xref: /linux/drivers/acpi/device_pm.c (revision 44f57d78)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * drivers/acpi/device_pm.c - ACPI device power management routines.
4  *
5  * Copyright (C) 2012, Intel Corp.
6  * Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
7  *
8  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
9  *
10  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
11  */
12 
13 #include <linux/acpi.h>
14 #include <linux/export.h>
15 #include <linux/mutex.h>
16 #include <linux/pm_qos.h>
17 #include <linux/pm_domain.h>
18 #include <linux/pm_runtime.h>
19 #include <linux/suspend.h>
20 
21 #include "internal.h"
22 
23 #define _COMPONENT	ACPI_POWER_COMPONENT
24 ACPI_MODULE_NAME("device_pm");
25 
26 /**
27  * acpi_power_state_string - String representation of ACPI device power state.
28  * @state: ACPI device power state to return the string representation of.
29  */
30 const char *acpi_power_state_string(int state)
31 {
32 	switch (state) {
33 	case ACPI_STATE_D0:
34 		return "D0";
35 	case ACPI_STATE_D1:
36 		return "D1";
37 	case ACPI_STATE_D2:
38 		return "D2";
39 	case ACPI_STATE_D3_HOT:
40 		return "D3hot";
41 	case ACPI_STATE_D3_COLD:
42 		return "D3cold";
43 	default:
44 		return "(unknown)";
45 	}
46 }
47 
48 /**
49  * acpi_device_get_power - Get power state of an ACPI device.
50  * @device: Device to get the power state of.
51  * @state: Place to store the power state of the device.
52  *
53  * This function does not update the device's power.state field, but it may
54  * update its parent's power.state field (when the parent's power state is
55  * unknown and the device's power state turns out to be D0).
56  */
57 int acpi_device_get_power(struct acpi_device *device, int *state)
58 {
59 	int result = ACPI_STATE_UNKNOWN;
60 
61 	if (!device || !state)
62 		return -EINVAL;
63 
64 	if (!device->flags.power_manageable) {
65 		/* TBD: Non-recursive algorithm for walking up hierarchy. */
66 		*state = device->parent ?
67 			device->parent->power.state : ACPI_STATE_D0;
68 		goto out;
69 	}
70 
71 	/*
72 	 * Get the device's power state from power resources settings and _PSC,
73 	 * if available.
74 	 */
75 	if (device->power.flags.power_resources) {
76 		int error = acpi_power_get_inferred_state(device, &result);
77 		if (error)
78 			return error;
79 	}
80 	if (device->power.flags.explicit_get) {
81 		acpi_handle handle = device->handle;
82 		unsigned long long psc;
83 		acpi_status status;
84 
85 		status = acpi_evaluate_integer(handle, "_PSC", NULL, &psc);
86 		if (ACPI_FAILURE(status))
87 			return -ENODEV;
88 
89 		/*
90 		 * The power resources settings may indicate a power state
91 		 * shallower than the actual power state of the device, because
92 		 * the same power resources may be referenced by other devices.
93 		 *
94 		 * For systems predating ACPI 4.0 we assume that D3hot is the
95 		 * deepest state that can be supported.
96 		 */
97 		if (psc > result && psc < ACPI_STATE_D3_COLD)
98 			result = psc;
99 		else if (result == ACPI_STATE_UNKNOWN)
100 			result = psc > ACPI_STATE_D2 ? ACPI_STATE_D3_HOT : psc;
101 	}
102 
103 	/*
104 	 * If we were unsure about the device parent's power state up to this
105 	 * point, the fact that the device is in D0 implies that the parent has
106 	 * to be in D0 too, except if ignore_parent is set.
107 	 */
108 	if (!device->power.flags.ignore_parent && device->parent
109 	    && device->parent->power.state == ACPI_STATE_UNKNOWN
110 	    && result == ACPI_STATE_D0)
111 		device->parent->power.state = ACPI_STATE_D0;
112 
113 	*state = result;
114 
115  out:
116 	ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Device [%s] power state is %s\n",
117 			  device->pnp.bus_id, acpi_power_state_string(*state)));
118 
119 	return 0;
120 }
121 EXPORT_SYMBOL(acpi_device_get_power);
122 
123 static int acpi_dev_pm_explicit_set(struct acpi_device *adev, int state)
124 {
125 	if (adev->power.states[state].flags.explicit_set) {
126 		char method[5] = { '_', 'P', 'S', '0' + state, '\0' };
127 		acpi_status status;
128 
129 		status = acpi_evaluate_object(adev->handle, method, NULL, NULL);
130 		if (ACPI_FAILURE(status))
131 			return -ENODEV;
132 	}
133 	return 0;
134 }
135 
136 /**
137  * acpi_device_set_power - Set power state of an ACPI device.
138  * @device: Device to set the power state of.
139  * @state: New power state to set.
140  *
141  * Callers must ensure that the device is power manageable before using this
142  * function.
143  */
144 int acpi_device_set_power(struct acpi_device *device, int state)
145 {
146 	int target_state = state;
147 	int result = 0;
148 
149 	if (!device || !device->flags.power_manageable
150 	    || (state < ACPI_STATE_D0) || (state > ACPI_STATE_D3_COLD))
151 		return -EINVAL;
152 
153 	/* Make sure this is a valid target state */
154 
155 	if (state == device->power.state) {
156 		ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Device [%s] already in %s\n",
157 				  device->pnp.bus_id,
158 				  acpi_power_state_string(state)));
159 		return 0;
160 	}
161 
162 	if (state == ACPI_STATE_D3_COLD) {
163 		/*
164 		 * For transitions to D3cold we need to execute _PS3 and then
165 		 * possibly drop references to the power resources in use.
166 		 */
167 		state = ACPI_STATE_D3_HOT;
168 		/* If _PR3 is not available, use D3hot as the target state. */
169 		if (!device->power.states[ACPI_STATE_D3_COLD].flags.valid)
170 			target_state = state;
171 	} else if (!device->power.states[state].flags.valid) {
172 		dev_warn(&device->dev, "Power state %s not supported\n",
173 			 acpi_power_state_string(state));
174 		return -ENODEV;
175 	}
176 
177 	if (!device->power.flags.ignore_parent &&
178 	    device->parent && (state < device->parent->power.state)) {
179 		dev_warn(&device->dev,
180 			 "Cannot transition to power state %s for parent in %s\n",
181 			 acpi_power_state_string(state),
182 			 acpi_power_state_string(device->parent->power.state));
183 		return -ENODEV;
184 	}
185 
186 	/*
187 	 * Transition Power
188 	 * ----------------
189 	 * In accordance with ACPI 6, _PSx is executed before manipulating power
190 	 * resources, unless the target state is D0, in which case _PS0 is
191 	 * supposed to be executed after turning the power resources on.
192 	 */
193 	if (state > ACPI_STATE_D0) {
194 		/*
195 		 * According to ACPI 6, devices cannot go from lower-power
196 		 * (deeper) states to higher-power (shallower) states.
197 		 */
198 		if (state < device->power.state) {
199 			dev_warn(&device->dev, "Cannot transition from %s to %s\n",
200 				 acpi_power_state_string(device->power.state),
201 				 acpi_power_state_string(state));
202 			return -ENODEV;
203 		}
204 
205 		result = acpi_dev_pm_explicit_set(device, state);
206 		if (result)
207 			goto end;
208 
209 		if (device->power.flags.power_resources)
210 			result = acpi_power_transition(device, target_state);
211 	} else {
212 		if (device->power.flags.power_resources) {
213 			result = acpi_power_transition(device, ACPI_STATE_D0);
214 			if (result)
215 				goto end;
216 		}
217 		result = acpi_dev_pm_explicit_set(device, ACPI_STATE_D0);
218 	}
219 
220  end:
221 	if (result) {
222 		dev_warn(&device->dev, "Failed to change power state to %s\n",
223 			 acpi_power_state_string(state));
224 	} else {
225 		device->power.state = target_state;
226 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
227 				  "Device [%s] transitioned to %s\n",
228 				  device->pnp.bus_id,
229 				  acpi_power_state_string(state)));
230 	}
231 
232 	return result;
233 }
234 EXPORT_SYMBOL(acpi_device_set_power);
235 
236 int acpi_bus_set_power(acpi_handle handle, int state)
237 {
238 	struct acpi_device *device;
239 	int result;
240 
241 	result = acpi_bus_get_device(handle, &device);
242 	if (result)
243 		return result;
244 
245 	return acpi_device_set_power(device, state);
246 }
247 EXPORT_SYMBOL(acpi_bus_set_power);
248 
249 int acpi_bus_init_power(struct acpi_device *device)
250 {
251 	int state;
252 	int result;
253 
254 	if (!device)
255 		return -EINVAL;
256 
257 	device->power.state = ACPI_STATE_UNKNOWN;
258 	if (!acpi_device_is_present(device)) {
259 		device->flags.initialized = false;
260 		return -ENXIO;
261 	}
262 
263 	result = acpi_device_get_power(device, &state);
264 	if (result)
265 		return result;
266 
267 	if (state < ACPI_STATE_D3_COLD && device->power.flags.power_resources) {
268 		/* Reference count the power resources. */
269 		result = acpi_power_on_resources(device, state);
270 		if (result)
271 			return result;
272 
273 		if (state == ACPI_STATE_D0) {
274 			/*
275 			 * If _PSC is not present and the state inferred from
276 			 * power resources appears to be D0, it still may be
277 			 * necessary to execute _PS0 at this point, because
278 			 * another device using the same power resources may
279 			 * have been put into D0 previously and that's why we
280 			 * see D0 here.
281 			 */
282 			result = acpi_dev_pm_explicit_set(device, state);
283 			if (result)
284 				return result;
285 		}
286 	} else if (state == ACPI_STATE_UNKNOWN) {
287 		/*
288 		 * No power resources and missing _PSC?  Cross fingers and make
289 		 * it D0 in hope that this is what the BIOS put the device into.
290 		 * [We tried to force D0 here by executing _PS0, but that broke
291 		 * Toshiba P870-303 in a nasty way.]
292 		 */
293 		state = ACPI_STATE_D0;
294 	}
295 	device->power.state = state;
296 	return 0;
297 }
298 
299 /**
300  * acpi_device_fix_up_power - Force device with missing _PSC into D0.
301  * @device: Device object whose power state is to be fixed up.
302  *
303  * Devices without power resources and _PSC, but having _PS0 and _PS3 defined,
304  * are assumed to be put into D0 by the BIOS.  However, in some cases that may
305  * not be the case and this function should be used then.
306  */
307 int acpi_device_fix_up_power(struct acpi_device *device)
308 {
309 	int ret = 0;
310 
311 	if (!device->power.flags.power_resources
312 	    && !device->power.flags.explicit_get
313 	    && device->power.state == ACPI_STATE_D0)
314 		ret = acpi_dev_pm_explicit_set(device, ACPI_STATE_D0);
315 
316 	return ret;
317 }
318 EXPORT_SYMBOL_GPL(acpi_device_fix_up_power);
319 
320 int acpi_device_update_power(struct acpi_device *device, int *state_p)
321 {
322 	int state;
323 	int result;
324 
325 	if (device->power.state == ACPI_STATE_UNKNOWN) {
326 		result = acpi_bus_init_power(device);
327 		if (!result && state_p)
328 			*state_p = device->power.state;
329 
330 		return result;
331 	}
332 
333 	result = acpi_device_get_power(device, &state);
334 	if (result)
335 		return result;
336 
337 	if (state == ACPI_STATE_UNKNOWN) {
338 		state = ACPI_STATE_D0;
339 		result = acpi_device_set_power(device, state);
340 		if (result)
341 			return result;
342 	} else {
343 		if (device->power.flags.power_resources) {
344 			/*
345 			 * We don't need to really switch the state, bu we need
346 			 * to update the power resources' reference counters.
347 			 */
348 			result = acpi_power_transition(device, state);
349 			if (result)
350 				return result;
351 		}
352 		device->power.state = state;
353 	}
354 	if (state_p)
355 		*state_p = state;
356 
357 	return 0;
358 }
359 EXPORT_SYMBOL_GPL(acpi_device_update_power);
360 
361 int acpi_bus_update_power(acpi_handle handle, int *state_p)
362 {
363 	struct acpi_device *device;
364 	int result;
365 
366 	result = acpi_bus_get_device(handle, &device);
367 	return result ? result : acpi_device_update_power(device, state_p);
368 }
369 EXPORT_SYMBOL_GPL(acpi_bus_update_power);
370 
371 bool acpi_bus_power_manageable(acpi_handle handle)
372 {
373 	struct acpi_device *device;
374 	int result;
375 
376 	result = acpi_bus_get_device(handle, &device);
377 	return result ? false : device->flags.power_manageable;
378 }
379 EXPORT_SYMBOL(acpi_bus_power_manageable);
380 
381 #ifdef CONFIG_PM
382 static DEFINE_MUTEX(acpi_pm_notifier_lock);
383 static DEFINE_MUTEX(acpi_pm_notifier_install_lock);
384 
385 void acpi_pm_wakeup_event(struct device *dev)
386 {
387 	pm_wakeup_dev_event(dev, 0, acpi_s2idle_wakeup());
388 }
389 EXPORT_SYMBOL_GPL(acpi_pm_wakeup_event);
390 
391 static void acpi_pm_notify_handler(acpi_handle handle, u32 val, void *not_used)
392 {
393 	struct acpi_device *adev;
394 
395 	if (val != ACPI_NOTIFY_DEVICE_WAKE)
396 		return;
397 
398 	acpi_handle_debug(handle, "Wake notify\n");
399 
400 	adev = acpi_bus_get_acpi_device(handle);
401 	if (!adev)
402 		return;
403 
404 	mutex_lock(&acpi_pm_notifier_lock);
405 
406 	if (adev->wakeup.flags.notifier_present) {
407 		pm_wakeup_ws_event(adev->wakeup.ws, 0, acpi_s2idle_wakeup());
408 		if (adev->wakeup.context.func) {
409 			acpi_handle_debug(handle, "Running %pS for %s\n",
410 					  adev->wakeup.context.func,
411 					  dev_name(adev->wakeup.context.dev));
412 			adev->wakeup.context.func(&adev->wakeup.context);
413 		}
414 	}
415 
416 	mutex_unlock(&acpi_pm_notifier_lock);
417 
418 	acpi_bus_put_acpi_device(adev);
419 }
420 
421 /**
422  * acpi_add_pm_notifier - Register PM notify handler for given ACPI device.
423  * @adev: ACPI device to add the notify handler for.
424  * @dev: Device to generate a wakeup event for while handling the notification.
425  * @func: Work function to execute when handling the notification.
426  *
427  * NOTE: @adev need not be a run-wake or wakeup device to be a valid source of
428  * PM wakeup events.  For example, wakeup events may be generated for bridges
429  * if one of the devices below the bridge is signaling wakeup, even if the
430  * bridge itself doesn't have a wakeup GPE associated with it.
431  */
432 acpi_status acpi_add_pm_notifier(struct acpi_device *adev, struct device *dev,
433 			void (*func)(struct acpi_device_wakeup_context *context))
434 {
435 	acpi_status status = AE_ALREADY_EXISTS;
436 
437 	if (!dev && !func)
438 		return AE_BAD_PARAMETER;
439 
440 	mutex_lock(&acpi_pm_notifier_install_lock);
441 
442 	if (adev->wakeup.flags.notifier_present)
443 		goto out;
444 
445 	status = acpi_install_notify_handler(adev->handle, ACPI_SYSTEM_NOTIFY,
446 					     acpi_pm_notify_handler, NULL);
447 	if (ACPI_FAILURE(status))
448 		goto out;
449 
450 	mutex_lock(&acpi_pm_notifier_lock);
451 	adev->wakeup.ws = wakeup_source_register(dev_name(&adev->dev));
452 	adev->wakeup.context.dev = dev;
453 	adev->wakeup.context.func = func;
454 	adev->wakeup.flags.notifier_present = true;
455 	mutex_unlock(&acpi_pm_notifier_lock);
456 
457  out:
458 	mutex_unlock(&acpi_pm_notifier_install_lock);
459 	return status;
460 }
461 
462 /**
463  * acpi_remove_pm_notifier - Unregister PM notifier from given ACPI device.
464  * @adev: ACPI device to remove the notifier from.
465  */
466 acpi_status acpi_remove_pm_notifier(struct acpi_device *adev)
467 {
468 	acpi_status status = AE_BAD_PARAMETER;
469 
470 	mutex_lock(&acpi_pm_notifier_install_lock);
471 
472 	if (!adev->wakeup.flags.notifier_present)
473 		goto out;
474 
475 	status = acpi_remove_notify_handler(adev->handle,
476 					    ACPI_SYSTEM_NOTIFY,
477 					    acpi_pm_notify_handler);
478 	if (ACPI_FAILURE(status))
479 		goto out;
480 
481 	mutex_lock(&acpi_pm_notifier_lock);
482 	adev->wakeup.context.func = NULL;
483 	adev->wakeup.context.dev = NULL;
484 	wakeup_source_unregister(adev->wakeup.ws);
485 	adev->wakeup.flags.notifier_present = false;
486 	mutex_unlock(&acpi_pm_notifier_lock);
487 
488  out:
489 	mutex_unlock(&acpi_pm_notifier_install_lock);
490 	return status;
491 }
492 
493 bool acpi_bus_can_wakeup(acpi_handle handle)
494 {
495 	struct acpi_device *device;
496 	int result;
497 
498 	result = acpi_bus_get_device(handle, &device);
499 	return result ? false : device->wakeup.flags.valid;
500 }
501 EXPORT_SYMBOL(acpi_bus_can_wakeup);
502 
503 bool acpi_pm_device_can_wakeup(struct device *dev)
504 {
505 	struct acpi_device *adev = ACPI_COMPANION(dev);
506 
507 	return adev ? acpi_device_can_wakeup(adev) : false;
508 }
509 
510 /**
511  * acpi_dev_pm_get_state - Get preferred power state of ACPI device.
512  * @dev: Device whose preferred target power state to return.
513  * @adev: ACPI device node corresponding to @dev.
514  * @target_state: System state to match the resultant device state.
515  * @d_min_p: Location to store the highest power state available to the device.
516  * @d_max_p: Location to store the lowest power state available to the device.
517  *
518  * Find the lowest power (highest number) and highest power (lowest number) ACPI
519  * device power states that the device can be in while the system is in the
520  * state represented by @target_state.  Store the integer numbers representing
521  * those stats in the memory locations pointed to by @d_max_p and @d_min_p,
522  * respectively.
523  *
524  * Callers must ensure that @dev and @adev are valid pointers and that @adev
525  * actually corresponds to @dev before using this function.
526  *
527  * Returns 0 on success or -ENODATA when one of the ACPI methods fails or
528  * returns a value that doesn't make sense.  The memory locations pointed to by
529  * @d_max_p and @d_min_p are only modified on success.
530  */
531 static int acpi_dev_pm_get_state(struct device *dev, struct acpi_device *adev,
532 				 u32 target_state, int *d_min_p, int *d_max_p)
533 {
534 	char method[] = { '_', 'S', '0' + target_state, 'D', '\0' };
535 	acpi_handle handle = adev->handle;
536 	unsigned long long ret;
537 	int d_min, d_max;
538 	bool wakeup = false;
539 	bool has_sxd = false;
540 	acpi_status status;
541 
542 	/*
543 	 * If the system state is S0, the lowest power state the device can be
544 	 * in is D3cold, unless the device has _S0W and is supposed to signal
545 	 * wakeup, in which case the return value of _S0W has to be used as the
546 	 * lowest power state available to the device.
547 	 */
548 	d_min = ACPI_STATE_D0;
549 	d_max = ACPI_STATE_D3_COLD;
550 
551 	/*
552 	 * If present, _SxD methods return the minimum D-state (highest power
553 	 * state) we can use for the corresponding S-states.  Otherwise, the
554 	 * minimum D-state is D0 (ACPI 3.x).
555 	 */
556 	if (target_state > ACPI_STATE_S0) {
557 		/*
558 		 * We rely on acpi_evaluate_integer() not clobbering the integer
559 		 * provided if AE_NOT_FOUND is returned.
560 		 */
561 		ret = d_min;
562 		status = acpi_evaluate_integer(handle, method, NULL, &ret);
563 		if ((ACPI_FAILURE(status) && status != AE_NOT_FOUND)
564 		    || ret > ACPI_STATE_D3_COLD)
565 			return -ENODATA;
566 
567 		/*
568 		 * We need to handle legacy systems where D3hot and D3cold are
569 		 * the same and 3 is returned in both cases, so fall back to
570 		 * D3cold if D3hot is not a valid state.
571 		 */
572 		if (!adev->power.states[ret].flags.valid) {
573 			if (ret == ACPI_STATE_D3_HOT)
574 				ret = ACPI_STATE_D3_COLD;
575 			else
576 				return -ENODATA;
577 		}
578 
579 		if (status == AE_OK)
580 			has_sxd = true;
581 
582 		d_min = ret;
583 		wakeup = device_may_wakeup(dev) && adev->wakeup.flags.valid
584 			&& adev->wakeup.sleep_state >= target_state;
585 	} else {
586 		wakeup = adev->wakeup.flags.valid;
587 	}
588 
589 	/*
590 	 * If _PRW says we can wake up the system from the target sleep state,
591 	 * the D-state returned by _SxD is sufficient for that (we assume a
592 	 * wakeup-aware driver if wake is set).  Still, if _SxW exists
593 	 * (ACPI 3.x), it should return the maximum (lowest power) D-state that
594 	 * can wake the system.  _S0W may be valid, too.
595 	 */
596 	if (wakeup) {
597 		method[3] = 'W';
598 		status = acpi_evaluate_integer(handle, method, NULL, &ret);
599 		if (status == AE_NOT_FOUND) {
600 			/* No _SxW. In this case, the ACPI spec says that we
601 			 * must not go into any power state deeper than the
602 			 * value returned from _SxD.
603 			 */
604 			if (has_sxd && target_state > ACPI_STATE_S0)
605 				d_max = d_min;
606 		} else if (ACPI_SUCCESS(status) && ret <= ACPI_STATE_D3_COLD) {
607 			/* Fall back to D3cold if ret is not a valid state. */
608 			if (!adev->power.states[ret].flags.valid)
609 				ret = ACPI_STATE_D3_COLD;
610 
611 			d_max = ret > d_min ? ret : d_min;
612 		} else {
613 			return -ENODATA;
614 		}
615 	}
616 
617 	if (d_min_p)
618 		*d_min_p = d_min;
619 
620 	if (d_max_p)
621 		*d_max_p = d_max;
622 
623 	return 0;
624 }
625 
626 /**
627  * acpi_pm_device_sleep_state - Get preferred power state of ACPI device.
628  * @dev: Device whose preferred target power state to return.
629  * @d_min_p: Location to store the upper limit of the allowed states range.
630  * @d_max_in: Deepest low-power state to take into consideration.
631  * Return value: Preferred power state of the device on success, -ENODEV
632  * if there's no 'struct acpi_device' for @dev, -EINVAL if @d_max_in is
633  * incorrect, or -ENODATA on ACPI method failure.
634  *
635  * The caller must ensure that @dev is valid before using this function.
636  */
637 int acpi_pm_device_sleep_state(struct device *dev, int *d_min_p, int d_max_in)
638 {
639 	struct acpi_device *adev;
640 	int ret, d_min, d_max;
641 
642 	if (d_max_in < ACPI_STATE_D0 || d_max_in > ACPI_STATE_D3_COLD)
643 		return -EINVAL;
644 
645 	if (d_max_in > ACPI_STATE_D2) {
646 		enum pm_qos_flags_status stat;
647 
648 		stat = dev_pm_qos_flags(dev, PM_QOS_FLAG_NO_POWER_OFF);
649 		if (stat == PM_QOS_FLAGS_ALL)
650 			d_max_in = ACPI_STATE_D2;
651 	}
652 
653 	adev = ACPI_COMPANION(dev);
654 	if (!adev) {
655 		dev_dbg(dev, "ACPI companion missing in %s!\n", __func__);
656 		return -ENODEV;
657 	}
658 
659 	ret = acpi_dev_pm_get_state(dev, adev, acpi_target_system_state(),
660 				    &d_min, &d_max);
661 	if (ret)
662 		return ret;
663 
664 	if (d_max_in < d_min)
665 		return -EINVAL;
666 
667 	if (d_max > d_max_in) {
668 		for (d_max = d_max_in; d_max > d_min; d_max--) {
669 			if (adev->power.states[d_max].flags.valid)
670 				break;
671 		}
672 	}
673 
674 	if (d_min_p)
675 		*d_min_p = d_min;
676 
677 	return d_max;
678 }
679 EXPORT_SYMBOL(acpi_pm_device_sleep_state);
680 
681 /**
682  * acpi_pm_notify_work_func - ACPI devices wakeup notification work function.
683  * @context: Device wakeup context.
684  */
685 static void acpi_pm_notify_work_func(struct acpi_device_wakeup_context *context)
686 {
687 	struct device *dev = context->dev;
688 
689 	if (dev) {
690 		pm_wakeup_event(dev, 0);
691 		pm_request_resume(dev);
692 	}
693 }
694 
695 static DEFINE_MUTEX(acpi_wakeup_lock);
696 
697 static int __acpi_device_wakeup_enable(struct acpi_device *adev,
698 				       u32 target_state, int max_count)
699 {
700 	struct acpi_device_wakeup *wakeup = &adev->wakeup;
701 	acpi_status status;
702 	int error = 0;
703 
704 	mutex_lock(&acpi_wakeup_lock);
705 
706 	if (wakeup->enable_count >= max_count)
707 		goto out;
708 
709 	if (wakeup->enable_count > 0)
710 		goto inc;
711 
712 	error = acpi_enable_wakeup_device_power(adev, target_state);
713 	if (error)
714 		goto out;
715 
716 	status = acpi_enable_gpe(wakeup->gpe_device, wakeup->gpe_number);
717 	if (ACPI_FAILURE(status)) {
718 		acpi_disable_wakeup_device_power(adev);
719 		error = -EIO;
720 		goto out;
721 	}
722 
723 	acpi_handle_debug(adev->handle, "GPE%2X enabled for wakeup\n",
724 			  (unsigned int)wakeup->gpe_number);
725 
726 inc:
727 	wakeup->enable_count++;
728 
729 out:
730 	mutex_unlock(&acpi_wakeup_lock);
731 	return error;
732 }
733 
734 /**
735  * acpi_device_wakeup_enable - Enable wakeup functionality for device.
736  * @adev: ACPI device to enable wakeup functionality for.
737  * @target_state: State the system is transitioning into.
738  *
739  * Enable the GPE associated with @adev so that it can generate wakeup signals
740  * for the device in response to external (remote) events and enable wakeup
741  * power for it.
742  *
743  * Callers must ensure that @adev is a valid ACPI device node before executing
744  * this function.
745  */
746 static int acpi_device_wakeup_enable(struct acpi_device *adev, u32 target_state)
747 {
748 	return __acpi_device_wakeup_enable(adev, target_state, 1);
749 }
750 
751 /**
752  * acpi_device_wakeup_disable - Disable wakeup functionality for device.
753  * @adev: ACPI device to disable wakeup functionality for.
754  *
755  * Disable the GPE associated with @adev and disable wakeup power for it.
756  *
757  * Callers must ensure that @adev is a valid ACPI device node before executing
758  * this function.
759  */
760 static void acpi_device_wakeup_disable(struct acpi_device *adev)
761 {
762 	struct acpi_device_wakeup *wakeup = &adev->wakeup;
763 
764 	mutex_lock(&acpi_wakeup_lock);
765 
766 	if (!wakeup->enable_count)
767 		goto out;
768 
769 	acpi_disable_gpe(wakeup->gpe_device, wakeup->gpe_number);
770 	acpi_disable_wakeup_device_power(adev);
771 
772 	wakeup->enable_count--;
773 
774 out:
775 	mutex_unlock(&acpi_wakeup_lock);
776 }
777 
778 static int __acpi_pm_set_device_wakeup(struct device *dev, bool enable,
779 				       int max_count)
780 {
781 	struct acpi_device *adev;
782 	int error;
783 
784 	adev = ACPI_COMPANION(dev);
785 	if (!adev) {
786 		dev_dbg(dev, "ACPI companion missing in %s!\n", __func__);
787 		return -ENODEV;
788 	}
789 
790 	if (!acpi_device_can_wakeup(adev))
791 		return -EINVAL;
792 
793 	if (!enable) {
794 		acpi_device_wakeup_disable(adev);
795 		dev_dbg(dev, "Wakeup disabled by ACPI\n");
796 		return 0;
797 	}
798 
799 	error = __acpi_device_wakeup_enable(adev, acpi_target_system_state(),
800 					    max_count);
801 	if (!error)
802 		dev_dbg(dev, "Wakeup enabled by ACPI\n");
803 
804 	return error;
805 }
806 
807 /**
808  * acpi_pm_set_device_wakeup - Enable/disable remote wakeup for given device.
809  * @dev: Device to enable/disable to generate wakeup events.
810  * @enable: Whether to enable or disable the wakeup functionality.
811  */
812 int acpi_pm_set_device_wakeup(struct device *dev, bool enable)
813 {
814 	return __acpi_pm_set_device_wakeup(dev, enable, 1);
815 }
816 EXPORT_SYMBOL_GPL(acpi_pm_set_device_wakeup);
817 
818 /**
819  * acpi_pm_set_bridge_wakeup - Enable/disable remote wakeup for given bridge.
820  * @dev: Bridge device to enable/disable to generate wakeup events.
821  * @enable: Whether to enable or disable the wakeup functionality.
822  */
823 int acpi_pm_set_bridge_wakeup(struct device *dev, bool enable)
824 {
825 	return __acpi_pm_set_device_wakeup(dev, enable, INT_MAX);
826 }
827 EXPORT_SYMBOL_GPL(acpi_pm_set_bridge_wakeup);
828 
829 /**
830  * acpi_dev_pm_low_power - Put ACPI device into a low-power state.
831  * @dev: Device to put into a low-power state.
832  * @adev: ACPI device node corresponding to @dev.
833  * @system_state: System state to choose the device state for.
834  */
835 static int acpi_dev_pm_low_power(struct device *dev, struct acpi_device *adev,
836 				 u32 system_state)
837 {
838 	int ret, state;
839 
840 	if (!acpi_device_power_manageable(adev))
841 		return 0;
842 
843 	ret = acpi_dev_pm_get_state(dev, adev, system_state, NULL, &state);
844 	return ret ? ret : acpi_device_set_power(adev, state);
845 }
846 
847 /**
848  * acpi_dev_pm_full_power - Put ACPI device into the full-power state.
849  * @adev: ACPI device node to put into the full-power state.
850  */
851 static int acpi_dev_pm_full_power(struct acpi_device *adev)
852 {
853 	return acpi_device_power_manageable(adev) ?
854 		acpi_device_set_power(adev, ACPI_STATE_D0) : 0;
855 }
856 
857 /**
858  * acpi_dev_suspend - Put device into a low-power state using ACPI.
859  * @dev: Device to put into a low-power state.
860  * @wakeup: Whether or not to enable wakeup for the device.
861  *
862  * Put the given device into a low-power state using the standard ACPI
863  * mechanism.  Set up remote wakeup if desired, choose the state to put the
864  * device into (this checks if remote wakeup is expected to work too), and set
865  * the power state of the device.
866  */
867 int acpi_dev_suspend(struct device *dev, bool wakeup)
868 {
869 	struct acpi_device *adev = ACPI_COMPANION(dev);
870 	u32 target_state = acpi_target_system_state();
871 	int error;
872 
873 	if (!adev)
874 		return 0;
875 
876 	if (wakeup && acpi_device_can_wakeup(adev)) {
877 		error = acpi_device_wakeup_enable(adev, target_state);
878 		if (error)
879 			return -EAGAIN;
880 	} else {
881 		wakeup = false;
882 	}
883 
884 	error = acpi_dev_pm_low_power(dev, adev, target_state);
885 	if (error && wakeup)
886 		acpi_device_wakeup_disable(adev);
887 
888 	return error;
889 }
890 EXPORT_SYMBOL_GPL(acpi_dev_suspend);
891 
892 /**
893  * acpi_dev_resume - Put device into the full-power state using ACPI.
894  * @dev: Device to put into the full-power state.
895  *
896  * Put the given device into the full-power state using the standard ACPI
897  * mechanism.  Set the power state of the device to ACPI D0 and disable wakeup.
898  */
899 int acpi_dev_resume(struct device *dev)
900 {
901 	struct acpi_device *adev = ACPI_COMPANION(dev);
902 	int error;
903 
904 	if (!adev)
905 		return 0;
906 
907 	error = acpi_dev_pm_full_power(adev);
908 	acpi_device_wakeup_disable(adev);
909 	return error;
910 }
911 EXPORT_SYMBOL_GPL(acpi_dev_resume);
912 
913 /**
914  * acpi_subsys_runtime_suspend - Suspend device using ACPI.
915  * @dev: Device to suspend.
916  *
917  * Carry out the generic runtime suspend procedure for @dev and use ACPI to put
918  * it into a runtime low-power state.
919  */
920 int acpi_subsys_runtime_suspend(struct device *dev)
921 {
922 	int ret = pm_generic_runtime_suspend(dev);
923 	return ret ? ret : acpi_dev_suspend(dev, true);
924 }
925 EXPORT_SYMBOL_GPL(acpi_subsys_runtime_suspend);
926 
927 /**
928  * acpi_subsys_runtime_resume - Resume device using ACPI.
929  * @dev: Device to Resume.
930  *
931  * Use ACPI to put the given device into the full-power state and carry out the
932  * generic runtime resume procedure for it.
933  */
934 int acpi_subsys_runtime_resume(struct device *dev)
935 {
936 	int ret = acpi_dev_resume(dev);
937 	return ret ? ret : pm_generic_runtime_resume(dev);
938 }
939 EXPORT_SYMBOL_GPL(acpi_subsys_runtime_resume);
940 
941 #ifdef CONFIG_PM_SLEEP
942 static bool acpi_dev_needs_resume(struct device *dev, struct acpi_device *adev)
943 {
944 	u32 sys_target = acpi_target_system_state();
945 	int ret, state;
946 
947 	if (!pm_runtime_suspended(dev) || !adev || (adev->wakeup.flags.valid &&
948 	    device_may_wakeup(dev) != !!adev->wakeup.prepare_count))
949 		return true;
950 
951 	if (sys_target == ACPI_STATE_S0)
952 		return false;
953 
954 	if (adev->power.flags.dsw_present)
955 		return true;
956 
957 	ret = acpi_dev_pm_get_state(dev, adev, sys_target, NULL, &state);
958 	if (ret)
959 		return true;
960 
961 	return state != adev->power.state;
962 }
963 
964 /**
965  * acpi_subsys_prepare - Prepare device for system transition to a sleep state.
966  * @dev: Device to prepare.
967  */
968 int acpi_subsys_prepare(struct device *dev)
969 {
970 	struct acpi_device *adev = ACPI_COMPANION(dev);
971 
972 	if (dev->driver && dev->driver->pm && dev->driver->pm->prepare) {
973 		int ret = dev->driver->pm->prepare(dev);
974 
975 		if (ret < 0)
976 			return ret;
977 
978 		if (!ret && dev_pm_test_driver_flags(dev, DPM_FLAG_SMART_PREPARE))
979 			return 0;
980 	}
981 
982 	return !acpi_dev_needs_resume(dev, adev);
983 }
984 EXPORT_SYMBOL_GPL(acpi_subsys_prepare);
985 
986 /**
987  * acpi_subsys_complete - Finalize device's resume during system resume.
988  * @dev: Device to handle.
989  */
990 void acpi_subsys_complete(struct device *dev)
991 {
992 	pm_generic_complete(dev);
993 	/*
994 	 * If the device had been runtime-suspended before the system went into
995 	 * the sleep state it is going out of and it has never been resumed till
996 	 * now, resume it in case the firmware powered it up.
997 	 */
998 	if (pm_runtime_suspended(dev) && pm_resume_via_firmware())
999 		pm_request_resume(dev);
1000 }
1001 EXPORT_SYMBOL_GPL(acpi_subsys_complete);
1002 
1003 /**
1004  * acpi_subsys_suspend - Run the device driver's suspend callback.
1005  * @dev: Device to handle.
1006  *
1007  * Follow PCI and resume devices from runtime suspend before running their
1008  * system suspend callbacks, unless the driver can cope with runtime-suspended
1009  * devices during system suspend and there are no ACPI-specific reasons for
1010  * resuming them.
1011  */
1012 int acpi_subsys_suspend(struct device *dev)
1013 {
1014 	if (!dev_pm_test_driver_flags(dev, DPM_FLAG_SMART_SUSPEND) ||
1015 	    acpi_dev_needs_resume(dev, ACPI_COMPANION(dev)))
1016 		pm_runtime_resume(dev);
1017 
1018 	return pm_generic_suspend(dev);
1019 }
1020 EXPORT_SYMBOL_GPL(acpi_subsys_suspend);
1021 
1022 /**
1023  * acpi_subsys_suspend_late - Suspend device using ACPI.
1024  * @dev: Device to suspend.
1025  *
1026  * Carry out the generic late suspend procedure for @dev and use ACPI to put
1027  * it into a low-power state during system transition into a sleep state.
1028  */
1029 int acpi_subsys_suspend_late(struct device *dev)
1030 {
1031 	int ret;
1032 
1033 	if (dev_pm_smart_suspend_and_suspended(dev))
1034 		return 0;
1035 
1036 	ret = pm_generic_suspend_late(dev);
1037 	return ret ? ret : acpi_dev_suspend(dev, device_may_wakeup(dev));
1038 }
1039 EXPORT_SYMBOL_GPL(acpi_subsys_suspend_late);
1040 
1041 /**
1042  * acpi_subsys_suspend_noirq - Run the device driver's "noirq" suspend callback.
1043  * @dev: Device to suspend.
1044  */
1045 int acpi_subsys_suspend_noirq(struct device *dev)
1046 {
1047 	int ret;
1048 
1049 	if (dev_pm_smart_suspend_and_suspended(dev)) {
1050 		dev->power.may_skip_resume = true;
1051 		return 0;
1052 	}
1053 
1054 	ret = pm_generic_suspend_noirq(dev);
1055 	if (ret)
1056 		return ret;
1057 
1058 	/*
1059 	 * If the target system sleep state is suspend-to-idle, it is sufficient
1060 	 * to check whether or not the device's wakeup settings are good for
1061 	 * runtime PM.  Otherwise, the pm_resume_via_firmware() check will cause
1062 	 * acpi_subsys_complete() to take care of fixing up the device's state
1063 	 * anyway, if need be.
1064 	 */
1065 	dev->power.may_skip_resume = device_may_wakeup(dev) ||
1066 					!device_can_wakeup(dev);
1067 
1068 	return 0;
1069 }
1070 EXPORT_SYMBOL_GPL(acpi_subsys_suspend_noirq);
1071 
1072 /**
1073  * acpi_subsys_resume_noirq - Run the device driver's "noirq" resume callback.
1074  * @dev: Device to handle.
1075  */
1076 int acpi_subsys_resume_noirq(struct device *dev)
1077 {
1078 	if (dev_pm_may_skip_resume(dev))
1079 		return 0;
1080 
1081 	/*
1082 	 * Devices with DPM_FLAG_SMART_SUSPEND may be left in runtime suspend
1083 	 * during system suspend, so update their runtime PM status to "active"
1084 	 * as they will be put into D0 going forward.
1085 	 */
1086 	if (dev_pm_smart_suspend_and_suspended(dev))
1087 		pm_runtime_set_active(dev);
1088 
1089 	return pm_generic_resume_noirq(dev);
1090 }
1091 EXPORT_SYMBOL_GPL(acpi_subsys_resume_noirq);
1092 
1093 /**
1094  * acpi_subsys_resume_early - Resume device using ACPI.
1095  * @dev: Device to Resume.
1096  *
1097  * Use ACPI to put the given device into the full-power state and carry out the
1098  * generic early resume procedure for it during system transition into the
1099  * working state.
1100  */
1101 int acpi_subsys_resume_early(struct device *dev)
1102 {
1103 	int ret = acpi_dev_resume(dev);
1104 	return ret ? ret : pm_generic_resume_early(dev);
1105 }
1106 EXPORT_SYMBOL_GPL(acpi_subsys_resume_early);
1107 
1108 /**
1109  * acpi_subsys_freeze - Run the device driver's freeze callback.
1110  * @dev: Device to handle.
1111  */
1112 int acpi_subsys_freeze(struct device *dev)
1113 {
1114 	/*
1115 	 * This used to be done in acpi_subsys_prepare() for all devices and
1116 	 * some drivers may depend on it, so do it here.  Ideally, however,
1117 	 * runtime-suspended devices should not be touched during freeze/thaw
1118 	 * transitions.
1119 	 */
1120 	if (!dev_pm_test_driver_flags(dev, DPM_FLAG_SMART_SUSPEND))
1121 		pm_runtime_resume(dev);
1122 
1123 	return pm_generic_freeze(dev);
1124 }
1125 EXPORT_SYMBOL_GPL(acpi_subsys_freeze);
1126 
1127 /**
1128  * acpi_subsys_freeze_late - Run the device driver's "late" freeze callback.
1129  * @dev: Device to handle.
1130  */
1131 int acpi_subsys_freeze_late(struct device *dev)
1132 {
1133 
1134 	if (dev_pm_smart_suspend_and_suspended(dev))
1135 		return 0;
1136 
1137 	return pm_generic_freeze_late(dev);
1138 }
1139 EXPORT_SYMBOL_GPL(acpi_subsys_freeze_late);
1140 
1141 /**
1142  * acpi_subsys_freeze_noirq - Run the device driver's "noirq" freeze callback.
1143  * @dev: Device to handle.
1144  */
1145 int acpi_subsys_freeze_noirq(struct device *dev)
1146 {
1147 
1148 	if (dev_pm_smart_suspend_and_suspended(dev))
1149 		return 0;
1150 
1151 	return pm_generic_freeze_noirq(dev);
1152 }
1153 EXPORT_SYMBOL_GPL(acpi_subsys_freeze_noirq);
1154 
1155 /**
1156  * acpi_subsys_thaw_noirq - Run the device driver's "noirq" thaw callback.
1157  * @dev: Device to handle.
1158  */
1159 int acpi_subsys_thaw_noirq(struct device *dev)
1160 {
1161 	/*
1162 	 * If the device is in runtime suspend, the "thaw" code may not work
1163 	 * correctly with it, so skip the driver callback and make the PM core
1164 	 * skip all of the subsequent "thaw" callbacks for the device.
1165 	 */
1166 	if (dev_pm_smart_suspend_and_suspended(dev)) {
1167 		dev_pm_skip_next_resume_phases(dev);
1168 		return 0;
1169 	}
1170 
1171 	return pm_generic_thaw_noirq(dev);
1172 }
1173 EXPORT_SYMBOL_GPL(acpi_subsys_thaw_noirq);
1174 #endif /* CONFIG_PM_SLEEP */
1175 
1176 static struct dev_pm_domain acpi_general_pm_domain = {
1177 	.ops = {
1178 		.runtime_suspend = acpi_subsys_runtime_suspend,
1179 		.runtime_resume = acpi_subsys_runtime_resume,
1180 #ifdef CONFIG_PM_SLEEP
1181 		.prepare = acpi_subsys_prepare,
1182 		.complete = acpi_subsys_complete,
1183 		.suspend = acpi_subsys_suspend,
1184 		.suspend_late = acpi_subsys_suspend_late,
1185 		.suspend_noirq = acpi_subsys_suspend_noirq,
1186 		.resume_noirq = acpi_subsys_resume_noirq,
1187 		.resume_early = acpi_subsys_resume_early,
1188 		.freeze = acpi_subsys_freeze,
1189 		.freeze_late = acpi_subsys_freeze_late,
1190 		.freeze_noirq = acpi_subsys_freeze_noirq,
1191 		.thaw_noirq = acpi_subsys_thaw_noirq,
1192 		.poweroff = acpi_subsys_suspend,
1193 		.poweroff_late = acpi_subsys_suspend_late,
1194 		.poweroff_noirq = acpi_subsys_suspend_noirq,
1195 		.restore_noirq = acpi_subsys_resume_noirq,
1196 		.restore_early = acpi_subsys_resume_early,
1197 #endif
1198 	},
1199 };
1200 
1201 /**
1202  * acpi_dev_pm_detach - Remove ACPI power management from the device.
1203  * @dev: Device to take care of.
1204  * @power_off: Whether or not to try to remove power from the device.
1205  *
1206  * Remove the device from the general ACPI PM domain and remove its wakeup
1207  * notifier.  If @power_off is set, additionally remove power from the device if
1208  * possible.
1209  *
1210  * Callers must ensure proper synchronization of this function with power
1211  * management callbacks.
1212  */
1213 static void acpi_dev_pm_detach(struct device *dev, bool power_off)
1214 {
1215 	struct acpi_device *adev = ACPI_COMPANION(dev);
1216 
1217 	if (adev && dev->pm_domain == &acpi_general_pm_domain) {
1218 		dev_pm_domain_set(dev, NULL);
1219 		acpi_remove_pm_notifier(adev);
1220 		if (power_off) {
1221 			/*
1222 			 * If the device's PM QoS resume latency limit or flags
1223 			 * have been exposed to user space, they have to be
1224 			 * hidden at this point, so that they don't affect the
1225 			 * choice of the low-power state to put the device into.
1226 			 */
1227 			dev_pm_qos_hide_latency_limit(dev);
1228 			dev_pm_qos_hide_flags(dev);
1229 			acpi_device_wakeup_disable(adev);
1230 			acpi_dev_pm_low_power(dev, adev, ACPI_STATE_S0);
1231 		}
1232 	}
1233 }
1234 
1235 /**
1236  * acpi_dev_pm_attach - Prepare device for ACPI power management.
1237  * @dev: Device to prepare.
1238  * @power_on: Whether or not to power on the device.
1239  *
1240  * If @dev has a valid ACPI handle that has a valid struct acpi_device object
1241  * attached to it, install a wakeup notification handler for the device and
1242  * add it to the general ACPI PM domain.  If @power_on is set, the device will
1243  * be put into the ACPI D0 state before the function returns.
1244  *
1245  * This assumes that the @dev's bus type uses generic power management callbacks
1246  * (or doesn't use any power management callbacks at all).
1247  *
1248  * Callers must ensure proper synchronization of this function with power
1249  * management callbacks.
1250  */
1251 int acpi_dev_pm_attach(struct device *dev, bool power_on)
1252 {
1253 	struct acpi_device *adev = ACPI_COMPANION(dev);
1254 
1255 	if (!adev)
1256 		return 0;
1257 
1258 	/*
1259 	 * Only attach the power domain to the first device if the
1260 	 * companion is shared by multiple. This is to prevent doing power
1261 	 * management twice.
1262 	 */
1263 	if (!acpi_device_is_first_physical_node(adev, dev))
1264 		return 0;
1265 
1266 	acpi_add_pm_notifier(adev, dev, acpi_pm_notify_work_func);
1267 	dev_pm_domain_set(dev, &acpi_general_pm_domain);
1268 	if (power_on) {
1269 		acpi_dev_pm_full_power(adev);
1270 		acpi_device_wakeup_disable(adev);
1271 	}
1272 
1273 	dev->pm_domain->detach = acpi_dev_pm_detach;
1274 	return 1;
1275 }
1276 EXPORT_SYMBOL_GPL(acpi_dev_pm_attach);
1277 #endif /* CONFIG_PM */
1278