_TIMED_OUT)
1578 		return false;
1579 
1580 	deadline = READ_ONCE(rq->deadline);
1581 	if (time_after_eq(expired->timeout_start, deadline))
1582 		return true;
1583 
1584 	if (expired->next == 0)
1585 		expired->next = deadline;
1586 	else if (time_after(expired->next, deadline))
1587 		expired->next = deadline;
1588 	return false;
1589 }
1590 
1591 void blk_mq_put_rq_ref(struct request *rq)
1592 {
1593 	if (is_flush_rq(rq)) {
1594 		if (rq->end_io(rq, 0) == RQ_END_IO_FREE)
1595 			blk_mq_free_request(rq);
1596 	} else if (req_ref_put_and_test(rq)) {
1597 		__blk_mq_free_request(rq);
1598 	}
1599 }
1600 
1601 static bool blk_mq_check_expired(struct request *rq, void *priv)
1602 {
1603 	struct blk_expired_data *expired = priv;
1604 
1605 	/*
1606 	 * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
1607 	 * be reallocated underneath the timeout handler's processing, then
1608 	 * the expire check is reliable. If the request is not expired, then
1609 	 * it was completed and reallocated as a new request after returning
1610 	 * from blk_mq_check_expired().
1611 	 */
1612 	if (blk_mq_req_expired(rq, expired)) {
1613 		expired->has_timedout_rq = true;
1614 		return false;
1615 	}
1616 	return true;
1617 }
1618 
1619 static bool blk_mq_handle_expired(struct request *rq, void *priv)
1620 {
1621 	struct blk_expired_data *expired = priv;
1622 
1623 	if (blk_mq_req_expired(rq, expired))
1624 		blk_mq_rq_timed_out(rq);
1625 	return true;
1626 }
1627 
1628 static void blk_mq_timeout_work(struct work_struct *work)
1629 {
1630 	struct request_queue *q =
1631 		container_of(work, struct request_queue, timeout_work);
1632 	struct blk_expired_data expired = {
1633 		.timeout_start = jiffies,
1634 	};
1635 	struct blk_mq_hw_ctx *hctx;
1636 	unsigned long i;
1637 
1638 	/* A deadlock might occur if a request is stuck requiring a
1639 	 * timeout at the same time a queue freeze is waiting
1640 	 * completion, since the timeout code would not be able to
1641 	 * acquire the queue reference here.
1642 	 *
1643 	 * That's why we don't use blk_queue_enter here; instead, we use
1644 	 * percpu_ref_tryget directly, because we need to be able to
1645 	 * obtain a reference even in the short window between the queue
1646 	 * starting to freeze, by dropping the first reference in
1647 	 * blk_freeze_queue_start, and the moment the last request is
1648 	 * consumed, marked by the instant q_usage_counter reaches
1649 	 * zero.
1650 	 */
1651 	if (!percpu_ref_tryget(&q->q_usage_counter))
1652 		return;
1653 
1654 	/* check if there is any timed-out request */
1655 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &expired);
1656 	if (expired.has_timedout_rq) {
1657 		/*
1658 		 * Before walking tags, we must ensure any submit started
1659 		 * before the current time has finished. Since the submit
1660 		 * uses srcu or rcu, wait for a synchronization point to
1661 		 * ensure all running submits have finished
1662 		 */
1663 		blk_mq_wait_quiesce_done(q->tag_set);
1664 
1665 		expired.next = 0;
1666 		blk_mq_queue_tag_busy_iter(q, blk_mq_handle_expired, &expired);
1667 	}
1668 
1669 	if (expired.next != 0) {
1670 		mod_timer(&q->timeout, expired.next);
1671 	} else {
1672 		/*
1673 		 * Request timeouts are handled as a forward rolling timer. If
1674 		 * we end up here it means that no requests are pending and
1675 		 * also that no request has been pending for a while. Mark
1676 		 * each hctx as idle.
1677 		 */
1678 		queue_for_each_hw_ctx(q, hctx, i) {
1679 			/* the hctx may be unmapped, so check it here */
1680 			if (blk_mq_hw_queue_mapped(hctx))
1681 				blk_mq_tag_idle(hctx);
1682 		}
1683 	}
1684 	blk_queue_exit(q);
1685 }
1686 
1687 struct flush_busy_ctx_data {
1688 	struct blk_mq_hw_ctx *hctx;
1689 	struct list_head *list;
1690 };
1691 
1692 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1693 {
1694 	struct flush_busy_ctx_data *flush_data = data;
1695 	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1696 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1697 	enum hctx_type type = hctx->type;
1698 
1699 	spin_lock(&ctx->lock);
1700 	list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1701 	sbitmap_clear_bit(sb, bitnr);
1702 	spin_unlock(&ctx->lock);
1703 	return true;
1704 }
1705 
1706 /*
1707  * Process software queues that have been marked busy, splicing them
1708  * to the for-dispatch
1709  */
1710 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1711 {
1712 	struct flush_busy_ctx_data data = {
1713 		.hctx = hctx,
1714 		.list = list,
1715 	};
1716 
1717 	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1718 }
1719 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1720 
1721 struct dispatch_rq_data {
1722 	struct blk_mq_hw_ctx *hctx;
1723 	struct request *rq;
1724 };
1725 
1726 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1727 		void *data)
1728 {
1729 	struct dispatch_rq_data *dispatch_data = data;
1730 	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1731 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1732 	enum hctx_type type = hctx->type;
1733 
1734 	spin_lock(&ctx->lock);
1735 	if (!list_empty(&ctx->rq_lists[type])) {
1736 		dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1737 		list_del_init(&dispatch_data->rq->queuelist);
1738 		if (list_empty(&ctx->rq_lists[type]))
1739 			sbitmap_clear_bit(sb, bitnr);
1740 	}
1741 	spin_unlock(&ctx->lock);
1742 
1743 	return !dispatch_data->rq;
1744 }
1745 
1746 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1747 					struct blk_mq_ctx *start)
1748 {
1749 	unsigned off = start ? start->index_hw[hctx->type] : 0;
1750 	struct dispatch_rq_data data = {
1751 		.hctx = hctx,
1752 		.rq   = NULL,
1753 	};
1754 
1755 	__sbitmap_for_each_set(&hctx->ctx_map, off,
1756 			       dispatch_rq_from_ctx, &data);
1757 
1758 	return data.rq;
1759 }
1760 
1761 static bool __blk_mq_alloc_driver_tag(struct request *rq)
1762 {
1763 	struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags;
1764 	unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1765 	int tag;
1766 
1767 	blk_mq_tag_busy(rq->mq_hctx);
1768 
1769 	if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1770 		bt = &rq->mq_hctx->tags->breserved_tags;
1771 		tag_offset = 0;
1772 	} else {
1773 		if (!hctx_may_queue(rq->mq_hctx, bt))
1774 			return false;
1775 	}
1776 
1777 	tag = __sbitmap_queue_get(bt);
1778 	if (tag == BLK_MQ_NO_TAG)
1779 		return false;
1780 
1781 	rq->tag = tag + tag_offset;
1782 	return true;
1783 }
1784 
1785 bool __blk_mq_get_driver_tag(struct blk_mq_hw_ctx *hctx, struct request *rq)
1786 {
1787 	if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_alloc_driver_tag(rq))
1788 		return false;
1789 
1790 	if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1791 			!(rq->rq_flags & RQF_MQ_INFLIGHT)) {
1792 		rq->rq_flags |= RQF_MQ_INFLIGHT;
1793 		__blk_mq_inc_active_requests(hctx);
1794 	}
1795 	hctx->tags->rqs[rq->tag] = rq;
1796 	return true;
1797 }
1798 
1799 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1800 				int flags, void *key)
1801 {
1802 	struct blk_mq_hw_ctx *hctx;
1803 
1804 	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1805 
1806 	spin_lock(&hctx->dispatch_wait_lock);
1807 	if (!list_empty(&wait->entry)) {
1808 		struct sbitmap_queue *sbq;
1809 
1810 		list_del_init(&wait->entry);
1811 		sbq = &hctx->tags->bitmap_tags;
1812 		atomic_dec(&sbq->ws_active);
1813 	}
1814 	spin_unlock(&hctx->dispatch_wait_lock);
1815 
1816 	blk_mq_run_hw_queue(hctx, true);
1817 	return 1;
1818 }
1819 
1820 /*
1821  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1822  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1823  * restart. For both cases, take care to check the condition again after
1824  * marking us as waiting.
1825  */
1826 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1827 				 struct request *rq)
1828 {
1829 	struct sbitmap_queue *sbq;
1830 	struct wait_queue_head *wq;
1831 	wait_queue_entry_t *wait;
1832 	bool ret;
1833 
1834 	if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1835 	    !(blk_mq_is_shared_tags(hctx->flags))) {
1836 		blk_mq_sched_mark_restart_hctx(hctx);
1837 
1838 		/*
1839 		 * It's possible that a tag was freed in the window between the
1840 		 * allocation failure and adding the hardware queue to the wait
1841 		 * queue.
1842 		 *
1843 		 * Don't clear RESTART here, someone else could have set it.
1844 		 * At most this will cost an extra queue run.
1845 		 */
1846 		return blk_mq_get_driver_tag(rq);
1847 	}
1848 
1849 	wait = &hctx->dispatch_wait;
1850 	if (!list_empty_careful(&wait->entry))
1851 		return false;
1852 
1853 	if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag))
1854 		sbq = &hctx->tags->breserved_tags;
1855 	else
1856 		sbq = &hctx->tags->bitmap_tags;
1857 	wq = &bt_wait_ptr(sbq, hctx)->wait;
1858 
1859 	spin_lock_irq(&wq->lock);
1860 	spin_lock(&hctx->dispatch_wait_lock);
1861 	if (!list_empty(&wait->entry)) {
1862 		spin_unlock(&hctx->dispatch_wait_lock);
1863 		spin_unlock_irq(&wq->lock);
1864 		return false;
1865 	}
1866 
1867 	atomic_inc(&sbq->ws_active);
1868 	wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1869 	__add_wait_queue(wq, wait);
1870 
1871 	/*
1872 	 * It's possible that a tag was freed in the window between the
1873 	 * allocation failure and adding the hardware queue to the wait
1874 	 * queue.
1875 	 */
1876 	ret = blk_mq_get_driver_tag(rq);
1877 	if (!ret) {
1878 		spin_unlock(&hctx->dispatch_wait_lock);
1879 		spin_unlock_irq(&wq->lock);
1880 		return false;
1881 	}
1882 
1883 	/*
1884 	 * We got a tag, remove ourselves from the wait queue to ensure
1885 	 * someone else gets the wakeup.
1886 	 */
1887 	list_del_init(&wait->entry);
1888 	atomic_dec(&sbq->ws_active);
1889 	spin_unlock(&hctx->dispatch_wait_lock);
1890 	spin_unlock_irq(&wq->lock);
1891 
1892 	return true;
1893 }
1894 
1895 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1896 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1897 /*
1898  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1899  * - EWMA is one simple way to compute running average value
1900  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1901  * - take 4 as factor for avoiding to get too small(0) result, and this
1902  *   factor doesn't matter because EWMA decreases exponentially
1903  */
1904 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1905 {
1906 	unsigned int ewma;
1907 
1908 	ewma = hctx->dispatch_busy;
1909 
1910 	if (!ewma && !busy)
1911 		return;
1912 
1913 	ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1914 	if (busy)
1915 		ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1916 	ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1917 
1918 	hctx->dispatch_busy = ewma;
1919 }
1920 
1921 #define BLK_MQ_RESOURCE_DELAY	3		/* ms units */
1922 
1923 static void blk_mq_handle_dev_resource(struct request *rq,
1924 				       struct list_head *list)
1925 {
1926 	list_add(&rq->queuelist, list);
1927 	__blk_mq_requeue_request(rq);
1928 }
1929 
1930 static void blk_mq_handle_zone_resource(struct request *rq,
1931 					struct list_head *zone_list)
1932 {
1933 	/*
1934 	 * If we end up here it is because we cannot dispatch a request to a
1935 	 * specific zone due to LLD level zone-write locking or other zone
1936 	 * related resource not being available. In this case, set the request
1937 	 * aside in zone_list for retrying it later.
1938 	 */
1939 	list_add(&rq->queuelist, zone_list);
1940 	__blk_mq_requeue_request(rq);
1941 }
1942 
1943 enum prep_dispatch {
1944 	PREP_DISPATCH_OK,
1945 	PREP_DISPATCH_NO_TAG,
1946 	PREP_DISPATCH_NO_BUDGET,
1947 };
1948 
1949 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1950 						  bool need_budget)
1951 {
1952 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1953 	int budget_token = -1;
1954 
1955 	if (need_budget) {
1956 		budget_token = blk_mq_get_dispatch_budget(rq->q);
1957 		if (budget_token < 0) {
1958 			blk_mq_put_driver_tag(rq);
1959 			return PREP_DISPATCH_NO_BUDGET;
1960 		}
1961 		blk_mq_set_rq_budget_token(rq, budget_token);
1962 	}
1963 
1964 	if (!blk_mq_get_driver_tag(rq)) {
1965 		/*
1966 		 * The initial allocation attempt failed, so we need to
1967 		 * rerun the hardware queue when a tag is freed. The
1968 		 * waitqueue takes care of that. If the queue is run
1969 		 * before we add this entry back on the dispatch list,
1970 		 * we'll re-run it below.
1971 		 */
1972 		if (!blk_mq_mark_tag_wait(hctx, rq)) {
1973 			/*
1974 			 * All budgets not got from this function will be put
1975 			 * together during handling partial dispatch
1976 			 */
1977 			if (need_budget)
1978 				blk_mq_put_dispatch_budget(rq->q, budget_token);
1979 			return PREP_DISPATCH_NO_TAG;
1980 		}
1981 	}
1982 
1983 	return PREP_DISPATCH_OK;
1984 }
1985 
1986 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
1987 static void blk_mq_release_budgets(struct request_queue *q,
1988 		struct list_head *list)
1989 {
1990 	struct request *rq;
1991 
1992 	list_for_each_entry(rq, list, queuelist) {
1993 		int budget_token = blk_mq_get_rq_budget_token(rq);
1994 
1995 		if (budget_token >= 0)
1996 			blk_mq_put_dispatch_budget(q, budget_token);
1997 	}
1998 }
1999 
2000 /*
2001  * blk_mq_commit_rqs will notify driver using bd->last that there is no
2002  * more requests. (See comment in struct blk_mq_ops for commit_rqs for
2003  * details)
2004  * Attention, we should explicitly call this in unusual cases:
2005  *  1) did not queue everything initially scheduled to queue
2006  *  2) the last attempt to queue a request failed
2007  */
2008 static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int queued,
2009 			      bool from_schedule)
2010 {
2011 	if (hctx->queue->mq_ops->commit_rqs && queued) {
2012 		trace_block_unplug(hctx->queue, queued, !from_schedule);
2013 		hctx->queue->mq_ops->commit_rqs(hctx);
2014 	}
2015 }
2016 
2017 /*
2018  * Returns true if we did some work AND can potentially do more.
2019  */
2020 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
2021 			     unsigned int nr_budgets)
2022 {
2023 	enum prep_dispatch prep;
2024 	struct request_queue *q = hctx->queue;
2025 	struct request *rq;
2026 	int queued;
2027 	blk_status_t ret = BLK_STS_OK;
2028 	LIST_HEAD(zone_list);
2029 	bool needs_resource = false;
2030 
2031 	if (list_empty(list))
2032 		return false;
2033 
2034 	/*
2035 	 * Now process all the entries, sending them to the driver.
2036 	 */
2037 	queued = 0;
2038 	do {
2039 		struct blk_mq_queue_data bd;
2040 
2041 		rq = list_first_entry(list, struct request, queuelist);
2042 
2043 		WARN_ON_ONCE(hctx != rq->mq_hctx);
2044 		prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
2045 		if (prep != PREP_DISPATCH_OK)
2046 			break;
2047 
2048 		list_del_init(&rq->queuelist);
2049 
2050 		bd.rq = rq;
2051 		bd.last = list_empty(list);
2052 
2053 		/*
2054 		 * once the request is queued to lld, no need to cover the
2055 		 * budget any more
2056 		 */
2057 		if (nr_budgets)
2058 			nr_budgets--;
2059 		ret = q->mq_ops->queue_rq(hctx, &bd);
2060 		switch (ret) {
2061 		case BLK_STS_OK:
2062 			queued++;
2063 			break;
2064 		case BLK_STS_RESOURCE:
2065 			needs_resource = true;
2066 			fallthrough;
2067 		case BLK_STS_DEV_RESOURCE:
2068 			blk_mq_handle_dev_resource(rq, list);
2069 			goto out;
2070 		case BLK_STS_ZONE_RESOURCE:
2071 			/*
2072 			 * Move the request to zone_list and keep going through
2073 			 * the dispatch list to find more requests the drive can
2074 			 * accept.
2075 			 */
2076 			blk_mq_handle_zone_resource(rq, &zone_list);
2077 			needs_resource = true;
2078 			break;
2079 		default:
2080 			blk_mq_end_request(rq, ret);
2081 		}
2082 	} while (!list_empty(list));
2083 out:
2084 	if (!list_empty(&zone_list))
2085 		list_splice_tail_init(&zone_list, list);
2086 
2087 	/* If we didn't flush the entire list, we could have told the driver
2088 	 * there was more coming, but that turned out to be a lie.
2089 	 */
2090 	if (!list_empty(list) || ret != BLK_STS_OK)
2091 		blk_mq_commit_rqs(hctx, queued, false);
2092 
2093 	/*
2094 	 * Any items that need requeuing? Stuff them into hctx->dispatch,
2095 	 * that is where we will continue on next queue run.
2096 	 */
2097 	if (!list_empty(list)) {
2098 		bool needs_restart;
2099 		/* For non-shared tags, the RESTART check will suffice */
2100 		bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
2101 			((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) ||
2102 			blk_mq_is_shared_tags(hctx->flags));
2103 
2104 		if (nr_budgets)
2105 			blk_mq_release_budgets(q, list);
2106 
2107 		spin_lock(&hctx->lock);
2108 		list_splice_tail_init(list, &hctx->dispatch);
2109 		spin_unlock(&hctx->lock);
2110 
2111 		/*
2112 		 * Order adding requests to hctx->dispatch and checking
2113 		 * SCHED_RESTART flag. The pair of this smp_mb() is the one
2114 		 * in blk_mq_sched_restart(). Avoid restart code path to
2115 		 * miss the new added requests to hctx->dispatch, meantime
2116 		 * SCHED_RESTART is observed here.
2117 		 */
2118 		smp_mb();
2119 
2120 		/*
2121 		 * If SCHED_RESTART was set by the caller of this function and
2122 		 * it is no longer set that means that it was cleared by another
2123 		 * thread and hence that a queue rerun is needed.
2124 		 *
2125 		 * If 'no_tag' is set, that means that we failed getting
2126 		 * a driver tag with an I/O scheduler attached. If our dispatch
2127 		 * waitqueue is no longer active, ensure that we run the queue
2128 		 * AFTER adding our entries back to the list.
2129 		 *
2130 		 * If no I/O scheduler has been configured it is possible that
2131 		 * the hardware queue got stopped and restarted before requests
2132 		 * were pushed back onto the dispatch list. Rerun the queue to
2133 		 * avoid starvation. Notes:
2134 		 * - blk_mq_run_hw_queue() checks whether or not a queue has
2135 		 *   been stopped before rerunning a queue.
2136 		 * - Some but not all block drivers stop a queue before
2137 		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
2138 		 *   and dm-rq.
2139 		 *
2140 		 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
2141 		 * bit is set, run queue after a delay to avoid IO stalls
2142 		 * that could otherwise occur if the queue is idle.  We'll do
2143 		 * similar if we couldn't get budget or couldn't lock a zone
2144 		 * and SCHED_RESTART is set.
2145 		 */
2146 		needs_restart = blk_mq_sched_needs_restart(hctx);
2147 		if (prep == PREP_DISPATCH_NO_BUDGET)
2148 			needs_resource = true;
2149 		if (!needs_restart ||
2150 		    (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
2151 			blk_mq_run_hw_queue(hctx, true);
2152 		else if (needs_resource)
2153 			blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
2154 
2155 		blk_mq_update_dispatch_busy(hctx, true);
2156 		return false;
2157 	}
2158 
2159 	blk_mq_update_dispatch_busy(hctx, false);
2160 	return true;
2161 }
2162 
2163 /**
2164  * __blk_mq_run_hw_queue - Run a hardware queue.
2165  * @hctx: Pointer to the hardware queue to run.
2166  *
2167  * Send pending requests to the hardware.
2168  */
2169 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
2170 {
2171 	/*
2172 	 * We can't run the queue inline with ints disabled. Ensure that
2173 	 * we catch bad users of this early.
2174 	 */
2175 	WARN_ON_ONCE(in_interrupt());
2176 
2177 	blk_mq_run_dispatch_ops(hctx->queue,
2178 			blk_mq_sched_dispatch_requests(hctx));
2179 }
2180 
2181 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
2182 {
2183 	int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
2184 
2185 	if (cpu >= nr_cpu_ids)
2186 		cpu = cpumask_first(hctx->cpumask);
2187 	return cpu;
2188 }
2189 
2190 /*
2191  * It'd be great if the workqueue API had a way to pass
2192  * in a mask and had some smarts for more clever placement.
2193  * For now we just round-robin here, switching for every
2194  * BLK_MQ_CPU_WORK_BATCH queued items.
2195  */
2196 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
2197 {
2198 	bool tried = false;
2199 	int next_cpu = hctx->next_cpu;
2200 
2201 	if (hctx->queue->nr_hw_queues == 1)
2202 		return WORK_CPU_UNBOUND;
2203 
2204 	if (--hctx->next_cpu_batch <= 0) {
2205 select_cpu:
2206 		next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
2207 				cpu_online_mask);
2208 		if (next_cpu >= nr_cpu_ids)
2209 			next_cpu = blk_mq_first_mapped_cpu(hctx);
2210 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2211 	}
2212 
2213 	/*
2214 	 * Do unbound schedule if we can't find a online CPU for this hctx,
2215 	 * and it should only happen in the path of handling CPU DEAD.
2216 	 */
2217 	if (!cpu_online(next_cpu)) {
2218 		if (!tried) {
2219 			tried = true;
2220 			goto select_cpu;
2221 		}
2222 
2223 		/*
2224 		 * Make sure to re-select CPU next time once after CPUs
2225 		 * in hctx->cpumask become online again.
2226 		 */
2227 		hctx->next_cpu = next_cpu;
2228 		hctx->next_cpu_batch = 1;
2229 		return WORK_CPU_UNBOUND;
2230 	}
2231 
2232 	hctx->next_cpu = next_cpu;
2233 	return next_cpu;
2234 }
2235 
2236 /**
2237  * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue.
2238  * @hctx: Pointer to the hardware queue to run.
2239  * @async: If we want to run the queue asynchronously.
2240  * @msecs: Milliseconds of delay to wait before running the queue.
2241  *
2242  * If !@async, try to run the queue now. Else, run the queue asynchronously and
2243  * with a delay of @msecs.
2244  */
2245 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
2246 					unsigned long msecs)
2247 {
2248 	if (unlikely(blk_mq_hctx_stopped(hctx)))
2249 		return;
2250 
2251 	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
2252 		if (cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask)) {
2253 			__blk_mq_run_hw_queue(hctx);
2254 			return;
2255 		}
2256 	}
2257 
2258 	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
2259 				    msecs_to_jiffies(msecs));
2260 }
2261 
2262 /**
2263  * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
2264  * @hctx: Pointer to the hardware queue to run.
2265  * @msecs: Milliseconds of delay to wait before running the queue.
2266  *
2267  * Run a hardware queue asynchronously with a delay of @msecs.
2268  */
2269 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
2270 {
2271 	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
2272 }
2273 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
2274 
2275 /**
2276  * blk_mq_run_hw_queue - Start to run a hardware queue.
2277  * @hctx: Pointer to the hardware queue to run.
2278  * @async: If we want to run the queue asynchronously.
2279  *
2280  * Check if the request queue is not in a quiesced state and if there are
2281  * pending requests to be sent. If this is true, run the queue to send requests
2282  * to hardware.
2283  */
2284 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2285 {
2286 	bool need_run;
2287 
2288 	/*
2289 	 * When queue is quiesced, we may be switching io scheduler, or
2290 	 * updating nr_hw_queues, or other things, and we can't run queue
2291 	 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
2292 	 *
2293 	 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
2294 	 * quiesced.
2295 	 */
2296 	__blk_mq_run_dispatch_ops(hctx->queue, false,
2297 		need_run = !blk_queue_quiesced(hctx->queue) &&
2298 		blk_mq_hctx_has_pending(hctx));
2299 
2300 	if (need_run)
2301 		__blk_mq_delay_run_hw_queue(hctx, async, 0);
2302 }
2303 EXPORT_SYMBOL(blk_mq_run_hw_queue);
2304 
2305 /*
2306  * Return prefered queue to dispatch from (if any) for non-mq aware IO
2307  * scheduler.
2308  */
2309 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
2310 {
2311 	struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
2312 	/*
2313 	 * If the IO scheduler does not respect hardware queues when
2314 	 * dispatching, we just don't bother with multiple HW queues and
2315 	 * dispatch from hctx for the current CPU since running multiple queues
2316 	 * just causes lock contention inside the scheduler and pointless cache
2317 	 * bouncing.
2318 	 */
2319 	struct blk_mq_hw_ctx *hctx = ctx->hctxs[HCTX_TYPE_DEFAULT];
2320 
2321 	if (!blk_mq_hctx_stopped(hctx))
2322 		return hctx;
2323 	return NULL;
2324 }
2325 
2326 /**
2327  * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
2328  * @q: Pointer to the request queue to run.
2329  * @async: If we want to run the queue asynchronously.
2330  */
2331 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
2332 {
2333 	struct blk_mq_hw_ctx *hctx, *sq_hctx;
2334 	unsigned long i;
2335 
2336 	sq_hctx = NULL;
2337 	if (blk_queue_sq_sched(q))
2338 		sq_hctx = blk_mq_get_sq_hctx(q);
2339 	queue_for_each_hw_ctx(q, hctx, i) {
2340 		if (blk_mq_hctx_stopped(hctx))
2341 			continue;
2342 		/*
2343 		 * Dispatch from this hctx either if there's no hctx preferred
2344 		 * by IO scheduler or if it has requests that bypass the
2345 		 * scheduler.
2346 		 */
2347 		if (!sq_hctx || sq_hctx == hctx ||
2348 		    !list_empty_careful(&hctx->dispatch))
2349 			blk_mq_run_hw_queue(hctx, async);
2350 	}
2351 }
2352 EXPORT_SYMBOL(blk_mq_run_hw_queues);
2353 
2354 /**
2355  * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
2356  * @q: Pointer to the request queue to run.
2357  * @msecs: Milliseconds of delay to wait before running the queues.
2358  */
2359 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
2360 {
2361 	struct blk_mq_hw_ctx *hctx, *sq_hctx;
2362 	unsigned long i;
2363 
2364 	sq_hctx = NULL;
2365 	if (blk_queue_sq_sched(q))
2366 		sq_hctx = blk_mq_get_sq_hctx(q);
2367 	queue_for_each_hw_ctx(q, hctx, i) {
2368 		if (blk_mq_hctx_stopped(hctx))
2369 			continue;
2370 		/*
2371 		 * If there is already a run_work pending, leave the
2372 		 * pending delay untouched. Otherwise, a hctx can stall
2373 		 * if another hctx is re-delaying the other's work
2374 		 * before the work executes.
2375 		 */
2376 		if (delayed_work_pending(&hctx->run_work))
2377 			continue;
2378 		/*
2379 		 * Dispatch from this hctx either if there's no hctx preferred
2380 		 * by IO scheduler or if it has requests that bypass the
2381 		 * scheduler.
2382 		 */
2383 		if (!sq_hctx || sq_hctx == hctx ||
2384 		    !list_empty_careful(&hctx->dispatch))
2385 			blk_mq_delay_run_hw_queue(hctx, msecs);
2386 	}
2387 }
2388 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
2389 
2390 /*
2391  * This function is often used for pausing .queue_rq() by driver when
2392  * there isn't enough resource or some conditions aren't satisfied, and
2393  * BLK_STS_RESOURCE is usually returned.
2394  *
2395  * We do not guarantee that dispatch can be drained or blocked
2396  * after blk_mq_stop_hw_queue() returns. Please use
2397  * blk_mq_quiesce_queue() for that requirement.
2398  */
2399 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
2400 {
2401 	cancel_delayed_work(&hctx->run_work);
2402 
2403 	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2404 }
2405 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2406 
2407 /*
2408  * This function is often used for pausing .queue_rq() by driver when
2409  * there isn't enough resource or some conditions aren't satisfied, and
2410  * BLK_STS_RESOURCE is usually returned.
2411  *
2412  * We do not guarantee that dispatch can be drained or blocked
2413  * after blk_mq_stop_hw_queues() returns. Please use
2414  * blk_mq_quiesce_queue() for that requirement.
2415  */
2416 void blk_mq_stop_hw_queues(struct request_queue *q)
2417 {
2418 	struct blk_mq_hw_ctx *hctx;
2419 	unsigned long i;
2420 
2421 	queue_for_each_hw_ctx(q, hctx, i)
2422 		blk_mq_stop_hw_queue(hctx);
2423 }
2424 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
2425 
2426 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
2427 {
2428 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2429 
2430 	blk_mq_run_hw_queue(hctx, false);
2431 }
2432 EXPORT_SYMBOL(blk_mq_start_hw_queue);
2433 
2434 void blk_mq_start_hw_queues(struct request_queue *q)
2435 {
2436 	struct blk_mq_hw_ctx *hctx;
2437 	unsigned long i;
2438 
2439 	queue_for_each_hw_ctx(q, hctx, i)
2440 		blk_mq_start_hw_queue(hctx);
2441 }
2442 EXPORT_SYMBOL(blk_mq_start_hw_queues);
2443 
2444 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2445 {
2446 	if (!blk_mq_hctx_stopped(hctx))
2447 		return;
2448 
2449 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2450 	blk_mq_run_hw_queue(hctx, async);
2451 }
2452 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
2453 
2454 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
2455 {
2456 	struct blk_mq_hw_ctx *hctx;
2457 	unsigned long i;
2458 
2459 	queue_for_each_hw_ctx(q, hctx, i)
2460 		blk_mq_start_stopped_hw_queue(hctx, async);
2461 }
2462 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
2463 
2464 static void blk_mq_run_work_fn(struct work_struct *work)
2465 {
2466 	struct blk_mq_hw_ctx *hctx;
2467 
2468 	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
2469 
2470 	/*
2471 	 * If we are stopped, don't run the queue.
2472 	 */
2473 	if (blk_mq_hctx_stopped(hctx))
2474 		return;
2475 
2476 	__blk_mq_run_hw_queue(hctx);
2477 }
2478 
2479 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
2480 					    struct request *rq,
2481 					    bool at_head)
2482 {
2483 	struct blk_mq_ctx *ctx = rq->mq_ctx;
2484 	enum hctx_type type = hctx->type;
2485 
2486 	lockdep_assert_held(&ctx->lock);
2487 
2488 	trace_block_rq_insert(rq);
2489 
2490 	if (at_head)
2491 		list_add(&rq->queuelist, &ctx->rq_lists[type]);
2492 	else
2493 		list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
2494 }
2495 
2496 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
2497 			     bool at_head)
2498 {
2499 	struct blk_mq_ctx *ctx = rq->mq_ctx;
2500 
2501 	lockdep_assert_held(&ctx->lock);
2502 
2503 	__blk_mq_insert_req_list(hctx, rq, at_head);
2504 	blk_mq_hctx_mark_pending(hctx, ctx);
2505 }
2506 
2507 /**
2508  * blk_mq_request_bypass_insert - Insert a request at dispatch list.
2509  * @rq: Pointer to request to be inserted.
2510  * @at_head: true if the request should be inserted at the head of the list.
2511  * @run_queue: If we should run the hardware queue after inserting the request.
2512  *
2513  * Should only be used carefully, when the caller knows we want to
2514  * bypass a potential IO scheduler on the target device.
2515  */
2516 void blk_mq_request_bypass_insert(struct request *rq, bool at_head,
2517 				  bool run_queue)
2518 {
2519 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2520 
2521 	spin_lock(&hctx->lock);
2522 	if (at_head)
2523 		list_add(&rq->queuelist, &hctx->dispatch);
2524 	else
2525 		list_add_tail(&rq->queuelist, &hctx->dispatch);
2526 	spin_unlock(&hctx->lock);
2527 
2528 	if (run_queue)
2529 		blk_mq_run_hw_queue(hctx, false);
2530 }
2531 
2532 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
2533 			    struct list_head *list)
2534 
2535 {
2536 	struct request *rq;
2537 	enum hctx_type type = hctx->type;
2538 
2539 	/*
2540 	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
2541 	 * offline now
2542 	 */
2543 	list_for_each_entry(rq, list, queuelist) {
2544 		BUG_ON(rq->mq_ctx != ctx);
2545 		trace_block_rq_insert(rq);
2546 	}
2547 
2548 	spin_lock(&ctx->lock);
2549 	list_splice_tail_init(list, &ctx->rq_lists[type]);
2550 	blk_mq_hctx_mark_pending(hctx, ctx);
2551 	spin_unlock(&ctx->lock);
2552 }
2553 
2554 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
2555 		unsigned int nr_segs)
2556 {
2557 	int err;
2558 
2559 	if (bio->bi_opf & REQ_RAHEAD)
2560 		rq->cmd_flags |= REQ_FAILFAST_MASK;
2561 
2562 	rq->__sector = bio->bi_iter.bi_sector;
2563 	blk_rq_bio_prep(rq, bio, nr_segs);
2564 
2565 	/* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
2566 	err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
2567 	WARN_ON_ONCE(err);
2568 
2569 	blk_account_io_start(rq);
2570 }
2571 
2572 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
2573 					    struct request *rq, bool last)
2574 {
2575 	struct request_queue *q = rq->q;
2576 	struct blk_mq_queue_data bd = {
2577 		.rq = rq,
2578 		.last = last,
2579 	};
2580 	blk_status_t ret;
2581 
2582 	/*
2583 	 * For OK queue, we are done. For error, caller may kill it.
2584 	 * Any other error (busy), just add it to our list as we
2585 	 * previously would have done.
2586 	 */
2587 	ret = q->mq_ops->queue_rq(hctx, &bd);
2588 	switch (ret) {
2589 	case BLK_STS_OK:
2590 		blk_mq_update_dispatch_busy(hctx, false);
2591 		break;
2592 	case BLK_STS_RESOURCE:
2593 	case BLK_STS_DEV_RESOURCE:
2594 		blk_mq_update_dispatch_busy(hctx, true);
2595 		__blk_mq_requeue_request(rq);
2596 		break;
2597 	default:
2598 		blk_mq_update_dispatch_busy(hctx, false);
2599 		break;
2600 	}
2601 
2602 	return ret;
2603 }
2604 
2605 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2606 						struct request *rq,
2607 						bool bypass_insert, bool last)
2608 {
2609 	struct request_queue *q = rq->q;
2610 	bool run_queue = true;
2611 	int budget_token;
2612 
2613 	/*
2614 	 * RCU or SRCU read lock is needed before checking quiesced flag.
2615 	 *
2616 	 * When queue is stopped or quiesced, ignore 'bypass_insert' from
2617 	 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
2618 	 * and avoid driver to try to dispatch again.
2619 	 */
2620 	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
2621 		run_queue = false;
2622 		bypass_insert = false;
2623 		goto insert;
2624 	}
2625 
2626 	if ((rq->rq_flags & RQF_ELV) && !bypass_insert)
2627 		goto insert;
2628 
2629 	budget_token = blk_mq_get_dispatch_budget(q);
2630 	if (budget_token < 0)
2631 		goto insert;
2632 
2633 	blk_mq_set_rq_budget_token(rq, budget_token);
2634 
2635 	if (!blk_mq_get_driver_tag(rq)) {
2636 		blk_mq_put_dispatch_budget(q, budget_token);
2637 		goto insert;
2638 	}
2639 
2640 	return __blk_mq_issue_directly(hctx, rq, last);
2641 insert:
2642 	if (bypass_insert)
2643 		return BLK_STS_RESOURCE;
2644 
2645 	blk_mq_sched_insert_request(rq, false, run_queue, false);
2646 
2647 	return BLK_STS_OK;
2648 }
2649 
2650 /**
2651  * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2652  * @hctx: Pointer of the associated hardware queue.
2653  * @rq: Pointer to request to be sent.
2654  *
2655  * If the device has enough resources to accept a new request now, send the
2656  * request directly to device driver. Else, insert at hctx->dispatch queue, so
2657  * we can try send it another time in the future. Requests inserted at this
2658  * queue have higher priority.
2659  */
2660 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2661 		struct request *rq)
2662 {
2663 	blk_status_t ret =
2664 		__blk_mq_try_issue_directly(hctx, rq, false, true);
2665 
2666 	if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
2667 		blk_mq_request_bypass_insert(rq, false, true);
2668 	else if (ret != BLK_STS_OK)
2669 		blk_mq_end_request(rq, ret);
2670 }
2671 
2672 static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2673 {
2674 	return __blk_mq_try_issue_directly(rq->mq_hctx, rq, true, last);
2675 }
2676 
2677 static void blk_mq_plug_issue_direct(struct blk_plug *plug)
2678 {
2679 	struct blk_mq_hw_ctx *hctx = NULL;
2680 	struct request *rq;
2681 	int queued = 0;
2682 	blk_status_t ret = BLK_STS_OK;
2683 
2684 	while ((rq = rq_list_pop(&plug->mq_list))) {
2685 		bool last = rq_list_empty(plug->mq_list);
2686 
2687 		if (hctx != rq->mq_hctx) {
2688 			if (hctx) {
2689 				blk_mq_commit_rqs(hctx, queued, false);
2690 				queued = 0;
2691 			}
2692 			hctx = rq->mq_hctx;
2693 		}
2694 
2695 		ret = blk_mq_request_issue_directly(rq, last);
2696 		switch (ret) {
2697 		case BLK_STS_OK:
2698 			queued++;
2699 			break;
2700 		case BLK_STS_RESOURCE:
2701 		case BLK_STS_DEV_RESOURCE:
2702 			blk_mq_request_bypass_insert(rq, false, true);
2703 			goto out;
2704 		default:
2705 			blk_mq_end_request(rq, ret);
2706 			break;
2707 		}
2708 	}
2709 
2710 out:
2711 	if (ret != BLK_STS_OK)
2712 		blk_mq_commit_rqs(hctx, queued, false);
2713 }
2714 
2715 static void __blk_mq_flush_plug_list(struct request_queue *q,
2716 				     struct blk_plug *plug)
2717 {
2718 	if (blk_queue_quiesced(q))
2719 		return;
2720 	q->mq_ops->queue_rqs(&plug->mq_list);
2721 }
2722 
2723 static void blk_mq_dispatch_plug_list(struct blk_plug *plug, bool from_sched)
2724 {
2725 	struct blk_mq_hw_ctx *this_hctx = NULL;
2726 	struct blk_mq_ctx *this_ctx = NULL;
2727 	struct request *requeue_list = NULL;
2728 	struct request **requeue_lastp = &requeue_list;
2729 	unsigned int depth = 0;
2730 	LIST_HEAD(list);
2731 
2732 	do {
2733 		struct request *rq = rq_list_pop(&plug->mq_list);
2734 
2735 		if (!this_hctx) {
2736 			this_hctx = rq->mq_hctx;
2737 			this_ctx = rq->mq_ctx;
2738 		} else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx) {
2739 			rq_list_add_tail(&requeue_lastp, rq);
2740 			continue;
2741 		}
2742 		list_add(&rq->queuelist, &list);
2743 		depth++;
2744 	} while (!rq_list_empty(plug->mq_list));
2745 
2746 	plug->mq_list = requeue_list;
2747 	trace_block_unplug(this_hctx->queue, depth, !from_sched);
2748 	blk_mq_sched_insert_requests(this_hctx, this_ctx, &list, from_sched);
2749 }
2750 
2751 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2752 {
2753 	struct request *rq;
2754 
2755 	if (rq_list_empty(plug->mq_list))
2756 		return;
2757 	plug->rq_count = 0;
2758 
2759 	if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) {
2760 		struct request_queue *q;
2761 
2762 		rq = rq_list_peek(&plug->mq_list);
2763 		q = rq->q;
2764 
2765 		/*
2766 		 * Peek first request and see if we have a ->queue_rqs() hook.
2767 		 * If we do, we can dispatch the whole plug list in one go. We
2768 		 * already know at this point that all requests belong to the
2769 		 * same queue, caller must ensure that's the case.
2770 		 *
2771 		 * Since we pass off the full list to the driver at this point,
2772 		 * we do not increment the active request count for the queue.
2773 		 * Bypass shared tags for now because of that.
2774 		 */
2775 		if (q->mq_ops->queue_rqs &&
2776 		    !(rq->mq_hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
2777 			blk_mq_run_dispatch_ops(q,
2778 				__blk_mq_flush_plug_list(q, plug));
2779 			if (rq_list_empty(plug->mq_list))
2780 				return;
2781 		}
2782 
2783 		blk_mq_run_dispatch_ops(q,
2784 				blk_mq_plug_issue_direct(plug));
2785 		if (rq_list_empty(plug->mq_list))
2786 			return;
2787 	}
2788 
2789 	do {
2790 		blk_mq_dispatch_plug_list(plug, from_schedule);
2791 	} while (!rq_list_empty(plug->mq_list));
2792 }
2793 
2794 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2795 		struct list_head *list)
2796 {
2797 	int queued = 0;
2798 	blk_status_t ret = BLK_STS_OK;
2799 
2800 	while (!list_empty(list)) {
2801 		struct request *rq = list_first_entry(list, struct request,
2802 				queuelist);
2803 
2804 		list_del_init(&rq->queuelist);
2805 		ret = blk_mq_request_issue_directly(rq, list_empty(list));
2806 		switch (ret) {
2807 		case BLK_STS_OK:
2808 			queued++;
2809 			break;
2810 		case BLK_STS_RESOURCE:
2811 		case BLK_STS_DEV_RESOURCE:
2812 			blk_mq_request_bypass_insert(rq, false,
2813 						     list_empty(list));
2814 			goto out;
2815 		default:
2816 			blk_mq_end_request(rq, ret);
2817 			break;
2818 		}
2819 	}
2820 
2821 out:
2822 	if (ret != BLK_STS_OK)
2823 		blk_mq_commit_rqs(hctx, queued, false);
2824 }
2825 
2826 static bool blk_mq_attempt_bio_merge(struct request_queue *q,
2827 				     struct bio *bio, unsigned int nr_segs)
2828 {
2829 	if (!blk_queue_nomerges(q) && bio_mergeable(bio)) {
2830 		if (blk_attempt_plug_merge(q, bio, nr_segs))
2831 			return true;
2832 		if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2833 			return true;
2834 	}
2835 	return false;
2836 }
2837 
2838 static struct request *blk_mq_get_new_requests(struct request_queue *q,
2839 					       struct blk_plug *plug,
2840 					       struct bio *bio,
2841 					       unsigned int nsegs)
2842 {
2843 	struct blk_mq_alloc_data data = {
2844 		.q		= q,
2845 		.nr_tags	= 1,
2846 		.cmd_flags	= bio->bi_opf,
2847 	};
2848 	struct request *rq;
2849 
2850 	if (unlikely(bio_queue_enter(bio)))
2851 		return NULL;
2852 
2853 	if (blk_mq_attempt_bio_merge(q, bio, nsegs))
2854 		goto queue_exit;
2855 
2856 	rq_qos_throttle(q, bio);
2857 
2858 	if (plug) {
2859 		data.nr_tags = plug->nr_ios;
2860 		plug->nr_ios = 1;
2861 		data.cached_rq = &plug->cached_rq;
2862 	}
2863 
2864 	rq = __blk_mq_alloc_requests(&data);
2865 	if (rq)
2866 		return rq;
2867 	rq_qos_cleanup(q, bio);
2868 	if (bio->bi_opf & REQ_NOWAIT)
2869 		bio_wouldblock_error(bio);
2870 queue_exit:
2871 	blk_queue_exit(q);
2872 	return NULL;
2873 }
2874 
2875 static inline struct request *blk_mq_get_cached_request(struct request_queue *q,
2876 		struct blk_plug *plug, struct bio **bio, unsigned int nsegs)
2877 {
2878 	struct request *rq;
2879 	enum hctx_type type, hctx_type;
2880 
2881 	if (!plug)
2882 		return NULL;
2883 
2884 	if (blk_mq_attempt_bio_merge(q, *bio, nsegs)) {
2885 		*bio = NULL;
2886 		return NULL;
2887 	}
2888 
2889 	rq = rq_list_peek(&plug->cached_rq);
2890 	if (!rq || rq->q != q)
2891 		return NULL;
2892 
2893 	type = blk_mq_get_hctx_type((*bio)->bi_opf);
2894 	hctx_type = rq->mq_hctx->type;
2895 	if (type != hctx_type &&
2896 	    !(type == HCTX_TYPE_READ && hctx_type == HCTX_TYPE_DEFAULT))
2897 		return NULL;
2898 	if (op_is_flush(rq->cmd_flags) != op_is_flush((*bio)->bi_opf))
2899 		return NULL;
2900 
2901 	/*
2902 	 * If any qos ->throttle() end up blocking, we will have flushed the
2903 	 * plug and hence killed the cached_rq list as well. Pop this entry
2904 	 * before we throttle.
2905 	 */
2906 	plug->cached_rq = rq_list_next(rq);
2907 	rq_qos_throttle(q, *bio);
2908 
2909 	rq->cmd_flags = (*bio)->bi_opf;
2910 	INIT_LIST_HEAD(&rq->queuelist);
2911 	return rq;
2912 }
2913 
2914 static void bio_set_ioprio(struct bio *bio)
2915 {
2916 	/* Nobody set ioprio so far? Initialize it based on task's nice value */
2917 	if (IOPRIO_PRIO_CLASS(bio->bi_ioprio) == IOPRIO_CLASS_NONE)
2918 		bio->bi_ioprio = get_current_ioprio();
2919 	blkcg_set_ioprio(bio);
2920 }
2921 
2922 /**
2923  * blk_mq_submit_bio - Create and send a request to block device.
2924  * @bio: Bio pointer.
2925  *
2926  * Builds up a request structure from @q and @bio and send to the device. The
2927  * request may not be queued directly to hardware if:
2928  * * This request can be merged with another one
2929  * * We want to place request at plug queue for possible future merging
2930  * * There is an IO scheduler active at this queue
2931  *
2932  * It will not queue the request if there is an error with the bio, or at the
2933  * request creation.
2934  */
2935 void blk_mq_submit_bio(struct bio *bio)
2936 {
2937 	struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2938 	struct blk_plug *plug = blk_mq_plug(bio);
2939 	const int is_sync = op_is_sync(bio->bi_opf);
2940 	struct request *rq;
2941 	unsigned int nr_segs = 1;
2942 	blk_status_t ret;
2943 
2944 	bio = blk_queue_bounce(bio, q);
2945 	if (bio_may_exceed_limits(bio, &q->limits)) {
2946 		bio = __bio_split_to_limits(bio, &q->limits, &nr_segs);
2947 		if (!bio)
2948 			return;
2949 	}
2950 
2951 	if (!bio_integrity_prep(bio))
2952 		return;
2953 
2954 	bio_set_ioprio(bio);
2955 
2956 	rq = blk_mq_get_cached_request(q, plug, &bio, nr_segs);
2957 	if (!rq) {
2958 		if (!bio)
2959 			return;
2960 		rq = blk_mq_get_new_requests(q, plug, bio, nr_segs);
2961 		if (unlikely(!rq))
2962 			return;
2963 	}
2964 
2965 	trace_block_getrq(bio);
2966 
2967 	rq_qos_track(q, rq, bio);
2968 
2969 	blk_mq_bio_to_request(rq, bio, nr_segs);
2970 
2971 	ret = blk_crypto_init_request(rq);
2972 	if (ret != BLK_STS_OK) {
2973 		bio->bi_status = ret;
2974 		bio_endio(bio);
2975 		blk_mq_free_request(rq);
2976 		return;
2977 	}
2978 
2979 	if (op_is_flush(bio->bi_opf)) {
2980 		blk_insert_flush(rq);
2981 		return;
2982 	}
2983 
2984 	if (plug)
2985 		blk_add_rq_to_plug(plug, rq);
2986 	else if ((rq->rq_flags & RQF_ELV) ||
2987 		 (rq->mq_hctx->dispatch_busy &&
2988 		  (q->nr_hw_queues == 1 || !is_sync)))
2989 		blk_mq_sched_insert_request(rq, false, true, true);
2990 	else
2991 		blk_mq_run_dispatch_ops(rq->q,
2992 				blk_mq_try_issue_directly(rq->mq_hctx, rq));
2993 }
2994 
2995 #ifdef CONFIG_BLK_MQ_STACKING
2996 /**
2997  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2998  * @rq: the request being queued
2999  */
3000 blk_status_t blk_insert_cloned_request(struct request *rq)
3001 {
3002 	struct request_queue *q = rq->q;
3003 	unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq));
3004 	unsigned int max_segments = blk_rq_get_max_segments(rq);
3005 	blk_status_t ret;
3006 
3007 	if (blk_rq_sectors(rq) > max_sectors) {
3008 		/*
3009 		 * SCSI device does not have a good way to return if
3010 		 * Write Same/Zero is actually supported. If a device rejects
3011 		 * a non-read/write command (discard, write same,etc.) the
3012 		 * low-level device driver will set the relevant queue limit to
3013 		 * 0 to prevent blk-lib from issuing more of the offending
3014 		 * operations. Commands queued prior to the queue limit being
3015 		 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
3016 		 * errors being propagated to upper layers.
3017 		 */
3018 		if (max_sectors == 0)
3019 			return BLK_STS_NOTSUPP;
3020 
3021 		printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
3022 			__func__, blk_rq_sectors(rq), max_sectors);
3023 		return BLK_STS_IOERR;
3024 	}
3025 
3026 	/*
3027 	 * The queue settings related to segment counting may differ from the
3028 	 * original queue.
3029 	 */
3030 	rq->nr_phys_segments = blk_recalc_rq_segments(rq);
3031 	if (rq->nr_phys_segments > max_segments) {
3032 		printk(KERN_ERR "%s: over max segments limit. (%u > %u)\n",
3033 			__func__, rq->nr_phys_segments, max_segments);
3034 		return BLK_STS_IOERR;
3035 	}
3036 
3037 	if (q->disk && should_fail_request(q->disk->part0, blk_rq_bytes(rq)))
3038 		return BLK_STS_IOERR;
3039 
3040 	if (blk_crypto_insert_cloned_request(rq))
3041 		return BLK_STS_IOERR;
3042 
3043 	blk_account_io_start(rq);
3044 
3045 	/*
3046 	 * Since we have a scheduler attached on the top device,
3047 	 * bypass a potential scheduler on the bottom device for
3048 	 * insert.
3049 	 */
3050 	blk_mq_run_dispatch_ops(q,
3051 			ret = blk_mq_request_issue_directly(rq, true));
3052 	if (ret)
3053 		blk_account_io_done(rq, ktime_get_ns());
3054 	return ret;
3055 }
3056 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
3057 
3058 /**
3059  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3060  * @rq: the clone request to be cleaned up
3061  *
3062  * Description:
3063  *     Free all bios in @rq for a cloned request.
3064  */
3065 void blk_rq_unprep_clone(struct request *rq)
3066 {
3067 	struct bio *bio;
3068 
3069 	while ((bio = rq->bio) != NULL) {
3070 		rq->bio = bio->bi_next;
3071 
3072 		bio_put(bio);
3073 	}
3074 }
3075 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3076 
3077 /**
3078  * blk_rq_prep_clone - Helper function to setup clone request
3079  * @rq: the request to be setup
3080  * @rq_src: original request to be cloned
3081  * @bs: bio_set that bios for clone are allocated from
3082  * @gfp_mask: memory allocation mask for bio
3083  * @bio_ctr: setup function to be called for each clone bio.
3084  *           Returns %0 for success, non %0 for failure.
3085  * @data: private data to be passed to @bio_ctr
3086  *
3087  * Description:
3088  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3089  *     Also, pages which the original bios are pointing to are not copied
3090  *     and the cloned bios just point same pages.
3091  *     So cloned bios must be completed before original bios, which means
3092  *     the caller must complete @rq before @rq_src.
3093  */
3094 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3095 		      struct bio_set *bs, gfp_t gfp_mask,
3096 		      int (*bio_ctr)(struct bio *, struct bio *, void *),
3097 		      void *data)
3098 {
3099 	struct bio *bio, *bio_src;
3100 
3101 	if (!bs)
3102 		bs = &fs_bio_set;
3103 
3104 	__rq_for_each_bio(bio_src, rq_src) {
3105 		bio = bio_alloc_clone(rq->q->disk->part0, bio_src, gfp_mask,
3106 				      bs);
3107 		if (!bio)
3108 			goto free_and_out;
3109 
3110 		if (bio_ctr && bio_ctr(bio, bio_src, data))
3111 			goto free_and_out;
3112 
3113 		if (rq->bio) {
3114 			rq->biotail->bi_next = bio;
3115 			rq->biotail = bio;
3116 		} else {
3117 			rq->bio = rq->biotail = bio;
3118 		}
3119 		bio = NULL;
3120 	}
3121 
3122 	/* Copy attributes of the original request to the clone request. */
3123 	rq->__sector = blk_rq_pos(rq_src);
3124 	rq->__data_len = blk_rq_bytes(rq_src);
3125 	if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
3126 		rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
3127 		rq->special_vec = rq_src->special_vec;
3128 	}
3129 	rq->nr_phys_segments = rq_src->nr_phys_segments;
3130 	rq->ioprio = rq_src->ioprio;
3131 
3132 	if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
3133 		goto free_and_out;
3134 
3135 	return 0;
3136 
3137 free_and_out:
3138 	if (bio)
3139 		bio_put(bio);
3140 	blk_rq_unprep_clone(rq);
3141 
3142 	return -ENOMEM;
3143 }
3144 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3145 #endif /* CONFIG_BLK_MQ_STACKING */
3146 
3147 /*
3148  * Steal bios from a request and add them to a bio list.
3149  * The request must not have been partially completed before.
3150  */
3151 void blk_steal_bios(struct bio_list *list, struct request *rq)
3152 {
3153 	if (rq->bio) {
3154 		if (list->tail)
3155 			list->tail->bi_next = rq->bio;
3156 		else
3157 			list->head = rq->bio;
3158 		list->tail = rq->biotail;
3159 
3160 		rq->bio = NULL;
3161 		rq->biotail = NULL;
3162 	}
3163 
3164 	rq->__data_len = 0;
3165 }
3166 EXPORT_SYMBOL_GPL(blk_steal_bios);
3167 
3168 static size_t order_to_size(unsigned int order)
3169 {
3170 	return (size_t)PAGE_SIZE << order;
3171 }
3172 
3173 /* called before freeing request pool in @tags */
3174 static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags,
3175 				    struct blk_mq_tags *tags)
3176 {
3177 	struct page *page;
3178 	unsigned long flags;
3179 
3180 	/*
3181 	 * There is no need to clear mapping if driver tags is not initialized
3182 	 * or the mapping belongs to the driver tags.
3183 	 */
3184 	if (!drv_tags || drv_tags == tags)
3185 		return;
3186 
3187 	list_for_each_entry(page, &tags->page_list, lru) {
3188 		unsigned long start = (unsigned long)page_address(page);
3189 		unsigned long end = start + order_to_size(page->private);
3190 		int i;
3191 
3192 		for (i = 0; i < drv_tags->nr_tags; i++) {
3193 			struct request *rq = drv_tags->rqs[i];
3194 			unsigned long rq_addr = (unsigned long)rq;
3195 
3196 			if (rq_addr >= start && rq_addr < end) {
3197 				WARN_ON_ONCE(req_ref_read(rq) != 0);
3198 				cmpxchg(&drv_tags->rqs[i], rq, NULL);
3199 			}
3200 		}
3201 	}
3202 
3203 	/*
3204 	 * Wait until all pending iteration is done.
3205 	 *
3206 	 * Request reference is cleared and it is guaranteed to be observed
3207 	 * after the ->lock is released.
3208 	 */
3209 	spin_lock_irqsave(&drv_tags->lock, flags);
3210 	spin_unlock_irqrestore(&drv_tags->lock, flags);
3211 }
3212 
3213 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
3214 		     unsigned int hctx_idx)
3215 {
3216 	struct blk_mq_tags *drv_tags;
3217 	struct page *page;
3218 
3219 	if (list_empty(&tags->page_list))
3220 		return;
3221 
3222 	if (blk_mq_is_shared_tags(set->flags))
3223 		drv_tags = set->shared_tags;
3224 	else
3225 		drv_tags = set->tags[hctx_idx];
3226 
3227 	if (tags->static_rqs && set->ops->exit_request) {
3228 		int i;
3229 
3230 		for (i = 0; i < tags->nr_tags; i++) {
3231 			struct request *rq = tags->static_rqs[i];
3232 
3233 			if (!rq)
3234 				continue;
3235 			set->ops->exit_request(set, rq, hctx_idx);
3236 			tags->static_rqs[i] = NULL;
3237 		}
3238 	}
3239 
3240 	blk_mq_clear_rq_mapping(drv_tags, tags);
3241 
3242 	while (!list_empty(&tags->page_list)) {
3243 		page = list_first_entry(&tags->page_list, struct page, lru);
3244 		list_del_init(&page->lru);
3245 		/*
3246 		 * Remove kmemleak object previously allocated in
3247 		 * blk_mq_alloc_rqs().
3248 		 */
3249 		kmemleak_free(page_address(page));
3250 		__free_pages(page, page->private);
3251 	}
3252 }
3253 
3254 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
3255 {
3256 	kfree(tags->rqs);
3257 	tags->rqs = NULL;
3258 	kfree(tags->static_rqs);
3259 	tags->static_rqs = NULL;
3260 
3261 	blk_mq_free_tags(tags);
3262 }
3263 
3264 static enum hctx_type hctx_idx_to_type(struct blk_mq_tag_set *set,
3265 		unsigned int hctx_idx)
3266 {
3267 	int i;
3268 
3269 	for (i = 0; i < set->nr_maps; i++) {
3270 		unsigned int start = set->map[i].queue_offset;
3271 		unsigned int end = start + set->map[i].nr_queues;
3272 
3273 		if (hctx_idx >= start && hctx_idx < end)
3274 			break;
3275 	}
3276 
3277 	if (i >= set->nr_maps)
3278 		i = HCTX_TYPE_DEFAULT;
3279 
3280 	return i;
3281 }
3282 
3283 static int blk_mq_get_hctx_node(struct blk_mq_tag_set *set,
3284 		unsigned int hctx_idx)
3285 {
3286 	enum hctx_type type = hctx_idx_to_type(set, hctx_idx);
3287 
3288 	return blk_mq_hw_queue_to_node(&set->map[type], hctx_idx);
3289 }
3290 
3291 static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
3292 					       unsigned int hctx_idx,
3293 					       unsigned int nr_tags,
3294 					       unsigned int reserved_tags)
3295 {
3296 	int node = blk_mq_get_hctx_node(set, hctx_idx);
3297 	struct blk_mq_tags *tags;
3298 
3299 	if (node == NUMA_NO_NODE)
3300 		node = set->numa_node;
3301 
3302 	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
3303 				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
3304 	if (!tags)
3305 		return NULL;
3306 
3307 	tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3308 				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3309 				 node);
3310 	if (!tags->rqs)
3311 		goto err_free_tags;
3312 
3313 	tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3314 					GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3315 					node);
3316 	if (!tags->static_rqs)
3317 		goto err_free_rqs;
3318 
3319 	return tags;
3320 
3321 err_free_rqs:
3322 	kfree(tags->rqs);
3323 err_free_tags:
3324 	blk_mq_free_tags(tags);
3325 	return NULL;
3326 }
3327 
3328 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
3329 			       unsigned int hctx_idx, int node)
3330 {
3331 	int ret;
3332 
3333 	if (set->ops->init_request) {
3334 		ret = set->ops->init_request(set, rq, hctx_idx, node);
3335 		if (ret)
3336 			return ret;
3337 	}
3338 
3339 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
3340 	return 0;
3341 }
3342 
3343 static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set,
3344 			    struct blk_mq_tags *tags,
3345 			    unsigned int hctx_idx, unsigned int depth)
3346 {
3347 	unsigned int i, j, entries_per_page, max_order = 4;
3348 	int node = blk_mq_get_hctx_node(set, hctx_idx);
3349 	size_t rq_size, left;
3350 
3351 	if (node == NUMA_NO_NODE)
3352 		node = set->numa_node;
3353 
3354 	INIT_LIST_HEAD(&tags->page_list);
3355 
3356 	/*
3357 	 * rq_size is the size of the request plus driver payload, rounded
3358 	 * to the cacheline size
3359 	 */
3360 	rq_size = round_up(sizeof(struct request) + set->cmd_size,
3361 				cache_line_size());
3362 	left = rq_size * depth;
3363 
3364 	for (i = 0; i < depth; ) {
3365 		int this_order = max_order;
3366 		struct page *page;
3367 		int to_do;
3368 		void *p;
3369 
3370 		while (this_order && left < order_to_size(this_order - 1))
3371 			this_order--;
3372 
3373 		do {
3374 			page = alloc_pages_node(node,
3375 				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
3376 				this_order);
3377 			if (page)
3378 				break;
3379 			if (!this_order--)
3380 				break;
3381 			if (order_to_size(this_order) < rq_size)
3382 				break;
3383 		} while (1);
3384 
3385 		if (!page)
3386 			goto fail;
3387 
3388 		page->private = this_order;
3389 		list_add_tail(&page->lru, &tags->page_list);
3390 
3391 		p = page_address(page);
3392 		/*
3393 		 * Allow kmemleak to scan these pages as they contain pointers
3394 		 * to additional allocations like via ops->init_request().
3395 		 */
3396 		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
3397 		entries_per_page = order_to_size(this_order) / rq_size;
3398 		to_do = min(entries_per_page, depth - i);
3399 		left -= to_do * rq_size;
3400 		for (j = 0; j < to_do; j++) {
3401 			struct request *rq = p;
3402 
3403 			tags->static_rqs[i] = rq;
3404 			if (blk_mq_init_request(set, rq, hctx_idx, node)) {
3405 				tags->static_rqs[i] = NULL;
3406 				goto fail;
3407 			}
3408 
3409 			p += rq_size;
3410 			i++;
3411 		}
3412 	}
3413 	return 0;
3414 
3415 fail:
3416 	blk_mq_free_rqs(set, tags, hctx_idx);
3417 	return -ENOMEM;
3418 }
3419 
3420 struct rq_iter_data {
3421 	struct blk_mq_hw_ctx *hctx;
3422 	bool has_rq;
3423 };
3424 
3425 static bool blk_mq_has_request(struct request *rq, void *data)
3426 {
3427 	struct rq_iter_data *iter_data = data;
3428 
3429 	if (rq->mq_hctx != iter_data->hctx)
3430 		return true;
3431 	iter_data->has_rq = true;
3432 	return false;
3433 }
3434 
3435 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
3436 {
3437 	struct blk_mq_tags *tags = hctx->sched_tags ?
3438 			hctx->sched_tags : hctx->tags;
3439 	struct rq_iter_data data = {
3440 		.hctx	= hctx,
3441 	};
3442 
3443 	blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
3444 	return data.has_rq;
3445 }
3446 
3447 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
3448 		struct blk_mq_hw_ctx *hctx)
3449 {
3450 	if (cpumask_first_and(hctx->cpumask, cpu_online_mask) != cpu)
3451 		return false;
3452 	if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
3453 		return false;
3454 	return true;
3455 }
3456 
3457 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
3458 {
3459 	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3460 			struct blk_mq_hw_ctx, cpuhp_online);
3461 
3462 	if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
3463 	    !blk_mq_last_cpu_in_hctx(cpu, hctx))
3464 		return 0;
3465 
3466 	/*
3467 	 * Prevent new request from being allocated on the current hctx.
3468 	 *
3469 	 * The smp_mb__after_atomic() Pairs with the implied barrier in
3470 	 * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
3471 	 * seen once we return from the tag allocator.
3472 	 */
3473 	set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3474 	smp_mb__after_atomic();
3475 
3476 	/*
3477 	 * Try to grab a reference to the queue and wait for any outstanding
3478 	 * requests.  If we could not grab a reference the queue has been
3479 	 * frozen and there are no requests.
3480 	 */
3481 	if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
3482 		while (blk_mq_hctx_has_requests(hctx))
3483 			msleep(5);
3484 		percpu_ref_put(&hctx->queue->q_usage_counter);
3485 	}
3486 
3487 	return 0;
3488 }
3489 
3490 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
3491 {
3492 	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3493 			struct blk_mq_hw_ctx, cpuhp_online);
3494 
3495 	if (cpumask_test_cpu(cpu, hctx->cpumask))
3496 		clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3497 	return 0;
3498 }
3499 
3500 /*
3501  * 'cpu' is going away. splice any existing rq_list entries from this
3502  * software queue to the hw queue dispatch list, and ensure that it
3503  * gets run.
3504  */
3505 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
3506 {
3507 	struct blk_mq_hw_ctx *hctx;
3508 	struct blk_mq_ctx *ctx;
3509 	LIST_HEAD(tmp);
3510 	enum hctx_type type;
3511 
3512 	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
3513 	if (!cpumask_test_cpu(cpu, hctx->cpumask))
3514 		return 0;
3515 
3516 	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
3517 	type = hctx->type;
3518 
3519 	spin_lock(&ctx->lock);
3520 	if (!list_empty(&ctx->rq_lists[type])) {
3521 		list_splice_init(&ctx->rq_lists[type], &tmp);
3522 		blk_mq_hctx_clear_pending(hctx, ctx);
3523 	}
3524 	spin_unlock(&ctx->lock);
3525 
3526 	if (list_empty(&tmp))
3527 		return 0;
3528 
3529 	spin_lock(&hctx->lock);
3530 	list_splice_tail_init(&tmp, &hctx->dispatch);
3531 	spin_unlock(&hctx->lock);
3532 
3533 	blk_mq_run_hw_queue(hctx, true);
3534 	return 0;
3535 }
3536 
3537 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
3538 {
3539 	if (!(hctx->flags & BLK_MQ_F_STACKING))
3540 		cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3541 						    &hctx->cpuhp_online);
3542 	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
3543 					    &hctx->cpuhp_dead);
3544 }
3545 
3546 /*
3547  * Before freeing hw queue, clearing the flush request reference in
3548  * tags->rqs[] for avoiding potential UAF.
3549  */
3550 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
3551 		unsigned int queue_depth, struct request *flush_rq)
3552 {
3553 	int i;
3554 	unsigned long flags;
3555 
3556 	/* The hw queue may not be mapped yet */
3557 	if (!tags)
3558 		return;
3559 
3560 	WARN_ON_ONCE(req_ref_read(flush_rq) != 0);
3561 
3562 	for (i = 0; i < queue_depth; i++)
3563 		cmpxchg(&tags->rqs[i], flush_rq, NULL);
3564 
3565 	/*
3566 	 * Wait until all pending iteration is done.
3567 	 *
3568 	 * Request reference is cleared and it is guaranteed to be observed
3569 	 * after the ->lock is released.
3570 	 */
3571 	spin_lock_irqsave(&tags->lock, flags);
3572 	spin_unlock_irqrestore(&tags->lock, flags);
3573 }
3574 
3575 /* hctx->ctxs will be freed in queue's release handler */
3576 static void blk_mq_exit_hctx(struct request_queue *q,
3577 		struct blk_mq_tag_set *set,
3578 		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
3579 {
3580 	struct request *flush_rq = hctx->fq->flush_rq;
3581 
3582 	if (blk_mq_hw_queue_mapped(hctx))
3583 		blk_mq_tag_idle(hctx);
3584 
3585 	if (blk_queue_init_done(q))
3586 		blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
3587 				set->queue_depth, flush_rq);
3588 	if (set->ops->exit_request)
3589 		set->ops->exit_request(set, flush_rq, hctx_idx);
3590 
3591 	if (set->ops->exit_hctx)
3592 		set->ops->exit_hctx(hctx, hctx_idx);
3593 
3594 	blk_mq_remove_cpuhp(hctx);
3595 
3596 	xa_erase(&q->hctx_table, hctx_idx);
3597 
3598 	spin_lock(&q->unused_hctx_lock);
3599 	list_add(&hctx->hctx_list, &q->unused_hctx_list);
3600 	spin_unlock(&q->unused_hctx_lock);
3601 }
3602 
3603 static void blk_mq_exit_hw_queues(struct request_queue *q,
3604 		struct blk_mq_tag_set *set, int nr_queue)
3605 {
3606 	struct blk_mq_hw_ctx *hctx;
3607 	unsigned long i;
3608 
3609 	queue_for_each_hw_ctx(q, hctx, i) {
3610 		if (i == nr_queue)
3611 			break;
3612 		blk_mq_exit_hctx(q, set, hctx, i);
3613 	}
3614 }
3615 
3616 static int blk_mq_init_hctx(struct request_queue *q,
3617 		struct blk_mq_tag_set *set,
3618 		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
3619 {
3620 	hctx->queue_num = hctx_idx;
3621 
3622 	if (!(hctx->flags & BLK_MQ_F_STACKING))
3623 		cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3624 				&hctx->cpuhp_online);
3625 	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
3626 
3627 	hctx->tags = set->tags[hctx_idx];
3628 
3629 	if (set->ops->init_hctx &&
3630 	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
3631 		goto unregister_cpu_notifier;
3632 
3633 	if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
3634 				hctx->numa_node))
3635 		goto exit_hctx;
3636 
3637 	if (xa_insert(&q->hctx_table, hctx_idx, hctx, GFP_KERNEL))
3638 		goto exit_flush_rq;
3639 
3640 	return 0;
3641 
3642  exit_flush_rq:
3643 	if (set->ops->exit_request)
3644 		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
3645  exit_hctx:
3646 	if (set->ops->exit_hctx)
3647 		set->ops->exit_hctx(hctx, hctx_idx);
3648  unregister_cpu_notifier:
3649 	blk_mq_remove_cpuhp(hctx);
3650 	return -1;
3651 }
3652 
3653 static struct blk_mq_hw_ctx *
3654 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
3655 		int node)
3656 {
3657 	struct blk_mq_hw_ctx *hctx;
3658 	gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
3659 
3660 	hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node);
3661 	if (!hctx)
3662 		goto fail_alloc_hctx;
3663 
3664 	if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
3665 		goto free_hctx;
3666 
3667 	atomic_set(&hctx->nr_active, 0);
3668 	if (node == NUMA_NO_NODE)
3669 		node = set->numa_node;
3670 	hctx->numa_node = node;
3671 
3672 	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
3673 	spin_lock_init(&hctx->lock);
3674 	INIT_LIST_HEAD(&hctx->dispatch);
3675 	hctx->queue = q;
3676 	hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
3677 
3678 	INIT_LIST_HEAD(&hctx->hctx_list);
3679 
3680 	/*
3681 	 * Allocate space for all possible cpus to avoid allocation at
3682 	 * runtime
3683 	 */
3684 	hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
3685 			gfp, node);
3686 	if (!hctx->ctxs)
3687 		goto free_cpumask;
3688 
3689 	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
3690 				gfp, node, false, false))
3691 		goto free_ctxs;
3692 	hctx->nr_ctx = 0;
3693 
3694 	spin_lock_init(&hctx->dispatch_wait_lock);
3695 	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
3696 	INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
3697 
3698 	hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
3699 	if (!hctx->fq)
3700 		goto free_bitmap;
3701 
3702 	blk_mq_hctx_kobj_init(hctx);
3703 
3704 	return hctx;
3705 
3706  free_bitmap:
3707 	sbitmap_free(&hctx->ctx_map);
3708  free_ctxs:
3709 	kfree(hctx->ctxs);
3710  free_cpumask:
3711 	free_cpumask_var(hctx->cpumask);
3712  free_hctx:
3713 	kfree(hctx);
3714  fail_alloc_hctx:
3715 	return NULL;
3716 }
3717 
3718 static void blk_mq_init_cpu_queues(struct request_queue *q,
3719 				   unsigned int nr_hw_queues)
3720 {
3721 	struct blk_mq_tag_set *set = q->tag_set;
3722 	unsigned int i, j;
3723 
3724 	for_each_possible_cpu(i) {
3725 		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
3726 		struct blk_mq_hw_ctx *hctx;
3727 		int k;
3728 
3729 		__ctx->cpu = i;
3730 		spin_lock_init(&__ctx->lock);
3731 		for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
3732 			INIT_LIST_HEAD(&__ctx->rq_lists[k]);
3733 
3734 		__ctx->queue = q;
3735 
3736 		/*
3737 		 * Set local node, IFF we have more than one hw queue. If
3738 		 * not, we remain on the home node of the device
3739 		 */
3740 		for (j = 0; j < set->nr_maps; j++) {
3741 			hctx = blk_mq_map_queue_type(q, j, i);
3742 			if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
3743 				hctx->numa_node = cpu_to_node(i);
3744 		}
3745 	}
3746 }
3747 
3748 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3749 					     unsigned int hctx_idx,
3750 					     unsigned int depth)
3751 {
3752 	struct blk_mq_tags *tags;
3753 	int ret;
3754 
3755 	tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags);
3756 	if (!tags)
3757 		return NULL;
3758 
3759 	ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth);
3760 	if (ret) {
3761 		blk_mq_free_rq_map(tags);
3762 		return NULL;
3763 	}
3764 
3765 	return tags;
3766 }
3767 
3768 static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3769 				       int hctx_idx)
3770 {
3771 	if (blk_mq_is_shared_tags(set->flags)) {
3772 		set->tags[hctx_idx] = set->shared_tags;
3773 
3774 		return true;
3775 	}
3776 
3777 	set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx,
3778 						       set->queue_depth);
3779 
3780 	return set->tags[hctx_idx];
3781 }
3782 
3783 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3784 			     struct blk_mq_tags *tags,
3785 			     unsigned int hctx_idx)
3786 {
3787 	if (tags) {
3788 		blk_mq_free_rqs(set, tags, hctx_idx);
3789 		blk_mq_free_rq_map(tags);
3790 	}
3791 }
3792 
3793 static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3794 				      unsigned int hctx_idx)
3795 {
3796 	if (!blk_mq_is_shared_tags(set->flags))
3797 		blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx);
3798 
3799 	set->tags[hctx_idx] = NULL;
3800 }
3801 
3802 static void blk_mq_map_swqueue(struct request_queue *q)
3803 {
3804 	unsigned int j, hctx_idx;
3805 	unsigned long i;
3806 	struct blk_mq_hw_ctx *hctx;
3807 	struct blk_mq_ctx *ctx;
3808 	struct blk_mq_tag_set *set = q->tag_set;
3809 
3810 	queue_for_each_hw_ctx(q, hctx, i) {
3811 		cpumask_clear(hctx->cpumask);
3812 		hctx->nr_ctx = 0;
3813 		hctx->dispatch_from = NULL;
3814 	}
3815 
3816 	/*
3817 	 * Map software to hardware queues.
3818 	 *
3819 	 * If the cpu isn't present, the cpu is mapped to first hctx.
3820 	 */
3821 	for_each_possible_cpu(i) {
3822 
3823 		ctx = per_cpu_ptr(q->queue_ctx, i);
3824 		for (j = 0; j < set->nr_maps; j++) {
3825 			if (!set->map[j].nr_queues) {
3826 				ctx->hctxs[j] = blk_mq_map_queue_type(q,
3827 						HCTX_TYPE_DEFAULT, i);
3828 				continue;
3829 			}
3830 			hctx_idx = set->map[j].mq_map[i];
3831 			/* unmapped hw queue can be remapped after CPU topo changed */
3832 			if (!set->tags[hctx_idx] &&
3833 			    !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) {
3834 				/*
3835 				 * If tags initialization fail for some hctx,
3836 				 * that hctx won't be brought online.  In this
3837 				 * case, remap the current ctx to hctx[0] which
3838 				 * is guaranteed to always have tags allocated
3839 				 */
3840 				set->map[j].mq_map[i] = 0;
3841 			}
3842 
3843 			hctx = blk_mq_map_queue_type(q, j, i);
3844 			ctx->hctxs[j] = hctx;
3845 			/*
3846 			 * If the CPU is already set in the mask, then we've
3847 			 * mapped this one already. This can happen if
3848 			 * devices share queues across queue maps.
3849 			 */
3850 			if (cpumask_test_cpu(i, hctx->cpumask))
3851 				continue;
3852 
3853 			cpumask_set_cpu(i, hctx->cpumask);
3854 			hctx->type = j;
3855 			ctx->index_hw[hctx->type] = hctx->nr_ctx;
3856 			hctx->ctxs[hctx->nr_ctx++] = ctx;
3857 
3858 			/*
3859 			 * If the nr_ctx type overflows, we have exceeded the
3860 			 * amount of sw queues we can support.
3861 			 */
3862 			BUG_ON(!hctx->nr_ctx);
3863 		}
3864 
3865 		for (; j < HCTX_MAX_TYPES; j++)
3866 			ctx->hctxs[j] = blk_mq_map_queue_type(q,
3867 					HCTX_TYPE_DEFAULT, i);
3868 	}
3869 
3870 	queue_for_each_hw_ctx(q, hctx, i) {
3871 		/*
3872 		 * If no software queues are mapped to this hardware queue,
3873 		 * disable it and free the request entries.
3874 		 */
3875 		if (!hctx->nr_ctx) {
3876 			/* Never unmap queue 0.  We need it as a
3877 			 * fallback in case of a new remap fails
3878 			 * allocation
3879 			 */
3880 			if (i)
3881 				__blk_mq_free_map_and_rqs(set, i);
3882 
3883 			hctx->tags = NULL;
3884 			continue;
3885 		}
3886 
3887 		hctx->tags = set->tags[i];
3888 		WARN_ON(!hctx->tags);
3889 
3890 		/*
3891 		 * Set the map size to the number of mapped software queues.
3892 		 * This is more accurate and more efficient than looping
3893 		 * over all possibly mapped software queues.
3894 		 */
3895 		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
3896 
3897 		/*
3898 		 * Initialize batch roundrobin counts
3899 		 */
3900 		hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
3901 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
3902 	}
3903 }
3904 
3905 /*
3906  * Caller needs to ensure that we're either frozen/quiesced, or that
3907  * the queue isn't live yet.
3908  */
3909 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
3910 {
3911 	struct blk_mq_hw_ctx *hctx;
3912 	unsigned long i;
3913 
3914 	queue_for_each_hw_ctx(q, hctx, i) {
3915 		if (shared) {
3916 			hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3917 		} else {
3918 			blk_mq_tag_idle(hctx);
3919 			hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3920 		}
3921 	}
3922 }
3923 
3924 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
3925 					 bool shared)
3926 {
3927 	struct request_queue *q;
3928 
3929 	lockdep_assert_held(&set->tag_list_lock);
3930 
3931 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3932 		blk_mq_freeze_queue(q);
3933 		queue_set_hctx_shared(q, shared);
3934 		blk_mq_unfreeze_queue(q);
3935 	}
3936 }
3937 
3938 static void blk_mq_del_queue_tag_set(struct request_queue *q)
3939 {
3940 	struct blk_mq_tag_set *set = q->tag_set;
3941 
3942 	mutex_lock(&set->tag_list_lock);
3943 	list_del(&q->tag_set_list);
3944 	if (list_is_singular(&set->tag_list)) {
3945 		/* just transitioned to unshared */
3946 		set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3947 		/* update existing queue */
3948 		blk_mq_update_tag_set_shared(set, false);
3949 	}
3950 	mutex_unlock(&set->tag_list_lock);
3951 	INIT_LIST_HEAD(&q->tag_set_list);
3952 }
3953 
3954 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
3955 				     struct request_queue *q)
3956 {
3957 	mutex_lock(&set->tag_list_lock);
3958 
3959 	/*
3960 	 * Check to see if we're transitioning to shared (from 1 to 2 queues).
3961 	 */
3962 	if (!list_empty(&set->tag_list) &&
3963 	    !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
3964 		set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3965 		/* update existing queue */
3966 		blk_mq_update_tag_set_shared(set, true);
3967 	}
3968 	if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
3969 		queue_set_hctx_shared(q, true);
3970 	list_add_tail(&q->tag_set_list, &set->tag_list);
3971 
3972 	mutex_unlock(&set->tag_list_lock);
3973 }
3974 
3975 /* All allocations will be freed in release handler of q->mq_kobj */
3976 static int blk_mq_alloc_ctxs(struct request_queue *q)
3977 {
3978 	struct blk_mq_ctxs *ctxs;
3979 	int cpu;
3980 
3981 	ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
3982 	if (!ctxs)
3983 		return -ENOMEM;
3984 
3985 	ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
3986 	if (!ctxs->queue_ctx)
3987 		goto fail;
3988 
3989 	for_each_possible_cpu(cpu) {
3990 		struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
3991 		ctx->ctxs = ctxs;
3992 	}
3993 
3994 	q->mq_kobj = &ctxs->kobj;
3995 	q->queue_ctx = ctxs->queue_ctx;
3996 
3997 	return 0;
3998  fail:
3999 	kfree(ctxs);
4000 	return -ENOMEM;
4001 }
4002 
4003 /*
4004  * It is the actual release handler for mq, but we do it from
4005  * request queue's release handler for avoiding use-after-free
4006  * and headache because q->mq_kobj shouldn't have been introduced,
4007  * but we can't group ctx/kctx kobj without it.
4008  */
4009 void blk_mq_release(struct request_queue *q)
4010 {
4011 	struct blk_mq_hw_ctx *hctx, *next;
4012 	unsigned long i;
4013 
4014 	queue_for_each_hw_ctx(q, hctx, i)
4015 		WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
4016 
4017 	/* all hctx are in .unused_hctx_list now */
4018 	list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
4019 		list_del_init(&hctx->hctx_list);
4020 		kobject_put(&hctx->kobj);
4021 	}
4022 
4023 	xa_destroy(&q->hctx_table);
4024 
4025 	/*
4026 	 * release .mq_kobj and sw queue's kobject now because
4027 	 * both share lifetime with request queue.
4028 	 */
4029 	blk_mq_sysfs_deinit(q);
4030 }
4031 
4032 static struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
4033 		void *queuedata)
4034 {
4035 	struct request_queue *q;
4036 	int ret;
4037 
4038 	q = blk_alloc_queue(set->numa_node);
4039 	if (!q)
4040 		return ERR_PTR(-ENOMEM);
4041 	q->queuedata = queuedata;
4042 	ret = blk_mq_init_allocated_queue(set, q);
4043 	if (ret) {
4044 		blk_put_queue(q);
4045 		return ERR_PTR(ret);
4046 	}
4047 	return q;
4048 }
4049 
4050 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
4051 {
4052 	return blk_mq_init_queue_data(set, NULL);
4053 }
4054 EXPORT_SYMBOL(blk_mq_init_queue);
4055 
4056 /**
4057  * blk_mq_destroy_queue - shutdown a request queue
4058  * @q: request queue to shutdown
4059  *
4060  * This shuts down a request queue allocated by blk_mq_init_queue(). All future
4061  * requests will be failed with -ENODEV. The caller is responsible for dropping
4062  * the reference from blk_mq_init_queue() by calling blk_put_queue().
4063  *
4064  * Context: can sleep
4065  */
4066 void blk_mq_destroy_queue(struct request_queue *q)
4067 {
4068 	WARN_ON_ONCE(!queue_is_mq(q));
4069 	WARN_ON_ONCE(blk_queue_registered(q));
4070 
4071 	might_sleep();
4072 
4073 	blk_queue_flag_set(QUEUE_FLAG_DYING, q);
4074 	blk_queue_start_drain(q);
4075 	blk_mq_freeze_queue_wait(q);
4076 
4077 	blk_sync_queue(q);
4078 	blk_mq_cancel_work_sync(q);
4079 	blk_mq_exit_queue(q);
4080 }
4081 EXPORT_SYMBOL(blk_mq_destroy_queue);
4082 
4083 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata,
4084 		struct lock_class_key *lkclass)
4085 {
4086 	struct request_queue *q;
4087 	struct gendisk *disk;
4088 
4089 	q = blk_mq_init_queue_data(set, queuedata);
4090 	if (IS_ERR(q))
4091 		return ERR_CAST(q);
4092 
4093 	disk = __alloc_disk_node(q, set->numa_node, lkclass);
4094 	if (!disk) {
4095 		blk_mq_destroy_queue(q);
4096 		blk_put_queue(q);
4097 		return ERR_PTR(-ENOMEM);
4098 	}
4099 	set_bit(GD_OWNS_QUEUE, &disk->state);
4100 	return disk;
4101 }
4102 EXPORT_SYMBOL(__blk_mq_alloc_disk);
4103 
4104 struct gendisk *blk_mq_alloc_disk_for_queue(struct request_queue *q,
4105 		struct lock_class_key *lkclass)
4106 {
4107 	struct gendisk *disk;
4108 
4109 	if (!blk_get_queue(q))
4110 		return NULL;
4111 	disk = __alloc_disk_node(q, NUMA_NO_NODE, lkclass);
4112 	if (!disk)
4113 		blk_put_queue(q);
4114 	return disk;
4115 }
4116 EXPORT_SYMBOL(blk_mq_alloc_disk_for_queue);
4117 
4118 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
4119 		struct blk_mq_tag_set *set, struct request_queue *q,
4120 		int hctx_idx, int node)
4121 {
4122 	struct blk_mq_hw_ctx *hctx = NULL, *tmp;
4123 
4124 	/* reuse dead hctx first */
4125 	spin_lock(&q->unused_hctx_lock);
4126 	list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
4127 		if (tmp->numa_node == node) {
4128 			hctx = tmp;
4129 			break;
4130 		}
4131 	}
4132 	if (hctx)
4133 		list_del_init(&hctx->hctx_list);
4134 	spin_unlock(&q->unused_hctx_lock);
4135 
4136 	if (!hctx)
4137 		hctx = blk_mq_alloc_hctx(q, set, node);
4138 	if (!hctx)
4139 		goto fail;
4140 
4141 	if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
4142 		goto free_hctx;
4143 
4144 	return hctx;
4145 
4146  free_hctx:
4147 	kobject_put(&hctx->kobj);
4148  fail:
4149 	return NULL;
4150 }
4151 
4152 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
4153 						struct request_queue *q)
4154 {
4155 	struct blk_mq_hw_ctx *hctx;
4156 	unsigned long i, j;
4157 
4158 	/* protect against switching io scheduler  */
4159 	mutex_lock(&q->sysfs_lock);
4160 	for (i = 0; i < set->nr_hw_queues; i++) {
4161 		int old_node;
4162 		int node = blk_mq_get_hctx_node(set, i);
4163 		struct blk_mq_hw_ctx *old_hctx = xa_load(&q->hctx_table, i);
4164 
4165 		if (old_hctx) {
4166 			old_node = old_hctx->numa_node;
4167 			blk_mq_exit_hctx(q, set, old_hctx, i);
4168 		}
4169 
4170 		if (!blk_mq_alloc_and_init_hctx(set, q, i, node)) {
4171 			if (!old_hctx)
4172 				break;
4173 			pr_warn("Allocate new hctx on node %d fails, fallback to previous one on node %d\n",
4174 					node, old_node);
4175 			hctx = blk_mq_alloc_and_init_hctx(set, q, i, old_node);
4176 			WARN_ON_ONCE(!hctx);
4177 		}
4178 	}
4179 	/*
4180 	 * Increasing nr_hw_queues fails. Free the newly allocated
4181 	 * hctxs and keep the previous q->nr_hw_queues.
4182 	 */
4183 	if (i != set->nr_hw_queues) {
4184 		j = q->nr_hw_queues;
4185 	} else {
4186 		j = i;
4187 		q->nr_hw_queues = set->nr_hw_queues;
4188 	}
4189 
4190 	xa_for_each_start(&q->hctx_table, j, hctx, j)
4191 		blk_mq_exit_hctx(q, set, hctx, j);
4192 	mutex_unlock(&q->sysfs_lock);
4193 }
4194 
4195 static void blk_mq_update_poll_flag(struct request_queue *q)
4196 {
4197 	struct blk_mq_tag_set *set = q->tag_set;
4198 
4199 	if (set->nr_maps > HCTX_TYPE_POLL &&
4200 	    set->map[HCTX_TYPE_POLL].nr_queues)
4201 		blk_queue_flag_set(QUEUE_FLAG_POLL, q);
4202 	else
4203 		blk_queue_flag_clear(QUEUE_FLAG_POLL, q);
4204 }
4205 
4206 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
4207 		struct request_queue *q)
4208 {
4209 	/* mark the queue as mq asap */
4210 	q->mq_ops = set->ops;
4211 
4212 	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
4213 					     blk_mq_poll_stats_bkt,
4214 					     BLK_MQ_POLL_STATS_BKTS, q);
4215 	if (!q->poll_cb)
4216 		goto err_exit;
4217 
4218 	if (blk_mq_alloc_ctxs(q))
4219 		goto err_poll;
4220 
4221 	/* init q->mq_kobj and sw queues' kobjects */
4222 	blk_mq_sysfs_init(q);
4223 
4224 	INIT_LIST_HEAD(&q->unused_hctx_list);
4225 	spin_lock_init(&q->unused_hctx_lock);
4226 
4227 	xa_init(&q->hctx_table);
4228 
4229 	blk_mq_realloc_hw_ctxs(set, q);
4230 	if (!q->nr_hw_queues)
4231 		goto err_hctxs;
4232 
4233 	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
4234 	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
4235 
4236 	q->tag_set = set;
4237 
4238 	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
4239 	blk_mq_update_poll_flag(q);
4240 
4241 	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
4242 	INIT_LIST_HEAD(&q->requeue_list);
4243 	spin_lock_init(&q->requeue_lock);
4244 
4245 	q->nr_requests = set->queue_depth;
4246 
4247 	/*
4248 	 * Default to classic polling
4249 	 */
4250 	q->poll_nsec = BLK_MQ_POLL_CLASSIC;
4251 
4252 	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
4253 	blk_mq_add_queue_tag_set(set, q);
4254 	blk_mq_map_swqueue(q);
4255 	return 0;
4256 
4257 err_hctxs:
4258 	blk_mq_release(q);
4259 err_poll:
4260 	blk_stat_free_callback(q->poll_cb);
4261 	q->poll_cb = NULL;
4262 err_exit:
4263 	q->mq_ops = NULL;
4264 	return -ENOMEM;
4265 }
4266 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
4267 
4268 /* tags can _not_ be used after returning from blk_mq_exit_queue */
4269 void blk_mq_exit_queue(struct request_queue *q)
4270 {
4271 	struct blk_mq_tag_set *set = q->tag_set;
4272 
4273 	/* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
4274 	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
4275 	/* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
4276 	blk_mq_del_queue_tag_set(q);
4277 }
4278 
4279 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
4280 {
4281 	int i;
4282 
4283 	if (blk_mq_is_shared_tags(set->flags)) {
4284 		set->shared_tags = blk_mq_alloc_map_and_rqs(set,
4285 						BLK_MQ_NO_HCTX_IDX,
4286 						set->queue_depth);
4287 		if (!set->shared_tags)
4288 			return -ENOMEM;
4289 	}
4290 
4291 	for (i = 0; i < set->nr_hw_queues; i++) {
4292 		if (!__blk_mq_alloc_map_and_rqs(set, i))
4293 			goto out_unwind;
4294 		cond_resched();
4295 	}
4296 
4297 	return 0;
4298 
4299 out_unwind:
4300 	while (--i >= 0)
4301 		__blk_mq_free_map_and_rqs(set, i);
4302 
4303 	if (blk_mq_is_shared_tags(set->flags)) {
4304 		blk_mq_free_map_and_rqs(set, set->shared_tags,
4305 					BLK_MQ_NO_HCTX_IDX);
4306 	}
4307 
4308 	return -ENOMEM;
4309 }
4310 
4311 /*
4312  * Allocate the request maps associated with this tag_set. Note that this
4313  * may reduce the depth asked for, if memory is tight. set->queue_depth
4314  * will be updated to reflect the allocated depth.
4315  */
4316 static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set)
4317 {
4318 	unsigned int depth;
4319 	int err;
4320 
4321 	depth = set->queue_depth;
4322 	do {
4323 		err = __blk_mq_alloc_rq_maps(set);
4324 		if (!err)
4325 			break;
4326 
4327 		set->queue_depth >>= 1;
4328 		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
4329 			err = -ENOMEM;
4330 			break;
4331 		}
4332 	} while (set->queue_depth);
4333 
4334 	if (!set->queue_depth || err) {
4335 		pr_err("blk-mq: failed to allocate request map\n");
4336 		return -ENOMEM;
4337 	}
4338 
4339 	if (depth != set->queue_depth)
4340 		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
4341 						depth, set->queue_depth);
4342 
4343 	return 0;
4344 }
4345 
4346 static void blk_mq_update_queue_map(struct blk_mq_tag_set *set)
4347 {
4348 	/*
4349 	 * blk_mq_map_queues() and multiple .map_queues() implementations
4350 	 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
4351 	 * number of hardware queues.
4352 	 */
4353 	if (set->nr_maps == 1)
4354 		set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
4355 
4356 	if (set->ops->map_queues && !is_kdump_kernel()) {
4357 		int i;
4358 
4359 		/*
4360 		 * transport .map_queues is usually done in the following
4361 		 * way:
4362 		 *
4363 		 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
4364 		 * 	mask = get_cpu_mask(queue)
4365 		 * 	for_each_cpu(cpu, mask)
4366 		 * 		set->map[x].mq_map[cpu] = queue;
4367 		 * }
4368 		 *
4369 		 * When we need to remap, the table has to be cleared for
4370 		 * killing stale mapping since one CPU may not be mapped
4371 		 * to any hw queue.
4372 		 */
4373 		for (i = 0; i < set->nr_maps; i++)
4374 			blk_mq_clear_mq_map(&set->map[i]);
4375 
4376 		set->ops->map_queues(set);
4377 	} else {
4378 		BUG_ON(set->nr_maps > 1);
4379 		blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4380 	}
4381 }
4382 
4383 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
4384 				       int new_nr_hw_queues)
4385 {
4386 	struct blk_mq_tags **new_tags;
4387 
4388 	if (set->nr_hw_queues >= new_nr_hw_queues)
4389 		goto done;
4390 
4391 	new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
4392 				GFP_KERNEL, set->numa_node);
4393 	if (!new_tags)
4394 		return -ENOMEM;
4395 
4396 	if (set->tags)
4397 		memcpy(new_tags, set->tags, set->nr_hw_queues *
4398 		       sizeof(*set->tags));
4399 	kfree(set->tags);
4400 	set->tags = new_tags;
4401 done:
4402 	set->nr_hw_queues = new_nr_hw_queues;
4403 	return 0;
4404 }
4405 
4406 /*
4407  * Alloc a tag set to be associated with one or more request queues.
4408  * May fail with EINVAL for various error conditions. May adjust the
4409  * requested depth down, if it's too large. In that case, the set
4410  * value will be stored in set->queue_depth.
4411  */
4412 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
4413 {
4414 	int i, ret;
4415 
4416 	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
4417 
4418 	if (!set->nr_hw_queues)
4419 		return -EINVAL;
4420 	if (!set->queue_depth)
4421 		return -EINVAL;
4422 	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
4423 		return -EINVAL;
4424 
4425 	if (!set->ops->queue_rq)
4426 		return -EINVAL;
4427 
4428 	if (!set->ops->get_budget ^ !set->ops->put_budget)
4429 		return -EINVAL;
4430 
4431 	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
4432 		pr_info("blk-mq: reduced tag depth to %u\n",
4433 			BLK_MQ_MAX_DEPTH);
4434 		set->queue_depth = BLK_MQ_MAX_DEPTH;
4435 	}
4436 
4437 	if (!set->nr_maps)
4438 		set->nr_maps = 1;
4439 	else if (set->nr_maps > HCTX_MAX_TYPES)
4440 		return -EINVAL;
4441 
4442 	/*
4443 	 * If a crashdump is active, then we are potentially in a very
4444 	 * memory constrained environment. Limit us to 1 queue and
4445 	 * 64 tags to prevent using too much memory.
4446 	 */
4447 	if (is_kdump_kernel()) {
4448 		set->nr_hw_queues = 1;
4449 		set->nr_maps = 1;
4450 		set->queue_depth = min(64U, set->queue_depth);
4451 	}
4452 	/*
4453 	 * There is no use for more h/w queues than cpus if we just have
4454 	 * a single map
4455 	 */
4456 	if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
4457 		set->nr_hw_queues = nr_cpu_ids;
4458 
4459 	if (set->flags & BLK_MQ_F_BLOCKING) {
4460 		set->srcu = kmalloc(sizeof(*set->srcu), GFP_KERNEL);
4461 		if (!set->srcu)
4462 			return -ENOMEM;
4463 		ret = init_srcu_struct(set->srcu);
4464 		if (ret)
4465 			goto out_free_srcu;
4466 	}
4467 
4468 	ret = -ENOMEM;
4469 	set->tags = kcalloc_node(set->nr_hw_queues,
4470 				 sizeof(struct blk_mq_tags *), GFP_KERNEL,
4471 				 set->numa_node);
4472 	if (!set->tags)
4473 		goto out_cleanup_srcu;
4474 
4475 	for (i = 0; i < set->nr_maps; i++) {
4476 		set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
4477 						  sizeof(set->map[i].mq_map[0]),
4478 						  GFP_KERNEL, set->numa_node);
4479 		if (!set->map[i].mq_map)
4480 			goto out_free_mq_map;
4481 		set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
4482 	}
4483 
4484 	blk_mq_update_queue_map(set);
4485 
4486 	ret = blk_mq_alloc_set_map_and_rqs(set);
4487 	if (ret)
4488 		goto out_free_mq_map;
4489 
4490 	mutex_init(&set->tag_list_lock);
4491 	INIT_LIST_HEAD(&set->tag_list);
4492 
4493 	return 0;
4494 
4495 out_free_mq_map:
4496 	for (i = 0; i < set->nr_maps; i++) {
4497 		kfree(set->map[i].mq_map);
4498 		set->map[i].mq_map = NULL;
4499 	}
4500 	kfree(set->tags);
4501 	set->tags = NULL;
4502 out_cleanup_srcu:
4503 	if (set->flags & BLK_MQ_F_BLOCKING)
4504 		cleanup_srcu_struct(set->srcu);
4505 out_free_srcu:
4506 	if (set->flags & BLK_MQ_F_BLOCKING)
4507 		kfree(set->srcu);
4508 	return ret;
4509 }
4510 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
4511 
4512 /* allocate and initialize a tagset for a simple single-queue device */
4513 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
4514 		const struct blk_mq_ops *ops, unsigned int queue_depth,
4515 		unsigned int set_flags)
4516 {
4517 	memset(set, 0, sizeof(*set));
4518 	set->ops = ops;
4519 	set->nr_hw_queues = 1;
4520 	set->nr_maps = 1;
4521 	set->queue_depth = queue_depth;
4522 	set->numa_node = NUMA_NO_NODE;
4523 	set->flags = set_flags;
4524 	return blk_mq_alloc_tag_set(set);
4525 }
4526 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);
4527 
4528 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
4529 {
4530 	int i, j;
4531 
4532 	for (i = 0; i < set->nr_hw_queues; i++)
4533 		__blk_mq_free_map_and_rqs(set, i);
4534 
4535 	if (blk_mq_is_shared_tags(set->flags)) {
4536 		blk_mq_free_map_and_rqs(set, set->shared_tags,
4537 					BLK_MQ_NO_HCTX_IDX);
4538 	}
4539 
4540 	for (j = 0; j < set->nr_maps; j++) {
4541 		kfree(set->map[j].mq_map);
4542 		set->map[j].mq_map = NULL;
4543 	}
4544 
4545 	kfree(set->tags);
4546 	set->tags = NULL;
4547 	if (set->flags & BLK_MQ_F_BLOCKING) {
4548 		cleanup_srcu_struct(set->srcu);
4549 		kfree(set->srcu);
4550 	}
4551 }
4552 EXPORT_SYMBOL(blk_mq_free_tag_set);
4553 
4554 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
4555 {
4556 	struct blk_mq_tag_set *set = q->tag_set;
4557 	struct blk_mq_hw_ctx *hctx;
4558 	int ret;
4559 	unsigned long i;
4560 
4561 	if (!set)
4562 		return -EINVAL;
4563 
4564 	if (q->nr_requests == nr)
4565 		return 0;
4566 
4567 	blk_mq_freeze_queue(q);
4568 	blk_mq_quiesce_queue(q);
4569 
4570 	ret = 0;
4571 	queue_for_each_hw_ctx(q, hctx, i) {
4572 		if (!hctx->tags)
4573 			continue;
4574 		/*
4575 		 * If we're using an MQ scheduler, just update the scheduler
4576 		 * queue depth. This is similar to what the old code would do.
4577 		 */
4578 		if (hctx->sched_tags) {
4579 			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
4580 						      nr, true);
4581 		} else {
4582 			ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
4583 						      false);
4584 		}
4585 		if (ret)
4586 			break;
4587 		if (q->elevator && q->elevator->type->ops.depth_updated)
4588 			q->elevator->type->ops.depth_updated(hctx);
4589 	}
4590 	if (!ret) {
4591 		q->nr_requests = nr;
4592 		if (blk_mq_is_shared_tags(set->flags)) {
4593 			if (q->elevator)
4594 				blk_mq_tag_update_sched_shared_tags(q);
4595 			else
4596 				blk_mq_tag_resize_shared_tags(set, nr);
4597 		}
4598 	}
4599 
4600 	blk_mq_unquiesce_queue(q);
4601 	blk_mq_unfreeze_queue(q);
4602 
4603 	return ret;
4604 }
4605 
4606 /*
4607  * request_queue and elevator_type pair.
4608  * It is just used by __blk_mq_update_nr_hw_queues to cache
4609  * the elevator_type associated with a request_queue.
4610  */
4611 struct blk_mq_qe_pair {
4612 	struct list_head node;
4613 	struct request_queue *q;
4614 	struct elevator_type *type;
4615 };
4616 
4617 /*
4618  * Cache the elevator_type in qe pair list and switch the
4619  * io scheduler to 'none'
4620  */
4621 static bool blk_mq_elv_switch_none(struct list_head *head,
4622 		struct request_queue *q)
4623 {
4624 	struct blk_mq_qe_pair *qe;
4625 
4626 	if (!q->elevator)
4627 		return true;
4628 
4629 	qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
4630 	if (!qe)
4631 		return false;
4632 
4633 	/* q->elevator needs protection from ->sysfs_lock */
4634 	mutex_lock(&q->sysfs_lock);
4635 
4636 	INIT_LIST_HEAD(&qe->node);
4637 	qe->q = q;
4638 	qe->type = q->elevator->type;
4639 	/* keep a reference to the elevator module as we'll switch back */
4640 	__elevator_get(qe->type);
4641 	list_add(&qe->node, head);
4642 	elevator_disable(q);
4643 	mutex_unlock(&q->sysfs_lock);
4644 
4645 	return true;
4646 }
4647 
4648 static struct blk_mq_qe_pair *blk_lookup_qe_pair(struct list_head *head,
4649 						struct request_queue *q)
4650 {
4651 	struct blk_mq_qe_pair *qe;
4652 
4653 	list_for_each_entry(qe, head, node)
4654 		if (qe->q == q)
4655 			return qe;
4656 
4657 	return NULL;
4658 }
4659 
4660 static void blk_mq_elv_switch_back(struct list_head *head,
4661 				  struct request_queue *q)
4662 {
4663 	struct blk_mq_qe_pair *qe;
4664 	struct elevator_type *t;
4665 
4666 	qe = blk_lookup_qe_pair(head, q);
4667 	if (!qe)
4668 		return;
4669 	t = qe->type;
4670 	list_del(&qe->node);
4671 	kfree(qe);
4672 
4673 	mutex_lock(&q->sysfs_lock);
4674 	elevator_switch(q, t);
4675 	/* drop the reference acquired in blk_mq_elv_switch_none */
4676 	elevator_put(t);
4677 	mutex_unlock(&q->sysfs_lock);
4678 }
4679 
4680 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
4681 							int nr_hw_queues)
4682 {
4683 	struct request_queue *q;
4684 	LIST_HEAD(head);
4685 	int prev_nr_hw_queues;
4686 
4687 	lockdep_assert_held(&set->tag_list_lock);
4688 
4689 	if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
4690 		nr_hw_queues = nr_cpu_ids;
4691 	if (nr_hw_queues < 1)
4692 		return;
4693 	if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
4694 		return;
4695 
4696 	list_for_each_entry(q, &set->tag_list, tag_set_list)
4697 		blk_mq_freeze_queue(q);
4698 	/*
4699 	 * Switch IO scheduler to 'none', cleaning up the data associated
4700 	 * with the previous scheduler. We will switch back once we are done
4701 	 * updating the new sw to hw queue mappings.
4702 	 */
4703 	list_for_each_entry(q, &set->tag_list, tag_set_list)
4704 		if (!blk_mq_elv_switch_none(&head, q))
4705 			goto switch_back;
4706 
4707 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
4708 		blk_mq_debugfs_unregister_hctxs(q);
4709 		blk_mq_sysfs_unregister_hctxs(q);
4710 	}
4711 
4712 	prev_nr_hw_queues = set->nr_hw_queues;
4713 	if (blk_mq_realloc_tag_set_tags(set, nr_hw_queues) < 0)
4714 		goto reregister;
4715 
4716 fallback:
4717 	blk_mq_update_queue_map(set);
4718 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
4719 		blk_mq_realloc_hw_ctxs(set, q);
4720 		blk_mq_update_poll_flag(q);
4721 		if (q->nr_hw_queues != set->nr_hw_queues) {
4722 			int i = prev_nr_hw_queues;
4723 
4724 			pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
4725 					nr_hw_queues, prev_nr_hw_queues);
4726 			for (; i < set->nr_hw_queues; i++)
4727 				__blk_mq_free_map_and_rqs(set, i);
4728 
4729 			set->nr_hw_queues = prev_nr_hw_queues;
4730 			blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4731 			goto fallback;
4732 		}
4733 		blk_mq_map_swqueue(q);
4734 	}
4735 
4736 reregister:
4737 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
4738 		blk_mq_sysfs_register_hctxs(q);
4739 		blk_mq_debugfs_register_hctxs(q);
4740 	}
4741 
4742 switch_back:
4743 	list_for_each_entry(q, &set->tag_list, tag_set_list)
4744 		blk_mq_elv_switch_back(&head, q);
4745 
4746 	list_for_each_entry(q, &set->tag_list, tag_set_list)
4747 		blk_mq_unfreeze_queue(q);
4748 }
4749 
4750 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
4751 {
4752 	mutex_lock(&set->tag_list_lock);
4753 	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
4754 	mutex_unlock(&set->tag_list_lock);
4755 }
4756 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
4757 
4758 /* Enable polling stats and return whether they were already enabled. */
4759 static bool blk_poll_stats_enable(struct request_queue *q)
4760 {
4761 	if (q->poll_stat)
4762 		return true;
4763 
4764 	return blk_stats_alloc_enable(q);
4765 }
4766 
4767 static void blk_mq_poll_stats_start(struct request_queue *q)
4768 {
4769 	/*
4770 	 * We don't arm the callback if polling stats are not enabled or the
4771 	 * callback is already active.
4772 	 */
4773 	if (!q->poll_stat || blk_stat_is_active(q->poll_cb))
4774 		return;
4775 
4776 	blk_stat_activate_msecs(q->poll_cb, 100);
4777 }
4778 
4779 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
4780 {
4781 	struct request_queue *q = cb->data;
4782 	int bucket;
4783 
4784 	for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
4785 		if (cb->stat[bucket].nr_samples)
4786 			q->poll_stat[bucket] = cb->stat[bucket];
4787 	}
4788 }
4789 
4790 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
4791 				       struct request *rq)
4792 {
4793 	unsigned long ret = 0;
4794 	int bucket;
4795 
4796 	/*
4797 	 * If stats collection isn't on, don't sleep but turn it on for
4798 	 * future users
4799 	 */
4800 	if (!blk_poll_stats_enable(q))
4801 		return 0;
4802 
4803 	/*
4804 	 * As an optimistic guess, use half of the mean service time
4805 	 * for this type of request. We can (and should) make this smarter.
4806 	 * For instance, if the completion latencies are tight, we can
4807 	 * get closer than just half the mean. This is especially
4808 	 * important on devices where the completion latencies are longer
4809 	 * than ~10 usec. We do use the stats for the relevant IO size
4810 	 * if available which does lead to better estimates.
4811 	 */
4812 	bucket = blk_mq_poll_stats_bkt(rq);
4813 	if (bucket < 0)
4814 		return ret;
4815 
4816 	if (q->poll_stat[bucket].nr_samples)
4817 		ret = (q->poll_stat[bucket].mean + 1) / 2;
4818 
4819 	return ret;
4820 }
4821 
4822 static bool blk_mq_poll_hybrid(struct request_queue *q, blk_qc_t qc)
4823 {
4824 	struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, qc);
4825 	struct request *rq = blk_qc_to_rq(hctx, qc);
4826 	struct hrtimer_sleeper hs;
4827 	enum hrtimer_mode mode;
4828 	unsigned int nsecs;
4829 	ktime_t kt;
4830 
4831 	/*
4832 	 * If a request has completed on queue that uses an I/O scheduler, we
4833 	 * won't get back a request from blk_qc_to_rq.
4834 	 */
4835 	if (!rq || (rq->rq_flags & RQF_MQ_POLL_SLEPT))
4836 		return false;
4837 
4838 	/*
4839 	 * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
4840 	 *
4841 	 *  0:	use half of prev avg
4842 	 * >0:	use this specific value
4843 	 */
4844 	if (q->poll_nsec > 0)
4845 		nsecs = q->poll_nsec;
4846 	else
4847 		nsecs = blk_mq_poll_nsecs(q, rq);
4848 
4849 	if (!nsecs)
4850 		return false;
4851 
4852 	rq->rq_flags |= RQF_MQ_POLL_SLEPT;
4853 
4854 	/*
4855 	 * This will be replaced with the stats tracking code, using
4856 	 * 'avg_completion_time / 2' as the pre-sleep target.
4857 	 */
4858 	kt = nsecs;
4859 
4860 	mode = HRTIMER_MODE_REL;
4861 	hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode);
4862 	hrtimer_set_expires(&hs.timer, kt);
4863 
4864 	do {
4865 		if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
4866 			break;
4867 		set_current_state(TASK_UNINTERRUPTIBLE);
4868 		hrtimer_sleeper_start_expires(&hs, mode);
4869 		if (hs.task)
4870 			io_schedule();
4871 		hrtimer_cancel(&hs.timer);
4872 		mode = HRTIMER_MODE_ABS;
4873 	} while (hs.task && !signal_pending(current));
4874 
4875 	__set_current_state(TASK_RUNNING);
4876 	destroy_hrtimer_on_stack(&hs.timer);
4877 
4878 	/*
4879 	 * If we sleep, have the caller restart the poll loop to reset the
4880 	 * state.  Like for the other success return cases, the caller is
4881 	 * responsible for checking if the IO completed.  If the IO isn't
4882 	 * complete, we'll get called again and will go straight to the busy
4883 	 * poll loop.
4884 	 */
4885 	return true;
4886 }
4887 
4888 static int blk_mq_poll_classic(struct request_queue *q, blk_qc_t cookie,
4889 			       struct io_comp_batch *iob, unsigned int flags)
4890 {
4891 	struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, cookie);
4892 	long state = get_current_state();
4893 	int ret;
4894 
4895 	do {
4896 		ret = q->mq_ops->poll(hctx, iob);
4897 		if (ret > 0) {
4898 			__set_current_state(TASK_RUNNING);
4899 			return ret;
4900 		}
4901 
4902 		if (signal_pending_state(state, current))
4903 			__set_current_state(TASK_RUNNING);
4904 		if (task_is_running(current))
4905 			return 1;
4906 
4907 		if (ret < 0 || (flags & BLK_POLL_ONESHOT))
4908 			break;
4909 		cpu_relax();
4910 	} while (!need_resched());
4911 
4912 	__set_current_state(TASK_RUNNING);
4913 	return 0;
4914 }
4915 
4916 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie, struct io_comp_batch *iob,
4917 		unsigned int flags)
4918 {
4919 	if (!(flags & BLK_POLL_NOSLEEP) &&
4920 	    q->poll_nsec != BLK_MQ_POLL_CLASSIC) {
4921 		if (blk_mq_poll_hybrid(q, cookie))
4922 			return 1;
4923 	}
4924 	return blk_mq_poll_classic(q, cookie, iob, flags);
4925 }
4926 
4927 unsigned int blk_mq_rq_cpu(struct request *rq)
4928 {
4929 	return rq->mq_ctx->cpu;
4930 }
4931 EXPORT_SYMBOL(blk_mq_rq_cpu);
4932 
4933 void blk_mq_cancel_work_sync(struct request_queue *q)
4934 {
4935 	struct blk_mq_hw_ctx *hctx;
4936 	unsigned long i;
4937 
4938 	cancel_delayed_work_sync(&q->requeue_work);
4939 
4940 	queue_for_each_hw_ctx(q, hctx, i)
4941 		cancel_delayed_work_sync(&hctx->run_work);
4942 }
4943 
4944 static int __init blk_mq_init(void)
4945 {
4946 	int i;
4947 
4948 	for_each_possible_cpu(i)
4949 		init_llist_head(&per_cpu(blk_cpu_done, i));
4950 	open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
4951 
4952 	cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
4953 				  "block/softirq:dead", NULL,
4954 				  blk_softirq_cpu_dead);
4955 	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
4956 				blk_mq_hctx_notify_dead);
4957 	cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
4958 				blk_mq_hctx_notify_online,
4959 				blk_mq_hctx_notify_offline);
4960 	return 0;
4961 }
4962 subsys_initcall(blk_mq_init);
4963