xref: /linux/drivers/acpi/pptt.c (revision 2da68a77)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * pptt.c - parsing of Processor Properties Topology Table (PPTT)
4  *
5  * Copyright (C) 2018, ARM
6  *
7  * This file implements parsing of the Processor Properties Topology Table
8  * which is optionally used to describe the processor and cache topology.
9  * Due to the relative pointers used throughout the table, this doesn't
10  * leverage the existing subtable parsing in the kernel.
11  *
12  * The PPTT structure is an inverted tree, with each node potentially
13  * holding one or two inverted tree data structures describing
14  * the caches available at that level. Each cache structure optionally
15  * contains properties describing the cache at a given level which can be
16  * used to override hardware probed values.
17  */
18 #define pr_fmt(fmt) "ACPI PPTT: " fmt
19 
20 #include <linux/acpi.h>
21 #include <linux/cacheinfo.h>
22 #include <acpi/processor.h>
23 
24 static struct acpi_subtable_header *fetch_pptt_subtable(struct acpi_table_header *table_hdr,
25 							u32 pptt_ref)
26 {
27 	struct acpi_subtable_header *entry;
28 
29 	/* there isn't a subtable at reference 0 */
30 	if (pptt_ref < sizeof(struct acpi_subtable_header))
31 		return NULL;
32 
33 	if (pptt_ref + sizeof(struct acpi_subtable_header) > table_hdr->length)
34 		return NULL;
35 
36 	entry = ACPI_ADD_PTR(struct acpi_subtable_header, table_hdr, pptt_ref);
37 
38 	if (entry->length == 0)
39 		return NULL;
40 
41 	if (pptt_ref + entry->length > table_hdr->length)
42 		return NULL;
43 
44 	return entry;
45 }
46 
47 static struct acpi_pptt_processor *fetch_pptt_node(struct acpi_table_header *table_hdr,
48 						   u32 pptt_ref)
49 {
50 	return (struct acpi_pptt_processor *)fetch_pptt_subtable(table_hdr, pptt_ref);
51 }
52 
53 static struct acpi_pptt_cache *fetch_pptt_cache(struct acpi_table_header *table_hdr,
54 						u32 pptt_ref)
55 {
56 	return (struct acpi_pptt_cache *)fetch_pptt_subtable(table_hdr, pptt_ref);
57 }
58 
59 static struct acpi_subtable_header *acpi_get_pptt_resource(struct acpi_table_header *table_hdr,
60 							   struct acpi_pptt_processor *node,
61 							   int resource)
62 {
63 	u32 *ref;
64 
65 	if (resource >= node->number_of_priv_resources)
66 		return NULL;
67 
68 	ref = ACPI_ADD_PTR(u32, node, sizeof(struct acpi_pptt_processor));
69 	ref += resource;
70 
71 	return fetch_pptt_subtable(table_hdr, *ref);
72 }
73 
74 static inline bool acpi_pptt_match_type(int table_type, int type)
75 {
76 	return ((table_type & ACPI_PPTT_MASK_CACHE_TYPE) == type ||
77 		table_type & ACPI_PPTT_CACHE_TYPE_UNIFIED & type);
78 }
79 
80 /**
81  * acpi_pptt_walk_cache() - Attempt to find the requested acpi_pptt_cache
82  * @table_hdr: Pointer to the head of the PPTT table
83  * @local_level: passed res reflects this cache level
84  * @res: cache resource in the PPTT we want to walk
85  * @found: returns a pointer to the requested level if found
86  * @level: the requested cache level
87  * @type: the requested cache type
88  *
89  * Attempt to find a given cache level, while counting the max number
90  * of cache levels for the cache node.
91  *
92  * Given a pptt resource, verify that it is a cache node, then walk
93  * down each level of caches, counting how many levels are found
94  * as well as checking the cache type (icache, dcache, unified). If a
95  * level & type match, then we set found, and continue the search.
96  * Once the entire cache branch has been walked return its max
97  * depth.
98  *
99  * Return: The cache structure and the level we terminated with.
100  */
101 static unsigned int acpi_pptt_walk_cache(struct acpi_table_header *table_hdr,
102 					 unsigned int local_level,
103 					 struct acpi_subtable_header *res,
104 					 struct acpi_pptt_cache **found,
105 					 unsigned int level, int type)
106 {
107 	struct acpi_pptt_cache *cache;
108 
109 	if (res->type != ACPI_PPTT_TYPE_CACHE)
110 		return 0;
111 
112 	cache = (struct acpi_pptt_cache *) res;
113 	while (cache) {
114 		local_level++;
115 
116 		if (local_level == level &&
117 		    cache->flags & ACPI_PPTT_CACHE_TYPE_VALID &&
118 		    acpi_pptt_match_type(cache->attributes, type)) {
119 			if (*found != NULL && cache != *found)
120 				pr_warn("Found duplicate cache level/type unable to determine uniqueness\n");
121 
122 			pr_debug("Found cache @ level %u\n", level);
123 			*found = cache;
124 			/*
125 			 * continue looking at this node's resource list
126 			 * to verify that we don't find a duplicate
127 			 * cache node.
128 			 */
129 		}
130 		cache = fetch_pptt_cache(table_hdr, cache->next_level_of_cache);
131 	}
132 	return local_level;
133 }
134 
135 static struct acpi_pptt_cache *
136 acpi_find_cache_level(struct acpi_table_header *table_hdr,
137 		      struct acpi_pptt_processor *cpu_node,
138 		      unsigned int *starting_level, unsigned int level,
139 		      int type)
140 {
141 	struct acpi_subtable_header *res;
142 	unsigned int number_of_levels = *starting_level;
143 	int resource = 0;
144 	struct acpi_pptt_cache *ret = NULL;
145 	unsigned int local_level;
146 
147 	/* walk down from processor node */
148 	while ((res = acpi_get_pptt_resource(table_hdr, cpu_node, resource))) {
149 		resource++;
150 
151 		local_level = acpi_pptt_walk_cache(table_hdr, *starting_level,
152 						   res, &ret, level, type);
153 		/*
154 		 * we are looking for the max depth. Since its potentially
155 		 * possible for a given node to have resources with differing
156 		 * depths verify that the depth we have found is the largest.
157 		 */
158 		if (number_of_levels < local_level)
159 			number_of_levels = local_level;
160 	}
161 	if (number_of_levels > *starting_level)
162 		*starting_level = number_of_levels;
163 
164 	return ret;
165 }
166 
167 /**
168  * acpi_count_levels() - Given a PPTT table, and a CPU node, count the caches
169  * @table_hdr: Pointer to the head of the PPTT table
170  * @cpu_node: processor node we wish to count caches for
171  *
172  * Given a processor node containing a processing unit, walk into it and count
173  * how many levels exist solely for it, and then walk up each level until we hit
174  * the root node (ignore the package level because it may be possible to have
175  * caches that exist across packages). Count the number of cache levels that
176  * exist at each level on the way up.
177  *
178  * Return: Total number of levels found.
179  */
180 static int acpi_count_levels(struct acpi_table_header *table_hdr,
181 			     struct acpi_pptt_processor *cpu_node)
182 {
183 	int total_levels = 0;
184 
185 	do {
186 		acpi_find_cache_level(table_hdr, cpu_node, &total_levels, 0, 0);
187 		cpu_node = fetch_pptt_node(table_hdr, cpu_node->parent);
188 	} while (cpu_node);
189 
190 	return total_levels;
191 }
192 
193 /**
194  * acpi_pptt_leaf_node() - Given a processor node, determine if its a leaf
195  * @table_hdr: Pointer to the head of the PPTT table
196  * @node: passed node is checked to see if its a leaf
197  *
198  * Determine if the *node parameter is a leaf node by iterating the
199  * PPTT table, looking for nodes which reference it.
200  *
201  * Return: 0 if we find a node referencing the passed node (or table error),
202  * or 1 if we don't.
203  */
204 static int acpi_pptt_leaf_node(struct acpi_table_header *table_hdr,
205 			       struct acpi_pptt_processor *node)
206 {
207 	struct acpi_subtable_header *entry;
208 	unsigned long table_end;
209 	u32 node_entry;
210 	struct acpi_pptt_processor *cpu_node;
211 	u32 proc_sz;
212 
213 	if (table_hdr->revision > 1)
214 		return (node->flags & ACPI_PPTT_ACPI_LEAF_NODE);
215 
216 	table_end = (unsigned long)table_hdr + table_hdr->length;
217 	node_entry = ACPI_PTR_DIFF(node, table_hdr);
218 	entry = ACPI_ADD_PTR(struct acpi_subtable_header, table_hdr,
219 			     sizeof(struct acpi_table_pptt));
220 	proc_sz = sizeof(struct acpi_pptt_processor *);
221 
222 	while ((unsigned long)entry + proc_sz < table_end) {
223 		cpu_node = (struct acpi_pptt_processor *)entry;
224 		if (entry->type == ACPI_PPTT_TYPE_PROCESSOR &&
225 		    cpu_node->parent == node_entry)
226 			return 0;
227 		if (entry->length == 0)
228 			return 0;
229 		entry = ACPI_ADD_PTR(struct acpi_subtable_header, entry,
230 				     entry->length);
231 
232 	}
233 	return 1;
234 }
235 
236 /**
237  * acpi_find_processor_node() - Given a PPTT table find the requested processor
238  * @table_hdr:  Pointer to the head of the PPTT table
239  * @acpi_cpu_id: CPU we are searching for
240  *
241  * Find the subtable entry describing the provided processor.
242  * This is done by iterating the PPTT table looking for processor nodes
243  * which have an acpi_processor_id that matches the acpi_cpu_id parameter
244  * passed into the function. If we find a node that matches this criteria
245  * we verify that its a leaf node in the topology rather than depending
246  * on the valid flag, which doesn't need to be set for leaf nodes.
247  *
248  * Return: NULL, or the processors acpi_pptt_processor*
249  */
250 static struct acpi_pptt_processor *acpi_find_processor_node(struct acpi_table_header *table_hdr,
251 							    u32 acpi_cpu_id)
252 {
253 	struct acpi_subtable_header *entry;
254 	unsigned long table_end;
255 	struct acpi_pptt_processor *cpu_node;
256 	u32 proc_sz;
257 
258 	table_end = (unsigned long)table_hdr + table_hdr->length;
259 	entry = ACPI_ADD_PTR(struct acpi_subtable_header, table_hdr,
260 			     sizeof(struct acpi_table_pptt));
261 	proc_sz = sizeof(struct acpi_pptt_processor *);
262 
263 	/* find the processor structure associated with this cpuid */
264 	while ((unsigned long)entry + proc_sz < table_end) {
265 		cpu_node = (struct acpi_pptt_processor *)entry;
266 
267 		if (entry->length == 0) {
268 			pr_warn("Invalid zero length subtable\n");
269 			break;
270 		}
271 		if (entry->type == ACPI_PPTT_TYPE_PROCESSOR &&
272 		    acpi_cpu_id == cpu_node->acpi_processor_id &&
273 		     acpi_pptt_leaf_node(table_hdr, cpu_node)) {
274 			return (struct acpi_pptt_processor *)entry;
275 		}
276 
277 		entry = ACPI_ADD_PTR(struct acpi_subtable_header, entry,
278 				     entry->length);
279 	}
280 
281 	return NULL;
282 }
283 
284 static int acpi_find_cache_levels(struct acpi_table_header *table_hdr,
285 				  u32 acpi_cpu_id)
286 {
287 	int number_of_levels = 0;
288 	struct acpi_pptt_processor *cpu;
289 
290 	cpu = acpi_find_processor_node(table_hdr, acpi_cpu_id);
291 	if (cpu)
292 		number_of_levels = acpi_count_levels(table_hdr, cpu);
293 
294 	return number_of_levels;
295 }
296 
297 static u8 acpi_cache_type(enum cache_type type)
298 {
299 	switch (type) {
300 	case CACHE_TYPE_DATA:
301 		pr_debug("Looking for data cache\n");
302 		return ACPI_PPTT_CACHE_TYPE_DATA;
303 	case CACHE_TYPE_INST:
304 		pr_debug("Looking for instruction cache\n");
305 		return ACPI_PPTT_CACHE_TYPE_INSTR;
306 	default:
307 	case CACHE_TYPE_UNIFIED:
308 		pr_debug("Looking for unified cache\n");
309 		/*
310 		 * It is important that ACPI_PPTT_CACHE_TYPE_UNIFIED
311 		 * contains the bit pattern that will match both
312 		 * ACPI unified bit patterns because we use it later
313 		 * to match both cases.
314 		 */
315 		return ACPI_PPTT_CACHE_TYPE_UNIFIED;
316 	}
317 }
318 
319 static struct acpi_pptt_cache *acpi_find_cache_node(struct acpi_table_header *table_hdr,
320 						    u32 acpi_cpu_id,
321 						    enum cache_type type,
322 						    unsigned int level,
323 						    struct acpi_pptt_processor **node)
324 {
325 	unsigned int total_levels = 0;
326 	struct acpi_pptt_cache *found = NULL;
327 	struct acpi_pptt_processor *cpu_node;
328 	u8 acpi_type = acpi_cache_type(type);
329 
330 	pr_debug("Looking for CPU %d's level %u cache type %d\n",
331 		 acpi_cpu_id, level, acpi_type);
332 
333 	cpu_node = acpi_find_processor_node(table_hdr, acpi_cpu_id);
334 
335 	while (cpu_node && !found) {
336 		found = acpi_find_cache_level(table_hdr, cpu_node,
337 					      &total_levels, level, acpi_type);
338 		*node = cpu_node;
339 		cpu_node = fetch_pptt_node(table_hdr, cpu_node->parent);
340 	}
341 
342 	return found;
343 }
344 
345 /**
346  * update_cache_properties() - Update cacheinfo for the given processor
347  * @this_leaf: Kernel cache info structure being updated
348  * @found_cache: The PPTT node describing this cache instance
349  * @cpu_node: A unique reference to describe this cache instance
350  * @revision: The revision of the PPTT table
351  *
352  * The ACPI spec implies that the fields in the cache structures are used to
353  * extend and correct the information probed from the hardware. Lets only
354  * set fields that we determine are VALID.
355  *
356  * Return: nothing. Side effect of updating the global cacheinfo
357  */
358 static void update_cache_properties(struct cacheinfo *this_leaf,
359 				    struct acpi_pptt_cache *found_cache,
360 				    struct acpi_pptt_processor *cpu_node,
361 				    u8 revision)
362 {
363 	struct acpi_pptt_cache_v1* found_cache_v1;
364 
365 	this_leaf->fw_token = cpu_node;
366 	if (found_cache->flags & ACPI_PPTT_SIZE_PROPERTY_VALID)
367 		this_leaf->size = found_cache->size;
368 	if (found_cache->flags & ACPI_PPTT_LINE_SIZE_VALID)
369 		this_leaf->coherency_line_size = found_cache->line_size;
370 	if (found_cache->flags & ACPI_PPTT_NUMBER_OF_SETS_VALID)
371 		this_leaf->number_of_sets = found_cache->number_of_sets;
372 	if (found_cache->flags & ACPI_PPTT_ASSOCIATIVITY_VALID)
373 		this_leaf->ways_of_associativity = found_cache->associativity;
374 	if (found_cache->flags & ACPI_PPTT_WRITE_POLICY_VALID) {
375 		switch (found_cache->attributes & ACPI_PPTT_MASK_WRITE_POLICY) {
376 		case ACPI_PPTT_CACHE_POLICY_WT:
377 			this_leaf->attributes = CACHE_WRITE_THROUGH;
378 			break;
379 		case ACPI_PPTT_CACHE_POLICY_WB:
380 			this_leaf->attributes = CACHE_WRITE_BACK;
381 			break;
382 		}
383 	}
384 	if (found_cache->flags & ACPI_PPTT_ALLOCATION_TYPE_VALID) {
385 		switch (found_cache->attributes & ACPI_PPTT_MASK_ALLOCATION_TYPE) {
386 		case ACPI_PPTT_CACHE_READ_ALLOCATE:
387 			this_leaf->attributes |= CACHE_READ_ALLOCATE;
388 			break;
389 		case ACPI_PPTT_CACHE_WRITE_ALLOCATE:
390 			this_leaf->attributes |= CACHE_WRITE_ALLOCATE;
391 			break;
392 		case ACPI_PPTT_CACHE_RW_ALLOCATE:
393 		case ACPI_PPTT_CACHE_RW_ALLOCATE_ALT:
394 			this_leaf->attributes |=
395 				CACHE_READ_ALLOCATE | CACHE_WRITE_ALLOCATE;
396 			break;
397 		}
398 	}
399 	/*
400 	 * If cache type is NOCACHE, then the cache hasn't been specified
401 	 * via other mechanisms.  Update the type if a cache type has been
402 	 * provided.
403 	 *
404 	 * Note, we assume such caches are unified based on conventional system
405 	 * design and known examples.  Significant work is required elsewhere to
406 	 * fully support data/instruction only type caches which are only
407 	 * specified in PPTT.
408 	 */
409 	if (this_leaf->type == CACHE_TYPE_NOCACHE &&
410 	    found_cache->flags & ACPI_PPTT_CACHE_TYPE_VALID)
411 		this_leaf->type = CACHE_TYPE_UNIFIED;
412 
413 	if (revision >= 3 && (found_cache->flags & ACPI_PPTT_CACHE_ID_VALID)) {
414 		found_cache_v1 = ACPI_ADD_PTR(struct acpi_pptt_cache_v1,
415 	                                      found_cache, sizeof(struct acpi_pptt_cache));
416 		this_leaf->id = found_cache_v1->cache_id;
417 		this_leaf->attributes |= CACHE_ID;
418 	}
419 }
420 
421 static void cache_setup_acpi_cpu(struct acpi_table_header *table,
422 				 unsigned int cpu)
423 {
424 	struct acpi_pptt_cache *found_cache;
425 	struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
426 	u32 acpi_cpu_id = get_acpi_id_for_cpu(cpu);
427 	struct cacheinfo *this_leaf;
428 	unsigned int index = 0;
429 	struct acpi_pptt_processor *cpu_node = NULL;
430 
431 	while (index < get_cpu_cacheinfo(cpu)->num_leaves) {
432 		this_leaf = this_cpu_ci->info_list + index;
433 		found_cache = acpi_find_cache_node(table, acpi_cpu_id,
434 						   this_leaf->type,
435 						   this_leaf->level,
436 						   &cpu_node);
437 		pr_debug("found = %p %p\n", found_cache, cpu_node);
438 		if (found_cache)
439 			update_cache_properties(this_leaf, found_cache,
440 						ACPI_TO_POINTER(ACPI_PTR_DIFF(cpu_node, table)),
441 						table->revision);
442 
443 		index++;
444 	}
445 }
446 
447 static bool flag_identical(struct acpi_table_header *table_hdr,
448 			   struct acpi_pptt_processor *cpu)
449 {
450 	struct acpi_pptt_processor *next;
451 
452 	/* heterogeneous machines must use PPTT revision > 1 */
453 	if (table_hdr->revision < 2)
454 		return false;
455 
456 	/* Locate the last node in the tree with IDENTICAL set */
457 	if (cpu->flags & ACPI_PPTT_ACPI_IDENTICAL) {
458 		next = fetch_pptt_node(table_hdr, cpu->parent);
459 		if (!(next && next->flags & ACPI_PPTT_ACPI_IDENTICAL))
460 			return true;
461 	}
462 
463 	return false;
464 }
465 
466 /* Passing level values greater than this will result in search termination */
467 #define PPTT_ABORT_PACKAGE 0xFF
468 
469 static struct acpi_pptt_processor *acpi_find_processor_tag(struct acpi_table_header *table_hdr,
470 							   struct acpi_pptt_processor *cpu,
471 							   int level, int flag)
472 {
473 	struct acpi_pptt_processor *prev_node;
474 
475 	while (cpu && level) {
476 		/* special case the identical flag to find last identical */
477 		if (flag == ACPI_PPTT_ACPI_IDENTICAL) {
478 			if (flag_identical(table_hdr, cpu))
479 				break;
480 		} else if (cpu->flags & flag)
481 			break;
482 		pr_debug("level %d\n", level);
483 		prev_node = fetch_pptt_node(table_hdr, cpu->parent);
484 		if (prev_node == NULL)
485 			break;
486 		cpu = prev_node;
487 		level--;
488 	}
489 	return cpu;
490 }
491 
492 static void acpi_pptt_warn_missing(void)
493 {
494 	pr_warn_once("No PPTT table found, CPU and cache topology may be inaccurate\n");
495 }
496 
497 /**
498  * topology_get_acpi_cpu_tag() - Find a unique topology value for a feature
499  * @table: Pointer to the head of the PPTT table
500  * @cpu: Kernel logical CPU number
501  * @level: A level that terminates the search
502  * @flag: A flag which terminates the search
503  *
504  * Get a unique value given a CPU, and a topology level, that can be
505  * matched to determine which cpus share common topological features
506  * at that level.
507  *
508  * Return: Unique value, or -ENOENT if unable to locate CPU
509  */
510 static int topology_get_acpi_cpu_tag(struct acpi_table_header *table,
511 				     unsigned int cpu, int level, int flag)
512 {
513 	struct acpi_pptt_processor *cpu_node;
514 	u32 acpi_cpu_id = get_acpi_id_for_cpu(cpu);
515 
516 	cpu_node = acpi_find_processor_node(table, acpi_cpu_id);
517 	if (cpu_node) {
518 		cpu_node = acpi_find_processor_tag(table, cpu_node,
519 						   level, flag);
520 		/*
521 		 * As per specification if the processor structure represents
522 		 * an actual processor, then ACPI processor ID must be valid.
523 		 * For processor containers ACPI_PPTT_ACPI_PROCESSOR_ID_VALID
524 		 * should be set if the UID is valid
525 		 */
526 		if (level == 0 ||
527 		    cpu_node->flags & ACPI_PPTT_ACPI_PROCESSOR_ID_VALID)
528 			return cpu_node->acpi_processor_id;
529 		return ACPI_PTR_DIFF(cpu_node, table);
530 	}
531 	pr_warn_once("PPTT table found, but unable to locate core %d (%d)\n",
532 		    cpu, acpi_cpu_id);
533 	return -ENOENT;
534 }
535 
536 
537 static struct acpi_table_header *acpi_get_pptt(void)
538 {
539 	static struct acpi_table_header *pptt;
540 	acpi_status status;
541 
542 	/*
543 	 * PPTT will be used at runtime on every CPU hotplug in path, so we
544 	 * don't need to call acpi_put_table() to release the table mapping.
545 	 */
546 	if (!pptt) {
547 		status = acpi_get_table(ACPI_SIG_PPTT, 0, &pptt);
548 		if (ACPI_FAILURE(status))
549 			acpi_pptt_warn_missing();
550 	}
551 
552 	return pptt;
553 }
554 
555 static int find_acpi_cpu_topology_tag(unsigned int cpu, int level, int flag)
556 {
557 	struct acpi_table_header *table;
558 	int retval;
559 
560 	table = acpi_get_pptt();
561 	if (!table)
562 		return -ENOENT;
563 
564 	retval = topology_get_acpi_cpu_tag(table, cpu, level, flag);
565 	pr_debug("Topology Setup ACPI CPU %d, level %d ret = %d\n",
566 		 cpu, level, retval);
567 
568 	return retval;
569 }
570 
571 /**
572  * check_acpi_cpu_flag() - Determine if CPU node has a flag set
573  * @cpu: Kernel logical CPU number
574  * @rev: The minimum PPTT revision defining the flag
575  * @flag: The flag itself
576  *
577  * Check the node representing a CPU for a given flag.
578  *
579  * Return: -ENOENT if the PPTT doesn't exist, the CPU cannot be found or
580  *	   the table revision isn't new enough.
581  *	   1, any passed flag set
582  *	   0, flag unset
583  */
584 static int check_acpi_cpu_flag(unsigned int cpu, int rev, u32 flag)
585 {
586 	struct acpi_table_header *table;
587 	u32 acpi_cpu_id = get_acpi_id_for_cpu(cpu);
588 	struct acpi_pptt_processor *cpu_node = NULL;
589 	int ret = -ENOENT;
590 
591 	table = acpi_get_pptt();
592 	if (!table)
593 		return -ENOENT;
594 
595 	if (table->revision >= rev)
596 		cpu_node = acpi_find_processor_node(table, acpi_cpu_id);
597 
598 	if (cpu_node)
599 		ret = (cpu_node->flags & flag) != 0;
600 
601 	return ret;
602 }
603 
604 /**
605  * acpi_find_last_cache_level() - Determines the number of cache levels for a PE
606  * @cpu: Kernel logical CPU number
607  *
608  * Given a logical CPU number, returns the number of levels of cache represented
609  * in the PPTT. Errors caused by lack of a PPTT table, or otherwise, return 0
610  * indicating we didn't find any cache levels.
611  *
612  * Return: Cache levels visible to this core.
613  */
614 int acpi_find_last_cache_level(unsigned int cpu)
615 {
616 	u32 acpi_cpu_id;
617 	struct acpi_table_header *table;
618 	int number_of_levels = 0;
619 
620 	table = acpi_get_pptt();
621 	if (!table)
622 		return -ENOENT;
623 
624 	pr_debug("Cache Setup find last level CPU=%d\n", cpu);
625 
626 	acpi_cpu_id = get_acpi_id_for_cpu(cpu);
627 	number_of_levels = acpi_find_cache_levels(table, acpi_cpu_id);
628 	pr_debug("Cache Setup find last level level=%d\n", number_of_levels);
629 
630 	return number_of_levels;
631 }
632 
633 /**
634  * cache_setup_acpi() - Override CPU cache topology with data from the PPTT
635  * @cpu: Kernel logical CPU number
636  *
637  * Updates the global cache info provided by cpu_get_cacheinfo()
638  * when there are valid properties in the acpi_pptt_cache nodes. A
639  * successful parse may not result in any updates if none of the
640  * cache levels have any valid flags set.  Further, a unique value is
641  * associated with each known CPU cache entry. This unique value
642  * can be used to determine whether caches are shared between CPUs.
643  *
644  * Return: -ENOENT on failure to find table, or 0 on success
645  */
646 int cache_setup_acpi(unsigned int cpu)
647 {
648 	struct acpi_table_header *table;
649 
650 	table = acpi_get_pptt();
651 	if (!table)
652 		return -ENOENT;
653 
654 	pr_debug("Cache Setup ACPI CPU %d\n", cpu);
655 
656 	cache_setup_acpi_cpu(table, cpu);
657 
658 	return 0;
659 }
660 
661 /**
662  * acpi_pptt_cpu_is_thread() - Determine if CPU is a thread
663  * @cpu: Kernel logical CPU number
664  *
665  * Return: 1, a thread
666  *         0, not a thread
667  *         -ENOENT ,if the PPTT doesn't exist, the CPU cannot be found or
668  *         the table revision isn't new enough.
669  */
670 int acpi_pptt_cpu_is_thread(unsigned int cpu)
671 {
672 	return check_acpi_cpu_flag(cpu, 2, ACPI_PPTT_ACPI_PROCESSOR_IS_THREAD);
673 }
674 
675 /**
676  * find_acpi_cpu_topology() - Determine a unique topology value for a given CPU
677  * @cpu: Kernel logical CPU number
678  * @level: The topological level for which we would like a unique ID
679  *
680  * Determine a topology unique ID for each thread/core/cluster/mc_grouping
681  * /socket/etc. This ID can then be used to group peers, which will have
682  * matching ids.
683  *
684  * The search terminates when either the requested level is found or
685  * we reach a root node. Levels beyond the termination point will return the
686  * same unique ID. The unique id for level 0 is the acpi processor id. All
687  * other levels beyond this use a generated value to uniquely identify
688  * a topological feature.
689  *
690  * Return: -ENOENT if the PPTT doesn't exist, or the CPU cannot be found.
691  * Otherwise returns a value which represents a unique topological feature.
692  */
693 int find_acpi_cpu_topology(unsigned int cpu, int level)
694 {
695 	return find_acpi_cpu_topology_tag(cpu, level, 0);
696 }
697 
698 /**
699  * find_acpi_cpu_topology_package() - Determine a unique CPU package value
700  * @cpu: Kernel logical CPU number
701  *
702  * Determine a topology unique package ID for the given CPU.
703  * This ID can then be used to group peers, which will have matching ids.
704  *
705  * The search terminates when either a level is found with the PHYSICAL_PACKAGE
706  * flag set or we reach a root node.
707  *
708  * Return: -ENOENT if the PPTT doesn't exist, or the CPU cannot be found.
709  * Otherwise returns a value which represents the package for this CPU.
710  */
711 int find_acpi_cpu_topology_package(unsigned int cpu)
712 {
713 	return find_acpi_cpu_topology_tag(cpu, PPTT_ABORT_PACKAGE,
714 					  ACPI_PPTT_PHYSICAL_PACKAGE);
715 }
716 
717 /**
718  * find_acpi_cpu_topology_cluster() - Determine a unique CPU cluster value
719  * @cpu: Kernel logical CPU number
720  *
721  * Determine a topology unique cluster ID for the given CPU/thread.
722  * This ID can then be used to group peers, which will have matching ids.
723  *
724  * The cluster, if present is the level of topology above CPUs. In a
725  * multi-thread CPU, it will be the level above the CPU, not the thread.
726  * It may not exist in single CPU systems. In simple multi-CPU systems,
727  * it may be equal to the package topology level.
728  *
729  * Return: -ENOENT if the PPTT doesn't exist, the CPU cannot be found
730  * or there is no toplogy level above the CPU..
731  * Otherwise returns a value which represents the package for this CPU.
732  */
733 
734 int find_acpi_cpu_topology_cluster(unsigned int cpu)
735 {
736 	struct acpi_table_header *table;
737 	struct acpi_pptt_processor *cpu_node, *cluster_node;
738 	u32 acpi_cpu_id;
739 	int retval;
740 	int is_thread;
741 
742 	table = acpi_get_pptt();
743 	if (!table)
744 		return -ENOENT;
745 
746 	acpi_cpu_id = get_acpi_id_for_cpu(cpu);
747 	cpu_node = acpi_find_processor_node(table, acpi_cpu_id);
748 	if (!cpu_node || !cpu_node->parent)
749 		return -ENOENT;
750 
751 	is_thread = cpu_node->flags & ACPI_PPTT_ACPI_PROCESSOR_IS_THREAD;
752 	cluster_node = fetch_pptt_node(table, cpu_node->parent);
753 	if (!cluster_node)
754 		return -ENOENT;
755 
756 	if (is_thread) {
757 		if (!cluster_node->parent)
758 			return -ENOENT;
759 
760 		cluster_node = fetch_pptt_node(table, cluster_node->parent);
761 		if (!cluster_node)
762 			return -ENOENT;
763 	}
764 	if (cluster_node->flags & ACPI_PPTT_ACPI_PROCESSOR_ID_VALID)
765 		retval = cluster_node->acpi_processor_id;
766 	else
767 		retval = ACPI_PTR_DIFF(cluster_node, table);
768 
769 	return retval;
770 }
771 
772 /**
773  * find_acpi_cpu_topology_hetero_id() - Get a core architecture tag
774  * @cpu: Kernel logical CPU number
775  *
776  * Determine a unique heterogeneous tag for the given CPU. CPUs with the same
777  * implementation should have matching tags.
778  *
779  * The returned tag can be used to group peers with identical implementation.
780  *
781  * The search terminates when a level is found with the identical implementation
782  * flag set or we reach a root node.
783  *
784  * Due to limitations in the PPTT data structure, there may be rare situations
785  * where two cores in a heterogeneous machine may be identical, but won't have
786  * the same tag.
787  *
788  * Return: -ENOENT if the PPTT doesn't exist, or the CPU cannot be found.
789  * Otherwise returns a value which represents a group of identical cores
790  * similar to this CPU.
791  */
792 int find_acpi_cpu_topology_hetero_id(unsigned int cpu)
793 {
794 	return find_acpi_cpu_topology_tag(cpu, PPTT_ABORT_PACKAGE,
795 					  ACPI_PPTT_ACPI_IDENTICAL);
796 }
797