xref: /linux/drivers/accel/ivpu/ivpu_mmu.c (revision d642ef71)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2020-2023 Intel Corporation
4  */
5 
6 #include <linux/circ_buf.h>
7 #include <linux/highmem.h>
8 
9 #include "ivpu_drv.h"
10 #include "ivpu_hw_reg_io.h"
11 #include "ivpu_mmu.h"
12 #include "ivpu_mmu_context.h"
13 #include "ivpu_pm.h"
14 
15 #define IVPU_MMU_REG_IDR0		      0x00200000u
16 #define IVPU_MMU_REG_IDR1		      0x00200004u
17 #define IVPU_MMU_REG_IDR3		      0x0020000cu
18 #define IVPU_MMU_REG_IDR5		      0x00200014u
19 #define IVPU_MMU_REG_CR0		      0x00200020u
20 #define IVPU_MMU_REG_CR0ACK		      0x00200024u
21 #define IVPU_MMU_REG_CR0ACK_VAL_MASK	      GENMASK(31, 0)
22 #define IVPU_MMU_REG_CR1		      0x00200028u
23 #define IVPU_MMU_REG_CR2		      0x0020002cu
24 #define IVPU_MMU_REG_IRQ_CTRL		      0x00200050u
25 #define IVPU_MMU_REG_IRQ_CTRLACK	      0x00200054u
26 #define IVPU_MMU_REG_IRQ_CTRLACK_VAL_MASK     GENMASK(31, 0)
27 
28 #define IVPU_MMU_REG_GERROR		      0x00200060u
29 #define IVPU_MMU_REG_GERROR_CMDQ_MASK	      BIT_MASK(0)
30 #define IVPU_MMU_REG_GERROR_EVTQ_ABT_MASK     BIT_MASK(2)
31 #define IVPU_MMU_REG_GERROR_PRIQ_ABT_MASK     BIT_MASK(3)
32 #define IVPU_MMU_REG_GERROR_MSI_CMDQ_ABT_MASK BIT_MASK(4)
33 #define IVPU_MMU_REG_GERROR_MSI_EVTQ_ABT_MASK BIT_MASK(5)
34 #define IVPU_MMU_REG_GERROR_MSI_PRIQ_ABT_MASK BIT_MASK(6)
35 #define IVPU_MMU_REG_GERROR_MSI_ABT_MASK      BIT_MASK(7)
36 
37 #define IVPU_MMU_REG_GERRORN		      0x00200064u
38 
39 #define IVPU_MMU_REG_STRTAB_BASE	      0x00200080u
40 #define IVPU_MMU_REG_STRTAB_BASE_CFG	      0x00200088u
41 #define IVPU_MMU_REG_CMDQ_BASE		      0x00200090u
42 #define IVPU_MMU_REG_CMDQ_PROD		      0x00200098u
43 #define IVPU_MMU_REG_CMDQ_CONS		      0x0020009cu
44 #define IVPU_MMU_REG_CMDQ_CONS_VAL_MASK	      GENMASK(23, 0)
45 #define IVPU_MMU_REG_CMDQ_CONS_ERR_MASK	      GENMASK(30, 24)
46 #define IVPU_MMU_REG_EVTQ_BASE		      0x002000a0u
47 #define IVPU_MMU_REG_EVTQ_PROD		      0x002000a8u
48 #define IVPU_MMU_REG_EVTQ_CONS		      0x002000acu
49 #define IVPU_MMU_REG_EVTQ_PROD_SEC	      (0x002000a8u + SZ_64K)
50 #define IVPU_MMU_REG_EVTQ_CONS_SEC	      (0x002000acu + SZ_64K)
51 
52 #define IVPU_MMU_IDR0_REF		0x080f3e0f
53 #define IVPU_MMU_IDR0_REF_SIMICS	0x080f3e1f
54 #define IVPU_MMU_IDR1_REF		0x0e739d18
55 #define IVPU_MMU_IDR3_REF		0x0000003c
56 #define IVPU_MMU_IDR5_REF		0x00040070
57 #define IVPU_MMU_IDR5_REF_SIMICS	0x00000075
58 #define IVPU_MMU_IDR5_REF_FPGA		0x00800075
59 
60 #define IVPU_MMU_CDTAB_ENT_SIZE		64
61 #define IVPU_MMU_CDTAB_ENT_COUNT_LOG2	8 /* 256 entries */
62 #define IVPU_MMU_CDTAB_ENT_COUNT	((u32)1 << IVPU_MMU_CDTAB_ENT_COUNT_LOG2)
63 
64 #define IVPU_MMU_STREAM_ID0		0
65 #define IVPU_MMU_STREAM_ID3		3
66 
67 #define IVPU_MMU_STRTAB_ENT_SIZE	64
68 #define IVPU_MMU_STRTAB_ENT_COUNT	4
69 #define IVPU_MMU_STRTAB_CFG_LOG2SIZE	2
70 #define IVPU_MMU_STRTAB_CFG		IVPU_MMU_STRTAB_CFG_LOG2SIZE
71 
72 #define IVPU_MMU_Q_COUNT_LOG2		4 /* 16 entries */
73 #define IVPU_MMU_Q_COUNT		((u32)1 << IVPU_MMU_Q_COUNT_LOG2)
74 #define IVPU_MMU_Q_WRAP_BIT		(IVPU_MMU_Q_COUNT << 1)
75 #define IVPU_MMU_Q_WRAP_MASK		(IVPU_MMU_Q_WRAP_BIT - 1)
76 #define IVPU_MMU_Q_IDX_MASK		(IVPU_MMU_Q_COUNT - 1)
77 #define IVPU_MMU_Q_IDX(val)		((val) & IVPU_MMU_Q_IDX_MASK)
78 
79 #define IVPU_MMU_CMDQ_CMD_SIZE		16
80 #define IVPU_MMU_CMDQ_SIZE		(IVPU_MMU_Q_COUNT * IVPU_MMU_CMDQ_CMD_SIZE)
81 
82 #define IVPU_MMU_EVTQ_CMD_SIZE		32
83 #define IVPU_MMU_EVTQ_SIZE		(IVPU_MMU_Q_COUNT * IVPU_MMU_EVTQ_CMD_SIZE)
84 
85 #define IVPU_MMU_CMD_OPCODE		GENMASK(7, 0)
86 
87 #define IVPU_MMU_CMD_SYNC_0_CS		GENMASK(13, 12)
88 #define IVPU_MMU_CMD_SYNC_0_MSH		GENMASK(23, 22)
89 #define IVPU_MMU_CMD_SYNC_0_MSI_ATTR	GENMASK(27, 24)
90 #define IVPU_MMU_CMD_SYNC_0_MSI_ATTR	GENMASK(27, 24)
91 #define IVPU_MMU_CMD_SYNC_0_MSI_DATA	GENMASK(63, 32)
92 
93 #define IVPU_MMU_CMD_CFGI_0_SSEC	BIT(10)
94 #define IVPU_MMU_CMD_CFGI_0_SSV		BIT(11)
95 #define IVPU_MMU_CMD_CFGI_0_SSID	GENMASK(31, 12)
96 #define IVPU_MMU_CMD_CFGI_0_SID		GENMASK(63, 32)
97 #define IVPU_MMU_CMD_CFGI_1_RANGE	GENMASK(4, 0)
98 
99 #define IVPU_MMU_CMD_TLBI_0_ASID	GENMASK(63, 48)
100 #define IVPU_MMU_CMD_TLBI_0_VMID	GENMASK(47, 32)
101 
102 #define CMD_PREFETCH_CFG		0x1
103 #define CMD_CFGI_STE			0x3
104 #define CMD_CFGI_ALL			0x4
105 #define CMD_CFGI_CD			0x5
106 #define CMD_CFGI_CD_ALL			0x6
107 #define CMD_TLBI_NH_ASID		0x11
108 #define CMD_TLBI_EL2_ALL		0x20
109 #define CMD_TLBI_NSNH_ALL		0x30
110 #define CMD_SYNC			0x46
111 
112 #define IVPU_MMU_EVT_F_UUT		0x01
113 #define IVPU_MMU_EVT_C_BAD_STREAMID	0x02
114 #define IVPU_MMU_EVT_F_STE_FETCH	0x03
115 #define IVPU_MMU_EVT_C_BAD_STE		0x04
116 #define IVPU_MMU_EVT_F_BAD_ATS_TREQ	0x05
117 #define IVPU_MMU_EVT_F_STREAM_DISABLED	0x06
118 #define IVPU_MMU_EVT_F_TRANSL_FORBIDDEN	0x07
119 #define IVPU_MMU_EVT_C_BAD_SUBSTREAMID	0x08
120 #define IVPU_MMU_EVT_F_CD_FETCH		0x09
121 #define IVPU_MMU_EVT_C_BAD_CD		0x0a
122 #define IVPU_MMU_EVT_F_WALK_EABT	0x0b
123 #define IVPU_MMU_EVT_F_TRANSLATION	0x10
124 #define IVPU_MMU_EVT_F_ADDR_SIZE	0x11
125 #define IVPU_MMU_EVT_F_ACCESS		0x12
126 #define IVPU_MMU_EVT_F_PERMISSION	0x13
127 #define IVPU_MMU_EVT_F_TLB_CONFLICT	0x20
128 #define IVPU_MMU_EVT_F_CFG_CONFLICT	0x21
129 #define IVPU_MMU_EVT_E_PAGE_REQUEST	0x24
130 #define IVPU_MMU_EVT_F_VMS_FETCH	0x25
131 
132 #define IVPU_MMU_EVT_OP_MASK		GENMASK_ULL(7, 0)
133 #define IVPU_MMU_EVT_SSID_MASK		GENMASK_ULL(31, 12)
134 
135 #define IVPU_MMU_Q_BASE_RWA		BIT(62)
136 #define IVPU_MMU_Q_BASE_ADDR_MASK	GENMASK_ULL(51, 5)
137 #define IVPU_MMU_STRTAB_BASE_RA		BIT(62)
138 #define IVPU_MMU_STRTAB_BASE_ADDR_MASK	GENMASK_ULL(51, 6)
139 
140 #define IVPU_MMU_IRQ_EVTQ_EN		BIT(2)
141 #define IVPU_MMU_IRQ_GERROR_EN		BIT(0)
142 
143 #define IVPU_MMU_CR0_ATSCHK		BIT(4)
144 #define IVPU_MMU_CR0_CMDQEN		BIT(3)
145 #define IVPU_MMU_CR0_EVTQEN		BIT(2)
146 #define IVPU_MMU_CR0_PRIQEN		BIT(1)
147 #define IVPU_MMU_CR0_SMMUEN		BIT(0)
148 
149 #define IVPU_MMU_CR1_TABLE_SH		GENMASK(11, 10)
150 #define IVPU_MMU_CR1_TABLE_OC		GENMASK(9, 8)
151 #define IVPU_MMU_CR1_TABLE_IC		GENMASK(7, 6)
152 #define IVPU_MMU_CR1_QUEUE_SH		GENMASK(5, 4)
153 #define IVPU_MMU_CR1_QUEUE_OC		GENMASK(3, 2)
154 #define IVPU_MMU_CR1_QUEUE_IC		GENMASK(1, 0)
155 #define IVPU_MMU_CACHE_NC		0
156 #define IVPU_MMU_CACHE_WB		1
157 #define IVPU_MMU_CACHE_WT		2
158 #define IVPU_MMU_SH_NSH			0
159 #define IVPU_MMU_SH_OSH			2
160 #define IVPU_MMU_SH_ISH			3
161 
162 #define IVPU_MMU_CMDQ_OP		GENMASK_ULL(7, 0)
163 
164 #define IVPU_MMU_CD_0_TCR_T0SZ		GENMASK_ULL(5, 0)
165 #define IVPU_MMU_CD_0_TCR_TG0		GENMASK_ULL(7, 6)
166 #define IVPU_MMU_CD_0_TCR_IRGN0		GENMASK_ULL(9, 8)
167 #define IVPU_MMU_CD_0_TCR_ORGN0		GENMASK_ULL(11, 10)
168 #define IVPU_MMU_CD_0_TCR_SH0		GENMASK_ULL(13, 12)
169 #define IVPU_MMU_CD_0_TCR_EPD0		BIT_ULL(14)
170 #define IVPU_MMU_CD_0_TCR_EPD1		BIT_ULL(30)
171 #define IVPU_MMU_CD_0_ENDI		BIT(15)
172 #define IVPU_MMU_CD_0_V			BIT(31)
173 #define IVPU_MMU_CD_0_TCR_IPS		GENMASK_ULL(34, 32)
174 #define IVPU_MMU_CD_0_TCR_TBI0		BIT_ULL(38)
175 #define IVPU_MMU_CD_0_AA64		BIT(41)
176 #define IVPU_MMU_CD_0_S			BIT(44)
177 #define IVPU_MMU_CD_0_R			BIT(45)
178 #define IVPU_MMU_CD_0_A			BIT(46)
179 #define IVPU_MMU_CD_0_ASET		BIT(47)
180 #define IVPU_MMU_CD_0_ASID		GENMASK_ULL(63, 48)
181 
182 #define IVPU_MMU_T0SZ_48BIT             16
183 #define IVPU_MMU_T0SZ_38BIT             26
184 
185 #define IVPU_MMU_IPS_48BIT		5
186 #define IVPU_MMU_IPS_44BIT		4
187 #define IVPU_MMU_IPS_42BIT		3
188 #define IVPU_MMU_IPS_40BIT		2
189 #define IVPU_MMU_IPS_36BIT		1
190 #define IVPU_MMU_IPS_32BIT		0
191 
192 #define IVPU_MMU_CD_1_TTB0_MASK		GENMASK_ULL(51, 4)
193 
194 #define IVPU_MMU_STE_0_S1CDMAX		GENMASK_ULL(63, 59)
195 #define IVPU_MMU_STE_0_S1FMT		GENMASK_ULL(5, 4)
196 #define IVPU_MMU_STE_0_S1FMT_LINEAR	0
197 #define IVPU_MMU_STE_DWORDS		8
198 #define IVPU_MMU_STE_0_CFG_S1_TRANS	5
199 #define IVPU_MMU_STE_0_CFG		GENMASK_ULL(3, 1)
200 #define IVPU_MMU_STE_0_S1CTXPTR_MASK	GENMASK_ULL(51, 6)
201 #define IVPU_MMU_STE_0_V			BIT(0)
202 
203 #define IVPU_MMU_STE_1_STRW_NSEL1	0ul
204 #define IVPU_MMU_STE_1_CONT		GENMASK_ULL(16, 13)
205 #define IVPU_MMU_STE_1_STRW		GENMASK_ULL(31, 30)
206 #define IVPU_MMU_STE_1_PRIVCFG		GENMASK_ULL(49, 48)
207 #define IVPU_MMU_STE_1_PRIVCFG_UNPRIV	2ul
208 #define IVPU_MMU_STE_1_INSTCFG		GENMASK_ULL(51, 50)
209 #define IVPU_MMU_STE_1_INSTCFG_DATA	2ul
210 #define IVPU_MMU_STE_1_MEV		BIT(19)
211 #define IVPU_MMU_STE_1_S1STALLD		BIT(27)
212 #define IVPU_MMU_STE_1_S1C_CACHE_NC	0ul
213 #define IVPU_MMU_STE_1_S1C_CACHE_WBRA	1ul
214 #define IVPU_MMU_STE_1_S1C_CACHE_WT	2ul
215 #define IVPU_MMU_STE_1_S1C_CACHE_WB	3ul
216 #define IVPU_MMU_STE_1_S1CIR		GENMASK_ULL(3, 2)
217 #define IVPU_MMU_STE_1_S1COR		GENMASK_ULL(5, 4)
218 #define IVPU_MMU_STE_1_S1CSH		GENMASK_ULL(7, 6)
219 #define IVPU_MMU_STE_1_S1DSS		GENMASK_ULL(1, 0)
220 #define IVPU_MMU_STE_1_S1DSS_TERMINATE	0x0
221 
222 #define IVPU_MMU_REG_TIMEOUT_US		(10 * USEC_PER_MSEC)
223 #define IVPU_MMU_QUEUE_TIMEOUT_US	(100 * USEC_PER_MSEC)
224 
225 #define IVPU_MMU_GERROR_ERR_MASK ((REG_FLD(IVPU_MMU_REG_GERROR, CMDQ)) | \
226 				  (REG_FLD(IVPU_MMU_REG_GERROR, EVTQ_ABT)) | \
227 				  (REG_FLD(IVPU_MMU_REG_GERROR, PRIQ_ABT)) | \
228 				  (REG_FLD(IVPU_MMU_REG_GERROR, MSI_CMDQ_ABT)) | \
229 				  (REG_FLD(IVPU_MMU_REG_GERROR, MSI_EVTQ_ABT)) | \
230 				  (REG_FLD(IVPU_MMU_REG_GERROR, MSI_PRIQ_ABT)) | \
231 				  (REG_FLD(IVPU_MMU_REG_GERROR, MSI_ABT)))
232 
233 static char *ivpu_mmu_event_to_str(u32 cmd)
234 {
235 	switch (cmd) {
236 	case IVPU_MMU_EVT_F_UUT:
237 		return "Unsupported Upstream Transaction";
238 	case IVPU_MMU_EVT_C_BAD_STREAMID:
239 		return "Transaction StreamID out of range";
240 	case IVPU_MMU_EVT_F_STE_FETCH:
241 		return "Fetch of STE caused external abort";
242 	case IVPU_MMU_EVT_C_BAD_STE:
243 		return "Used STE invalid";
244 	case IVPU_MMU_EVT_F_BAD_ATS_TREQ:
245 		return "Address Request disallowed for a StreamID";
246 	case IVPU_MMU_EVT_F_STREAM_DISABLED:
247 		return "Transaction marks non-substream disabled";
248 	case IVPU_MMU_EVT_F_TRANSL_FORBIDDEN:
249 		return "MMU bypass is disallowed for this StreamID";
250 	case IVPU_MMU_EVT_C_BAD_SUBSTREAMID:
251 		return "Invalid StreamID";
252 	case IVPU_MMU_EVT_F_CD_FETCH:
253 		return "Fetch of CD caused external abort";
254 	case IVPU_MMU_EVT_C_BAD_CD:
255 		return "Fetched CD invalid";
256 	case IVPU_MMU_EVT_F_WALK_EABT:
257 		return " An external abort occurred fetching a TLB";
258 	case IVPU_MMU_EVT_F_TRANSLATION:
259 		return "Translation fault";
260 	case IVPU_MMU_EVT_F_ADDR_SIZE:
261 		return " Output address caused address size fault";
262 	case IVPU_MMU_EVT_F_ACCESS:
263 		return "Access flag fault";
264 	case IVPU_MMU_EVT_F_PERMISSION:
265 		return "Permission fault occurred on page access";
266 	case IVPU_MMU_EVT_F_TLB_CONFLICT:
267 		return "A TLB conflict";
268 	case IVPU_MMU_EVT_F_CFG_CONFLICT:
269 		return "A configuration cache conflict";
270 	case IVPU_MMU_EVT_E_PAGE_REQUEST:
271 		return "Page request hint from a client device";
272 	case IVPU_MMU_EVT_F_VMS_FETCH:
273 		return "Fetch of VMS caused external abort";
274 	default:
275 		return "Unknown CMDQ command";
276 	}
277 }
278 
279 static void ivpu_mmu_config_check(struct ivpu_device *vdev)
280 {
281 	u32 val_ref;
282 	u32 val;
283 
284 	if (ivpu_is_simics(vdev))
285 		val_ref = IVPU_MMU_IDR0_REF_SIMICS;
286 	else
287 		val_ref = IVPU_MMU_IDR0_REF;
288 
289 	val = REGV_RD32(IVPU_MMU_REG_IDR0);
290 	if (val != val_ref)
291 		ivpu_dbg(vdev, MMU, "IDR0 0x%x != IDR0_REF 0x%x\n", val, val_ref);
292 
293 	val = REGV_RD32(IVPU_MMU_REG_IDR1);
294 	if (val != IVPU_MMU_IDR1_REF)
295 		ivpu_dbg(vdev, MMU, "IDR1 0x%x != IDR1_REF 0x%x\n", val, IVPU_MMU_IDR1_REF);
296 
297 	val = REGV_RD32(IVPU_MMU_REG_IDR3);
298 	if (val != IVPU_MMU_IDR3_REF)
299 		ivpu_dbg(vdev, MMU, "IDR3 0x%x != IDR3_REF 0x%x\n", val, IVPU_MMU_IDR3_REF);
300 
301 	if (ivpu_is_simics(vdev))
302 		val_ref = IVPU_MMU_IDR5_REF_SIMICS;
303 	else if (ivpu_is_fpga(vdev))
304 		val_ref = IVPU_MMU_IDR5_REF_FPGA;
305 	else
306 		val_ref = IVPU_MMU_IDR5_REF;
307 
308 	val = REGV_RD32(IVPU_MMU_REG_IDR5);
309 	if (val != val_ref)
310 		ivpu_dbg(vdev, MMU, "IDR5 0x%x != IDR5_REF 0x%x\n", val, val_ref);
311 }
312 
313 static int ivpu_mmu_cdtab_alloc(struct ivpu_device *vdev)
314 {
315 	struct ivpu_mmu_info *mmu = vdev->mmu;
316 	struct ivpu_mmu_cdtab *cdtab = &mmu->cdtab;
317 	size_t size = IVPU_MMU_CDTAB_ENT_COUNT * IVPU_MMU_CDTAB_ENT_SIZE;
318 
319 	cdtab->base = dmam_alloc_coherent(vdev->drm.dev, size, &cdtab->dma, GFP_KERNEL);
320 	if (!cdtab->base)
321 		return -ENOMEM;
322 
323 	ivpu_dbg(vdev, MMU, "CDTAB alloc: dma=%pad size=%zu\n", &cdtab->dma, size);
324 
325 	return 0;
326 }
327 
328 static int ivpu_mmu_strtab_alloc(struct ivpu_device *vdev)
329 {
330 	struct ivpu_mmu_info *mmu = vdev->mmu;
331 	struct ivpu_mmu_strtab *strtab = &mmu->strtab;
332 	size_t size = IVPU_MMU_STRTAB_ENT_COUNT * IVPU_MMU_STRTAB_ENT_SIZE;
333 
334 	strtab->base = dmam_alloc_coherent(vdev->drm.dev, size, &strtab->dma, GFP_KERNEL);
335 	if (!strtab->base)
336 		return -ENOMEM;
337 
338 	strtab->base_cfg = IVPU_MMU_STRTAB_CFG;
339 	strtab->dma_q = IVPU_MMU_STRTAB_BASE_RA;
340 	strtab->dma_q |= strtab->dma & IVPU_MMU_STRTAB_BASE_ADDR_MASK;
341 
342 	ivpu_dbg(vdev, MMU, "STRTAB alloc: dma=%pad dma_q=%pad size=%zu\n",
343 		 &strtab->dma, &strtab->dma_q, size);
344 
345 	return 0;
346 }
347 
348 static int ivpu_mmu_cmdq_alloc(struct ivpu_device *vdev)
349 {
350 	struct ivpu_mmu_info *mmu = vdev->mmu;
351 	struct ivpu_mmu_queue *q = &mmu->cmdq;
352 
353 	q->base = dmam_alloc_coherent(vdev->drm.dev, IVPU_MMU_CMDQ_SIZE, &q->dma, GFP_KERNEL);
354 	if (!q->base)
355 		return -ENOMEM;
356 
357 	q->dma_q = IVPU_MMU_Q_BASE_RWA;
358 	q->dma_q |= q->dma & IVPU_MMU_Q_BASE_ADDR_MASK;
359 	q->dma_q |= IVPU_MMU_Q_COUNT_LOG2;
360 
361 	ivpu_dbg(vdev, MMU, "CMDQ alloc: dma=%pad dma_q=%pad size=%u\n",
362 		 &q->dma, &q->dma_q, IVPU_MMU_CMDQ_SIZE);
363 
364 	return 0;
365 }
366 
367 static int ivpu_mmu_evtq_alloc(struct ivpu_device *vdev)
368 {
369 	struct ivpu_mmu_info *mmu = vdev->mmu;
370 	struct ivpu_mmu_queue *q = &mmu->evtq;
371 
372 	q->base = dmam_alloc_coherent(vdev->drm.dev, IVPU_MMU_EVTQ_SIZE, &q->dma, GFP_KERNEL);
373 	if (!q->base)
374 		return -ENOMEM;
375 
376 	q->dma_q = IVPU_MMU_Q_BASE_RWA;
377 	q->dma_q |= q->dma & IVPU_MMU_Q_BASE_ADDR_MASK;
378 	q->dma_q |= IVPU_MMU_Q_COUNT_LOG2;
379 
380 	ivpu_dbg(vdev, MMU, "EVTQ alloc: dma=%pad dma_q=%pad size=%u\n",
381 		 &q->dma, &q->dma_q, IVPU_MMU_EVTQ_SIZE);
382 
383 	return 0;
384 }
385 
386 static int ivpu_mmu_structs_alloc(struct ivpu_device *vdev)
387 {
388 	int ret;
389 
390 	ret = ivpu_mmu_cdtab_alloc(vdev);
391 	if (ret) {
392 		ivpu_err(vdev, "Failed to allocate cdtab: %d\n", ret);
393 		return ret;
394 	}
395 
396 	ret = ivpu_mmu_strtab_alloc(vdev);
397 	if (ret) {
398 		ivpu_err(vdev, "Failed to allocate strtab: %d\n", ret);
399 		return ret;
400 	}
401 
402 	ret = ivpu_mmu_cmdq_alloc(vdev);
403 	if (ret) {
404 		ivpu_err(vdev, "Failed to allocate cmdq: %d\n", ret);
405 		return ret;
406 	}
407 
408 	ret = ivpu_mmu_evtq_alloc(vdev);
409 	if (ret)
410 		ivpu_err(vdev, "Failed to allocate evtq: %d\n", ret);
411 
412 	return ret;
413 }
414 
415 static int ivpu_mmu_reg_write_cr0(struct ivpu_device *vdev, u32 val)
416 {
417 	REGV_WR32(IVPU_MMU_REG_CR0, val);
418 
419 	return REGV_POLL_FLD(IVPU_MMU_REG_CR0ACK, VAL, val, IVPU_MMU_REG_TIMEOUT_US);
420 }
421 
422 static int ivpu_mmu_reg_write_irq_ctrl(struct ivpu_device *vdev, u32 val)
423 {
424 	REGV_WR32(IVPU_MMU_REG_IRQ_CTRL, val);
425 
426 	return REGV_POLL_FLD(IVPU_MMU_REG_IRQ_CTRLACK, VAL, val, IVPU_MMU_REG_TIMEOUT_US);
427 }
428 
429 static int ivpu_mmu_irqs_setup(struct ivpu_device *vdev)
430 {
431 	u32 irq_ctrl = IVPU_MMU_IRQ_EVTQ_EN | IVPU_MMU_IRQ_GERROR_EN;
432 	int ret;
433 
434 	ret = ivpu_mmu_reg_write_irq_ctrl(vdev, 0);
435 	if (ret)
436 		return ret;
437 
438 	return ivpu_mmu_reg_write_irq_ctrl(vdev, irq_ctrl);
439 }
440 
441 static int ivpu_mmu_cmdq_wait_for_cons(struct ivpu_device *vdev)
442 {
443 	struct ivpu_mmu_queue *cmdq = &vdev->mmu->cmdq;
444 	int ret;
445 
446 	ret = REGV_POLL_FLD(IVPU_MMU_REG_CMDQ_CONS, VAL, cmdq->prod,
447 			    IVPU_MMU_QUEUE_TIMEOUT_US);
448 	if (ret)
449 		return ret;
450 
451 	cmdq->cons = cmdq->prod;
452 
453 	return 0;
454 }
455 
456 static int ivpu_mmu_cmdq_cmd_write(struct ivpu_device *vdev, const char *name, u64 data0, u64 data1)
457 {
458 	struct ivpu_mmu_queue *q = &vdev->mmu->cmdq;
459 	u64 *queue_buffer = q->base;
460 	int idx = IVPU_MMU_Q_IDX(q->prod) * (IVPU_MMU_CMDQ_CMD_SIZE / sizeof(*queue_buffer));
461 
462 	if (!CIRC_SPACE(IVPU_MMU_Q_IDX(q->prod), IVPU_MMU_Q_IDX(q->cons), IVPU_MMU_Q_COUNT)) {
463 		ivpu_err(vdev, "Failed to write MMU CMD %s\n", name);
464 		return -EBUSY;
465 	}
466 
467 	queue_buffer[idx] = data0;
468 	queue_buffer[idx + 1] = data1;
469 	q->prod = (q->prod + 1) & IVPU_MMU_Q_WRAP_MASK;
470 
471 	ivpu_dbg(vdev, MMU, "CMD write: %s data: 0x%llx 0x%llx\n", name, data0, data1);
472 
473 	return 0;
474 }
475 
476 static int ivpu_mmu_cmdq_sync(struct ivpu_device *vdev)
477 {
478 	struct ivpu_mmu_queue *q = &vdev->mmu->cmdq;
479 	u64 val;
480 	int ret;
481 
482 	val = FIELD_PREP(IVPU_MMU_CMD_OPCODE, CMD_SYNC) |
483 	      FIELD_PREP(IVPU_MMU_CMD_SYNC_0_CS, 0x2) |
484 	      FIELD_PREP(IVPU_MMU_CMD_SYNC_0_MSH, 0x3) |
485 	      FIELD_PREP(IVPU_MMU_CMD_SYNC_0_MSI_ATTR, 0xf);
486 
487 	ret = ivpu_mmu_cmdq_cmd_write(vdev, "SYNC", val, 0);
488 	if (ret)
489 		return ret;
490 
491 	clflush_cache_range(q->base, IVPU_MMU_CMDQ_SIZE);
492 	REGV_WR32(IVPU_MMU_REG_CMDQ_PROD, q->prod);
493 
494 	ret = ivpu_mmu_cmdq_wait_for_cons(vdev);
495 	if (ret)
496 		ivpu_err(vdev, "Timed out waiting for consumer: %d\n", ret);
497 
498 	return ret;
499 }
500 
501 static int ivpu_mmu_cmdq_write_cfgi_all(struct ivpu_device *vdev)
502 {
503 	u64 data0 = FIELD_PREP(IVPU_MMU_CMD_OPCODE, CMD_CFGI_ALL);
504 	u64 data1 = FIELD_PREP(IVPU_MMU_CMD_CFGI_1_RANGE, 0x1f);
505 
506 	return ivpu_mmu_cmdq_cmd_write(vdev, "CFGI_ALL", data0, data1);
507 }
508 
509 static int ivpu_mmu_cmdq_write_tlbi_nh_asid(struct ivpu_device *vdev, u16 ssid)
510 {
511 	u64 val = FIELD_PREP(IVPU_MMU_CMD_OPCODE, CMD_TLBI_NH_ASID) |
512 		  FIELD_PREP(IVPU_MMU_CMD_TLBI_0_ASID, ssid);
513 
514 	return ivpu_mmu_cmdq_cmd_write(vdev, "TLBI_NH_ASID", val, 0);
515 }
516 
517 static int ivpu_mmu_cmdq_write_tlbi_nsnh_all(struct ivpu_device *vdev)
518 {
519 	u64 val = FIELD_PREP(IVPU_MMU_CMD_OPCODE, CMD_TLBI_NSNH_ALL);
520 
521 	return ivpu_mmu_cmdq_cmd_write(vdev, "TLBI_NSNH_ALL", val, 0);
522 }
523 
524 static int ivpu_mmu_reset(struct ivpu_device *vdev)
525 {
526 	struct ivpu_mmu_info *mmu = vdev->mmu;
527 	u32 val;
528 	int ret;
529 
530 	memset(mmu->cmdq.base, 0, IVPU_MMU_CMDQ_SIZE);
531 	clflush_cache_range(mmu->cmdq.base, IVPU_MMU_CMDQ_SIZE);
532 	mmu->cmdq.prod = 0;
533 	mmu->cmdq.cons = 0;
534 
535 	memset(mmu->evtq.base, 0, IVPU_MMU_EVTQ_SIZE);
536 	clflush_cache_range(mmu->evtq.base, IVPU_MMU_EVTQ_SIZE);
537 	mmu->evtq.prod = 0;
538 	mmu->evtq.cons = 0;
539 
540 	ret = ivpu_mmu_reg_write_cr0(vdev, 0);
541 	if (ret)
542 		return ret;
543 
544 	val = FIELD_PREP(IVPU_MMU_CR1_TABLE_SH, IVPU_MMU_SH_ISH) |
545 	      FIELD_PREP(IVPU_MMU_CR1_TABLE_OC, IVPU_MMU_CACHE_WB) |
546 	      FIELD_PREP(IVPU_MMU_CR1_TABLE_IC, IVPU_MMU_CACHE_WB) |
547 	      FIELD_PREP(IVPU_MMU_CR1_QUEUE_SH, IVPU_MMU_SH_ISH) |
548 	      FIELD_PREP(IVPU_MMU_CR1_QUEUE_OC, IVPU_MMU_CACHE_WB) |
549 	      FIELD_PREP(IVPU_MMU_CR1_QUEUE_IC, IVPU_MMU_CACHE_WB);
550 	REGV_WR32(IVPU_MMU_REG_CR1, val);
551 
552 	REGV_WR64(IVPU_MMU_REG_STRTAB_BASE, mmu->strtab.dma_q);
553 	REGV_WR32(IVPU_MMU_REG_STRTAB_BASE_CFG, mmu->strtab.base_cfg);
554 
555 	REGV_WR64(IVPU_MMU_REG_CMDQ_BASE, mmu->cmdq.dma_q);
556 	REGV_WR32(IVPU_MMU_REG_CMDQ_PROD, 0);
557 	REGV_WR32(IVPU_MMU_REG_CMDQ_CONS, 0);
558 
559 	val = IVPU_MMU_CR0_CMDQEN;
560 	ret = ivpu_mmu_reg_write_cr0(vdev, val);
561 	if (ret)
562 		return ret;
563 
564 	ret = ivpu_mmu_cmdq_write_cfgi_all(vdev);
565 	if (ret)
566 		return ret;
567 
568 	ret = ivpu_mmu_cmdq_write_tlbi_nsnh_all(vdev);
569 	if (ret)
570 		return ret;
571 
572 	ret = ivpu_mmu_cmdq_sync(vdev);
573 	if (ret)
574 		return ret;
575 
576 	REGV_WR64(IVPU_MMU_REG_EVTQ_BASE, mmu->evtq.dma_q);
577 	REGV_WR32(IVPU_MMU_REG_EVTQ_PROD_SEC, 0);
578 	REGV_WR32(IVPU_MMU_REG_EVTQ_CONS_SEC, 0);
579 
580 	val |= IVPU_MMU_CR0_EVTQEN;
581 	ret = ivpu_mmu_reg_write_cr0(vdev, val);
582 	if (ret)
583 		return ret;
584 
585 	val |= IVPU_MMU_CR0_ATSCHK;
586 	ret = ivpu_mmu_reg_write_cr0(vdev, val);
587 	if (ret)
588 		return ret;
589 
590 	ret = ivpu_mmu_irqs_setup(vdev);
591 	if (ret)
592 		return ret;
593 
594 	val |= IVPU_MMU_CR0_SMMUEN;
595 	return ivpu_mmu_reg_write_cr0(vdev, val);
596 }
597 
598 static void ivpu_mmu_strtab_link_cd(struct ivpu_device *vdev, u32 sid)
599 {
600 	struct ivpu_mmu_info *mmu = vdev->mmu;
601 	struct ivpu_mmu_strtab *strtab = &mmu->strtab;
602 	struct ivpu_mmu_cdtab *cdtab = &mmu->cdtab;
603 	u64 *entry = strtab->base + (sid * IVPU_MMU_STRTAB_ENT_SIZE);
604 	u64 str[2];
605 
606 	str[0] = FIELD_PREP(IVPU_MMU_STE_0_CFG, IVPU_MMU_STE_0_CFG_S1_TRANS) |
607 		 FIELD_PREP(IVPU_MMU_STE_0_S1CDMAX, IVPU_MMU_CDTAB_ENT_COUNT_LOG2) |
608 		 FIELD_PREP(IVPU_MMU_STE_0_S1FMT, IVPU_MMU_STE_0_S1FMT_LINEAR) |
609 		 IVPU_MMU_STE_0_V |
610 		 (cdtab->dma & IVPU_MMU_STE_0_S1CTXPTR_MASK);
611 
612 	str[1] = FIELD_PREP(IVPU_MMU_STE_1_S1DSS, IVPU_MMU_STE_1_S1DSS_TERMINATE) |
613 		 FIELD_PREP(IVPU_MMU_STE_1_S1CIR, IVPU_MMU_STE_1_S1C_CACHE_NC) |
614 		 FIELD_PREP(IVPU_MMU_STE_1_S1COR, IVPU_MMU_STE_1_S1C_CACHE_NC) |
615 		 FIELD_PREP(IVPU_MMU_STE_1_S1CSH, IVPU_MMU_SH_NSH) |
616 		 FIELD_PREP(IVPU_MMU_STE_1_PRIVCFG, IVPU_MMU_STE_1_PRIVCFG_UNPRIV) |
617 		 FIELD_PREP(IVPU_MMU_STE_1_INSTCFG, IVPU_MMU_STE_1_INSTCFG_DATA) |
618 		 FIELD_PREP(IVPU_MMU_STE_1_STRW, IVPU_MMU_STE_1_STRW_NSEL1) |
619 		 FIELD_PREP(IVPU_MMU_STE_1_CONT, IVPU_MMU_STRTAB_CFG_LOG2SIZE) |
620 		 IVPU_MMU_STE_1_MEV |
621 		 IVPU_MMU_STE_1_S1STALLD;
622 
623 	WRITE_ONCE(entry[1], str[1]);
624 	WRITE_ONCE(entry[0], str[0]);
625 
626 	clflush_cache_range(entry, IVPU_MMU_STRTAB_ENT_SIZE);
627 
628 	ivpu_dbg(vdev, MMU, "STRTAB write entry (SSID=%u): 0x%llx, 0x%llx\n", sid, str[0], str[1]);
629 }
630 
631 static int ivpu_mmu_strtab_init(struct ivpu_device *vdev)
632 {
633 	ivpu_mmu_strtab_link_cd(vdev, IVPU_MMU_STREAM_ID0);
634 	ivpu_mmu_strtab_link_cd(vdev, IVPU_MMU_STREAM_ID3);
635 
636 	return 0;
637 }
638 
639 int ivpu_mmu_invalidate_tlb(struct ivpu_device *vdev, u16 ssid)
640 {
641 	struct ivpu_mmu_info *mmu = vdev->mmu;
642 	int ret = 0;
643 
644 	mutex_lock(&mmu->lock);
645 	if (!mmu->on)
646 		goto unlock;
647 
648 	ret = ivpu_mmu_cmdq_write_tlbi_nh_asid(vdev, ssid);
649 	if (ret)
650 		goto unlock;
651 
652 	ret = ivpu_mmu_cmdq_sync(vdev);
653 unlock:
654 	mutex_unlock(&mmu->lock);
655 	return ret;
656 }
657 
658 static int ivpu_mmu_cd_add(struct ivpu_device *vdev, u32 ssid, u64 cd_dma)
659 {
660 	struct ivpu_mmu_info *mmu = vdev->mmu;
661 	struct ivpu_mmu_cdtab *cdtab = &mmu->cdtab;
662 	u64 *entry;
663 	u64 cd[4];
664 	int ret = 0;
665 
666 	if (ssid > IVPU_MMU_CDTAB_ENT_COUNT)
667 		return -EINVAL;
668 
669 	entry = cdtab->base + (ssid * IVPU_MMU_CDTAB_ENT_SIZE);
670 
671 	if (cd_dma != 0) {
672 		cd[0] = FIELD_PREP(IVPU_MMU_CD_0_TCR_T0SZ, IVPU_MMU_T0SZ_48BIT) |
673 			FIELD_PREP(IVPU_MMU_CD_0_TCR_TG0, 0) |
674 			FIELD_PREP(IVPU_MMU_CD_0_TCR_IRGN0, 0) |
675 			FIELD_PREP(IVPU_MMU_CD_0_TCR_ORGN0, 0) |
676 			FIELD_PREP(IVPU_MMU_CD_0_TCR_SH0, 0) |
677 			FIELD_PREP(IVPU_MMU_CD_0_TCR_IPS, IVPU_MMU_IPS_48BIT) |
678 			FIELD_PREP(IVPU_MMU_CD_0_ASID, ssid) |
679 			IVPU_MMU_CD_0_TCR_EPD1 |
680 			IVPU_MMU_CD_0_AA64 |
681 			IVPU_MMU_CD_0_R |
682 			IVPU_MMU_CD_0_ASET |
683 			IVPU_MMU_CD_0_V;
684 		cd[1] = cd_dma & IVPU_MMU_CD_1_TTB0_MASK;
685 		cd[2] = 0;
686 		cd[3] = 0x0000000000007444;
687 
688 		/* For global context generate memory fault on VPU */
689 		if (ssid == IVPU_GLOBAL_CONTEXT_MMU_SSID)
690 			cd[0] |= IVPU_MMU_CD_0_A;
691 	} else {
692 		memset(cd, 0, sizeof(cd));
693 	}
694 
695 	WRITE_ONCE(entry[1], cd[1]);
696 	WRITE_ONCE(entry[2], cd[2]);
697 	WRITE_ONCE(entry[3], cd[3]);
698 	WRITE_ONCE(entry[0], cd[0]);
699 
700 	clflush_cache_range(entry, IVPU_MMU_CDTAB_ENT_SIZE);
701 
702 	ivpu_dbg(vdev, MMU, "CDTAB %s entry (SSID=%u, dma=%pad): 0x%llx, 0x%llx, 0x%llx, 0x%llx\n",
703 		 cd_dma ? "write" : "clear", ssid, &cd_dma, cd[0], cd[1], cd[2], cd[3]);
704 
705 	mutex_lock(&mmu->lock);
706 	if (!mmu->on)
707 		goto unlock;
708 
709 	ret = ivpu_mmu_cmdq_write_cfgi_all(vdev);
710 	if (ret)
711 		goto unlock;
712 
713 	ret = ivpu_mmu_cmdq_sync(vdev);
714 unlock:
715 	mutex_unlock(&mmu->lock);
716 	return ret;
717 }
718 
719 static int ivpu_mmu_cd_add_gbl(struct ivpu_device *vdev)
720 {
721 	int ret;
722 
723 	ret = ivpu_mmu_cd_add(vdev, 0, vdev->gctx.pgtable.pgd_dma);
724 	if (ret)
725 		ivpu_err(vdev, "Failed to add global CD entry: %d\n", ret);
726 
727 	return ret;
728 }
729 
730 static int ivpu_mmu_cd_add_user(struct ivpu_device *vdev, u32 ssid, dma_addr_t cd_dma)
731 {
732 	int ret;
733 
734 	if (ssid == 0) {
735 		ivpu_err(vdev, "Invalid SSID: %u\n", ssid);
736 		return -EINVAL;
737 	}
738 
739 	ret = ivpu_mmu_cd_add(vdev, ssid, cd_dma);
740 	if (ret)
741 		ivpu_err(vdev, "Failed to add CD entry SSID=%u: %d\n", ssid, ret);
742 
743 	return ret;
744 }
745 
746 int ivpu_mmu_init(struct ivpu_device *vdev)
747 {
748 	struct ivpu_mmu_info *mmu = vdev->mmu;
749 	int ret;
750 
751 	ivpu_dbg(vdev, MMU, "Init..\n");
752 
753 	drmm_mutex_init(&vdev->drm, &mmu->lock);
754 	ivpu_mmu_config_check(vdev);
755 
756 	ret = ivpu_mmu_structs_alloc(vdev);
757 	if (ret)
758 		return ret;
759 
760 	ret = ivpu_mmu_strtab_init(vdev);
761 	if (ret) {
762 		ivpu_err(vdev, "Failed to initialize strtab: %d\n", ret);
763 		return ret;
764 	}
765 
766 	ret = ivpu_mmu_cd_add_gbl(vdev);
767 	if (ret) {
768 		ivpu_err(vdev, "Failed to initialize strtab: %d\n", ret);
769 		return ret;
770 	}
771 
772 	ret = ivpu_mmu_enable(vdev);
773 	if (ret) {
774 		ivpu_err(vdev, "Failed to resume MMU: %d\n", ret);
775 		return ret;
776 	}
777 
778 	ivpu_dbg(vdev, MMU, "Init done\n");
779 
780 	return 0;
781 }
782 
783 int ivpu_mmu_enable(struct ivpu_device *vdev)
784 {
785 	struct ivpu_mmu_info *mmu = vdev->mmu;
786 	int ret;
787 
788 	mutex_lock(&mmu->lock);
789 
790 	mmu->on = true;
791 
792 	ret = ivpu_mmu_reset(vdev);
793 	if (ret) {
794 		ivpu_err(vdev, "Failed to reset MMU: %d\n", ret);
795 		goto err;
796 	}
797 
798 	ret = ivpu_mmu_cmdq_write_cfgi_all(vdev);
799 	if (ret)
800 		goto err;
801 
802 	ret = ivpu_mmu_cmdq_write_tlbi_nsnh_all(vdev);
803 	if (ret)
804 		goto err;
805 
806 	ret = ivpu_mmu_cmdq_sync(vdev);
807 	if (ret)
808 		goto err;
809 
810 	mutex_unlock(&mmu->lock);
811 
812 	return 0;
813 err:
814 	mmu->on = false;
815 	mutex_unlock(&mmu->lock);
816 	return ret;
817 }
818 
819 void ivpu_mmu_disable(struct ivpu_device *vdev)
820 {
821 	struct ivpu_mmu_info *mmu = vdev->mmu;
822 
823 	mutex_lock(&mmu->lock);
824 	mmu->on = false;
825 	mutex_unlock(&mmu->lock);
826 }
827 
828 static void ivpu_mmu_dump_event(struct ivpu_device *vdev, u32 *event)
829 {
830 	u32 ssid = FIELD_GET(IVPU_MMU_EVT_SSID_MASK, event[0]);
831 	u32 op = FIELD_GET(IVPU_MMU_EVT_OP_MASK, event[0]);
832 	u64 fetch_addr = ((u64)event[7]) << 32 | event[6];
833 	u64 in_addr = ((u64)event[5]) << 32 | event[4];
834 	u32 sid = event[1];
835 
836 	ivpu_err(vdev, "MMU EVTQ: 0x%x (%s) SSID: %d SID: %d, e[2] %08x, e[3] %08x, in addr: 0x%llx, fetch addr: 0x%llx\n",
837 		 op, ivpu_mmu_event_to_str(op), ssid, sid, event[2], event[3], in_addr, fetch_addr);
838 }
839 
840 static u32 *ivpu_mmu_get_event(struct ivpu_device *vdev)
841 {
842 	struct ivpu_mmu_queue *evtq = &vdev->mmu->evtq;
843 	u32 idx = IVPU_MMU_Q_IDX(evtq->cons);
844 	u32 *evt = evtq->base + (idx * IVPU_MMU_EVTQ_CMD_SIZE);
845 
846 	evtq->prod = REGV_RD32(IVPU_MMU_REG_EVTQ_PROD_SEC);
847 	if (!CIRC_CNT(IVPU_MMU_Q_IDX(evtq->prod), IVPU_MMU_Q_IDX(evtq->cons), IVPU_MMU_Q_COUNT))
848 		return NULL;
849 
850 	clflush_cache_range(evt, IVPU_MMU_EVTQ_CMD_SIZE);
851 
852 	evtq->cons = (evtq->cons + 1) & IVPU_MMU_Q_WRAP_MASK;
853 	REGV_WR32(IVPU_MMU_REG_EVTQ_CONS_SEC, evtq->cons);
854 
855 	return evt;
856 }
857 
858 void ivpu_mmu_irq_evtq_handler(struct ivpu_device *vdev)
859 {
860 	bool schedule_recovery = false;
861 	u32 *event;
862 	u32 ssid;
863 
864 	ivpu_dbg(vdev, IRQ, "MMU event queue\n");
865 
866 	while ((event = ivpu_mmu_get_event(vdev)) != NULL) {
867 		ivpu_mmu_dump_event(vdev, event);
868 
869 		ssid = FIELD_GET(IVPU_MMU_EVT_SSID_MASK, event[0]);
870 		if (ssid == IVPU_GLOBAL_CONTEXT_MMU_SSID)
871 			schedule_recovery = true;
872 		else
873 			ivpu_mmu_user_context_mark_invalid(vdev, ssid);
874 	}
875 
876 	if (schedule_recovery)
877 		ivpu_pm_schedule_recovery(vdev);
878 }
879 
880 void ivpu_mmu_irq_gerr_handler(struct ivpu_device *vdev)
881 {
882 	u32 gerror_val, gerrorn_val, active;
883 
884 	ivpu_dbg(vdev, IRQ, "MMU error\n");
885 
886 	gerror_val = REGV_RD32(IVPU_MMU_REG_GERROR);
887 	gerrorn_val = REGV_RD32(IVPU_MMU_REG_GERRORN);
888 
889 	active = gerror_val ^ gerrorn_val;
890 	if (!(active & IVPU_MMU_GERROR_ERR_MASK))
891 		return;
892 
893 	if (REG_TEST_FLD(IVPU_MMU_REG_GERROR, MSI_ABT, active))
894 		ivpu_warn_ratelimited(vdev, "MMU MSI ABT write aborted\n");
895 
896 	if (REG_TEST_FLD(IVPU_MMU_REG_GERROR, MSI_PRIQ_ABT, active))
897 		ivpu_warn_ratelimited(vdev, "MMU PRIQ MSI ABT write aborted\n");
898 
899 	if (REG_TEST_FLD(IVPU_MMU_REG_GERROR, MSI_EVTQ_ABT, active))
900 		ivpu_warn_ratelimited(vdev, "MMU EVTQ MSI ABT write aborted\n");
901 
902 	if (REG_TEST_FLD(IVPU_MMU_REG_GERROR, MSI_CMDQ_ABT, active))
903 		ivpu_warn_ratelimited(vdev, "MMU CMDQ MSI ABT write aborted\n");
904 
905 	if (REG_TEST_FLD(IVPU_MMU_REG_GERROR, PRIQ_ABT, active))
906 		ivpu_err_ratelimited(vdev, "MMU PRIQ write aborted\n");
907 
908 	if (REG_TEST_FLD(IVPU_MMU_REG_GERROR, EVTQ_ABT, active))
909 		ivpu_err_ratelimited(vdev, "MMU EVTQ write aborted\n");
910 
911 	if (REG_TEST_FLD(IVPU_MMU_REG_GERROR, CMDQ, active))
912 		ivpu_err_ratelimited(vdev, "MMU CMDQ write aborted\n");
913 
914 	REGV_WR32(IVPU_MMU_REG_GERRORN, gerror_val);
915 }
916 
917 int ivpu_mmu_set_pgtable(struct ivpu_device *vdev, int ssid, struct ivpu_mmu_pgtable *pgtable)
918 {
919 	return ivpu_mmu_cd_add_user(vdev, ssid, pgtable->pgd_dma);
920 }
921 
922 void ivpu_mmu_clear_pgtable(struct ivpu_device *vdev, int ssid)
923 {
924 	ivpu_mmu_cd_add_user(vdev, ssid, 0); /* 0 will clear CD entry */
925 }
926