xref: /linux/drivers/ata/pata_octeon_cf.c (revision 908fc4c2)
1 /*
2  * Driver for the Octeon bootbus compact flash.
3  *
4  * This file is subject to the terms and conditions of the GNU General Public
5  * License.  See the file "COPYING" in the main directory of this archive
6  * for more details.
7  *
8  * Copyright (C) 2005 - 2012 Cavium Inc.
9  * Copyright (C) 2008 Wind River Systems
10  */
11 
12 #include <linux/kernel.h>
13 #include <linux/module.h>
14 #include <linux/libata.h>
15 #include <linux/hrtimer.h>
16 #include <linux/slab.h>
17 #include <linux/irq.h>
18 #include <linux/of.h>
19 #include <linux/of_platform.h>
20 #include <linux/platform_device.h>
21 #include <scsi/scsi_host.h>
22 #include <trace/events/libata.h>
23 #include <asm/byteorder.h>
24 #include <asm/octeon/octeon.h>
25 
26 /*
27  * The Octeon bootbus compact flash interface is connected in at least
28  * 3 different configurations on various evaluation boards:
29  *
30  * -- 8  bits no irq, no DMA
31  * -- 16 bits no irq, no DMA
32  * -- 16 bits True IDE mode with DMA, but no irq.
33  *
34  * In the last case the DMA engine can generate an interrupt when the
35  * transfer is complete.  For the first two cases only PIO is supported.
36  *
37  */
38 
39 #define DRV_NAME	"pata_octeon_cf"
40 #define DRV_VERSION	"2.2"
41 
42 /* Poll interval in nS. */
43 #define OCTEON_CF_BUSY_POLL_INTERVAL 500000
44 
45 #define DMA_CFG 0
46 #define DMA_TIM 0x20
47 #define DMA_INT 0x38
48 #define DMA_INT_EN 0x50
49 
50 struct octeon_cf_port {
51 	struct hrtimer delayed_finish;
52 	struct ata_port *ap;
53 	int dma_finished;
54 	void		*c0;
55 	unsigned int cs0;
56 	unsigned int cs1;
57 	bool is_true_ide;
58 	u64 dma_base;
59 };
60 
61 static struct scsi_host_template octeon_cf_sht = {
62 	ATA_PIO_SHT(DRV_NAME),
63 };
64 
65 static int enable_dma;
66 module_param(enable_dma, int, 0444);
67 MODULE_PARM_DESC(enable_dma,
68 		 "Enable use of DMA on interfaces that support it (0=no dma [default], 1=use dma)");
69 
70 /**
71  * Convert nanosecond based time to setting used in the
72  * boot bus timing register, based on timing multiple
73  */
74 static unsigned int ns_to_tim_reg(unsigned int tim_mult, unsigned int nsecs)
75 {
76 	/*
77 	 * Compute # of eclock periods to get desired duration in
78 	 * nanoseconds.
79 	 */
80 	return DIV_ROUND_UP(nsecs * (octeon_get_io_clock_rate() / 1000000),
81 			  1000 * tim_mult);
82 }
83 
84 static void octeon_cf_set_boot_reg_cfg(int cs, unsigned int multiplier)
85 {
86 	union cvmx_mio_boot_reg_cfgx reg_cfg;
87 	unsigned int tim_mult;
88 
89 	switch (multiplier) {
90 	case 8:
91 		tim_mult = 3;
92 		break;
93 	case 4:
94 		tim_mult = 0;
95 		break;
96 	case 2:
97 		tim_mult = 2;
98 		break;
99 	default:
100 		tim_mult = 1;
101 		break;
102 	}
103 
104 	reg_cfg.u64 = cvmx_read_csr(CVMX_MIO_BOOT_REG_CFGX(cs));
105 	reg_cfg.s.dmack = 0;	/* Don't assert DMACK on access */
106 	reg_cfg.s.tim_mult = tim_mult;	/* Timing mutiplier */
107 	reg_cfg.s.rd_dly = 0;	/* Sample on falling edge of BOOT_OE */
108 	reg_cfg.s.sam = 0;	/* Don't combine write and output enable */
109 	reg_cfg.s.we_ext = 0;	/* No write enable extension */
110 	reg_cfg.s.oe_ext = 0;	/* No read enable extension */
111 	reg_cfg.s.en = 1;	/* Enable this region */
112 	reg_cfg.s.orbit = 0;	/* Don't combine with previous region */
113 	reg_cfg.s.ale = 0;	/* Don't do address multiplexing */
114 	cvmx_write_csr(CVMX_MIO_BOOT_REG_CFGX(cs), reg_cfg.u64);
115 }
116 
117 /**
118  * Called after libata determines the needed PIO mode. This
119  * function programs the Octeon bootbus regions to support the
120  * timing requirements of the PIO mode.
121  *
122  * @ap:     ATA port information
123  * @dev:    ATA device
124  */
125 static void octeon_cf_set_piomode(struct ata_port *ap, struct ata_device *dev)
126 {
127 	struct octeon_cf_port *cf_port = ap->private_data;
128 	union cvmx_mio_boot_reg_timx reg_tim;
129 	int T;
130 	struct ata_timing timing;
131 
132 	unsigned int div;
133 	int use_iordy;
134 	int trh;
135 	int pause;
136 	/* These names are timing parameters from the ATA spec */
137 	int t2;
138 
139 	/*
140 	 * A divisor value of four will overflow the timing fields at
141 	 * clock rates greater than 800MHz
142 	 */
143 	if (octeon_get_io_clock_rate() <= 800000000)
144 		div = 4;
145 	else
146 		div = 8;
147 	T = (int)((1000000000000LL * div) / octeon_get_io_clock_rate());
148 
149 	BUG_ON(ata_timing_compute(dev, dev->pio_mode, &timing, T, T));
150 
151 	t2 = timing.active;
152 	if (t2)
153 		t2--;
154 
155 	trh = ns_to_tim_reg(div, 20);
156 	if (trh)
157 		trh--;
158 
159 	pause = (int)timing.cycle - (int)timing.active -
160 		(int)timing.setup - trh;
161 	if (pause < 0)
162 		pause = 0;
163 	if (pause)
164 		pause--;
165 
166 	octeon_cf_set_boot_reg_cfg(cf_port->cs0, div);
167 	if (cf_port->is_true_ide)
168 		/* True IDE mode, program both chip selects.  */
169 		octeon_cf_set_boot_reg_cfg(cf_port->cs1, div);
170 
171 
172 	use_iordy = ata_pio_need_iordy(dev);
173 
174 	reg_tim.u64 = cvmx_read_csr(CVMX_MIO_BOOT_REG_TIMX(cf_port->cs0));
175 	/* Disable page mode */
176 	reg_tim.s.pagem = 0;
177 	/* Enable dynamic timing */
178 	reg_tim.s.waitm = use_iordy;
179 	/* Pages are disabled */
180 	reg_tim.s.pages = 0;
181 	/* We don't use multiplexed address mode */
182 	reg_tim.s.ale = 0;
183 	/* Not used */
184 	reg_tim.s.page = 0;
185 	/* Time after IORDY to coninue to assert the data */
186 	reg_tim.s.wait = 0;
187 	/* Time to wait to complete the cycle. */
188 	reg_tim.s.pause = pause;
189 	/* How long to hold after a write to de-assert CE. */
190 	reg_tim.s.wr_hld = trh;
191 	/* How long to wait after a read to de-assert CE. */
192 	reg_tim.s.rd_hld = trh;
193 	/* How long write enable is asserted */
194 	reg_tim.s.we = t2;
195 	/* How long read enable is asserted */
196 	reg_tim.s.oe = t2;
197 	/* Time after CE that read/write starts */
198 	reg_tim.s.ce = ns_to_tim_reg(div, 5);
199 	/* Time before CE that address is valid */
200 	reg_tim.s.adr = 0;
201 
202 	/* Program the bootbus region timing for the data port chip select. */
203 	cvmx_write_csr(CVMX_MIO_BOOT_REG_TIMX(cf_port->cs0), reg_tim.u64);
204 	if (cf_port->is_true_ide)
205 		/* True IDE mode, program both chip selects.  */
206 		cvmx_write_csr(CVMX_MIO_BOOT_REG_TIMX(cf_port->cs1),
207 			       reg_tim.u64);
208 }
209 
210 static void octeon_cf_set_dmamode(struct ata_port *ap, struct ata_device *dev)
211 {
212 	struct octeon_cf_port *cf_port = ap->private_data;
213 	union cvmx_mio_boot_pin_defs pin_defs;
214 	union cvmx_mio_boot_dma_timx dma_tim;
215 	unsigned int oe_a;
216 	unsigned int oe_n;
217 	unsigned int dma_ackh;
218 	unsigned int dma_arq;
219 	unsigned int pause;
220 	unsigned int T0, Tkr, Td;
221 	unsigned int tim_mult;
222 	int c;
223 
224 	const struct ata_timing *timing;
225 
226 	timing = ata_timing_find_mode(dev->dma_mode);
227 	T0	= timing->cycle;
228 	Td	= timing->active;
229 	Tkr	= timing->recover;
230 	dma_ackh = timing->dmack_hold;
231 
232 	dma_tim.u64 = 0;
233 	/* dma_tim.s.tim_mult = 0 --> 4x */
234 	tim_mult = 4;
235 
236 	/* not spec'ed, value in eclocks, not affected by tim_mult */
237 	dma_arq = 8;
238 	pause = 25 - dma_arq * 1000 /
239 		(octeon_get_io_clock_rate() / 1000000); /* Tz */
240 
241 	oe_a = Td;
242 	/* Tkr from cf spec, lengthened to meet T0 */
243 	oe_n = max(T0 - oe_a, Tkr);
244 
245 	pin_defs.u64 = cvmx_read_csr(CVMX_MIO_BOOT_PIN_DEFS);
246 
247 	/* DMA channel number. */
248 	c = (cf_port->dma_base & 8) >> 3;
249 
250 	/* Invert the polarity if the default is 0*/
251 	dma_tim.s.dmack_pi = (pin_defs.u64 & (1ull << (11 + c))) ? 0 : 1;
252 
253 	dma_tim.s.oe_n = ns_to_tim_reg(tim_mult, oe_n);
254 	dma_tim.s.oe_a = ns_to_tim_reg(tim_mult, oe_a);
255 
256 	/*
257 	 * This is tI, C.F. spec. says 0, but Sony CF card requires
258 	 * more, we use 20 nS.
259 	 */
260 	dma_tim.s.dmack_s = ns_to_tim_reg(tim_mult, 20);
261 	dma_tim.s.dmack_h = ns_to_tim_reg(tim_mult, dma_ackh);
262 
263 	dma_tim.s.dmarq = dma_arq;
264 	dma_tim.s.pause = ns_to_tim_reg(tim_mult, pause);
265 
266 	dma_tim.s.rd_dly = 0;	/* Sample right on edge */
267 
268 	/*  writes only */
269 	dma_tim.s.we_n = ns_to_tim_reg(tim_mult, oe_n);
270 	dma_tim.s.we_a = ns_to_tim_reg(tim_mult, oe_a);
271 
272 	ata_dev_dbg(dev, "ns to ticks (mult %d) of %d is: %d\n", tim_mult, 60,
273 		 ns_to_tim_reg(tim_mult, 60));
274 	ata_dev_dbg(dev, "oe_n: %d, oe_a: %d, dmack_s: %d, dmack_h: %d, dmarq: %d, pause: %d\n",
275 		 dma_tim.s.oe_n, dma_tim.s.oe_a, dma_tim.s.dmack_s,
276 		 dma_tim.s.dmack_h, dma_tim.s.dmarq, dma_tim.s.pause);
277 
278 	cvmx_write_csr(cf_port->dma_base + DMA_TIM, dma_tim.u64);
279 }
280 
281 /**
282  * Handle an 8 bit I/O request.
283  *
284  * @qc:         Queued command
285  * @buffer:     Data buffer
286  * @buflen:     Length of the buffer.
287  * @rw:         True to write.
288  */
289 static unsigned int octeon_cf_data_xfer8(struct ata_queued_cmd *qc,
290 					 unsigned char *buffer,
291 					 unsigned int buflen,
292 					 int rw)
293 {
294 	struct ata_port *ap		= qc->dev->link->ap;
295 	void __iomem *data_addr		= ap->ioaddr.data_addr;
296 	unsigned long words;
297 	int count;
298 
299 	words = buflen;
300 	if (rw) {
301 		count = 16;
302 		while (words--) {
303 			iowrite8(*buffer, data_addr);
304 			buffer++;
305 			/*
306 			 * Every 16 writes do a read so the bootbus
307 			 * FIFO doesn't fill up.
308 			 */
309 			if (--count == 0) {
310 				ioread8(ap->ioaddr.altstatus_addr);
311 				count = 16;
312 			}
313 		}
314 	} else {
315 		ioread8_rep(data_addr, buffer, words);
316 	}
317 	return buflen;
318 }
319 
320 /**
321  * Handle a 16 bit I/O request.
322  *
323  * @qc:         Queued command
324  * @buffer:     Data buffer
325  * @buflen:     Length of the buffer.
326  * @rw:         True to write.
327  */
328 static unsigned int octeon_cf_data_xfer16(struct ata_queued_cmd *qc,
329 					  unsigned char *buffer,
330 					  unsigned int buflen,
331 					  int rw)
332 {
333 	struct ata_port *ap		= qc->dev->link->ap;
334 	void __iomem *data_addr		= ap->ioaddr.data_addr;
335 	unsigned long words;
336 	int count;
337 
338 	words = buflen / 2;
339 	if (rw) {
340 		count = 16;
341 		while (words--) {
342 			iowrite16(*(uint16_t *)buffer, data_addr);
343 			buffer += sizeof(uint16_t);
344 			/*
345 			 * Every 16 writes do a read so the bootbus
346 			 * FIFO doesn't fill up.
347 			 */
348 			if (--count == 0) {
349 				ioread8(ap->ioaddr.altstatus_addr);
350 				count = 16;
351 			}
352 		}
353 	} else {
354 		while (words--) {
355 			*(uint16_t *)buffer = ioread16(data_addr);
356 			buffer += sizeof(uint16_t);
357 		}
358 	}
359 	/* Transfer trailing 1 byte, if any. */
360 	if (unlikely(buflen & 0x01)) {
361 		__le16 align_buf[1] = { 0 };
362 
363 		if (rw == READ) {
364 			align_buf[0] = cpu_to_le16(ioread16(data_addr));
365 			memcpy(buffer, align_buf, 1);
366 		} else {
367 			memcpy(align_buf, buffer, 1);
368 			iowrite16(le16_to_cpu(align_buf[0]), data_addr);
369 		}
370 		words++;
371 	}
372 	return buflen;
373 }
374 
375 /**
376  * Read the taskfile for 16bit non-True IDE only.
377  */
378 static void octeon_cf_tf_read16(struct ata_port *ap, struct ata_taskfile *tf)
379 {
380 	u16 blob;
381 	/* The base of the registers is at ioaddr.data_addr. */
382 	void __iomem *base = ap->ioaddr.data_addr;
383 
384 	blob = __raw_readw(base + 0xc);
385 	tf->error = blob >> 8;
386 
387 	blob = __raw_readw(base + 2);
388 	tf->nsect = blob & 0xff;
389 	tf->lbal = blob >> 8;
390 
391 	blob = __raw_readw(base + 4);
392 	tf->lbam = blob & 0xff;
393 	tf->lbah = blob >> 8;
394 
395 	blob = __raw_readw(base + 6);
396 	tf->device = blob & 0xff;
397 	tf->status = blob >> 8;
398 
399 	if (tf->flags & ATA_TFLAG_LBA48) {
400 		if (likely(ap->ioaddr.ctl_addr)) {
401 			iowrite8(tf->ctl | ATA_HOB, ap->ioaddr.ctl_addr);
402 
403 			blob = __raw_readw(base + 0xc);
404 			tf->hob_feature = blob >> 8;
405 
406 			blob = __raw_readw(base + 2);
407 			tf->hob_nsect = blob & 0xff;
408 			tf->hob_lbal = blob >> 8;
409 
410 			blob = __raw_readw(base + 4);
411 			tf->hob_lbam = blob & 0xff;
412 			tf->hob_lbah = blob >> 8;
413 
414 			iowrite8(tf->ctl, ap->ioaddr.ctl_addr);
415 			ap->last_ctl = tf->ctl;
416 		} else {
417 			WARN_ON(1);
418 		}
419 	}
420 }
421 
422 static u8 octeon_cf_check_status16(struct ata_port *ap)
423 {
424 	u16 blob;
425 	void __iomem *base = ap->ioaddr.data_addr;
426 
427 	blob = __raw_readw(base + 6);
428 	return blob >> 8;
429 }
430 
431 static int octeon_cf_softreset16(struct ata_link *link, unsigned int *classes,
432 				 unsigned long deadline)
433 {
434 	struct ata_port *ap = link->ap;
435 	void __iomem *base = ap->ioaddr.data_addr;
436 	int rc;
437 	u8 err;
438 
439 	__raw_writew(ap->ctl, base + 0xe);
440 	udelay(20);
441 	__raw_writew(ap->ctl | ATA_SRST, base + 0xe);
442 	udelay(20);
443 	__raw_writew(ap->ctl, base + 0xe);
444 
445 	rc = ata_sff_wait_after_reset(link, 1, deadline);
446 	if (rc) {
447 		ata_link_err(link, "SRST failed (errno=%d)\n", rc);
448 		return rc;
449 	}
450 
451 	/* determine by signature whether we have ATA or ATAPI devices */
452 	classes[0] = ata_sff_dev_classify(&link->device[0], 1, &err);
453 	return 0;
454 }
455 
456 /**
457  * Load the taskfile for 16bit non-True IDE only.  The device_addr is
458  * not loaded, we do this as part of octeon_cf_exec_command16.
459  */
460 static void octeon_cf_tf_load16(struct ata_port *ap,
461 				const struct ata_taskfile *tf)
462 {
463 	unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
464 	/* The base of the registers is at ioaddr.data_addr. */
465 	void __iomem *base = ap->ioaddr.data_addr;
466 
467 	if (tf->ctl != ap->last_ctl) {
468 		iowrite8(tf->ctl, ap->ioaddr.ctl_addr);
469 		ap->last_ctl = tf->ctl;
470 		ata_wait_idle(ap);
471 	}
472 	if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
473 		__raw_writew(tf->hob_feature << 8, base + 0xc);
474 		__raw_writew(tf->hob_nsect | tf->hob_lbal << 8, base + 2);
475 		__raw_writew(tf->hob_lbam | tf->hob_lbah << 8, base + 4);
476 	}
477 	if (is_addr) {
478 		__raw_writew(tf->feature << 8, base + 0xc);
479 		__raw_writew(tf->nsect | tf->lbal << 8, base + 2);
480 		__raw_writew(tf->lbam | tf->lbah << 8, base + 4);
481 	}
482 	ata_wait_idle(ap);
483 }
484 
485 
486 static void octeon_cf_dev_select(struct ata_port *ap, unsigned int device)
487 {
488 /*  There is only one device, do nothing. */
489 	return;
490 }
491 
492 /*
493  * Issue ATA command to host controller.  The device_addr is also sent
494  * as it must be written in a combined write with the command.
495  */
496 static void octeon_cf_exec_command16(struct ata_port *ap,
497 				const struct ata_taskfile *tf)
498 {
499 	/* The base of the registers is at ioaddr.data_addr. */
500 	void __iomem *base = ap->ioaddr.data_addr;
501 	u16 blob = 0;
502 
503 	if (tf->flags & ATA_TFLAG_DEVICE)
504 		blob = tf->device;
505 
506 	blob |= (tf->command << 8);
507 	__raw_writew(blob, base + 6);
508 
509 	ata_wait_idle(ap);
510 }
511 
512 static void octeon_cf_ata_port_noaction(struct ata_port *ap)
513 {
514 }
515 
516 static void octeon_cf_dma_setup(struct ata_queued_cmd *qc)
517 {
518 	struct ata_port *ap = qc->ap;
519 	struct octeon_cf_port *cf_port;
520 
521 	cf_port = ap->private_data;
522 	/* issue r/w command */
523 	qc->cursg = qc->sg;
524 	cf_port->dma_finished = 0;
525 	ap->ops->sff_exec_command(ap, &qc->tf);
526 }
527 
528 /**
529  * Start a DMA transfer that was already setup
530  *
531  * @qc:     Information about the DMA
532  */
533 static void octeon_cf_dma_start(struct ata_queued_cmd *qc)
534 {
535 	struct octeon_cf_port *cf_port = qc->ap->private_data;
536 	union cvmx_mio_boot_dma_cfgx mio_boot_dma_cfg;
537 	union cvmx_mio_boot_dma_intx mio_boot_dma_int;
538 	struct scatterlist *sg;
539 
540 	/* Get the scatter list entry we need to DMA into */
541 	sg = qc->cursg;
542 	BUG_ON(!sg);
543 
544 	/*
545 	 * Clear the DMA complete status.
546 	 */
547 	mio_boot_dma_int.u64 = 0;
548 	mio_boot_dma_int.s.done = 1;
549 	cvmx_write_csr(cf_port->dma_base + DMA_INT, mio_boot_dma_int.u64);
550 
551 	/* Enable the interrupt.  */
552 	cvmx_write_csr(cf_port->dma_base + DMA_INT_EN, mio_boot_dma_int.u64);
553 
554 	/* Set the direction of the DMA */
555 	mio_boot_dma_cfg.u64 = 0;
556 #ifdef __LITTLE_ENDIAN
557 	mio_boot_dma_cfg.s.endian = 1;
558 #endif
559 	mio_boot_dma_cfg.s.en = 1;
560 	mio_boot_dma_cfg.s.rw = ((qc->tf.flags & ATA_TFLAG_WRITE) != 0);
561 
562 	/*
563 	 * Don't stop the DMA if the device deasserts DMARQ. Many
564 	 * compact flashes deassert DMARQ for a short time between
565 	 * sectors. Instead of stopping and restarting the DMA, we'll
566 	 * let the hardware do it. If the DMA is really stopped early
567 	 * due to an error condition, a later timeout will force us to
568 	 * stop.
569 	 */
570 	mio_boot_dma_cfg.s.clr = 0;
571 
572 	/* Size is specified in 16bit words and minus one notation */
573 	mio_boot_dma_cfg.s.size = sg_dma_len(sg) / 2 - 1;
574 
575 	/* We need to swap the high and low bytes of every 16 bits */
576 	mio_boot_dma_cfg.s.swap8 = 1;
577 
578 	mio_boot_dma_cfg.s.adr = sg_dma_address(sg);
579 
580 	cvmx_write_csr(cf_port->dma_base + DMA_CFG, mio_boot_dma_cfg.u64);
581 }
582 
583 /**
584  *
585  *	LOCKING:
586  *	spin_lock_irqsave(host lock)
587  *
588  */
589 static unsigned int octeon_cf_dma_finished(struct ata_port *ap,
590 					struct ata_queued_cmd *qc)
591 {
592 	struct ata_eh_info *ehi = &ap->link.eh_info;
593 	struct octeon_cf_port *cf_port = ap->private_data;
594 	union cvmx_mio_boot_dma_cfgx dma_cfg;
595 	union cvmx_mio_boot_dma_intx dma_int;
596 	u8 status;
597 
598 	trace_ata_bmdma_stop(ap, &qc->tf, qc->tag);
599 
600 	if (ap->hsm_task_state != HSM_ST_LAST)
601 		return 0;
602 
603 	dma_cfg.u64 = cvmx_read_csr(cf_port->dma_base + DMA_CFG);
604 	if (dma_cfg.s.size != 0xfffff) {
605 		/* Error, the transfer was not complete.  */
606 		qc->err_mask |= AC_ERR_HOST_BUS;
607 		ap->hsm_task_state = HSM_ST_ERR;
608 	}
609 
610 	/* Stop and clear the dma engine.  */
611 	dma_cfg.u64 = 0;
612 	dma_cfg.s.size = -1;
613 	cvmx_write_csr(cf_port->dma_base + DMA_CFG, dma_cfg.u64);
614 
615 	/* Disable the interrupt.  */
616 	dma_int.u64 = 0;
617 	cvmx_write_csr(cf_port->dma_base + DMA_INT_EN, dma_int.u64);
618 
619 	/* Clear the DMA complete status */
620 	dma_int.s.done = 1;
621 	cvmx_write_csr(cf_port->dma_base + DMA_INT, dma_int.u64);
622 
623 	status = ap->ops->sff_check_status(ap);
624 
625 	ata_sff_hsm_move(ap, qc, status, 0);
626 
627 	if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA))
628 		ata_ehi_push_desc(ehi, "DMA stat 0x%x", status);
629 
630 	return 1;
631 }
632 
633 /*
634  * Check if any queued commands have more DMAs, if so start the next
635  * transfer, else do end of transfer handling.
636  */
637 static irqreturn_t octeon_cf_interrupt(int irq, void *dev_instance)
638 {
639 	struct ata_host *host = dev_instance;
640 	struct octeon_cf_port *cf_port;
641 	int i;
642 	unsigned int handled = 0;
643 	unsigned long flags;
644 
645 	spin_lock_irqsave(&host->lock, flags);
646 
647 	for (i = 0; i < host->n_ports; i++) {
648 		u8 status;
649 		struct ata_port *ap;
650 		struct ata_queued_cmd *qc;
651 		union cvmx_mio_boot_dma_intx dma_int;
652 		union cvmx_mio_boot_dma_cfgx dma_cfg;
653 
654 		ap = host->ports[i];
655 		cf_port = ap->private_data;
656 
657 		dma_int.u64 = cvmx_read_csr(cf_port->dma_base + DMA_INT);
658 		dma_cfg.u64 = cvmx_read_csr(cf_port->dma_base + DMA_CFG);
659 
660 		qc = ata_qc_from_tag(ap, ap->link.active_tag);
661 
662 		if (!qc || (qc->tf.flags & ATA_TFLAG_POLLING))
663 			continue;
664 
665 		if (dma_int.s.done && !dma_cfg.s.en) {
666 			if (!sg_is_last(qc->cursg)) {
667 				qc->cursg = sg_next(qc->cursg);
668 				handled = 1;
669 				trace_ata_bmdma_start(ap, &qc->tf, qc->tag);
670 				octeon_cf_dma_start(qc);
671 				continue;
672 			} else {
673 				cf_port->dma_finished = 1;
674 			}
675 		}
676 		if (!cf_port->dma_finished)
677 			continue;
678 		status = ioread8(ap->ioaddr.altstatus_addr);
679 		if (status & (ATA_BUSY | ATA_DRQ)) {
680 			/*
681 			 * We are busy, try to handle it later.  This
682 			 * is the DMA finished interrupt, and it could
683 			 * take a little while for the card to be
684 			 * ready for more commands.
685 			 */
686 			/* Clear DMA irq. */
687 			dma_int.u64 = 0;
688 			dma_int.s.done = 1;
689 			cvmx_write_csr(cf_port->dma_base + DMA_INT,
690 				       dma_int.u64);
691 			hrtimer_start_range_ns(&cf_port->delayed_finish,
692 					       ns_to_ktime(OCTEON_CF_BUSY_POLL_INTERVAL),
693 					       OCTEON_CF_BUSY_POLL_INTERVAL / 5,
694 					       HRTIMER_MODE_REL);
695 			handled = 1;
696 		} else {
697 			handled |= octeon_cf_dma_finished(ap, qc);
698 		}
699 	}
700 	spin_unlock_irqrestore(&host->lock, flags);
701 	return IRQ_RETVAL(handled);
702 }
703 
704 static enum hrtimer_restart octeon_cf_delayed_finish(struct hrtimer *hrt)
705 {
706 	struct octeon_cf_port *cf_port = container_of(hrt,
707 						      struct octeon_cf_port,
708 						      delayed_finish);
709 	struct ata_port *ap = cf_port->ap;
710 	struct ata_host *host = ap->host;
711 	struct ata_queued_cmd *qc;
712 	unsigned long flags;
713 	u8 status;
714 	enum hrtimer_restart rv = HRTIMER_NORESTART;
715 
716 	spin_lock_irqsave(&host->lock, flags);
717 
718 	/*
719 	 * If the port is not waiting for completion, it must have
720 	 * handled it previously.  The hsm_task_state is
721 	 * protected by host->lock.
722 	 */
723 	if (ap->hsm_task_state != HSM_ST_LAST || !cf_port->dma_finished)
724 		goto out;
725 
726 	status = ioread8(ap->ioaddr.altstatus_addr);
727 	if (status & (ATA_BUSY | ATA_DRQ)) {
728 		/* Still busy, try again. */
729 		hrtimer_forward_now(hrt,
730 				    ns_to_ktime(OCTEON_CF_BUSY_POLL_INTERVAL));
731 		rv = HRTIMER_RESTART;
732 		goto out;
733 	}
734 	qc = ata_qc_from_tag(ap, ap->link.active_tag);
735 	if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)))
736 		octeon_cf_dma_finished(ap, qc);
737 out:
738 	spin_unlock_irqrestore(&host->lock, flags);
739 	return rv;
740 }
741 
742 static void octeon_cf_dev_config(struct ata_device *dev)
743 {
744 	/*
745 	 * A maximum of 2^20 - 1 16 bit transfers are possible with
746 	 * the bootbus DMA.  So we need to throttle max_sectors to
747 	 * (2^12 - 1 == 4095) to assure that this can never happen.
748 	 */
749 	dev->max_sectors = min(dev->max_sectors, 4095U);
750 }
751 
752 /*
753  * We don't do ATAPI DMA so return 0.
754  */
755 static int octeon_cf_check_atapi_dma(struct ata_queued_cmd *qc)
756 {
757 	return 0;
758 }
759 
760 static unsigned int octeon_cf_qc_issue(struct ata_queued_cmd *qc)
761 {
762 	struct ata_port *ap = qc->ap;
763 
764 	switch (qc->tf.protocol) {
765 	case ATA_PROT_DMA:
766 		WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
767 
768 		trace_ata_tf_load(ap, &qc->tf);
769 		ap->ops->sff_tf_load(ap, &qc->tf);  /* load tf registers */
770 		trace_ata_bmdma_setup(ap, &qc->tf, qc->tag);
771 		octeon_cf_dma_setup(qc);	    /* set up dma */
772 		trace_ata_bmdma_start(ap, &qc->tf, qc->tag);
773 		octeon_cf_dma_start(qc);	    /* initiate dma */
774 		ap->hsm_task_state = HSM_ST_LAST;
775 		break;
776 
777 	case ATAPI_PROT_DMA:
778 		dev_err(ap->dev, "Error, ATAPI not supported\n");
779 		BUG();
780 
781 	default:
782 		return ata_sff_qc_issue(qc);
783 	}
784 
785 	return 0;
786 }
787 
788 static struct ata_port_operations octeon_cf_ops = {
789 	.inherits		= &ata_sff_port_ops,
790 	.check_atapi_dma	= octeon_cf_check_atapi_dma,
791 	.qc_prep		= ata_noop_qc_prep,
792 	.qc_issue		= octeon_cf_qc_issue,
793 	.sff_dev_select		= octeon_cf_dev_select,
794 	.sff_irq_on		= octeon_cf_ata_port_noaction,
795 	.sff_irq_clear		= octeon_cf_ata_port_noaction,
796 	.cable_detect		= ata_cable_40wire,
797 	.set_piomode		= octeon_cf_set_piomode,
798 	.set_dmamode		= octeon_cf_set_dmamode,
799 	.dev_config		= octeon_cf_dev_config,
800 };
801 
802 static int octeon_cf_probe(struct platform_device *pdev)
803 {
804 	struct resource *res_cs0, *res_cs1;
805 
806 	bool is_16bit;
807 	const __be32 *cs_num;
808 	struct property *reg_prop;
809 	int n_addr, n_size, reg_len;
810 	struct device_node *node;
811 	void __iomem *cs0;
812 	void __iomem *cs1 = NULL;
813 	struct ata_host *host;
814 	struct ata_port *ap;
815 	int irq = 0;
816 	irq_handler_t irq_handler = NULL;
817 	void __iomem *base;
818 	struct octeon_cf_port *cf_port;
819 	int rv = -ENOMEM;
820 	u32 bus_width;
821 
822 	node = pdev->dev.of_node;
823 	if (node == NULL)
824 		return -EINVAL;
825 
826 	cf_port = devm_kzalloc(&pdev->dev, sizeof(*cf_port), GFP_KERNEL);
827 	if (!cf_port)
828 		return -ENOMEM;
829 
830 	cf_port->is_true_ide = of_property_read_bool(node, "cavium,true-ide");
831 
832 	if (of_property_read_u32(node, "cavium,bus-width", &bus_width) == 0)
833 		is_16bit = (bus_width == 16);
834 	else
835 		is_16bit = false;
836 
837 	n_addr = of_n_addr_cells(node);
838 	n_size = of_n_size_cells(node);
839 
840 	reg_prop = of_find_property(node, "reg", &reg_len);
841 	if (!reg_prop || reg_len < sizeof(__be32))
842 		return -EINVAL;
843 
844 	cs_num = reg_prop->value;
845 	cf_port->cs0 = be32_to_cpup(cs_num);
846 
847 	if (cf_port->is_true_ide) {
848 		struct device_node *dma_node;
849 		dma_node = of_parse_phandle(node,
850 					    "cavium,dma-engine-handle", 0);
851 		if (dma_node) {
852 			struct platform_device *dma_dev;
853 			dma_dev = of_find_device_by_node(dma_node);
854 			if (dma_dev) {
855 				struct resource *res_dma;
856 				int i;
857 				res_dma = platform_get_resource(dma_dev, IORESOURCE_MEM, 0);
858 				if (!res_dma) {
859 					put_device(&dma_dev->dev);
860 					of_node_put(dma_node);
861 					return -EINVAL;
862 				}
863 				cf_port->dma_base = (u64)devm_ioremap(&pdev->dev, res_dma->start,
864 									 resource_size(res_dma));
865 				if (!cf_port->dma_base) {
866 					put_device(&dma_dev->dev);
867 					of_node_put(dma_node);
868 					return -EINVAL;
869 				}
870 
871 				i = platform_get_irq(dma_dev, 0);
872 				if (i > 0) {
873 					irq = i;
874 					irq_handler = octeon_cf_interrupt;
875 				}
876 				put_device(&dma_dev->dev);
877 			}
878 			of_node_put(dma_node);
879 		}
880 		res_cs1 = platform_get_resource(pdev, IORESOURCE_MEM, 1);
881 		if (!res_cs1)
882 			return -EINVAL;
883 
884 		cs1 = devm_ioremap(&pdev->dev, res_cs1->start,
885 					   resource_size(res_cs1));
886 		if (!cs1)
887 			return rv;
888 
889 		if (reg_len < (n_addr + n_size + 1) * sizeof(__be32))
890 			return -EINVAL;
891 
892 		cs_num += n_addr + n_size;
893 		cf_port->cs1 = be32_to_cpup(cs_num);
894 	}
895 
896 	res_cs0 = platform_get_resource(pdev, IORESOURCE_MEM, 0);
897 	if (!res_cs0)
898 		return -EINVAL;
899 
900 	cs0 = devm_ioremap(&pdev->dev, res_cs0->start,
901 				   resource_size(res_cs0));
902 	if (!cs0)
903 		return rv;
904 
905 	/* allocate host */
906 	host = ata_host_alloc(&pdev->dev, 1);
907 	if (!host)
908 		return rv;
909 
910 	ap = host->ports[0];
911 	ap->private_data = cf_port;
912 	pdev->dev.platform_data = cf_port;
913 	cf_port->ap = ap;
914 	ap->ops = &octeon_cf_ops;
915 	ap->pio_mask = ATA_PIO6;
916 	ap->flags |= ATA_FLAG_NO_ATAPI | ATA_FLAG_PIO_POLLING;
917 
918 	if (!is_16bit) {
919 		base = cs0 + 0x800;
920 		ap->ioaddr.cmd_addr	= base;
921 		ata_sff_std_ports(&ap->ioaddr);
922 
923 		ap->ioaddr.altstatus_addr = base + 0xe;
924 		ap->ioaddr.ctl_addr	= base + 0xe;
925 		octeon_cf_ops.sff_data_xfer = octeon_cf_data_xfer8;
926 	} else if (cf_port->is_true_ide) {
927 		base = cs0;
928 		ap->ioaddr.cmd_addr	= base + (ATA_REG_CMD << 1) + 1;
929 		ap->ioaddr.data_addr	= base + (ATA_REG_DATA << 1);
930 		ap->ioaddr.error_addr	= base + (ATA_REG_ERR << 1) + 1;
931 		ap->ioaddr.feature_addr	= base + (ATA_REG_FEATURE << 1) + 1;
932 		ap->ioaddr.nsect_addr	= base + (ATA_REG_NSECT << 1) + 1;
933 		ap->ioaddr.lbal_addr	= base + (ATA_REG_LBAL << 1) + 1;
934 		ap->ioaddr.lbam_addr	= base + (ATA_REG_LBAM << 1) + 1;
935 		ap->ioaddr.lbah_addr	= base + (ATA_REG_LBAH << 1) + 1;
936 		ap->ioaddr.device_addr	= base + (ATA_REG_DEVICE << 1) + 1;
937 		ap->ioaddr.status_addr	= base + (ATA_REG_STATUS << 1) + 1;
938 		ap->ioaddr.command_addr	= base + (ATA_REG_CMD << 1) + 1;
939 		ap->ioaddr.altstatus_addr = cs1 + (6 << 1) + 1;
940 		ap->ioaddr.ctl_addr	= cs1 + (6 << 1) + 1;
941 		octeon_cf_ops.sff_data_xfer = octeon_cf_data_xfer16;
942 
943 		ap->mwdma_mask	= enable_dma ? ATA_MWDMA4 : 0;
944 
945 		/* True IDE mode needs a timer to poll for not-busy.  */
946 		hrtimer_init(&cf_port->delayed_finish, CLOCK_MONOTONIC,
947 			     HRTIMER_MODE_REL);
948 		cf_port->delayed_finish.function = octeon_cf_delayed_finish;
949 	} else {
950 		/* 16 bit but not True IDE */
951 		base = cs0 + 0x800;
952 		octeon_cf_ops.sff_data_xfer	= octeon_cf_data_xfer16;
953 		octeon_cf_ops.softreset		= octeon_cf_softreset16;
954 		octeon_cf_ops.sff_check_status	= octeon_cf_check_status16;
955 		octeon_cf_ops.sff_tf_read	= octeon_cf_tf_read16;
956 		octeon_cf_ops.sff_tf_load	= octeon_cf_tf_load16;
957 		octeon_cf_ops.sff_exec_command	= octeon_cf_exec_command16;
958 
959 		ap->ioaddr.data_addr	= base + ATA_REG_DATA;
960 		ap->ioaddr.nsect_addr	= base + ATA_REG_NSECT;
961 		ap->ioaddr.lbal_addr	= base + ATA_REG_LBAL;
962 		ap->ioaddr.ctl_addr	= base + 0xe;
963 		ap->ioaddr.altstatus_addr = base + 0xe;
964 	}
965 	cf_port->c0 = ap->ioaddr.ctl_addr;
966 
967 	rv = dma_coerce_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
968 	if (rv)
969 		return rv;
970 
971 	ata_port_desc(ap, "cmd %p ctl %p", base, ap->ioaddr.ctl_addr);
972 
973 	dev_info(&pdev->dev, "version " DRV_VERSION" %d bit%s.\n",
974 		 is_16bit ? 16 : 8,
975 		 cf_port->is_true_ide ? ", True IDE" : "");
976 
977 	return ata_host_activate(host, irq, irq_handler,
978 				 IRQF_SHARED, &octeon_cf_sht);
979 }
980 
981 static void octeon_cf_shutdown(struct device *dev)
982 {
983 	union cvmx_mio_boot_dma_cfgx dma_cfg;
984 	union cvmx_mio_boot_dma_intx dma_int;
985 
986 	struct octeon_cf_port *cf_port = dev_get_platdata(dev);
987 
988 	if (cf_port->dma_base) {
989 		/* Stop and clear the dma engine.  */
990 		dma_cfg.u64 = 0;
991 		dma_cfg.s.size = -1;
992 		cvmx_write_csr(cf_port->dma_base + DMA_CFG, dma_cfg.u64);
993 
994 		/* Disable the interrupt.  */
995 		dma_int.u64 = 0;
996 		cvmx_write_csr(cf_port->dma_base + DMA_INT_EN, dma_int.u64);
997 
998 		/* Clear the DMA complete status */
999 		dma_int.s.done = 1;
1000 		cvmx_write_csr(cf_port->dma_base + DMA_INT, dma_int.u64);
1001 
1002 		__raw_writeb(0, cf_port->c0);
1003 		udelay(20);
1004 		__raw_writeb(ATA_SRST, cf_port->c0);
1005 		udelay(20);
1006 		__raw_writeb(0, cf_port->c0);
1007 		mdelay(100);
1008 	}
1009 }
1010 
1011 static const struct of_device_id octeon_cf_match[] = {
1012 	{ .compatible = "cavium,ebt3000-compact-flash", },
1013 	{ /* sentinel */ }
1014 };
1015 MODULE_DEVICE_TABLE(of, octeon_cf_match);
1016 
1017 static struct platform_driver octeon_cf_driver = {
1018 	.probe		= octeon_cf_probe,
1019 	.driver		= {
1020 		.name	= DRV_NAME,
1021 		.of_match_table = octeon_cf_match,
1022 		.shutdown = octeon_cf_shutdown
1023 	},
1024 };
1025 
1026 static int __init octeon_cf_init(void)
1027 {
1028 	return platform_driver_register(&octeon_cf_driver);
1029 }
1030 
1031 
1032 MODULE_AUTHOR("David Daney <ddaney@caviumnetworks.com>");
1033 MODULE_DESCRIPTION("low-level driver for Cavium OCTEON Compact Flash PATA");
1034 MODULE_LICENSE("GPL");
1035 MODULE_VERSION(DRV_VERSION);
1036 MODULE_ALIAS("platform:" DRV_NAME);
1037 
1038 module_init(octeon_cf_init);
1039