xref: /linux/crypto/keywrap.c (revision c9683276)
1 /*
2  * Key Wrapping: RFC3394 / NIST SP800-38F
3  *
4  * Copyright (C) 2015, Stephan Mueller <smueller@chronox.de>
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, and the entire permission notice in its entirety,
11  *    including the disclaimer of warranties.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. The name of the author may not be used to endorse or promote
16  *    products derived from this software without specific prior
17  *    written permission.
18  *
19  * ALTERNATIVELY, this product may be distributed under the terms of
20  * the GNU General Public License, in which case the provisions of the GPL2
21  * are required INSTEAD OF the above restrictions.  (This clause is
22  * necessary due to a potential bad interaction between the GPL and
23  * the restrictions contained in a BSD-style copyright.)
24  *
25  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
26  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
27  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
28  * WHICH ARE HEREBY DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE
29  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
31  * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
32  * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
33  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
34  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
35  * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
36  * DAMAGE.
37  */
38 
39 /*
40  * Note for using key wrapping:
41  *
42  *	* The result of the encryption operation is the ciphertext starting
43  *	  with the 2nd semiblock. The first semiblock is provided as the IV.
44  *	  The IV used to start the encryption operation is the default IV.
45  *
46  *	* The input for the decryption is the first semiblock handed in as an
47  *	  IV. The ciphertext is the data starting with the 2nd semiblock. The
48  *	  return code of the decryption operation will be EBADMSG in case an
49  *	  integrity error occurs.
50  *
51  * To obtain the full result of an encryption as expected by SP800-38F, the
52  * caller must allocate a buffer of plaintext + 8 bytes:
53  *
54  *	unsigned int datalen = ptlen + crypto_skcipher_ivsize(tfm);
55  *	u8 data[datalen];
56  *	u8 *iv = data;
57  *	u8 *pt = data + crypto_skcipher_ivsize(tfm);
58  *		<ensure that pt contains the plaintext of size ptlen>
59  *	sg_init_one(&sg, ptdata, ptlen);
60  *	skcipher_request_set_crypt(req, &sg, &sg, ptlen, iv);
61  *
62  *	==> After encryption, data now contains full KW result as per SP800-38F.
63  *
64  * In case of decryption, ciphertext now already has the expected length
65  * and must be segmented appropriately:
66  *
67  *	unsigned int datalen = CTLEN;
68  *	u8 data[datalen];
69  *		<ensure that data contains full ciphertext>
70  *	u8 *iv = data;
71  *	u8 *ct = data + crypto_skcipher_ivsize(tfm);
72  *	unsigned int ctlen = datalen - crypto_skcipher_ivsize(tfm);
73  *	sg_init_one(&sg, ctdata, ctlen);
74  *	skcipher_request_set_crypt(req, &sg, &sg, ptlen, iv);
75  *
76  *	==> After decryption (which hopefully does not return EBADMSG), the ct
77  *	pointer now points to the plaintext of size ctlen.
78  *
79  * Note 2: KWP is not implemented as this would defy in-place operation.
80  *	   If somebody wants to wrap non-aligned data, he should simply pad
81  *	   the input with zeros to fill it up to the 8 byte boundary.
82  */
83 
84 #include <linux/module.h>
85 #include <linux/crypto.h>
86 #include <linux/scatterlist.h>
87 #include <crypto/scatterwalk.h>
88 #include <crypto/internal/skcipher.h>
89 
90 struct crypto_kw_ctx {
91 	struct crypto_cipher *child;
92 };
93 
94 struct crypto_kw_block {
95 #define SEMIBSIZE 8
96 	__be64 A;
97 	__be64 R;
98 };
99 
100 /*
101  * Fast forward the SGL to the "end" length minus SEMIBSIZE.
102  * The start in the SGL defined by the fast-forward is returned with
103  * the walk variable
104  */
105 static void crypto_kw_scatterlist_ff(struct scatter_walk *walk,
106 				     struct scatterlist *sg,
107 				     unsigned int end)
108 {
109 	unsigned int skip = 0;
110 
111 	/* The caller should only operate on full SEMIBLOCKs. */
112 	BUG_ON(end < SEMIBSIZE);
113 
114 	skip = end - SEMIBSIZE;
115 	while (sg) {
116 		if (sg->length > skip) {
117 			scatterwalk_start(walk, sg);
118 			scatterwalk_advance(walk, skip);
119 			break;
120 		} else
121 			skip -= sg->length;
122 
123 		sg = sg_next(sg);
124 	}
125 }
126 
127 static int crypto_kw_decrypt(struct blkcipher_desc *desc,
128 			     struct scatterlist *dst, struct scatterlist *src,
129 			     unsigned int nbytes)
130 {
131 	struct crypto_blkcipher *tfm = desc->tfm;
132 	struct crypto_kw_ctx *ctx = crypto_blkcipher_ctx(tfm);
133 	struct crypto_cipher *child = ctx->child;
134 	struct crypto_kw_block block;
135 	struct scatterlist *lsrc, *ldst;
136 	u64 t = 6 * ((nbytes) >> 3);
137 	unsigned int i;
138 	int ret = 0;
139 
140 	/*
141 	 * Require at least 2 semiblocks (note, the 3rd semiblock that is
142 	 * required by SP800-38F is the IV.
143 	 */
144 	if (nbytes < (2 * SEMIBSIZE) || nbytes % SEMIBSIZE)
145 		return -EINVAL;
146 
147 	/* Place the IV into block A */
148 	memcpy(&block.A, desc->info, SEMIBSIZE);
149 
150 	/*
151 	 * src scatterlist is read-only. dst scatterlist is r/w. During the
152 	 * first loop, lsrc points to src and ldst to dst. For any
153 	 * subsequent round, the code operates on dst only.
154 	 */
155 	lsrc = src;
156 	ldst = dst;
157 
158 	for (i = 0; i < 6; i++) {
159 		struct scatter_walk src_walk, dst_walk;
160 		unsigned int tmp_nbytes = nbytes;
161 
162 		while (tmp_nbytes) {
163 			/* move pointer by tmp_nbytes in the SGL */
164 			crypto_kw_scatterlist_ff(&src_walk, lsrc, tmp_nbytes);
165 			/* get the source block */
166 			scatterwalk_copychunks(&block.R, &src_walk, SEMIBSIZE,
167 					       false);
168 
169 			/* perform KW operation: modify IV with counter */
170 			block.A ^= cpu_to_be64(t);
171 			t--;
172 			/* perform KW operation: decrypt block */
173 			crypto_cipher_decrypt_one(child, (u8*)&block,
174 						  (u8*)&block);
175 
176 			/* move pointer by tmp_nbytes in the SGL */
177 			crypto_kw_scatterlist_ff(&dst_walk, ldst, tmp_nbytes);
178 			/* Copy block->R into place */
179 			scatterwalk_copychunks(&block.R, &dst_walk, SEMIBSIZE,
180 					       true);
181 
182 			tmp_nbytes -= SEMIBSIZE;
183 		}
184 
185 		/* we now start to operate on the dst SGL only */
186 		lsrc = dst;
187 		ldst = dst;
188 	}
189 
190 	/* Perform authentication check */
191 	if (block.A != cpu_to_be64(0xa6a6a6a6a6a6a6a6ULL))
192 		ret = -EBADMSG;
193 
194 	memzero_explicit(&block, sizeof(struct crypto_kw_block));
195 
196 	return ret;
197 }
198 
199 static int crypto_kw_encrypt(struct blkcipher_desc *desc,
200 			     struct scatterlist *dst, struct scatterlist *src,
201 			     unsigned int nbytes)
202 {
203 	struct crypto_blkcipher *tfm = desc->tfm;
204 	struct crypto_kw_ctx *ctx = crypto_blkcipher_ctx(tfm);
205 	struct crypto_cipher *child = ctx->child;
206 	struct crypto_kw_block block;
207 	struct scatterlist *lsrc, *ldst;
208 	u64 t = 1;
209 	unsigned int i;
210 
211 	/*
212 	 * Require at least 2 semiblocks (note, the 3rd semiblock that is
213 	 * required by SP800-38F is the IV that occupies the first semiblock.
214 	 * This means that the dst memory must be one semiblock larger than src.
215 	 * Also ensure that the given data is aligned to semiblock.
216 	 */
217 	if (nbytes < (2 * SEMIBSIZE) || nbytes % SEMIBSIZE)
218 		return -EINVAL;
219 
220 	/*
221 	 * Place the predefined IV into block A -- for encrypt, the caller
222 	 * does not need to provide an IV, but he needs to fetch the final IV.
223 	 */
224 	block.A = cpu_to_be64(0xa6a6a6a6a6a6a6a6ULL);
225 
226 	/*
227 	 * src scatterlist is read-only. dst scatterlist is r/w. During the
228 	 * first loop, lsrc points to src and ldst to dst. For any
229 	 * subsequent round, the code operates on dst only.
230 	 */
231 	lsrc = src;
232 	ldst = dst;
233 
234 	for (i = 0; i < 6; i++) {
235 		struct scatter_walk src_walk, dst_walk;
236 		unsigned int tmp_nbytes = nbytes;
237 
238 		scatterwalk_start(&src_walk, lsrc);
239 		scatterwalk_start(&dst_walk, ldst);
240 
241 		while (tmp_nbytes) {
242 			/* get the source block */
243 			scatterwalk_copychunks(&block.R, &src_walk, SEMIBSIZE,
244 					       false);
245 
246 			/* perform KW operation: encrypt block */
247 			crypto_cipher_encrypt_one(child, (u8 *)&block,
248 						  (u8 *)&block);
249 			/* perform KW operation: modify IV with counter */
250 			block.A ^= cpu_to_be64(t);
251 			t++;
252 
253 			/* Copy block->R into place */
254 			scatterwalk_copychunks(&block.R, &dst_walk, SEMIBSIZE,
255 					       true);
256 
257 			tmp_nbytes -= SEMIBSIZE;
258 		}
259 
260 		/* we now start to operate on the dst SGL only */
261 		lsrc = dst;
262 		ldst = dst;
263 	}
264 
265 	/* establish the IV for the caller to pick up */
266 	memcpy(desc->info, &block.A, SEMIBSIZE);
267 
268 	memzero_explicit(&block, sizeof(struct crypto_kw_block));
269 
270 	return 0;
271 }
272 
273 static int crypto_kw_setkey(struct crypto_tfm *parent, const u8 *key,
274 			    unsigned int keylen)
275 {
276 	struct crypto_kw_ctx *ctx = crypto_tfm_ctx(parent);
277 	struct crypto_cipher *child = ctx->child;
278 	int err;
279 
280 	crypto_cipher_clear_flags(child, CRYPTO_TFM_REQ_MASK);
281 	crypto_cipher_set_flags(child, crypto_tfm_get_flags(parent) &
282 				       CRYPTO_TFM_REQ_MASK);
283 	err = crypto_cipher_setkey(child, key, keylen);
284 	crypto_tfm_set_flags(parent, crypto_cipher_get_flags(child) &
285 				     CRYPTO_TFM_RES_MASK);
286 	return err;
287 }
288 
289 static int crypto_kw_init_tfm(struct crypto_tfm *tfm)
290 {
291 	struct crypto_instance *inst = crypto_tfm_alg_instance(tfm);
292 	struct crypto_spawn *spawn = crypto_instance_ctx(inst);
293 	struct crypto_kw_ctx *ctx = crypto_tfm_ctx(tfm);
294 	struct crypto_cipher *cipher;
295 
296 	cipher = crypto_spawn_cipher(spawn);
297 	if (IS_ERR(cipher))
298 		return PTR_ERR(cipher);
299 
300 	ctx->child = cipher;
301 	return 0;
302 }
303 
304 static void crypto_kw_exit_tfm(struct crypto_tfm *tfm)
305 {
306 	struct crypto_kw_ctx *ctx = crypto_tfm_ctx(tfm);
307 
308 	crypto_free_cipher(ctx->child);
309 }
310 
311 static struct crypto_instance *crypto_kw_alloc(struct rtattr **tb)
312 {
313 	struct crypto_instance *inst = NULL;
314 	struct crypto_alg *alg = NULL;
315 	int err;
316 
317 	err = crypto_check_attr_type(tb, CRYPTO_ALG_TYPE_BLKCIPHER);
318 	if (err)
319 		return ERR_PTR(err);
320 
321 	alg = crypto_get_attr_alg(tb, CRYPTO_ALG_TYPE_CIPHER,
322 				  CRYPTO_ALG_TYPE_MASK);
323 	if (IS_ERR(alg))
324 		return ERR_CAST(alg);
325 
326 	inst = ERR_PTR(-EINVAL);
327 	/* Section 5.1 requirement for KW */
328 	if (alg->cra_blocksize != sizeof(struct crypto_kw_block))
329 		goto err;
330 
331 	inst = crypto_alloc_instance("kw", alg);
332 	if (IS_ERR(inst))
333 		goto err;
334 
335 	inst->alg.cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER;
336 	inst->alg.cra_priority = alg->cra_priority;
337 	inst->alg.cra_blocksize = SEMIBSIZE;
338 	inst->alg.cra_alignmask = 0;
339 	inst->alg.cra_type = &crypto_blkcipher_type;
340 	inst->alg.cra_blkcipher.ivsize = SEMIBSIZE;
341 	inst->alg.cra_blkcipher.min_keysize = alg->cra_cipher.cia_min_keysize;
342 	inst->alg.cra_blkcipher.max_keysize = alg->cra_cipher.cia_max_keysize;
343 
344 	inst->alg.cra_ctxsize = sizeof(struct crypto_kw_ctx);
345 
346 	inst->alg.cra_init = crypto_kw_init_tfm;
347 	inst->alg.cra_exit = crypto_kw_exit_tfm;
348 
349 	inst->alg.cra_blkcipher.setkey = crypto_kw_setkey;
350 	inst->alg.cra_blkcipher.encrypt = crypto_kw_encrypt;
351 	inst->alg.cra_blkcipher.decrypt = crypto_kw_decrypt;
352 
353 err:
354 	crypto_mod_put(alg);
355 	return inst;
356 }
357 
358 static void crypto_kw_free(struct crypto_instance *inst)
359 {
360 	crypto_drop_spawn(crypto_instance_ctx(inst));
361 	kfree(inst);
362 }
363 
364 static struct crypto_template crypto_kw_tmpl = {
365 	.name = "kw",
366 	.alloc = crypto_kw_alloc,
367 	.free = crypto_kw_free,
368 	.module = THIS_MODULE,
369 };
370 
371 static int __init crypto_kw_init(void)
372 {
373 	return crypto_register_template(&crypto_kw_tmpl);
374 }
375 
376 static void __exit crypto_kw_exit(void)
377 {
378 	crypto_unregister_template(&crypto_kw_tmpl);
379 }
380 
381 module_init(crypto_kw_init);
382 module_exit(crypto_kw_exit);
383 
384 MODULE_LICENSE("Dual BSD/GPL");
385 MODULE_AUTHOR("Stephan Mueller <smueller@chronox.de>");
386 MODULE_DESCRIPTION("Key Wrapping (RFC3394 / NIST SP800-38F)");
387 MODULE_ALIAS_CRYPTO("kw");
388