1 // SPDX-License-Identifier: GPL-2.0
2 
3 /*
4  * Copyright 2020-2022 HabanaLabs, Ltd.
5  * All Rights Reserved.
6  */
7 
8 #include "../habanalabs.h"
9 #include "../../include/hw_ip/mmu/mmu_general.h"
10 
11 #include <linux/slab.h>
12 
13 static struct pgt_info *hl_mmu_v2_hr_get_pgt_info(struct hl_ctx *ctx, u64 phys_hop_addr)
14 {
15 	struct pgt_info *pgt_info = NULL;
16 
17 	hash_for_each_possible(ctx->hr_mmu_phys_hash, pgt_info, node,
18 				(unsigned long) phys_hop_addr)
19 		if (phys_hop_addr == pgt_info->phys_addr)
20 			break;
21 
22 	return pgt_info;
23 }
24 
25 static void hl_mmu_v2_hr_add_pgt_info(struct hl_ctx *ctx, struct pgt_info *pgt_info,
26 					dma_addr_t phys_addr)
27 {
28 	hash_add(ctx->hr_mmu_phys_hash, &pgt_info->node, phys_addr);
29 }
30 
31 static struct pgt_info *hl_mmu_v2_hr_get_hop0_pgt_info(struct hl_ctx *ctx)
32 {
33 	return &ctx->hdev->mmu_priv.hr.mmu_asid_hop0[ctx->asid];
34 }
35 
36 /**
37  * hl_mmu_v2_hr_init() - initialize the MMU module.
38  * @hdev: habanalabs device structure.
39  *
40  * This function does the following:
41  * - Create a pool of pages for pgt_infos.
42  * - Create a shadow table for pgt
43  *
44  * Return: 0 for success, non-zero for failure.
45  */
46 static inline int hl_mmu_v2_hr_init(struct hl_device *hdev)
47 {
48 	struct asic_fixed_properties *prop = &hdev->asic_prop;
49 
50 	return hl_mmu_hr_init(hdev, &hdev->mmu_priv.hr, prop->mmu_hop_table_size,
51 				prop->mmu_pgt_size);
52 }
53 
54 /**
55  * hl_mmu_v2_hr_fini() - release the MMU module.
56  * @hdev: habanalabs device structure.
57  *
58  * This function does the following:
59  * - Disable MMU in H/W.
60  * - Free the pgt_infos pool.
61  *
62  * All contexts should be freed before calling this function.
63  */
64 static inline void hl_mmu_v2_hr_fini(struct hl_device *hdev)
65 {
66 	struct asic_fixed_properties *prop = &hdev->asic_prop;
67 
68 	hl_mmu_hr_fini(hdev, &hdev->mmu_priv.hr, prop->mmu_hop_table_size);
69 }
70 
71 /**
72  * hl_mmu_v2_hr_ctx_init() - initialize a context for using the MMU module.
73  * @ctx: pointer to the context structure to initialize.
74  *
75  * Initialize a mutex to protect the concurrent mapping flow, a hash to hold all
76  * page tables hops related to this context.
77  * Return: 0 on success, non-zero otherwise.
78  */
79 static int hl_mmu_v2_hr_ctx_init(struct hl_ctx *ctx)
80 {
81 	hash_init(ctx->hr_mmu_phys_hash);
82 	return 0;
83 }
84 
85 /*
86  * hl_mmu_v2_hr_ctx_fini - disable a ctx from using the mmu module
87  *
88  * @ctx: pointer to the context structure
89  *
90  * This function does the following:
91  * - Free any pgts which were not freed yet
92  * - Free the mutex
93  * - Free DRAM default page mapping hops
94  */
95 static void hl_mmu_v2_hr_ctx_fini(struct hl_ctx *ctx)
96 {
97 	struct hl_device *hdev = ctx->hdev;
98 	struct pgt_info *pgt_info;
99 	struct hlist_node *tmp;
100 	int i;
101 
102 	if (!hash_empty(ctx->hr_mmu_phys_hash))
103 		dev_err(hdev->dev, "ctx %d is freed while it has pgts in use\n",
104 			ctx->asid);
105 
106 	hash_for_each_safe(ctx->hr_mmu_phys_hash, i, tmp, pgt_info, node) {
107 		dev_err_ratelimited(hdev->dev,
108 			"pgt_info of addr 0x%llx of asid %d was not destroyed, num_ptes: %d\n",
109 			pgt_info->phys_addr, ctx->asid, pgt_info->num_of_ptes);
110 		hl_mmu_hr_free_hop_remove_pgt(pgt_info, &ctx->hdev->mmu_priv.hr,
111 							ctx->hdev->asic_prop.mmu_hop_table_size);
112 	}
113 }
114 
115 static int _hl_mmu_v2_hr_unmap(struct hl_ctx *ctx,
116 				u64 virt_addr, bool is_dram_addr)
117 {
118 	u64 curr_pte, scrambled_virt_addr, hop_pte_phys_addr[MMU_ARCH_6_HOPS] = { 0 };
119 	struct pgt_info *hops_pgt_info[MMU_ARCH_6_HOPS] = { NULL };
120 	struct hl_device *hdev = ctx->hdev;
121 	struct asic_fixed_properties *prop;
122 	struct hl_mmu_properties *mmu_prop;
123 	bool is_huge = false;
124 	int i, hop_last;
125 
126 	prop = &hdev->asic_prop;
127 
128 	/* shifts and masks are the same in PMMU and HMMU, use one of them */
129 	mmu_prop = is_dram_addr ? &prop->dmmu : &prop->pmmu;
130 	hop_last = mmu_prop->num_hops - 1;
131 
132 	scrambled_virt_addr = hdev->asic_funcs->scramble_addr(hdev, virt_addr);
133 	curr_pte = 0;
134 
135 	for (i = 0 ; i < mmu_prop->num_hops ; i++) {
136 		/* we get HOP0 differently, it doesn't need curr_pte */
137 		if (i == 0)
138 			hops_pgt_info[i] = hl_mmu_v2_hr_get_hop0_pgt_info(ctx);
139 		else
140 			hops_pgt_info[i] = hl_mmu_hr_get_next_hop_pgt_info(ctx,
141 					&ctx->hdev->mmu_func[MMU_HR_PGT].hr_funcs, curr_pte);
142 		if (!hops_pgt_info[i])
143 			goto not_mapped;
144 
145 		hop_pte_phys_addr[i] = hl_mmu_get_hop_pte_phys_addr(ctx, mmu_prop, i,
146 									hops_pgt_info[i]->phys_addr,
147 									scrambled_virt_addr);
148 		if (hop_pte_phys_addr[i] == U64_MAX)
149 			return -EFAULT;
150 
151 		curr_pte = *(u64 *) (uintptr_t) hl_mmu_hr_pte_phys_to_virt(ctx, hops_pgt_info[i],
152 							hop_pte_phys_addr[i],
153 							ctx->hdev->asic_prop.mmu_hop_table_size);
154 
155 		if ((i < hop_last) && (curr_pte & mmu_prop->last_mask)) {
156 			hop_last = i;
157 			is_huge = true;
158 			break;
159 		}
160 	}
161 
162 	if (is_dram_addr && !is_huge) {
163 		dev_err(hdev->dev, "DRAM unmapping should use huge pages only\n");
164 		return -EFAULT;
165 	}
166 
167 	if (!(curr_pte & PAGE_PRESENT_MASK))
168 		goto not_mapped;
169 
170 	for (i = hop_last ; i > 0 ; i--) {
171 		hl_mmu_hr_clear_pte(ctx, hops_pgt_info[i], hop_pte_phys_addr[i],
172 						ctx->hdev->asic_prop.mmu_hop_table_size);
173 
174 		if (hl_mmu_hr_put_pte(ctx, hops_pgt_info[i], &ctx->hdev->mmu_priv.hr,
175 						ctx->hdev->asic_prop.mmu_hop_table_size))
176 			goto mapped;
177 	}
178 	hl_mmu_hr_clear_pte(ctx, hops_pgt_info[0], hop_pte_phys_addr[0],
179 						ctx->hdev->asic_prop.mmu_hop_table_size);
180 
181 mapped:
182 	return 0;
183 
184 not_mapped:
185 	dev_err(hdev->dev, "virt addr 0x%llx is not mapped to phys addr\n", virt_addr);
186 
187 	return -EINVAL;
188 }
189 
190 static int hl_mmu_v2_get_last_hop(struct hl_mmu_properties *mmu_prop, u32 page_size)
191 {
192 	int hop;
193 
194 	for (hop = (mmu_prop->num_hops - 1); hop; hop--) {
195 		if (mmu_prop->hop_shifts[hop] == 0)
196 			continue;
197 
198 		if (page_size <= (1 << mmu_prop->hop_shifts[hop]))
199 			break;
200 	}
201 
202 	return hop;
203 }
204 
205 static int _hl_mmu_v2_hr_map(struct hl_ctx *ctx,
206 			u64 virt_addr, u64 phys_addr,
207 			u32 page_size, bool is_dram_addr)
208 {
209 	u64 hop_pte_phys_addr[MMU_ARCH_6_HOPS] = { 0 },
210 		curr_pte = 0, scrambled_virt_addr, scrambled_phys_addr;
211 	struct pgt_info *hops_pgt_info[MMU_ARCH_6_HOPS] = { NULL };
212 	bool hop_new[MMU_ARCH_6_HOPS] = { false };
213 	struct hl_device *hdev = ctx->hdev;
214 	struct asic_fixed_properties *prop = &hdev->asic_prop;
215 	struct hl_mmu_properties *mmu_prop;
216 	int i, hop_last, rc = -ENOMEM;
217 
218 	/*
219 	 * This mapping function can map a page or a huge page. For huge page
220 	 * there are only 4 hops rather than 5. Currently the DRAM allocation
221 	 * uses huge pages only but user memory could have been allocated with
222 	 * one of the two page sizes. Since this is a common code for all the
223 	 * three cases, we need this hugs page check.
224 	 */
225 	if (is_dram_addr)
226 		mmu_prop = &prop->dmmu;
227 	else if (page_size == prop->pmmu_huge.page_size)
228 		mmu_prop = &prop->pmmu_huge;
229 	else
230 		mmu_prop = &prop->pmmu;
231 
232 	hop_last = hl_mmu_v2_get_last_hop(mmu_prop, page_size);
233 	if (hop_last <= 0) {
234 		dev_err(ctx->hdev->dev, "Invalid last HOP %d\n", hop_last);
235 		return -EFAULT;
236 	}
237 
238 	scrambled_virt_addr = hdev->asic_funcs->scramble_addr(hdev, virt_addr);
239 	scrambled_phys_addr = hdev->asic_funcs->scramble_addr(hdev, phys_addr);
240 
241 	for (i = 0 ; i <= hop_last ; i++) {
242 
243 		if (i == 0)
244 			hops_pgt_info[i] = hl_mmu_v2_hr_get_hop0_pgt_info(ctx);
245 		else
246 			hops_pgt_info[i] = hl_mmu_hr_get_alloc_next_hop(ctx,
247 							&ctx->hdev->mmu_priv.hr,
248 							&ctx->hdev->mmu_func[MMU_HR_PGT].hr_funcs,
249 							mmu_prop, curr_pte, &hop_new[i]);
250 		if (!hops_pgt_info[i])
251 			goto err;
252 
253 		hop_pte_phys_addr[i] = hl_mmu_get_hop_pte_phys_addr(ctx, mmu_prop, i,
254 									hops_pgt_info[i]->phys_addr,
255 									scrambled_virt_addr);
256 		curr_pte = *(u64 *) (uintptr_t) hl_mmu_hr_pte_phys_to_virt(ctx, hops_pgt_info[i],
257 							hop_pte_phys_addr[i],
258 							ctx->hdev->asic_prop.mmu_hop_table_size);
259 	}
260 
261 	if (curr_pte & PAGE_PRESENT_MASK) {
262 		dev_err(hdev->dev, "mapping already exists for virt_addr 0x%llx\n",
263 									scrambled_virt_addr);
264 
265 		for (i = 0 ; i <= hop_last ; i++)
266 			dev_dbg(hdev->dev, "hop%d pte: 0x%llx (0x%llx)\n",
267 					i,
268 					*(u64 *) (uintptr_t)
269 					hl_mmu_hr_pte_phys_to_virt(ctx, hops_pgt_info[i],
270 							hop_pte_phys_addr[i],
271 							ctx->hdev->asic_prop.mmu_hop_table_size),
272 					hop_pte_phys_addr[i]);
273 		rc = -EINVAL;
274 		goto err;
275 	}
276 
277 	curr_pte = (scrambled_phys_addr & HOP_PHYS_ADDR_MASK) | mmu_prop->last_mask
278 			| PAGE_PRESENT_MASK;
279 
280 	/* Write the PTEs */
281 	hl_mmu_hr_write_pte(ctx, hops_pgt_info[hop_last], hop_pte_phys_addr[hop_last], curr_pte,
282 							ctx->hdev->asic_prop.mmu_hop_table_size);
283 
284 	/* for each new hop, add its address to the table of previous-hop */
285 	for (i = 1 ; i <= hop_last ; i++) {
286 		if (hop_new[i]) {
287 			curr_pte = (hops_pgt_info[i]->phys_addr & HOP_PHYS_ADDR_MASK) |
288 							PAGE_PRESENT_MASK;
289 			hl_mmu_hr_write_pte(ctx, hops_pgt_info[i - 1], hop_pte_phys_addr[i - 1],
290 						curr_pte, ctx->hdev->asic_prop.mmu_hop_table_size);
291 			if (i - 1)
292 				hl_mmu_hr_get_pte(ctx, &ctx->hdev->mmu_func[MMU_HR_PGT].hr_funcs,
293 								hops_pgt_info[i - 1]->phys_addr);
294 		}
295 	}
296 
297 	hl_mmu_hr_get_pte(ctx, &ctx->hdev->mmu_func[MMU_HR_PGT].hr_funcs,
298 						hops_pgt_info[hop_last]->phys_addr);
299 
300 	return 0;
301 
302 err:
303 	for (i = 1 ; i <= hop_last ; i++)
304 		if (hop_new[i] && hops_pgt_info[i])
305 			hl_mmu_hr_free_hop_remove_pgt(hops_pgt_info[i], &ctx->hdev->mmu_priv.hr,
306 							ctx->hdev->asic_prop.mmu_hop_table_size);
307 
308 	return rc;
309 }
310 
311 /*
312  * hl_mmu_v2_swap_out - marks all mapping of the given ctx as swapped out
313  *
314  * @ctx: pointer to the context structure
315  *
316  */
317 static void hl_mmu_v2_hr_swap_out(struct hl_ctx *ctx)
318 {
319 
320 }
321 
322 /*
323  * hl_mmu_v2_swap_in - marks all mapping of the given ctx as swapped in
324  *
325  * @ctx: pointer to the context structure
326  *
327  */
328 static void hl_mmu_v2_hr_swap_in(struct hl_ctx *ctx)
329 {
330 
331 }
332 
333 static int hl_mmu_v2_hr_get_tlb_mapping_params(struct hl_device *hdev,
334 							struct hl_mmu_properties **mmu_prop,
335 							struct hl_mmu_hop_info *hops,
336 							u64 virt_addr, bool *is_huge)
337 {
338 	struct asic_fixed_properties *prop = &hdev->asic_prop;
339 	bool is_dram_addr, is_pmmu_addr, is_pmmu_h_addr;
340 
341 	is_dram_addr = hl_mem_area_inside_range(virt_addr, prop->dmmu.page_size,
342 						prop->dmmu.start_addr,
343 						prop->dmmu.end_addr);
344 	is_pmmu_addr = hl_mem_area_inside_range(virt_addr, prop->pmmu.page_size,
345 						prop->pmmu.start_addr,
346 						prop->pmmu.end_addr);
347 	is_pmmu_h_addr = hl_mem_area_inside_range(virt_addr,
348 						prop->pmmu_huge.page_size,
349 						prop->pmmu_huge.start_addr,
350 						prop->pmmu_huge.end_addr);
351 	if (is_dram_addr) {
352 		*mmu_prop = &prop->dmmu;
353 		*is_huge = true;
354 		hops->range_type = HL_VA_RANGE_TYPE_DRAM;
355 	} else if (is_pmmu_addr) {
356 		*mmu_prop = &prop->pmmu;
357 		*is_huge = false;
358 		hops->range_type = HL_VA_RANGE_TYPE_HOST;
359 	} else if (is_pmmu_h_addr) {
360 		*mmu_prop = &prop->pmmu_huge;
361 		*is_huge = true;
362 		hops->range_type = HL_VA_RANGE_TYPE_HOST_HUGE;
363 	} else {
364 		return -EINVAL;
365 	}
366 
367 	return 0;
368 }
369 
370 static int hl_mmu_v2_hr_get_tlb_info(struct hl_ctx *ctx, u64 virt_addr,
371 					struct hl_mmu_hop_info *hops)
372 {
373 	return hl_mmu_hr_get_tlb_info(ctx, virt_addr, hops,
374 					&ctx->hdev->mmu_func[MMU_HR_PGT].hr_funcs);
375 }
376 
377 /*
378  * hl_mmu_v2_prepare - prepare mmu_if for working with mmu v2
379  *
380  * @hdev: pointer to the device structure
381  * @mmu_if: pointer to the mmu interface structure
382  */
383 void hl_mmu_v2_hr_set_funcs(struct hl_device *hdev, struct hl_mmu_funcs *mmu)
384 {
385 	mmu->init = hl_mmu_v2_hr_init;
386 	mmu->fini = hl_mmu_v2_hr_fini;
387 	mmu->ctx_init = hl_mmu_v2_hr_ctx_init;
388 	mmu->ctx_fini = hl_mmu_v2_hr_ctx_fini;
389 	mmu->map = _hl_mmu_v2_hr_map;
390 	mmu->unmap = _hl_mmu_v2_hr_unmap;
391 	mmu->flush = hl_mmu_hr_flush;
392 	mmu->swap_out = hl_mmu_v2_hr_swap_out;
393 	mmu->swap_in = hl_mmu_v2_hr_swap_in;
394 	mmu->get_tlb_info = hl_mmu_v2_hr_get_tlb_info;
395 	mmu->hr_funcs.get_hop0_pgt_info = hl_mmu_v2_hr_get_hop0_pgt_info;
396 	mmu->hr_funcs.get_pgt_info = hl_mmu_v2_hr_get_pgt_info;
397 	mmu->hr_funcs.add_pgt_info = hl_mmu_v2_hr_add_pgt_info;
398 	mmu->hr_funcs.get_tlb_mapping_params = hl_mmu_v2_hr_get_tlb_mapping_params;
399 }
400