xref: /linux/drivers/atm/nicstar.c (revision 021bc4b9)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * nicstar.c
4  *
5  * Device driver supporting CBR for IDT 77201/77211 "NICStAR" based cards.
6  *
7  * IMPORTANT: The included file nicstarmac.c was NOT WRITTEN BY ME.
8  *            It was taken from the frle-0.22 device driver.
9  *            As the file doesn't have a copyright notice, in the file
10  *            nicstarmac.copyright I put the copyright notice from the
11  *            frle-0.22 device driver.
12  *            Some code is based on the nicstar driver by M. Welsh.
13  *
14  * Author: Rui Prior (rprior@inescn.pt)
15  * PowerPC support by Jay Talbott (jay_talbott@mcg.mot.com) April 1999
16  *
17  *
18  * (C) INESC 1999
19  */
20 
21 /*
22  * IMPORTANT INFORMATION
23  *
24  * There are currently three types of spinlocks:
25  *
26  * 1 - Per card interrupt spinlock (to protect structures and such)
27  * 2 - Per SCQ scq spinlock
28  * 3 - Per card resource spinlock (to access registers, etc.)
29  *
30  * These must NEVER be grabbed in reverse order.
31  *
32  */
33 
34 /* Header files */
35 
36 #include <linux/module.h>
37 #include <linux/kernel.h>
38 #include <linux/skbuff.h>
39 #include <linux/atmdev.h>
40 #include <linux/atm.h>
41 #include <linux/pci.h>
42 #include <linux/dma-mapping.h>
43 #include <linux/types.h>
44 #include <linux/string.h>
45 #include <linux/delay.h>
46 #include <linux/init.h>
47 #include <linux/sched.h>
48 #include <linux/timer.h>
49 #include <linux/interrupt.h>
50 #include <linux/bitops.h>
51 #include <linux/slab.h>
52 #include <linux/idr.h>
53 #include <asm/io.h>
54 #include <linux/uaccess.h>
55 #include <linux/atomic.h>
56 #include <linux/etherdevice.h>
57 #include "nicstar.h"
58 #ifdef CONFIG_ATM_NICSTAR_USE_SUNI
59 #include "suni.h"
60 #endif /* CONFIG_ATM_NICSTAR_USE_SUNI */
61 #ifdef CONFIG_ATM_NICSTAR_USE_IDT77105
62 #include "idt77105.h"
63 #endif /* CONFIG_ATM_NICSTAR_USE_IDT77105 */
64 
65 /* Additional code */
66 
67 #include "nicstarmac.c"
68 
69 /* Configurable parameters */
70 
71 #undef PHY_LOOPBACK
72 #undef TX_DEBUG
73 #undef RX_DEBUG
74 #undef GENERAL_DEBUG
75 #undef EXTRA_DEBUG
76 
77 /* Do not touch these */
78 
79 #ifdef TX_DEBUG
80 #define TXPRINTK(args...) printk(args)
81 #else
82 #define TXPRINTK(args...)
83 #endif /* TX_DEBUG */
84 
85 #ifdef RX_DEBUG
86 #define RXPRINTK(args...) printk(args)
87 #else
88 #define RXPRINTK(args...)
89 #endif /* RX_DEBUG */
90 
91 #ifdef GENERAL_DEBUG
92 #define PRINTK(args...) printk(args)
93 #else
94 #define PRINTK(args...) do {} while (0)
95 #endif /* GENERAL_DEBUG */
96 
97 #ifdef EXTRA_DEBUG
98 #define XPRINTK(args...) printk(args)
99 #else
100 #define XPRINTK(args...)
101 #endif /* EXTRA_DEBUG */
102 
103 /* Macros */
104 
105 #define CMD_BUSY(card) (readl((card)->membase + STAT) & NS_STAT_CMDBZ)
106 
107 #define NS_DELAY mdelay(1)
108 
109 #define PTR_DIFF(a, b)	((u32)((unsigned long)(a) - (unsigned long)(b)))
110 
111 #ifndef ATM_SKB
112 #define ATM_SKB(s) (&(s)->atm)
113 #endif
114 
115 #define scq_virt_to_bus(scq, p) \
116 		(scq->dma + ((unsigned long)(p) - (unsigned long)(scq)->org))
117 
118 /* Function declarations */
119 
120 static u32 ns_read_sram(ns_dev * card, u32 sram_address);
121 static void ns_write_sram(ns_dev * card, u32 sram_address, u32 * value,
122 			  int count);
123 static int ns_init_card(int i, struct pci_dev *pcidev);
124 static void ns_init_card_error(ns_dev * card, int error);
125 static scq_info *get_scq(ns_dev *card, int size, u32 scd);
126 static void free_scq(ns_dev *card, scq_info * scq, struct atm_vcc *vcc);
127 static void push_rxbufs(ns_dev *, struct sk_buff *);
128 static irqreturn_t ns_irq_handler(int irq, void *dev_id);
129 static int ns_open(struct atm_vcc *vcc);
130 static void ns_close(struct atm_vcc *vcc);
131 static void fill_tst(ns_dev * card, int n, vc_map * vc);
132 static int ns_send(struct atm_vcc *vcc, struct sk_buff *skb);
133 static int ns_send_bh(struct atm_vcc *vcc, struct sk_buff *skb);
134 static int push_scqe(ns_dev * card, vc_map * vc, scq_info * scq, ns_scqe * tbd,
135 		     struct sk_buff *skb, bool may_sleep);
136 static void process_tsq(ns_dev * card);
137 static void drain_scq(ns_dev * card, scq_info * scq, int pos);
138 static void process_rsq(ns_dev * card);
139 static void dequeue_rx(ns_dev * card, ns_rsqe * rsqe);
140 static void recycle_rx_buf(ns_dev * card, struct sk_buff *skb);
141 static void recycle_iovec_rx_bufs(ns_dev * card, struct iovec *iov, int count);
142 static void recycle_iov_buf(ns_dev * card, struct sk_buff *iovb);
143 static void dequeue_sm_buf(ns_dev * card, struct sk_buff *sb);
144 static void dequeue_lg_buf(ns_dev * card, struct sk_buff *lb);
145 static int ns_proc_read(struct atm_dev *dev, loff_t * pos, char *page);
146 static int ns_ioctl(struct atm_dev *dev, unsigned int cmd, void __user * arg);
147 #ifdef EXTRA_DEBUG
148 static void which_list(ns_dev * card, struct sk_buff *skb);
149 #endif
150 static void ns_poll(struct timer_list *unused);
151 static void ns_phy_put(struct atm_dev *dev, unsigned char value,
152 		       unsigned long addr);
153 static unsigned char ns_phy_get(struct atm_dev *dev, unsigned long addr);
154 
155 /* Global variables */
156 
157 static struct ns_dev *cards[NS_MAX_CARDS];
158 static unsigned num_cards;
159 static const struct atmdev_ops atm_ops = {
160 	.open = ns_open,
161 	.close = ns_close,
162 	.ioctl = ns_ioctl,
163 	.send = ns_send,
164 	.send_bh = ns_send_bh,
165 	.phy_put = ns_phy_put,
166 	.phy_get = ns_phy_get,
167 	.proc_read = ns_proc_read,
168 	.owner = THIS_MODULE,
169 };
170 
171 static struct timer_list ns_timer;
172 static char *mac[NS_MAX_CARDS];
173 module_param_array(mac, charp, NULL, 0);
174 MODULE_DESCRIPTION("ATM NIC driver for IDT 77201/77211 \"NICStAR\" and Fore ForeRunnerLE.");
175 MODULE_LICENSE("GPL");
176 
177 /* Functions */
178 
179 static int nicstar_init_one(struct pci_dev *pcidev,
180 			    const struct pci_device_id *ent)
181 {
182 	static int index = -1;
183 	unsigned int error;
184 
185 	index++;
186 	cards[index] = NULL;
187 
188 	error = ns_init_card(index, pcidev);
189 	if (error) {
190 		cards[index--] = NULL;	/* don't increment index */
191 		goto err_out;
192 	}
193 
194 	return 0;
195 err_out:
196 	return -ENODEV;
197 }
198 
199 static void nicstar_remove_one(struct pci_dev *pcidev)
200 {
201 	int i, j;
202 	ns_dev *card = pci_get_drvdata(pcidev);
203 	struct sk_buff *hb;
204 	struct sk_buff *iovb;
205 	struct sk_buff *lb;
206 	struct sk_buff *sb;
207 
208 	i = card->index;
209 
210 	if (cards[i] == NULL)
211 		return;
212 
213 	if (card->atmdev->phy && card->atmdev->phy->stop)
214 		card->atmdev->phy->stop(card->atmdev);
215 
216 	/* Stop everything */
217 	writel(0x00000000, card->membase + CFG);
218 
219 	/* De-register device */
220 	atm_dev_deregister(card->atmdev);
221 
222 	/* Disable PCI device */
223 	pci_disable_device(pcidev);
224 
225 	/* Free up resources */
226 	j = 0;
227 	PRINTK("nicstar%d: freeing %d huge buffers.\n", i, card->hbpool.count);
228 	while ((hb = skb_dequeue(&card->hbpool.queue)) != NULL) {
229 		dev_kfree_skb_any(hb);
230 		j++;
231 	}
232 	PRINTK("nicstar%d: %d huge buffers freed.\n", i, j);
233 	j = 0;
234 	PRINTK("nicstar%d: freeing %d iovec buffers.\n", i,
235 	       card->iovpool.count);
236 	while ((iovb = skb_dequeue(&card->iovpool.queue)) != NULL) {
237 		dev_kfree_skb_any(iovb);
238 		j++;
239 	}
240 	PRINTK("nicstar%d: %d iovec buffers freed.\n", i, j);
241 	while ((lb = skb_dequeue(&card->lbpool.queue)) != NULL)
242 		dev_kfree_skb_any(lb);
243 	while ((sb = skb_dequeue(&card->sbpool.queue)) != NULL)
244 		dev_kfree_skb_any(sb);
245 	free_scq(card, card->scq0, NULL);
246 	for (j = 0; j < NS_FRSCD_NUM; j++) {
247 		if (card->scd2vc[j] != NULL)
248 			free_scq(card, card->scd2vc[j]->scq, card->scd2vc[j]->tx_vcc);
249 	}
250 	idr_destroy(&card->idr);
251 	dma_free_coherent(&card->pcidev->dev, NS_RSQSIZE + NS_RSQ_ALIGNMENT,
252 			  card->rsq.org, card->rsq.dma);
253 	dma_free_coherent(&card->pcidev->dev, NS_TSQSIZE + NS_TSQ_ALIGNMENT,
254 			  card->tsq.org, card->tsq.dma);
255 	free_irq(card->pcidev->irq, card);
256 	iounmap(card->membase);
257 	kfree(card);
258 }
259 
260 static const struct pci_device_id nicstar_pci_tbl[] = {
261 	{ PCI_VDEVICE(IDT, PCI_DEVICE_ID_IDT_IDT77201), 0 },
262 	{0,}			/* terminate list */
263 };
264 
265 MODULE_DEVICE_TABLE(pci, nicstar_pci_tbl);
266 
267 static struct pci_driver nicstar_driver = {
268 	.name = "nicstar",
269 	.id_table = nicstar_pci_tbl,
270 	.probe = nicstar_init_one,
271 	.remove = nicstar_remove_one,
272 };
273 
274 static int __init nicstar_init(void)
275 {
276 	unsigned error = 0;	/* Initialized to remove compile warning */
277 
278 	XPRINTK("nicstar: nicstar_init() called.\n");
279 
280 	error = pci_register_driver(&nicstar_driver);
281 
282 	TXPRINTK("nicstar: TX debug enabled.\n");
283 	RXPRINTK("nicstar: RX debug enabled.\n");
284 	PRINTK("nicstar: General debug enabled.\n");
285 #ifdef PHY_LOOPBACK
286 	printk("nicstar: using PHY loopback.\n");
287 #endif /* PHY_LOOPBACK */
288 	XPRINTK("nicstar: nicstar_init() returned.\n");
289 
290 	if (!error) {
291 		timer_setup(&ns_timer, ns_poll, 0);
292 		ns_timer.expires = jiffies + NS_POLL_PERIOD;
293 		add_timer(&ns_timer);
294 	}
295 
296 	return error;
297 }
298 
299 static void __exit nicstar_cleanup(void)
300 {
301 	XPRINTK("nicstar: nicstar_cleanup() called.\n");
302 
303 	del_timer_sync(&ns_timer);
304 
305 	pci_unregister_driver(&nicstar_driver);
306 
307 	XPRINTK("nicstar: nicstar_cleanup() returned.\n");
308 }
309 
310 static u32 ns_read_sram(ns_dev * card, u32 sram_address)
311 {
312 	unsigned long flags;
313 	u32 data;
314 	sram_address <<= 2;
315 	sram_address &= 0x0007FFFC;	/* address must be dword aligned */
316 	sram_address |= 0x50000000;	/* SRAM read command */
317 	spin_lock_irqsave(&card->res_lock, flags);
318 	while (CMD_BUSY(card)) ;
319 	writel(sram_address, card->membase + CMD);
320 	while (CMD_BUSY(card)) ;
321 	data = readl(card->membase + DR0);
322 	spin_unlock_irqrestore(&card->res_lock, flags);
323 	return data;
324 }
325 
326 static void ns_write_sram(ns_dev * card, u32 sram_address, u32 * value,
327 			  int count)
328 {
329 	unsigned long flags;
330 	int i, c;
331 	count--;		/* count range now is 0..3 instead of 1..4 */
332 	c = count;
333 	c <<= 2;		/* to use increments of 4 */
334 	spin_lock_irqsave(&card->res_lock, flags);
335 	while (CMD_BUSY(card)) ;
336 	for (i = 0; i <= c; i += 4)
337 		writel(*(value++), card->membase + i);
338 	/* Note: DR# registers are the first 4 dwords in nicstar's memspace,
339 	   so card->membase + DR0 == card->membase */
340 	sram_address <<= 2;
341 	sram_address &= 0x0007FFFC;
342 	sram_address |= (0x40000000 | count);
343 	writel(sram_address, card->membase + CMD);
344 	spin_unlock_irqrestore(&card->res_lock, flags);
345 }
346 
347 static int ns_init_card(int i, struct pci_dev *pcidev)
348 {
349 	int j;
350 	struct ns_dev *card = NULL;
351 	unsigned char pci_latency;
352 	unsigned error;
353 	u32 data;
354 	u32 u32d[4];
355 	u32 ns_cfg_rctsize;
356 	int bcount;
357 	unsigned long membase;
358 
359 	error = 0;
360 
361 	if (pci_enable_device(pcidev)) {
362 		printk("nicstar%d: can't enable PCI device\n", i);
363 		error = 2;
364 		ns_init_card_error(card, error);
365 		return error;
366 	}
367         if (dma_set_mask_and_coherent(&pcidev->dev, DMA_BIT_MASK(32)) != 0) {
368                 printk(KERN_WARNING
369 		       "nicstar%d: No suitable DMA available.\n", i);
370 		error = 2;
371 		ns_init_card_error(card, error);
372 		return error;
373         }
374 
375 	card = kmalloc(sizeof(*card), GFP_KERNEL);
376 	if (!card) {
377 		printk
378 		    ("nicstar%d: can't allocate memory for device structure.\n",
379 		     i);
380 		error = 2;
381 		ns_init_card_error(card, error);
382 		return error;
383 	}
384 	cards[i] = card;
385 	spin_lock_init(&card->int_lock);
386 	spin_lock_init(&card->res_lock);
387 
388 	pci_set_drvdata(pcidev, card);
389 
390 	card->index = i;
391 	card->atmdev = NULL;
392 	card->pcidev = pcidev;
393 	membase = pci_resource_start(pcidev, 1);
394 	card->membase = ioremap(membase, NS_IOREMAP_SIZE);
395 	if (!card->membase) {
396 		printk("nicstar%d: can't ioremap() membase.\n", i);
397 		error = 3;
398 		ns_init_card_error(card, error);
399 		return error;
400 	}
401 	PRINTK("nicstar%d: membase at 0x%p.\n", i, card->membase);
402 
403 	pci_set_master(pcidev);
404 
405 	if (pci_read_config_byte(pcidev, PCI_LATENCY_TIMER, &pci_latency) != 0) {
406 		printk("nicstar%d: can't read PCI latency timer.\n", i);
407 		error = 6;
408 		ns_init_card_error(card, error);
409 		return error;
410 	}
411 #ifdef NS_PCI_LATENCY
412 	if (pci_latency < NS_PCI_LATENCY) {
413 		PRINTK("nicstar%d: setting PCI latency timer to %d.\n", i,
414 		       NS_PCI_LATENCY);
415 		for (j = 1; j < 4; j++) {
416 			if (pci_write_config_byte
417 			    (pcidev, PCI_LATENCY_TIMER, NS_PCI_LATENCY) != 0)
418 				break;
419 		}
420 		if (j == 4) {
421 			printk
422 			    ("nicstar%d: can't set PCI latency timer to %d.\n",
423 			     i, NS_PCI_LATENCY);
424 			error = 7;
425 			ns_init_card_error(card, error);
426 			return error;
427 		}
428 	}
429 #endif /* NS_PCI_LATENCY */
430 
431 	/* Clear timer overflow */
432 	data = readl(card->membase + STAT);
433 	if (data & NS_STAT_TMROF)
434 		writel(NS_STAT_TMROF, card->membase + STAT);
435 
436 	/* Software reset */
437 	writel(NS_CFG_SWRST, card->membase + CFG);
438 	NS_DELAY;
439 	writel(0x00000000, card->membase + CFG);
440 
441 	/* PHY reset */
442 	writel(0x00000008, card->membase + GP);
443 	NS_DELAY;
444 	writel(0x00000001, card->membase + GP);
445 	NS_DELAY;
446 	while (CMD_BUSY(card)) ;
447 	writel(NS_CMD_WRITE_UTILITY | 0x00000100, card->membase + CMD);	/* Sync UTOPIA with SAR clock */
448 	NS_DELAY;
449 
450 	/* Detect PHY type */
451 	while (CMD_BUSY(card)) ;
452 	writel(NS_CMD_READ_UTILITY | 0x00000200, card->membase + CMD);
453 	while (CMD_BUSY(card)) ;
454 	data = readl(card->membase + DR0);
455 	switch (data) {
456 	case 0x00000009:
457 		printk("nicstar%d: PHY seems to be 25 Mbps.\n", i);
458 		card->max_pcr = ATM_25_PCR;
459 		while (CMD_BUSY(card)) ;
460 		writel(0x00000008, card->membase + DR0);
461 		writel(NS_CMD_WRITE_UTILITY | 0x00000200, card->membase + CMD);
462 		/* Clear an eventual pending interrupt */
463 		writel(NS_STAT_SFBQF, card->membase + STAT);
464 #ifdef PHY_LOOPBACK
465 		while (CMD_BUSY(card)) ;
466 		writel(0x00000022, card->membase + DR0);
467 		writel(NS_CMD_WRITE_UTILITY | 0x00000202, card->membase + CMD);
468 #endif /* PHY_LOOPBACK */
469 		break;
470 	case 0x00000030:
471 	case 0x00000031:
472 		printk("nicstar%d: PHY seems to be 155 Mbps.\n", i);
473 		card->max_pcr = ATM_OC3_PCR;
474 #ifdef PHY_LOOPBACK
475 		while (CMD_BUSY(card)) ;
476 		writel(0x00000002, card->membase + DR0);
477 		writel(NS_CMD_WRITE_UTILITY | 0x00000205, card->membase + CMD);
478 #endif /* PHY_LOOPBACK */
479 		break;
480 	default:
481 		printk("nicstar%d: unknown PHY type (0x%08X).\n", i, data);
482 		error = 8;
483 		ns_init_card_error(card, error);
484 		return error;
485 	}
486 	writel(0x00000000, card->membase + GP);
487 
488 	/* Determine SRAM size */
489 	data = 0x76543210;
490 	ns_write_sram(card, 0x1C003, &data, 1);
491 	data = 0x89ABCDEF;
492 	ns_write_sram(card, 0x14003, &data, 1);
493 	if (ns_read_sram(card, 0x14003) == 0x89ABCDEF &&
494 	    ns_read_sram(card, 0x1C003) == 0x76543210)
495 		card->sram_size = 128;
496 	else
497 		card->sram_size = 32;
498 	PRINTK("nicstar%d: %dK x 32bit SRAM size.\n", i, card->sram_size);
499 
500 	card->rct_size = NS_MAX_RCTSIZE;
501 
502 #if (NS_MAX_RCTSIZE == 4096)
503 	if (card->sram_size == 128)
504 		printk
505 		    ("nicstar%d: limiting maximum VCI. See NS_MAX_RCTSIZE in nicstar.h\n",
506 		     i);
507 #elif (NS_MAX_RCTSIZE == 16384)
508 	if (card->sram_size == 32) {
509 		printk
510 		    ("nicstar%d: wasting memory. See NS_MAX_RCTSIZE in nicstar.h\n",
511 		     i);
512 		card->rct_size = 4096;
513 	}
514 #else
515 #error NS_MAX_RCTSIZE must be either 4096 or 16384 in nicstar.c
516 #endif
517 
518 	card->vpibits = NS_VPIBITS;
519 	if (card->rct_size == 4096)
520 		card->vcibits = 12 - NS_VPIBITS;
521 	else			/* card->rct_size == 16384 */
522 		card->vcibits = 14 - NS_VPIBITS;
523 
524 	/* Initialize the nicstar eeprom/eprom stuff, for the MAC addr */
525 	if (mac[i] == NULL)
526 		nicstar_init_eprom(card->membase);
527 
528 	/* Set the VPI/VCI MSb mask to zero so we can receive OAM cells */
529 	writel(0x00000000, card->membase + VPM);
530 
531 	card->intcnt = 0;
532 	if (request_irq
533 	    (pcidev->irq, &ns_irq_handler, IRQF_SHARED, "nicstar", card) != 0) {
534 		pr_err("nicstar%d: can't allocate IRQ %d.\n", i, pcidev->irq);
535 		error = 9;
536 		ns_init_card_error(card, error);
537 		return error;
538 	}
539 
540 	/* Initialize TSQ */
541 	card->tsq.org = dma_alloc_coherent(&card->pcidev->dev,
542 					   NS_TSQSIZE + NS_TSQ_ALIGNMENT,
543 					   &card->tsq.dma, GFP_KERNEL);
544 	if (card->tsq.org == NULL) {
545 		printk("nicstar%d: can't allocate TSQ.\n", i);
546 		error = 10;
547 		ns_init_card_error(card, error);
548 		return error;
549 	}
550 	card->tsq.base = PTR_ALIGN(card->tsq.org, NS_TSQ_ALIGNMENT);
551 	card->tsq.next = card->tsq.base;
552 	card->tsq.last = card->tsq.base + (NS_TSQ_NUM_ENTRIES - 1);
553 	for (j = 0; j < NS_TSQ_NUM_ENTRIES; j++)
554 		ns_tsi_init(card->tsq.base + j);
555 	writel(0x00000000, card->membase + TSQH);
556 	writel(ALIGN(card->tsq.dma, NS_TSQ_ALIGNMENT), card->membase + TSQB);
557 	PRINTK("nicstar%d: TSQ base at 0x%p.\n", i, card->tsq.base);
558 
559 	/* Initialize RSQ */
560 	card->rsq.org = dma_alloc_coherent(&card->pcidev->dev,
561 					   NS_RSQSIZE + NS_RSQ_ALIGNMENT,
562 					   &card->rsq.dma, GFP_KERNEL);
563 	if (card->rsq.org == NULL) {
564 		printk("nicstar%d: can't allocate RSQ.\n", i);
565 		error = 11;
566 		ns_init_card_error(card, error);
567 		return error;
568 	}
569 	card->rsq.base = PTR_ALIGN(card->rsq.org, NS_RSQ_ALIGNMENT);
570 	card->rsq.next = card->rsq.base;
571 	card->rsq.last = card->rsq.base + (NS_RSQ_NUM_ENTRIES - 1);
572 	for (j = 0; j < NS_RSQ_NUM_ENTRIES; j++)
573 		ns_rsqe_init(card->rsq.base + j);
574 	writel(0x00000000, card->membase + RSQH);
575 	writel(ALIGN(card->rsq.dma, NS_RSQ_ALIGNMENT), card->membase + RSQB);
576 	PRINTK("nicstar%d: RSQ base at 0x%p.\n", i, card->rsq.base);
577 
578 	/* Initialize SCQ0, the only VBR SCQ used */
579 	card->scq1 = NULL;
580 	card->scq2 = NULL;
581 	card->scq0 = get_scq(card, VBR_SCQSIZE, NS_VRSCD0);
582 	if (card->scq0 == NULL) {
583 		printk("nicstar%d: can't get SCQ0.\n", i);
584 		error = 12;
585 		ns_init_card_error(card, error);
586 		return error;
587 	}
588 	u32d[0] = scq_virt_to_bus(card->scq0, card->scq0->base);
589 	u32d[1] = (u32) 0x00000000;
590 	u32d[2] = (u32) 0xffffffff;
591 	u32d[3] = (u32) 0x00000000;
592 	ns_write_sram(card, NS_VRSCD0, u32d, 4);
593 	ns_write_sram(card, NS_VRSCD1, u32d, 4);	/* These last two won't be used */
594 	ns_write_sram(card, NS_VRSCD2, u32d, 4);	/* but are initialized, just in case... */
595 	card->scq0->scd = NS_VRSCD0;
596 	PRINTK("nicstar%d: VBR-SCQ0 base at 0x%p.\n", i, card->scq0->base);
597 
598 	/* Initialize TSTs */
599 	card->tst_addr = NS_TST0;
600 	card->tst_free_entries = NS_TST_NUM_ENTRIES;
601 	data = NS_TST_OPCODE_VARIABLE;
602 	for (j = 0; j < NS_TST_NUM_ENTRIES; j++)
603 		ns_write_sram(card, NS_TST0 + j, &data, 1);
604 	data = ns_tste_make(NS_TST_OPCODE_END, NS_TST0);
605 	ns_write_sram(card, NS_TST0 + NS_TST_NUM_ENTRIES, &data, 1);
606 	for (j = 0; j < NS_TST_NUM_ENTRIES; j++)
607 		ns_write_sram(card, NS_TST1 + j, &data, 1);
608 	data = ns_tste_make(NS_TST_OPCODE_END, NS_TST1);
609 	ns_write_sram(card, NS_TST1 + NS_TST_NUM_ENTRIES, &data, 1);
610 	for (j = 0; j < NS_TST_NUM_ENTRIES; j++)
611 		card->tste2vc[j] = NULL;
612 	writel(NS_TST0 << 2, card->membase + TSTB);
613 
614 	/* Initialize RCT. AAL type is set on opening the VC. */
615 #ifdef RCQ_SUPPORT
616 	u32d[0] = NS_RCTE_RAWCELLINTEN;
617 #else
618 	u32d[0] = 0x00000000;
619 #endif /* RCQ_SUPPORT */
620 	u32d[1] = 0x00000000;
621 	u32d[2] = 0x00000000;
622 	u32d[3] = 0xFFFFFFFF;
623 	for (j = 0; j < card->rct_size; j++)
624 		ns_write_sram(card, j * 4, u32d, 4);
625 
626 	memset(card->vcmap, 0, sizeof(card->vcmap));
627 
628 	for (j = 0; j < NS_FRSCD_NUM; j++)
629 		card->scd2vc[j] = NULL;
630 
631 	/* Initialize buffer levels */
632 	card->sbnr.min = MIN_SB;
633 	card->sbnr.init = NUM_SB;
634 	card->sbnr.max = MAX_SB;
635 	card->lbnr.min = MIN_LB;
636 	card->lbnr.init = NUM_LB;
637 	card->lbnr.max = MAX_LB;
638 	card->iovnr.min = MIN_IOVB;
639 	card->iovnr.init = NUM_IOVB;
640 	card->iovnr.max = MAX_IOVB;
641 	card->hbnr.min = MIN_HB;
642 	card->hbnr.init = NUM_HB;
643 	card->hbnr.max = MAX_HB;
644 
645 	card->sm_handle = NULL;
646 	card->sm_addr = 0x00000000;
647 	card->lg_handle = NULL;
648 	card->lg_addr = 0x00000000;
649 
650 	card->efbie = 1;	/* To prevent push_rxbufs from enabling the interrupt */
651 
652 	idr_init(&card->idr);
653 
654 	/* Pre-allocate some huge buffers */
655 	skb_queue_head_init(&card->hbpool.queue);
656 	card->hbpool.count = 0;
657 	for (j = 0; j < NUM_HB; j++) {
658 		struct sk_buff *hb;
659 		hb = __dev_alloc_skb(NS_HBUFSIZE, GFP_KERNEL);
660 		if (hb == NULL) {
661 			printk
662 			    ("nicstar%d: can't allocate %dth of %d huge buffers.\n",
663 			     i, j, NUM_HB);
664 			error = 13;
665 			ns_init_card_error(card, error);
666 			return error;
667 		}
668 		NS_PRV_BUFTYPE(hb) = BUF_NONE;
669 		skb_queue_tail(&card->hbpool.queue, hb);
670 		card->hbpool.count++;
671 	}
672 
673 	/* Allocate large buffers */
674 	skb_queue_head_init(&card->lbpool.queue);
675 	card->lbpool.count = 0;	/* Not used */
676 	for (j = 0; j < NUM_LB; j++) {
677 		struct sk_buff *lb;
678 		lb = __dev_alloc_skb(NS_LGSKBSIZE, GFP_KERNEL);
679 		if (lb == NULL) {
680 			printk
681 			    ("nicstar%d: can't allocate %dth of %d large buffers.\n",
682 			     i, j, NUM_LB);
683 			error = 14;
684 			ns_init_card_error(card, error);
685 			return error;
686 		}
687 		NS_PRV_BUFTYPE(lb) = BUF_LG;
688 		skb_queue_tail(&card->lbpool.queue, lb);
689 		skb_reserve(lb, NS_SMBUFSIZE);
690 		push_rxbufs(card, lb);
691 		/* Due to the implementation of push_rxbufs() this is 1, not 0 */
692 		if (j == 1) {
693 			card->rcbuf = lb;
694 			card->rawcell = (struct ns_rcqe *) lb->data;
695 			card->rawch = NS_PRV_DMA(lb);
696 		}
697 	}
698 	/* Test for strange behaviour which leads to crashes */
699 	if ((bcount =
700 	     ns_stat_lfbqc_get(readl(card->membase + STAT))) < card->lbnr.min) {
701 		printk
702 		    ("nicstar%d: Strange... Just allocated %d large buffers and lfbqc = %d.\n",
703 		     i, j, bcount);
704 		error = 14;
705 		ns_init_card_error(card, error);
706 		return error;
707 	}
708 
709 	/* Allocate small buffers */
710 	skb_queue_head_init(&card->sbpool.queue);
711 	card->sbpool.count = 0;	/* Not used */
712 	for (j = 0; j < NUM_SB; j++) {
713 		struct sk_buff *sb;
714 		sb = __dev_alloc_skb(NS_SMSKBSIZE, GFP_KERNEL);
715 		if (sb == NULL) {
716 			printk
717 			    ("nicstar%d: can't allocate %dth of %d small buffers.\n",
718 			     i, j, NUM_SB);
719 			error = 15;
720 			ns_init_card_error(card, error);
721 			return error;
722 		}
723 		NS_PRV_BUFTYPE(sb) = BUF_SM;
724 		skb_queue_tail(&card->sbpool.queue, sb);
725 		skb_reserve(sb, NS_AAL0_HEADER);
726 		push_rxbufs(card, sb);
727 	}
728 	/* Test for strange behaviour which leads to crashes */
729 	if ((bcount =
730 	     ns_stat_sfbqc_get(readl(card->membase + STAT))) < card->sbnr.min) {
731 		printk
732 		    ("nicstar%d: Strange... Just allocated %d small buffers and sfbqc = %d.\n",
733 		     i, j, bcount);
734 		error = 15;
735 		ns_init_card_error(card, error);
736 		return error;
737 	}
738 
739 	/* Allocate iovec buffers */
740 	skb_queue_head_init(&card->iovpool.queue);
741 	card->iovpool.count = 0;
742 	for (j = 0; j < NUM_IOVB; j++) {
743 		struct sk_buff *iovb;
744 		iovb = alloc_skb(NS_IOVBUFSIZE, GFP_KERNEL);
745 		if (iovb == NULL) {
746 			printk
747 			    ("nicstar%d: can't allocate %dth of %d iovec buffers.\n",
748 			     i, j, NUM_IOVB);
749 			error = 16;
750 			ns_init_card_error(card, error);
751 			return error;
752 		}
753 		NS_PRV_BUFTYPE(iovb) = BUF_NONE;
754 		skb_queue_tail(&card->iovpool.queue, iovb);
755 		card->iovpool.count++;
756 	}
757 
758 	/* Configure NICStAR */
759 	if (card->rct_size == 4096)
760 		ns_cfg_rctsize = NS_CFG_RCTSIZE_4096_ENTRIES;
761 	else			/* (card->rct_size == 16384) */
762 		ns_cfg_rctsize = NS_CFG_RCTSIZE_16384_ENTRIES;
763 
764 	card->efbie = 1;
765 
766 	/* Register device */
767 	card->atmdev = atm_dev_register("nicstar", &card->pcidev->dev, &atm_ops,
768 					-1, NULL);
769 	if (card->atmdev == NULL) {
770 		printk("nicstar%d: can't register device.\n", i);
771 		error = 17;
772 		ns_init_card_error(card, error);
773 		return error;
774 	}
775 
776 	if (mac[i] == NULL || !mac_pton(mac[i], card->atmdev->esi)) {
777 		nicstar_read_eprom(card->membase, NICSTAR_EPROM_MAC_ADDR_OFFSET,
778 				   card->atmdev->esi, 6);
779 		if (ether_addr_equal(card->atmdev->esi, "\x00\x00\x00\x00\x00\x00")) {
780 			nicstar_read_eprom(card->membase,
781 					   NICSTAR_EPROM_MAC_ADDR_OFFSET_ALT,
782 					   card->atmdev->esi, 6);
783 		}
784 	}
785 
786 	printk("nicstar%d: MAC address %pM\n", i, card->atmdev->esi);
787 
788 	card->atmdev->dev_data = card;
789 	card->atmdev->ci_range.vpi_bits = card->vpibits;
790 	card->atmdev->ci_range.vci_bits = card->vcibits;
791 	card->atmdev->link_rate = card->max_pcr;
792 	card->atmdev->phy = NULL;
793 
794 #ifdef CONFIG_ATM_NICSTAR_USE_SUNI
795 	if (card->max_pcr == ATM_OC3_PCR)
796 		suni_init(card->atmdev);
797 #endif /* CONFIG_ATM_NICSTAR_USE_SUNI */
798 
799 #ifdef CONFIG_ATM_NICSTAR_USE_IDT77105
800 	if (card->max_pcr == ATM_25_PCR)
801 		idt77105_init(card->atmdev);
802 #endif /* CONFIG_ATM_NICSTAR_USE_IDT77105 */
803 
804 	if (card->atmdev->phy && card->atmdev->phy->start)
805 		card->atmdev->phy->start(card->atmdev);
806 
807 	writel(NS_CFG_RXPATH | NS_CFG_SMBUFSIZE | NS_CFG_LGBUFSIZE | NS_CFG_EFBIE | NS_CFG_RSQSIZE | NS_CFG_VPIBITS | ns_cfg_rctsize | NS_CFG_RXINT_NODELAY | NS_CFG_RAWIE |	/* Only enabled if RCQ_SUPPORT */
808 	       NS_CFG_RSQAFIE | NS_CFG_TXEN | NS_CFG_TXIE | NS_CFG_TSQFIE_OPT |	/* Only enabled if ENABLE_TSQFIE */
809 	       NS_CFG_PHYIE, card->membase + CFG);
810 
811 	num_cards++;
812 
813 	return error;
814 }
815 
816 static void ns_init_card_error(ns_dev *card, int error)
817 {
818 	if (error >= 17) {
819 		writel(0x00000000, card->membase + CFG);
820 	}
821 	if (error >= 16) {
822 		struct sk_buff *iovb;
823 		while ((iovb = skb_dequeue(&card->iovpool.queue)) != NULL)
824 			dev_kfree_skb_any(iovb);
825 	}
826 	if (error >= 15) {
827 		struct sk_buff *sb;
828 		while ((sb = skb_dequeue(&card->sbpool.queue)) != NULL)
829 			dev_kfree_skb_any(sb);
830 		free_scq(card, card->scq0, NULL);
831 	}
832 	if (error >= 14) {
833 		struct sk_buff *lb;
834 		while ((lb = skb_dequeue(&card->lbpool.queue)) != NULL)
835 			dev_kfree_skb_any(lb);
836 	}
837 	if (error >= 13) {
838 		struct sk_buff *hb;
839 		while ((hb = skb_dequeue(&card->hbpool.queue)) != NULL)
840 			dev_kfree_skb_any(hb);
841 	}
842 	if (error >= 12) {
843 		dma_free_coherent(&card->pcidev->dev, NS_RSQSIZE + NS_RSQ_ALIGNMENT,
844 				card->rsq.org, card->rsq.dma);
845 	}
846 	if (error >= 11) {
847 		dma_free_coherent(&card->pcidev->dev, NS_TSQSIZE + NS_TSQ_ALIGNMENT,
848 				card->tsq.org, card->tsq.dma);
849 	}
850 	if (error >= 10) {
851 		free_irq(card->pcidev->irq, card);
852 	}
853 	if (error >= 4) {
854 		iounmap(card->membase);
855 	}
856 	if (error >= 3) {
857 		pci_disable_device(card->pcidev);
858 		kfree(card);
859 	}
860 }
861 
862 static scq_info *get_scq(ns_dev *card, int size, u32 scd)
863 {
864 	scq_info *scq;
865 
866 	if (size != VBR_SCQSIZE && size != CBR_SCQSIZE)
867 		return NULL;
868 
869 	scq = kmalloc(sizeof(*scq), GFP_KERNEL);
870 	if (!scq)
871 		return NULL;
872         scq->org = dma_alloc_coherent(&card->pcidev->dev,
873 				      2 * size,  &scq->dma, GFP_KERNEL);
874 	if (!scq->org) {
875 		kfree(scq);
876 		return NULL;
877 	}
878 	scq->skb = kcalloc(size / NS_SCQE_SIZE, sizeof(*scq->skb),
879 			   GFP_KERNEL);
880 	if (!scq->skb) {
881 		dma_free_coherent(&card->pcidev->dev,
882 				  2 * size, scq->org, scq->dma);
883 		kfree(scq);
884 		return NULL;
885 	}
886 	scq->num_entries = size / NS_SCQE_SIZE;
887 	scq->base = PTR_ALIGN(scq->org, size);
888 	scq->next = scq->base;
889 	scq->last = scq->base + (scq->num_entries - 1);
890 	scq->tail = scq->last;
891 	scq->scd = scd;
892 	scq->tbd_count = 0;
893 	init_waitqueue_head(&scq->scqfull_waitq);
894 	scq->full = 0;
895 	spin_lock_init(&scq->lock);
896 
897 	return scq;
898 }
899 
900 /* For variable rate SCQ vcc must be NULL */
901 static void free_scq(ns_dev *card, scq_info *scq, struct atm_vcc *vcc)
902 {
903 	int i;
904 
905 	if (scq->num_entries == VBR_SCQ_NUM_ENTRIES)
906 		for (i = 0; i < scq->num_entries; i++) {
907 			if (scq->skb[i] != NULL) {
908 				vcc = ATM_SKB(scq->skb[i])->vcc;
909 				if (vcc->pop != NULL)
910 					vcc->pop(vcc, scq->skb[i]);
911 				else
912 					dev_kfree_skb_any(scq->skb[i]);
913 			}
914 	} else {		/* vcc must be != NULL */
915 
916 		if (vcc == NULL) {
917 			printk
918 			    ("nicstar: free_scq() called with vcc == NULL for fixed rate scq.");
919 			for (i = 0; i < scq->num_entries; i++)
920 				dev_kfree_skb_any(scq->skb[i]);
921 		} else
922 			for (i = 0; i < scq->num_entries; i++) {
923 				if (scq->skb[i] != NULL) {
924 					if (vcc->pop != NULL)
925 						vcc->pop(vcc, scq->skb[i]);
926 					else
927 						dev_kfree_skb_any(scq->skb[i]);
928 				}
929 			}
930 	}
931 	kfree(scq->skb);
932 	dma_free_coherent(&card->pcidev->dev,
933 			  2 * (scq->num_entries == VBR_SCQ_NUM_ENTRIES ?
934 			       VBR_SCQSIZE : CBR_SCQSIZE),
935 			  scq->org, scq->dma);
936 	kfree(scq);
937 }
938 
939 /* The handles passed must be pointers to the sk_buff containing the small
940    or large buffer(s) cast to u32. */
941 static void push_rxbufs(ns_dev * card, struct sk_buff *skb)
942 {
943 	struct sk_buff *handle1, *handle2;
944 	int id1, id2;
945 	u32 addr1, addr2;
946 	u32 stat;
947 	unsigned long flags;
948 
949 	/* *BARF* */
950 	handle2 = NULL;
951 	addr2 = 0;
952 	handle1 = skb;
953 	addr1 = dma_map_single(&card->pcidev->dev,
954 			       skb->data,
955 			       (NS_PRV_BUFTYPE(skb) == BUF_SM
956 				? NS_SMSKBSIZE : NS_LGSKBSIZE),
957 			       DMA_TO_DEVICE);
958 	NS_PRV_DMA(skb) = addr1; /* save so we can unmap later */
959 
960 #ifdef GENERAL_DEBUG
961 	if (!addr1)
962 		printk("nicstar%d: push_rxbufs called with addr1 = 0.\n",
963 		       card->index);
964 #endif /* GENERAL_DEBUG */
965 
966 	stat = readl(card->membase + STAT);
967 	card->sbfqc = ns_stat_sfbqc_get(stat);
968 	card->lbfqc = ns_stat_lfbqc_get(stat);
969 	if (NS_PRV_BUFTYPE(skb) == BUF_SM) {
970 		if (!addr2) {
971 			if (card->sm_addr) {
972 				addr2 = card->sm_addr;
973 				handle2 = card->sm_handle;
974 				card->sm_addr = 0x00000000;
975 				card->sm_handle = NULL;
976 			} else {	/* (!sm_addr) */
977 
978 				card->sm_addr = addr1;
979 				card->sm_handle = handle1;
980 			}
981 		}
982 	} else {		/* buf_type == BUF_LG */
983 
984 		if (!addr2) {
985 			if (card->lg_addr) {
986 				addr2 = card->lg_addr;
987 				handle2 = card->lg_handle;
988 				card->lg_addr = 0x00000000;
989 				card->lg_handle = NULL;
990 			} else {	/* (!lg_addr) */
991 
992 				card->lg_addr = addr1;
993 				card->lg_handle = handle1;
994 			}
995 		}
996 	}
997 
998 	if (addr2) {
999 		if (NS_PRV_BUFTYPE(skb) == BUF_SM) {
1000 			if (card->sbfqc >= card->sbnr.max) {
1001 				skb_unlink(handle1, &card->sbpool.queue);
1002 				dev_kfree_skb_any(handle1);
1003 				skb_unlink(handle2, &card->sbpool.queue);
1004 				dev_kfree_skb_any(handle2);
1005 				return;
1006 			} else
1007 				card->sbfqc += 2;
1008 		} else {	/* (buf_type == BUF_LG) */
1009 
1010 			if (card->lbfqc >= card->lbnr.max) {
1011 				skb_unlink(handle1, &card->lbpool.queue);
1012 				dev_kfree_skb_any(handle1);
1013 				skb_unlink(handle2, &card->lbpool.queue);
1014 				dev_kfree_skb_any(handle2);
1015 				return;
1016 			} else
1017 				card->lbfqc += 2;
1018 		}
1019 
1020 		id1 = idr_alloc(&card->idr, handle1, 0, 0, GFP_ATOMIC);
1021 		if (id1 < 0)
1022 			goto out;
1023 
1024 		id2 = idr_alloc(&card->idr, handle2, 0, 0, GFP_ATOMIC);
1025 		if (id2 < 0)
1026 			goto out;
1027 
1028 		spin_lock_irqsave(&card->res_lock, flags);
1029 		while (CMD_BUSY(card)) ;
1030 		writel(addr2, card->membase + DR3);
1031 		writel(id2, card->membase + DR2);
1032 		writel(addr1, card->membase + DR1);
1033 		writel(id1, card->membase + DR0);
1034 		writel(NS_CMD_WRITE_FREEBUFQ | NS_PRV_BUFTYPE(skb),
1035 		       card->membase + CMD);
1036 		spin_unlock_irqrestore(&card->res_lock, flags);
1037 
1038 		XPRINTK("nicstar%d: Pushing %s buffers at 0x%x and 0x%x.\n",
1039 			card->index,
1040 			(NS_PRV_BUFTYPE(skb) == BUF_SM ? "small" : "large"),
1041 			addr1, addr2);
1042 	}
1043 
1044 	if (!card->efbie && card->sbfqc >= card->sbnr.min &&
1045 	    card->lbfqc >= card->lbnr.min) {
1046 		card->efbie = 1;
1047 		writel((readl(card->membase + CFG) | NS_CFG_EFBIE),
1048 		       card->membase + CFG);
1049 	}
1050 
1051 out:
1052 	return;
1053 }
1054 
1055 static irqreturn_t ns_irq_handler(int irq, void *dev_id)
1056 {
1057 	u32 stat_r;
1058 	ns_dev *card;
1059 	struct atm_dev *dev;
1060 	unsigned long flags;
1061 
1062 	card = (ns_dev *) dev_id;
1063 	dev = card->atmdev;
1064 	card->intcnt++;
1065 
1066 	PRINTK("nicstar%d: NICStAR generated an interrupt\n", card->index);
1067 
1068 	spin_lock_irqsave(&card->int_lock, flags);
1069 
1070 	stat_r = readl(card->membase + STAT);
1071 
1072 	/* Transmit Status Indicator has been written to T. S. Queue */
1073 	if (stat_r & NS_STAT_TSIF) {
1074 		TXPRINTK("nicstar%d: TSI interrupt\n", card->index);
1075 		process_tsq(card);
1076 		writel(NS_STAT_TSIF, card->membase + STAT);
1077 	}
1078 
1079 	/* Incomplete CS-PDU has been transmitted */
1080 	if (stat_r & NS_STAT_TXICP) {
1081 		writel(NS_STAT_TXICP, card->membase + STAT);
1082 		TXPRINTK("nicstar%d: Incomplete CS-PDU transmitted.\n",
1083 			 card->index);
1084 	}
1085 
1086 	/* Transmit Status Queue 7/8 full */
1087 	if (stat_r & NS_STAT_TSQF) {
1088 		writel(NS_STAT_TSQF, card->membase + STAT);
1089 		PRINTK("nicstar%d: TSQ full.\n", card->index);
1090 		process_tsq(card);
1091 	}
1092 
1093 	/* Timer overflow */
1094 	if (stat_r & NS_STAT_TMROF) {
1095 		writel(NS_STAT_TMROF, card->membase + STAT);
1096 		PRINTK("nicstar%d: Timer overflow.\n", card->index);
1097 	}
1098 
1099 	/* PHY device interrupt signal active */
1100 	if (stat_r & NS_STAT_PHYI) {
1101 		writel(NS_STAT_PHYI, card->membase + STAT);
1102 		PRINTK("nicstar%d: PHY interrupt.\n", card->index);
1103 		if (dev->phy && dev->phy->interrupt) {
1104 			dev->phy->interrupt(dev);
1105 		}
1106 	}
1107 
1108 	/* Small Buffer Queue is full */
1109 	if (stat_r & NS_STAT_SFBQF) {
1110 		writel(NS_STAT_SFBQF, card->membase + STAT);
1111 		printk("nicstar%d: Small free buffer queue is full.\n",
1112 		       card->index);
1113 	}
1114 
1115 	/* Large Buffer Queue is full */
1116 	if (stat_r & NS_STAT_LFBQF) {
1117 		writel(NS_STAT_LFBQF, card->membase + STAT);
1118 		printk("nicstar%d: Large free buffer queue is full.\n",
1119 		       card->index);
1120 	}
1121 
1122 	/* Receive Status Queue is full */
1123 	if (stat_r & NS_STAT_RSQF) {
1124 		writel(NS_STAT_RSQF, card->membase + STAT);
1125 		printk("nicstar%d: RSQ full.\n", card->index);
1126 		process_rsq(card);
1127 	}
1128 
1129 	/* Complete CS-PDU received */
1130 	if (stat_r & NS_STAT_EOPDU) {
1131 		RXPRINTK("nicstar%d: End of CS-PDU received.\n", card->index);
1132 		process_rsq(card);
1133 		writel(NS_STAT_EOPDU, card->membase + STAT);
1134 	}
1135 
1136 	/* Raw cell received */
1137 	if (stat_r & NS_STAT_RAWCF) {
1138 		writel(NS_STAT_RAWCF, card->membase + STAT);
1139 #ifndef RCQ_SUPPORT
1140 		printk("nicstar%d: Raw cell received and no support yet...\n",
1141 		       card->index);
1142 #endif /* RCQ_SUPPORT */
1143 		/* NOTE: the following procedure may keep a raw cell pending until the
1144 		   next interrupt. As this preliminary support is only meant to
1145 		   avoid buffer leakage, this is not an issue. */
1146 		while (readl(card->membase + RAWCT) != card->rawch) {
1147 
1148 			if (ns_rcqe_islast(card->rawcell)) {
1149 				struct sk_buff *oldbuf;
1150 
1151 				oldbuf = card->rcbuf;
1152 				card->rcbuf = idr_find(&card->idr,
1153 						       ns_rcqe_nextbufhandle(card->rawcell));
1154 				card->rawch = NS_PRV_DMA(card->rcbuf);
1155 				card->rawcell = (struct ns_rcqe *)
1156 						card->rcbuf->data;
1157 				recycle_rx_buf(card, oldbuf);
1158 			} else {
1159 				card->rawch += NS_RCQE_SIZE;
1160 				card->rawcell++;
1161 			}
1162 		}
1163 	}
1164 
1165 	/* Small buffer queue is empty */
1166 	if (stat_r & NS_STAT_SFBQE) {
1167 		int i;
1168 		struct sk_buff *sb;
1169 
1170 		writel(NS_STAT_SFBQE, card->membase + STAT);
1171 		printk("nicstar%d: Small free buffer queue empty.\n",
1172 		       card->index);
1173 		for (i = 0; i < card->sbnr.min; i++) {
1174 			sb = dev_alloc_skb(NS_SMSKBSIZE);
1175 			if (sb == NULL) {
1176 				writel(readl(card->membase + CFG) &
1177 				       ~NS_CFG_EFBIE, card->membase + CFG);
1178 				card->efbie = 0;
1179 				break;
1180 			}
1181 			NS_PRV_BUFTYPE(sb) = BUF_SM;
1182 			skb_queue_tail(&card->sbpool.queue, sb);
1183 			skb_reserve(sb, NS_AAL0_HEADER);
1184 			push_rxbufs(card, sb);
1185 		}
1186 		card->sbfqc = i;
1187 		process_rsq(card);
1188 	}
1189 
1190 	/* Large buffer queue empty */
1191 	if (stat_r & NS_STAT_LFBQE) {
1192 		int i;
1193 		struct sk_buff *lb;
1194 
1195 		writel(NS_STAT_LFBQE, card->membase + STAT);
1196 		printk("nicstar%d: Large free buffer queue empty.\n",
1197 		       card->index);
1198 		for (i = 0; i < card->lbnr.min; i++) {
1199 			lb = dev_alloc_skb(NS_LGSKBSIZE);
1200 			if (lb == NULL) {
1201 				writel(readl(card->membase + CFG) &
1202 				       ~NS_CFG_EFBIE, card->membase + CFG);
1203 				card->efbie = 0;
1204 				break;
1205 			}
1206 			NS_PRV_BUFTYPE(lb) = BUF_LG;
1207 			skb_queue_tail(&card->lbpool.queue, lb);
1208 			skb_reserve(lb, NS_SMBUFSIZE);
1209 			push_rxbufs(card, lb);
1210 		}
1211 		card->lbfqc = i;
1212 		process_rsq(card);
1213 	}
1214 
1215 	/* Receive Status Queue is 7/8 full */
1216 	if (stat_r & NS_STAT_RSQAF) {
1217 		writel(NS_STAT_RSQAF, card->membase + STAT);
1218 		RXPRINTK("nicstar%d: RSQ almost full.\n", card->index);
1219 		process_rsq(card);
1220 	}
1221 
1222 	spin_unlock_irqrestore(&card->int_lock, flags);
1223 	PRINTK("nicstar%d: end of interrupt service\n", card->index);
1224 	return IRQ_HANDLED;
1225 }
1226 
1227 static int ns_open(struct atm_vcc *vcc)
1228 {
1229 	ns_dev *card;
1230 	vc_map *vc;
1231 	unsigned long tmpl, modl;
1232 	int tcr, tcra;		/* target cell rate, and absolute value */
1233 	int n = 0;		/* Number of entries in the TST. Initialized to remove
1234 				   the compiler warning. */
1235 	u32 u32d[4];
1236 	int frscdi = 0;		/* Index of the SCD. Initialized to remove the compiler
1237 				   warning. How I wish compilers were clever enough to
1238 				   tell which variables can truly be used
1239 				   uninitialized... */
1240 	int inuse;		/* tx or rx vc already in use by another vcc */
1241 	short vpi = vcc->vpi;
1242 	int vci = vcc->vci;
1243 
1244 	card = (ns_dev *) vcc->dev->dev_data;
1245 	PRINTK("nicstar%d: opening vpi.vci %d.%d \n", card->index, (int)vpi,
1246 	       vci);
1247 	if (vcc->qos.aal != ATM_AAL5 && vcc->qos.aal != ATM_AAL0) {
1248 		PRINTK("nicstar%d: unsupported AAL.\n", card->index);
1249 		return -EINVAL;
1250 	}
1251 
1252 	vc = &(card->vcmap[vpi << card->vcibits | vci]);
1253 	vcc->dev_data = vc;
1254 
1255 	inuse = 0;
1256 	if (vcc->qos.txtp.traffic_class != ATM_NONE && vc->tx)
1257 		inuse = 1;
1258 	if (vcc->qos.rxtp.traffic_class != ATM_NONE && vc->rx)
1259 		inuse += 2;
1260 	if (inuse) {
1261 		printk("nicstar%d: %s vci already in use.\n", card->index,
1262 		       inuse == 1 ? "tx" : inuse == 2 ? "rx" : "tx and rx");
1263 		return -EINVAL;
1264 	}
1265 
1266 	set_bit(ATM_VF_ADDR, &vcc->flags);
1267 
1268 	/* NOTE: You are not allowed to modify an open connection's QOS. To change
1269 	   that, remove the ATM_VF_PARTIAL flag checking. There may be other changes
1270 	   needed to do that. */
1271 	if (!test_bit(ATM_VF_PARTIAL, &vcc->flags)) {
1272 		scq_info *scq;
1273 
1274 		set_bit(ATM_VF_PARTIAL, &vcc->flags);
1275 		if (vcc->qos.txtp.traffic_class == ATM_CBR) {
1276 			/* Check requested cell rate and availability of SCD */
1277 			if (vcc->qos.txtp.max_pcr == 0 && vcc->qos.txtp.pcr == 0
1278 			    && vcc->qos.txtp.min_pcr == 0) {
1279 				PRINTK
1280 				    ("nicstar%d: trying to open a CBR vc with cell rate = 0 \n",
1281 				     card->index);
1282 				clear_bit(ATM_VF_PARTIAL, &vcc->flags);
1283 				clear_bit(ATM_VF_ADDR, &vcc->flags);
1284 				return -EINVAL;
1285 			}
1286 
1287 			tcr = atm_pcr_goal(&(vcc->qos.txtp));
1288 			tcra = tcr >= 0 ? tcr : -tcr;
1289 
1290 			PRINTK("nicstar%d: target cell rate = %d.\n",
1291 			       card->index, vcc->qos.txtp.max_pcr);
1292 
1293 			tmpl =
1294 			    (unsigned long)tcra *(unsigned long)
1295 			    NS_TST_NUM_ENTRIES;
1296 			modl = tmpl % card->max_pcr;
1297 
1298 			n = (int)(tmpl / card->max_pcr);
1299 			if (tcr > 0) {
1300 				if (modl > 0)
1301 					n++;
1302 			} else if (tcr == 0) {
1303 				if ((n =
1304 				     (card->tst_free_entries -
1305 				      NS_TST_RESERVED)) <= 0) {
1306 					PRINTK
1307 					    ("nicstar%d: no CBR bandwidth free.\n",
1308 					     card->index);
1309 					clear_bit(ATM_VF_PARTIAL, &vcc->flags);
1310 					clear_bit(ATM_VF_ADDR, &vcc->flags);
1311 					return -EINVAL;
1312 				}
1313 			}
1314 
1315 			if (n == 0) {
1316 				printk
1317 				    ("nicstar%d: selected bandwidth < granularity.\n",
1318 				     card->index);
1319 				clear_bit(ATM_VF_PARTIAL, &vcc->flags);
1320 				clear_bit(ATM_VF_ADDR, &vcc->flags);
1321 				return -EINVAL;
1322 			}
1323 
1324 			if (n > (card->tst_free_entries - NS_TST_RESERVED)) {
1325 				PRINTK
1326 				    ("nicstar%d: not enough free CBR bandwidth.\n",
1327 				     card->index);
1328 				clear_bit(ATM_VF_PARTIAL, &vcc->flags);
1329 				clear_bit(ATM_VF_ADDR, &vcc->flags);
1330 				return -EINVAL;
1331 			} else
1332 				card->tst_free_entries -= n;
1333 
1334 			XPRINTK("nicstar%d: writing %d tst entries.\n",
1335 				card->index, n);
1336 			for (frscdi = 0; frscdi < NS_FRSCD_NUM; frscdi++) {
1337 				if (card->scd2vc[frscdi] == NULL) {
1338 					card->scd2vc[frscdi] = vc;
1339 					break;
1340 				}
1341 			}
1342 			if (frscdi == NS_FRSCD_NUM) {
1343 				PRINTK
1344 				    ("nicstar%d: no SCD available for CBR channel.\n",
1345 				     card->index);
1346 				card->tst_free_entries += n;
1347 				clear_bit(ATM_VF_PARTIAL, &vcc->flags);
1348 				clear_bit(ATM_VF_ADDR, &vcc->flags);
1349 				return -EBUSY;
1350 			}
1351 
1352 			vc->cbr_scd = NS_FRSCD + frscdi * NS_FRSCD_SIZE;
1353 
1354 			scq = get_scq(card, CBR_SCQSIZE, vc->cbr_scd);
1355 			if (scq == NULL) {
1356 				PRINTK("nicstar%d: can't get fixed rate SCQ.\n",
1357 				       card->index);
1358 				card->scd2vc[frscdi] = NULL;
1359 				card->tst_free_entries += n;
1360 				clear_bit(ATM_VF_PARTIAL, &vcc->flags);
1361 				clear_bit(ATM_VF_ADDR, &vcc->flags);
1362 				return -ENOMEM;
1363 			}
1364 			vc->scq = scq;
1365 			u32d[0] = scq_virt_to_bus(scq, scq->base);
1366 			u32d[1] = (u32) 0x00000000;
1367 			u32d[2] = (u32) 0xffffffff;
1368 			u32d[3] = (u32) 0x00000000;
1369 			ns_write_sram(card, vc->cbr_scd, u32d, 4);
1370 
1371 			fill_tst(card, n, vc);
1372 		} else if (vcc->qos.txtp.traffic_class == ATM_UBR) {
1373 			vc->cbr_scd = 0x00000000;
1374 			vc->scq = card->scq0;
1375 		}
1376 
1377 		if (vcc->qos.txtp.traffic_class != ATM_NONE) {
1378 			vc->tx = 1;
1379 			vc->tx_vcc = vcc;
1380 			vc->tbd_count = 0;
1381 		}
1382 		if (vcc->qos.rxtp.traffic_class != ATM_NONE) {
1383 			u32 status;
1384 
1385 			vc->rx = 1;
1386 			vc->rx_vcc = vcc;
1387 			vc->rx_iov = NULL;
1388 
1389 			/* Open the connection in hardware */
1390 			if (vcc->qos.aal == ATM_AAL5)
1391 				status = NS_RCTE_AAL5 | NS_RCTE_CONNECTOPEN;
1392 			else	/* vcc->qos.aal == ATM_AAL0 */
1393 				status = NS_RCTE_AAL0 | NS_RCTE_CONNECTOPEN;
1394 #ifdef RCQ_SUPPORT
1395 			status |= NS_RCTE_RAWCELLINTEN;
1396 #endif /* RCQ_SUPPORT */
1397 			ns_write_sram(card,
1398 				      NS_RCT +
1399 				      (vpi << card->vcibits | vci) *
1400 				      NS_RCT_ENTRY_SIZE, &status, 1);
1401 		}
1402 
1403 	}
1404 
1405 	set_bit(ATM_VF_READY, &vcc->flags);
1406 	return 0;
1407 }
1408 
1409 static void ns_close(struct atm_vcc *vcc)
1410 {
1411 	vc_map *vc;
1412 	ns_dev *card;
1413 	u32 data;
1414 	int i;
1415 
1416 	vc = vcc->dev_data;
1417 	card = vcc->dev->dev_data;
1418 	PRINTK("nicstar%d: closing vpi.vci %d.%d \n", card->index,
1419 	       (int)vcc->vpi, vcc->vci);
1420 
1421 	clear_bit(ATM_VF_READY, &vcc->flags);
1422 
1423 	if (vcc->qos.rxtp.traffic_class != ATM_NONE) {
1424 		u32 addr;
1425 		unsigned long flags;
1426 
1427 		addr =
1428 		    NS_RCT +
1429 		    (vcc->vpi << card->vcibits | vcc->vci) * NS_RCT_ENTRY_SIZE;
1430 		spin_lock_irqsave(&card->res_lock, flags);
1431 		while (CMD_BUSY(card)) ;
1432 		writel(NS_CMD_CLOSE_CONNECTION | addr << 2,
1433 		       card->membase + CMD);
1434 		spin_unlock_irqrestore(&card->res_lock, flags);
1435 
1436 		vc->rx = 0;
1437 		if (vc->rx_iov != NULL) {
1438 			struct sk_buff *iovb;
1439 			u32 stat;
1440 
1441 			stat = readl(card->membase + STAT);
1442 			card->sbfqc = ns_stat_sfbqc_get(stat);
1443 			card->lbfqc = ns_stat_lfbqc_get(stat);
1444 
1445 			PRINTK
1446 			    ("nicstar%d: closing a VC with pending rx buffers.\n",
1447 			     card->index);
1448 			iovb = vc->rx_iov;
1449 			recycle_iovec_rx_bufs(card, (struct iovec *)iovb->data,
1450 					      NS_PRV_IOVCNT(iovb));
1451 			NS_PRV_IOVCNT(iovb) = 0;
1452 			spin_lock_irqsave(&card->int_lock, flags);
1453 			recycle_iov_buf(card, iovb);
1454 			spin_unlock_irqrestore(&card->int_lock, flags);
1455 			vc->rx_iov = NULL;
1456 		}
1457 	}
1458 
1459 	if (vcc->qos.txtp.traffic_class != ATM_NONE) {
1460 		vc->tx = 0;
1461 	}
1462 
1463 	if (vcc->qos.txtp.traffic_class == ATM_CBR) {
1464 		unsigned long flags;
1465 		ns_scqe *scqep;
1466 		scq_info *scq;
1467 
1468 		scq = vc->scq;
1469 
1470 		for (;;) {
1471 			spin_lock_irqsave(&scq->lock, flags);
1472 			scqep = scq->next;
1473 			if (scqep == scq->base)
1474 				scqep = scq->last;
1475 			else
1476 				scqep--;
1477 			if (scqep == scq->tail) {
1478 				spin_unlock_irqrestore(&scq->lock, flags);
1479 				break;
1480 			}
1481 			/* If the last entry is not a TSR, place one in the SCQ in order to
1482 			   be able to completely drain it and then close. */
1483 			if (!ns_scqe_is_tsr(scqep) && scq->tail != scq->next) {
1484 				ns_scqe tsr;
1485 				u32 scdi, scqi;
1486 				u32 data;
1487 				int index;
1488 
1489 				tsr.word_1 = ns_tsr_mkword_1(NS_TSR_INTENABLE);
1490 				scdi = (vc->cbr_scd - NS_FRSCD) / NS_FRSCD_SIZE;
1491 				scqi = scq->next - scq->base;
1492 				tsr.word_2 = ns_tsr_mkword_2(scdi, scqi);
1493 				tsr.word_3 = 0x00000000;
1494 				tsr.word_4 = 0x00000000;
1495 				*scq->next = tsr;
1496 				index = (int)scqi;
1497 				scq->skb[index] = NULL;
1498 				if (scq->next == scq->last)
1499 					scq->next = scq->base;
1500 				else
1501 					scq->next++;
1502 				data = scq_virt_to_bus(scq, scq->next);
1503 				ns_write_sram(card, scq->scd, &data, 1);
1504 			}
1505 			spin_unlock_irqrestore(&scq->lock, flags);
1506 			schedule();
1507 		}
1508 
1509 		/* Free all TST entries */
1510 		data = NS_TST_OPCODE_VARIABLE;
1511 		for (i = 0; i < NS_TST_NUM_ENTRIES; i++) {
1512 			if (card->tste2vc[i] == vc) {
1513 				ns_write_sram(card, card->tst_addr + i, &data,
1514 					      1);
1515 				card->tste2vc[i] = NULL;
1516 				card->tst_free_entries++;
1517 			}
1518 		}
1519 
1520 		card->scd2vc[(vc->cbr_scd - NS_FRSCD) / NS_FRSCD_SIZE] = NULL;
1521 		free_scq(card, vc->scq, vcc);
1522 	}
1523 
1524 	/* remove all references to vcc before deleting it */
1525 	if (vcc->qos.txtp.traffic_class != ATM_NONE) {
1526 		unsigned long flags;
1527 		scq_info *scq = card->scq0;
1528 
1529 		spin_lock_irqsave(&scq->lock, flags);
1530 
1531 		for (i = 0; i < scq->num_entries; i++) {
1532 			if (scq->skb[i] && ATM_SKB(scq->skb[i])->vcc == vcc) {
1533 				ATM_SKB(scq->skb[i])->vcc = NULL;
1534 				atm_return(vcc, scq->skb[i]->truesize);
1535 				PRINTK
1536 				    ("nicstar: deleted pending vcc mapping\n");
1537 			}
1538 		}
1539 
1540 		spin_unlock_irqrestore(&scq->lock, flags);
1541 	}
1542 
1543 	vcc->dev_data = NULL;
1544 	clear_bit(ATM_VF_PARTIAL, &vcc->flags);
1545 	clear_bit(ATM_VF_ADDR, &vcc->flags);
1546 
1547 #ifdef RX_DEBUG
1548 	{
1549 		u32 stat, cfg;
1550 		stat = readl(card->membase + STAT);
1551 		cfg = readl(card->membase + CFG);
1552 		printk("STAT = 0x%08X  CFG = 0x%08X  \n", stat, cfg);
1553 		printk
1554 		    ("TSQ: base = 0x%p  next = 0x%p  last = 0x%p  TSQT = 0x%08X \n",
1555 		     card->tsq.base, card->tsq.next,
1556 		     card->tsq.last, readl(card->membase + TSQT));
1557 		printk
1558 		    ("RSQ: base = 0x%p  next = 0x%p  last = 0x%p  RSQT = 0x%08X \n",
1559 		     card->rsq.base, card->rsq.next,
1560 		     card->rsq.last, readl(card->membase + RSQT));
1561 		printk("Empty free buffer queue interrupt %s \n",
1562 		       card->efbie ? "enabled" : "disabled");
1563 		printk("SBCNT = %d  count = %d   LBCNT = %d count = %d \n",
1564 		       ns_stat_sfbqc_get(stat), card->sbpool.count,
1565 		       ns_stat_lfbqc_get(stat), card->lbpool.count);
1566 		printk("hbpool.count = %d  iovpool.count = %d \n",
1567 		       card->hbpool.count, card->iovpool.count);
1568 	}
1569 #endif /* RX_DEBUG */
1570 }
1571 
1572 static void fill_tst(ns_dev * card, int n, vc_map * vc)
1573 {
1574 	u32 new_tst;
1575 	unsigned long cl;
1576 	int e, r;
1577 	u32 data;
1578 
1579 	/* It would be very complicated to keep the two TSTs synchronized while
1580 	   assuring that writes are only made to the inactive TST. So, for now I
1581 	   will use only one TST. If problems occur, I will change this again */
1582 
1583 	new_tst = card->tst_addr;
1584 
1585 	/* Fill procedure */
1586 
1587 	for (e = 0; e < NS_TST_NUM_ENTRIES; e++) {
1588 		if (card->tste2vc[e] == NULL)
1589 			break;
1590 	}
1591 	if (e == NS_TST_NUM_ENTRIES) {
1592 		printk("nicstar%d: No free TST entries found. \n", card->index);
1593 		return;
1594 	}
1595 
1596 	r = n;
1597 	cl = NS_TST_NUM_ENTRIES;
1598 	data = ns_tste_make(NS_TST_OPCODE_FIXED, vc->cbr_scd);
1599 
1600 	while (r > 0) {
1601 		if (cl >= NS_TST_NUM_ENTRIES && card->tste2vc[e] == NULL) {
1602 			card->tste2vc[e] = vc;
1603 			ns_write_sram(card, new_tst + e, &data, 1);
1604 			cl -= NS_TST_NUM_ENTRIES;
1605 			r--;
1606 		}
1607 
1608 		if (++e == NS_TST_NUM_ENTRIES) {
1609 			e = 0;
1610 		}
1611 		cl += n;
1612 	}
1613 
1614 	/* End of fill procedure */
1615 
1616 	data = ns_tste_make(NS_TST_OPCODE_END, new_tst);
1617 	ns_write_sram(card, new_tst + NS_TST_NUM_ENTRIES, &data, 1);
1618 	ns_write_sram(card, card->tst_addr + NS_TST_NUM_ENTRIES, &data, 1);
1619 	card->tst_addr = new_tst;
1620 }
1621 
1622 static int _ns_send(struct atm_vcc *vcc, struct sk_buff *skb, bool may_sleep)
1623 {
1624 	ns_dev *card;
1625 	vc_map *vc;
1626 	scq_info *scq;
1627 	unsigned long buflen;
1628 	ns_scqe scqe;
1629 	u32 flags;		/* TBD flags, not CPU flags */
1630 
1631 	card = vcc->dev->dev_data;
1632 	TXPRINTK("nicstar%d: ns_send() called.\n", card->index);
1633 	if ((vc = (vc_map *) vcc->dev_data) == NULL) {
1634 		printk("nicstar%d: vcc->dev_data == NULL on ns_send().\n",
1635 		       card->index);
1636 		atomic_inc(&vcc->stats->tx_err);
1637 		dev_kfree_skb_any(skb);
1638 		return -EINVAL;
1639 	}
1640 
1641 	if (!vc->tx) {
1642 		printk("nicstar%d: Trying to transmit on a non-tx VC.\n",
1643 		       card->index);
1644 		atomic_inc(&vcc->stats->tx_err);
1645 		dev_kfree_skb_any(skb);
1646 		return -EINVAL;
1647 	}
1648 
1649 	if (vcc->qos.aal != ATM_AAL5 && vcc->qos.aal != ATM_AAL0) {
1650 		printk("nicstar%d: Only AAL0 and AAL5 are supported.\n",
1651 		       card->index);
1652 		atomic_inc(&vcc->stats->tx_err);
1653 		dev_kfree_skb_any(skb);
1654 		return -EINVAL;
1655 	}
1656 
1657 	if (skb_shinfo(skb)->nr_frags != 0) {
1658 		printk("nicstar%d: No scatter-gather yet.\n", card->index);
1659 		atomic_inc(&vcc->stats->tx_err);
1660 		dev_kfree_skb_any(skb);
1661 		return -EINVAL;
1662 	}
1663 
1664 	ATM_SKB(skb)->vcc = vcc;
1665 
1666 	NS_PRV_DMA(skb) = dma_map_single(&card->pcidev->dev, skb->data,
1667 					 skb->len, DMA_TO_DEVICE);
1668 
1669 	if (vcc->qos.aal == ATM_AAL5) {
1670 		buflen = (skb->len + 47 + 8) / 48 * 48;	/* Multiple of 48 */
1671 		flags = NS_TBD_AAL5;
1672 		scqe.word_2 = cpu_to_le32(NS_PRV_DMA(skb));
1673 		scqe.word_3 = cpu_to_le32(skb->len);
1674 		scqe.word_4 =
1675 		    ns_tbd_mkword_4(0, (u32) vcc->vpi, (u32) vcc->vci, 0,
1676 				    ATM_SKB(skb)->
1677 				    atm_options & ATM_ATMOPT_CLP ? 1 : 0);
1678 		flags |= NS_TBD_EOPDU;
1679 	} else {		/* (vcc->qos.aal == ATM_AAL0) */
1680 
1681 		buflen = ATM_CELL_PAYLOAD;	/* i.e., 48 bytes */
1682 		flags = NS_TBD_AAL0;
1683 		scqe.word_2 = cpu_to_le32(NS_PRV_DMA(skb) + NS_AAL0_HEADER);
1684 		scqe.word_3 = cpu_to_le32(0x00000000);
1685 		if (*skb->data & 0x02)	/* Payload type 1 - end of pdu */
1686 			flags |= NS_TBD_EOPDU;
1687 		scqe.word_4 =
1688 		    cpu_to_le32(*((u32 *) skb->data) & ~NS_TBD_VC_MASK);
1689 		/* Force the VPI/VCI to be the same as in VCC struct */
1690 		scqe.word_4 |=
1691 		    cpu_to_le32((((u32) vcc->
1692 				  vpi) << NS_TBD_VPI_SHIFT | ((u32) vcc->
1693 							      vci) <<
1694 				 NS_TBD_VCI_SHIFT) & NS_TBD_VC_MASK);
1695 	}
1696 
1697 	if (vcc->qos.txtp.traffic_class == ATM_CBR) {
1698 		scqe.word_1 = ns_tbd_mkword_1_novbr(flags, (u32) buflen);
1699 		scq = ((vc_map *) vcc->dev_data)->scq;
1700 	} else {
1701 		scqe.word_1 =
1702 		    ns_tbd_mkword_1(flags, (u32) 1, (u32) 1, (u32) buflen);
1703 		scq = card->scq0;
1704 	}
1705 
1706 	if (push_scqe(card, vc, scq, &scqe, skb, may_sleep) != 0) {
1707 		atomic_inc(&vcc->stats->tx_err);
1708 		dma_unmap_single(&card->pcidev->dev, NS_PRV_DMA(skb), skb->len,
1709 				 DMA_TO_DEVICE);
1710 		dev_kfree_skb_any(skb);
1711 		return -EIO;
1712 	}
1713 	atomic_inc(&vcc->stats->tx);
1714 
1715 	return 0;
1716 }
1717 
1718 static int ns_send(struct atm_vcc *vcc, struct sk_buff *skb)
1719 {
1720 	return _ns_send(vcc, skb, true);
1721 }
1722 
1723 static int ns_send_bh(struct atm_vcc *vcc, struct sk_buff *skb)
1724 {
1725 	return _ns_send(vcc, skb, false);
1726 }
1727 
1728 static int push_scqe(ns_dev * card, vc_map * vc, scq_info * scq, ns_scqe * tbd,
1729 		     struct sk_buff *skb, bool may_sleep)
1730 {
1731 	unsigned long flags;
1732 	ns_scqe tsr;
1733 	u32 scdi, scqi;
1734 	int scq_is_vbr;
1735 	u32 data;
1736 	int index;
1737 
1738 	spin_lock_irqsave(&scq->lock, flags);
1739 	while (scq->tail == scq->next) {
1740 		if (!may_sleep) {
1741 			spin_unlock_irqrestore(&scq->lock, flags);
1742 			printk("nicstar%d: Error pushing TBD.\n", card->index);
1743 			return 1;
1744 		}
1745 
1746 		scq->full = 1;
1747 		wait_event_interruptible_lock_irq_timeout(scq->scqfull_waitq,
1748 							  scq->tail != scq->next,
1749 							  scq->lock,
1750 							  SCQFULL_TIMEOUT);
1751 
1752 		if (scq->full) {
1753 			spin_unlock_irqrestore(&scq->lock, flags);
1754 			printk("nicstar%d: Timeout pushing TBD.\n",
1755 			       card->index);
1756 			return 1;
1757 		}
1758 	}
1759 	*scq->next = *tbd;
1760 	index = (int)(scq->next - scq->base);
1761 	scq->skb[index] = skb;
1762 	XPRINTK("nicstar%d: sending skb at 0x%p (pos %d).\n",
1763 		card->index, skb, index);
1764 	XPRINTK("nicstar%d: TBD written:\n0x%x\n0x%x\n0x%x\n0x%x\n at 0x%p.\n",
1765 		card->index, le32_to_cpu(tbd->word_1), le32_to_cpu(tbd->word_2),
1766 		le32_to_cpu(tbd->word_3), le32_to_cpu(tbd->word_4),
1767 		scq->next);
1768 	if (scq->next == scq->last)
1769 		scq->next = scq->base;
1770 	else
1771 		scq->next++;
1772 
1773 	vc->tbd_count++;
1774 	if (scq->num_entries == VBR_SCQ_NUM_ENTRIES) {
1775 		scq->tbd_count++;
1776 		scq_is_vbr = 1;
1777 	} else
1778 		scq_is_vbr = 0;
1779 
1780 	if (vc->tbd_count >= MAX_TBD_PER_VC
1781 	    || scq->tbd_count >= MAX_TBD_PER_SCQ) {
1782 		int has_run = 0;
1783 
1784 		while (scq->tail == scq->next) {
1785 			if (!may_sleep) {
1786 				data = scq_virt_to_bus(scq, scq->next);
1787 				ns_write_sram(card, scq->scd, &data, 1);
1788 				spin_unlock_irqrestore(&scq->lock, flags);
1789 				printk("nicstar%d: Error pushing TSR.\n",
1790 				       card->index);
1791 				return 0;
1792 			}
1793 
1794 			scq->full = 1;
1795 			if (has_run++)
1796 				break;
1797 			wait_event_interruptible_lock_irq_timeout(scq->scqfull_waitq,
1798 								  scq->tail != scq->next,
1799 								  scq->lock,
1800 								  SCQFULL_TIMEOUT);
1801 		}
1802 
1803 		if (!scq->full) {
1804 			tsr.word_1 = ns_tsr_mkword_1(NS_TSR_INTENABLE);
1805 			if (scq_is_vbr)
1806 				scdi = NS_TSR_SCDISVBR;
1807 			else
1808 				scdi = (vc->cbr_scd - NS_FRSCD) / NS_FRSCD_SIZE;
1809 			scqi = scq->next - scq->base;
1810 			tsr.word_2 = ns_tsr_mkword_2(scdi, scqi);
1811 			tsr.word_3 = 0x00000000;
1812 			tsr.word_4 = 0x00000000;
1813 
1814 			*scq->next = tsr;
1815 			index = (int)scqi;
1816 			scq->skb[index] = NULL;
1817 			XPRINTK
1818 			    ("nicstar%d: TSR written:\n0x%x\n0x%x\n0x%x\n0x%x\n at 0x%p.\n",
1819 			     card->index, le32_to_cpu(tsr.word_1),
1820 			     le32_to_cpu(tsr.word_2), le32_to_cpu(tsr.word_3),
1821 			     le32_to_cpu(tsr.word_4), scq->next);
1822 			if (scq->next == scq->last)
1823 				scq->next = scq->base;
1824 			else
1825 				scq->next++;
1826 			vc->tbd_count = 0;
1827 			scq->tbd_count = 0;
1828 		} else
1829 			PRINTK("nicstar%d: Timeout pushing TSR.\n",
1830 			       card->index);
1831 	}
1832 	data = scq_virt_to_bus(scq, scq->next);
1833 	ns_write_sram(card, scq->scd, &data, 1);
1834 
1835 	spin_unlock_irqrestore(&scq->lock, flags);
1836 
1837 	return 0;
1838 }
1839 
1840 static void process_tsq(ns_dev * card)
1841 {
1842 	u32 scdi;
1843 	scq_info *scq;
1844 	ns_tsi *previous = NULL, *one_ahead, *two_ahead;
1845 	int serviced_entries;	/* flag indicating at least on entry was serviced */
1846 
1847 	serviced_entries = 0;
1848 
1849 	if (card->tsq.next == card->tsq.last)
1850 		one_ahead = card->tsq.base;
1851 	else
1852 		one_ahead = card->tsq.next + 1;
1853 
1854 	if (one_ahead == card->tsq.last)
1855 		two_ahead = card->tsq.base;
1856 	else
1857 		two_ahead = one_ahead + 1;
1858 
1859 	while (!ns_tsi_isempty(card->tsq.next) || !ns_tsi_isempty(one_ahead) ||
1860 	       !ns_tsi_isempty(two_ahead))
1861 		/* At most two empty, as stated in the 77201 errata */
1862 	{
1863 		serviced_entries = 1;
1864 
1865 		/* Skip the one or two possible empty entries */
1866 		while (ns_tsi_isempty(card->tsq.next)) {
1867 			if (card->tsq.next == card->tsq.last)
1868 				card->tsq.next = card->tsq.base;
1869 			else
1870 				card->tsq.next++;
1871 		}
1872 
1873 		if (!ns_tsi_tmrof(card->tsq.next)) {
1874 			scdi = ns_tsi_getscdindex(card->tsq.next);
1875 			if (scdi == NS_TSI_SCDISVBR)
1876 				scq = card->scq0;
1877 			else {
1878 				if (card->scd2vc[scdi] == NULL) {
1879 					printk
1880 					    ("nicstar%d: could not find VC from SCD index.\n",
1881 					     card->index);
1882 					ns_tsi_init(card->tsq.next);
1883 					return;
1884 				}
1885 				scq = card->scd2vc[scdi]->scq;
1886 			}
1887 			drain_scq(card, scq, ns_tsi_getscqpos(card->tsq.next));
1888 			scq->full = 0;
1889 			wake_up_interruptible(&(scq->scqfull_waitq));
1890 		}
1891 
1892 		ns_tsi_init(card->tsq.next);
1893 		previous = card->tsq.next;
1894 		if (card->tsq.next == card->tsq.last)
1895 			card->tsq.next = card->tsq.base;
1896 		else
1897 			card->tsq.next++;
1898 
1899 		if (card->tsq.next == card->tsq.last)
1900 			one_ahead = card->tsq.base;
1901 		else
1902 			one_ahead = card->tsq.next + 1;
1903 
1904 		if (one_ahead == card->tsq.last)
1905 			two_ahead = card->tsq.base;
1906 		else
1907 			two_ahead = one_ahead + 1;
1908 	}
1909 
1910 	if (serviced_entries)
1911 		writel(PTR_DIFF(previous, card->tsq.base),
1912 		       card->membase + TSQH);
1913 }
1914 
1915 static void drain_scq(ns_dev * card, scq_info * scq, int pos)
1916 {
1917 	struct atm_vcc *vcc;
1918 	struct sk_buff *skb;
1919 	int i;
1920 	unsigned long flags;
1921 
1922 	XPRINTK("nicstar%d: drain_scq() called, scq at 0x%p, pos %d.\n",
1923 		card->index, scq, pos);
1924 	if (pos >= scq->num_entries) {
1925 		printk("nicstar%d: Bad index on drain_scq().\n", card->index);
1926 		return;
1927 	}
1928 
1929 	spin_lock_irqsave(&scq->lock, flags);
1930 	i = (int)(scq->tail - scq->base);
1931 	if (++i == scq->num_entries)
1932 		i = 0;
1933 	while (i != pos) {
1934 		skb = scq->skb[i];
1935 		XPRINTK("nicstar%d: freeing skb at 0x%p (index %d).\n",
1936 			card->index, skb, i);
1937 		if (skb != NULL) {
1938 			dma_unmap_single(&card->pcidev->dev,
1939 					 NS_PRV_DMA(skb),
1940 					 skb->len,
1941 					 DMA_TO_DEVICE);
1942 			vcc = ATM_SKB(skb)->vcc;
1943 			if (vcc && vcc->pop != NULL) {
1944 				vcc->pop(vcc, skb);
1945 			} else {
1946 				dev_kfree_skb_irq(skb);
1947 			}
1948 			scq->skb[i] = NULL;
1949 		}
1950 		if (++i == scq->num_entries)
1951 			i = 0;
1952 	}
1953 	scq->tail = scq->base + pos;
1954 	spin_unlock_irqrestore(&scq->lock, flags);
1955 }
1956 
1957 static void process_rsq(ns_dev * card)
1958 {
1959 	ns_rsqe *previous;
1960 
1961 	if (!ns_rsqe_valid(card->rsq.next))
1962 		return;
1963 	do {
1964 		dequeue_rx(card, card->rsq.next);
1965 		ns_rsqe_init(card->rsq.next);
1966 		previous = card->rsq.next;
1967 		if (card->rsq.next == card->rsq.last)
1968 			card->rsq.next = card->rsq.base;
1969 		else
1970 			card->rsq.next++;
1971 	} while (ns_rsqe_valid(card->rsq.next));
1972 	writel(PTR_DIFF(previous, card->rsq.base), card->membase + RSQH);
1973 }
1974 
1975 static void dequeue_rx(ns_dev * card, ns_rsqe * rsqe)
1976 {
1977 	u32 vpi, vci;
1978 	vc_map *vc;
1979 	struct sk_buff *iovb;
1980 	struct iovec *iov;
1981 	struct atm_vcc *vcc;
1982 	struct sk_buff *skb;
1983 	unsigned short aal5_len;
1984 	int len;
1985 	u32 stat;
1986 	u32 id;
1987 
1988 	stat = readl(card->membase + STAT);
1989 	card->sbfqc = ns_stat_sfbqc_get(stat);
1990 	card->lbfqc = ns_stat_lfbqc_get(stat);
1991 
1992 	id = le32_to_cpu(rsqe->buffer_handle);
1993 	skb = idr_remove(&card->idr, id);
1994 	if (!skb) {
1995 		RXPRINTK(KERN_ERR
1996 			 "nicstar%d: skb not found!\n", card->index);
1997 		return;
1998 	}
1999 	dma_sync_single_for_cpu(&card->pcidev->dev,
2000 				NS_PRV_DMA(skb),
2001 				(NS_PRV_BUFTYPE(skb) == BUF_SM
2002 				 ? NS_SMSKBSIZE : NS_LGSKBSIZE),
2003 				DMA_FROM_DEVICE);
2004 	dma_unmap_single(&card->pcidev->dev,
2005 			 NS_PRV_DMA(skb),
2006 			 (NS_PRV_BUFTYPE(skb) == BUF_SM
2007 			  ? NS_SMSKBSIZE : NS_LGSKBSIZE),
2008 			 DMA_FROM_DEVICE);
2009 	vpi = ns_rsqe_vpi(rsqe);
2010 	vci = ns_rsqe_vci(rsqe);
2011 	if (vpi >= 1UL << card->vpibits || vci >= 1UL << card->vcibits) {
2012 		printk("nicstar%d: SDU received for out-of-range vc %d.%d.\n",
2013 		       card->index, vpi, vci);
2014 		recycle_rx_buf(card, skb);
2015 		return;
2016 	}
2017 
2018 	vc = &(card->vcmap[vpi << card->vcibits | vci]);
2019 	if (!vc->rx) {
2020 		RXPRINTK("nicstar%d: SDU received on non-rx vc %d.%d.\n",
2021 			 card->index, vpi, vci);
2022 		recycle_rx_buf(card, skb);
2023 		return;
2024 	}
2025 
2026 	vcc = vc->rx_vcc;
2027 
2028 	if (vcc->qos.aal == ATM_AAL0) {
2029 		struct sk_buff *sb;
2030 		unsigned char *cell;
2031 		int i;
2032 
2033 		cell = skb->data;
2034 		for (i = ns_rsqe_cellcount(rsqe); i; i--) {
2035 			sb = dev_alloc_skb(NS_SMSKBSIZE);
2036 			if (!sb) {
2037 				printk
2038 				    ("nicstar%d: Can't allocate buffers for aal0.\n",
2039 				     card->index);
2040 				atomic_add(i, &vcc->stats->rx_drop);
2041 				break;
2042 			}
2043 			if (!atm_charge(vcc, sb->truesize)) {
2044 				RXPRINTK
2045 				    ("nicstar%d: atm_charge() dropped aal0 packets.\n",
2046 				     card->index);
2047 				atomic_add(i - 1, &vcc->stats->rx_drop);	/* already increased by 1 */
2048 				dev_kfree_skb_any(sb);
2049 				break;
2050 			}
2051 			/* Rebuild the header */
2052 			*((u32 *) sb->data) = le32_to_cpu(rsqe->word_1) << 4 |
2053 			    (ns_rsqe_clp(rsqe) ? 0x00000001 : 0x00000000);
2054 			if (i == 1 && ns_rsqe_eopdu(rsqe))
2055 				*((u32 *) sb->data) |= 0x00000002;
2056 			skb_put(sb, NS_AAL0_HEADER);
2057 			memcpy(skb_tail_pointer(sb), cell, ATM_CELL_PAYLOAD);
2058 			skb_put(sb, ATM_CELL_PAYLOAD);
2059 			ATM_SKB(sb)->vcc = vcc;
2060 			__net_timestamp(sb);
2061 			vcc->push(vcc, sb);
2062 			atomic_inc(&vcc->stats->rx);
2063 			cell += ATM_CELL_PAYLOAD;
2064 		}
2065 
2066 		recycle_rx_buf(card, skb);
2067 		return;
2068 	}
2069 
2070 	/* To reach this point, the AAL layer can only be AAL5 */
2071 
2072 	if ((iovb = vc->rx_iov) == NULL) {
2073 		iovb = skb_dequeue(&(card->iovpool.queue));
2074 		if (iovb == NULL) {	/* No buffers in the queue */
2075 			iovb = alloc_skb(NS_IOVBUFSIZE, GFP_ATOMIC);
2076 			if (iovb == NULL) {
2077 				printk("nicstar%d: Out of iovec buffers.\n",
2078 				       card->index);
2079 				atomic_inc(&vcc->stats->rx_drop);
2080 				recycle_rx_buf(card, skb);
2081 				return;
2082 			}
2083 			NS_PRV_BUFTYPE(iovb) = BUF_NONE;
2084 		} else if (--card->iovpool.count < card->iovnr.min) {
2085 			struct sk_buff *new_iovb;
2086 			if ((new_iovb =
2087 			     alloc_skb(NS_IOVBUFSIZE, GFP_ATOMIC)) != NULL) {
2088 				NS_PRV_BUFTYPE(iovb) = BUF_NONE;
2089 				skb_queue_tail(&card->iovpool.queue, new_iovb);
2090 				card->iovpool.count++;
2091 			}
2092 		}
2093 		vc->rx_iov = iovb;
2094 		NS_PRV_IOVCNT(iovb) = 0;
2095 		iovb->len = 0;
2096 		iovb->data = iovb->head;
2097 		skb_reset_tail_pointer(iovb);
2098 		/* IMPORTANT: a pointer to the sk_buff containing the small or large
2099 		   buffer is stored as iovec base, NOT a pointer to the
2100 		   small or large buffer itself. */
2101 	} else if (NS_PRV_IOVCNT(iovb) >= NS_MAX_IOVECS) {
2102 		printk("nicstar%d: received too big AAL5 SDU.\n", card->index);
2103 		atomic_inc(&vcc->stats->rx_err);
2104 		recycle_iovec_rx_bufs(card, (struct iovec *)iovb->data,
2105 				      NS_MAX_IOVECS);
2106 		NS_PRV_IOVCNT(iovb) = 0;
2107 		iovb->len = 0;
2108 		iovb->data = iovb->head;
2109 		skb_reset_tail_pointer(iovb);
2110 	}
2111 	iov = &((struct iovec *)iovb->data)[NS_PRV_IOVCNT(iovb)++];
2112 	iov->iov_base = (void *)skb;
2113 	iov->iov_len = ns_rsqe_cellcount(rsqe) * 48;
2114 	iovb->len += iov->iov_len;
2115 
2116 #ifdef EXTRA_DEBUG
2117 	if (NS_PRV_IOVCNT(iovb) == 1) {
2118 		if (NS_PRV_BUFTYPE(skb) != BUF_SM) {
2119 			printk
2120 			    ("nicstar%d: Expected a small buffer, and this is not one.\n",
2121 			     card->index);
2122 			which_list(card, skb);
2123 			atomic_inc(&vcc->stats->rx_err);
2124 			recycle_rx_buf(card, skb);
2125 			vc->rx_iov = NULL;
2126 			recycle_iov_buf(card, iovb);
2127 			return;
2128 		}
2129 	} else {		/* NS_PRV_IOVCNT(iovb) >= 2 */
2130 
2131 		if (NS_PRV_BUFTYPE(skb) != BUF_LG) {
2132 			printk
2133 			    ("nicstar%d: Expected a large buffer, and this is not one.\n",
2134 			     card->index);
2135 			which_list(card, skb);
2136 			atomic_inc(&vcc->stats->rx_err);
2137 			recycle_iovec_rx_bufs(card, (struct iovec *)iovb->data,
2138 					      NS_PRV_IOVCNT(iovb));
2139 			vc->rx_iov = NULL;
2140 			recycle_iov_buf(card, iovb);
2141 			return;
2142 		}
2143 	}
2144 #endif /* EXTRA_DEBUG */
2145 
2146 	if (ns_rsqe_eopdu(rsqe)) {
2147 		/* This works correctly regardless of the endianness of the host */
2148 		unsigned char *L1L2 = (unsigned char *)
2149 						(skb->data + iov->iov_len - 6);
2150 		aal5_len = L1L2[0] << 8 | L1L2[1];
2151 		len = (aal5_len == 0x0000) ? 0x10000 : aal5_len;
2152 		if (ns_rsqe_crcerr(rsqe) ||
2153 		    len + 8 > iovb->len || len + (47 + 8) < iovb->len) {
2154 			printk("nicstar%d: AAL5 CRC error", card->index);
2155 			if (len + 8 > iovb->len || len + (47 + 8) < iovb->len)
2156 				printk(" - PDU size mismatch.\n");
2157 			else
2158 				printk(".\n");
2159 			atomic_inc(&vcc->stats->rx_err);
2160 			recycle_iovec_rx_bufs(card, (struct iovec *)iovb->data,
2161 					      NS_PRV_IOVCNT(iovb));
2162 			vc->rx_iov = NULL;
2163 			recycle_iov_buf(card, iovb);
2164 			return;
2165 		}
2166 
2167 		/* By this point we (hopefully) have a complete SDU without errors. */
2168 
2169 		if (NS_PRV_IOVCNT(iovb) == 1) {	/* Just a small buffer */
2170 			/* skb points to a small buffer */
2171 			if (!atm_charge(vcc, skb->truesize)) {
2172 				push_rxbufs(card, skb);
2173 				atomic_inc(&vcc->stats->rx_drop);
2174 			} else {
2175 				skb_put(skb, len);
2176 				dequeue_sm_buf(card, skb);
2177 				ATM_SKB(skb)->vcc = vcc;
2178 				__net_timestamp(skb);
2179 				vcc->push(vcc, skb);
2180 				atomic_inc(&vcc->stats->rx);
2181 			}
2182 		} else if (NS_PRV_IOVCNT(iovb) == 2) {	/* One small plus one large buffer */
2183 			struct sk_buff *sb;
2184 
2185 			sb = (struct sk_buff *)(iov - 1)->iov_base;
2186 			/* skb points to a large buffer */
2187 
2188 			if (len <= NS_SMBUFSIZE) {
2189 				if (!atm_charge(vcc, sb->truesize)) {
2190 					push_rxbufs(card, sb);
2191 					atomic_inc(&vcc->stats->rx_drop);
2192 				} else {
2193 					skb_put(sb, len);
2194 					dequeue_sm_buf(card, sb);
2195 					ATM_SKB(sb)->vcc = vcc;
2196 					__net_timestamp(sb);
2197 					vcc->push(vcc, sb);
2198 					atomic_inc(&vcc->stats->rx);
2199 				}
2200 
2201 				push_rxbufs(card, skb);
2202 
2203 			} else {	/* len > NS_SMBUFSIZE, the usual case */
2204 
2205 				if (!atm_charge(vcc, skb->truesize)) {
2206 					push_rxbufs(card, skb);
2207 					atomic_inc(&vcc->stats->rx_drop);
2208 				} else {
2209 					dequeue_lg_buf(card, skb);
2210 					skb_push(skb, NS_SMBUFSIZE);
2211 					skb_copy_from_linear_data(sb, skb->data,
2212 								  NS_SMBUFSIZE);
2213 					skb_put(skb, len - NS_SMBUFSIZE);
2214 					ATM_SKB(skb)->vcc = vcc;
2215 					__net_timestamp(skb);
2216 					vcc->push(vcc, skb);
2217 					atomic_inc(&vcc->stats->rx);
2218 				}
2219 
2220 				push_rxbufs(card, sb);
2221 
2222 			}
2223 
2224 		} else {	/* Must push a huge buffer */
2225 
2226 			struct sk_buff *hb, *sb, *lb;
2227 			int remaining, tocopy;
2228 			int j;
2229 
2230 			hb = skb_dequeue(&(card->hbpool.queue));
2231 			if (hb == NULL) {	/* No buffers in the queue */
2232 
2233 				hb = dev_alloc_skb(NS_HBUFSIZE);
2234 				if (hb == NULL) {
2235 					printk
2236 					    ("nicstar%d: Out of huge buffers.\n",
2237 					     card->index);
2238 					atomic_inc(&vcc->stats->rx_drop);
2239 					recycle_iovec_rx_bufs(card,
2240 							      (struct iovec *)
2241 							      iovb->data,
2242 							      NS_PRV_IOVCNT(iovb));
2243 					vc->rx_iov = NULL;
2244 					recycle_iov_buf(card, iovb);
2245 					return;
2246 				} else if (card->hbpool.count < card->hbnr.min) {
2247 					struct sk_buff *new_hb;
2248 					if ((new_hb =
2249 					     dev_alloc_skb(NS_HBUFSIZE)) !=
2250 					    NULL) {
2251 						skb_queue_tail(&card->hbpool.
2252 							       queue, new_hb);
2253 						card->hbpool.count++;
2254 					}
2255 				}
2256 				NS_PRV_BUFTYPE(hb) = BUF_NONE;
2257 			} else if (--card->hbpool.count < card->hbnr.min) {
2258 				struct sk_buff *new_hb;
2259 				if ((new_hb =
2260 				     dev_alloc_skb(NS_HBUFSIZE)) != NULL) {
2261 					NS_PRV_BUFTYPE(new_hb) = BUF_NONE;
2262 					skb_queue_tail(&card->hbpool.queue,
2263 						       new_hb);
2264 					card->hbpool.count++;
2265 				}
2266 				if (card->hbpool.count < card->hbnr.min) {
2267 					if ((new_hb =
2268 					     dev_alloc_skb(NS_HBUFSIZE)) !=
2269 					    NULL) {
2270 						NS_PRV_BUFTYPE(new_hb) =
2271 						    BUF_NONE;
2272 						skb_queue_tail(&card->hbpool.
2273 							       queue, new_hb);
2274 						card->hbpool.count++;
2275 					}
2276 				}
2277 			}
2278 
2279 			iov = (struct iovec *)iovb->data;
2280 
2281 			if (!atm_charge(vcc, hb->truesize)) {
2282 				recycle_iovec_rx_bufs(card, iov,
2283 						      NS_PRV_IOVCNT(iovb));
2284 				if (card->hbpool.count < card->hbnr.max) {
2285 					skb_queue_tail(&card->hbpool.queue, hb);
2286 					card->hbpool.count++;
2287 				} else
2288 					dev_kfree_skb_any(hb);
2289 				atomic_inc(&vcc->stats->rx_drop);
2290 			} else {
2291 				/* Copy the small buffer to the huge buffer */
2292 				sb = (struct sk_buff *)iov->iov_base;
2293 				skb_copy_from_linear_data(sb, hb->data,
2294 							  iov->iov_len);
2295 				skb_put(hb, iov->iov_len);
2296 				remaining = len - iov->iov_len;
2297 				iov++;
2298 				/* Free the small buffer */
2299 				push_rxbufs(card, sb);
2300 
2301 				/* Copy all large buffers to the huge buffer and free them */
2302 				for (j = 1; j < NS_PRV_IOVCNT(iovb); j++) {
2303 					lb = (struct sk_buff *)iov->iov_base;
2304 					tocopy =
2305 					    min_t(int, remaining, iov->iov_len);
2306 					skb_copy_from_linear_data(lb,
2307 								  skb_tail_pointer
2308 								  (hb), tocopy);
2309 					skb_put(hb, tocopy);
2310 					iov++;
2311 					remaining -= tocopy;
2312 					push_rxbufs(card, lb);
2313 				}
2314 #ifdef EXTRA_DEBUG
2315 				if (remaining != 0 || hb->len != len)
2316 					printk
2317 					    ("nicstar%d: Huge buffer len mismatch.\n",
2318 					     card->index);
2319 #endif /* EXTRA_DEBUG */
2320 				ATM_SKB(hb)->vcc = vcc;
2321 				__net_timestamp(hb);
2322 				vcc->push(vcc, hb);
2323 				atomic_inc(&vcc->stats->rx);
2324 			}
2325 		}
2326 
2327 		vc->rx_iov = NULL;
2328 		recycle_iov_buf(card, iovb);
2329 	}
2330 
2331 }
2332 
2333 static void recycle_rx_buf(ns_dev * card, struct sk_buff *skb)
2334 {
2335 	if (unlikely(NS_PRV_BUFTYPE(skb) == BUF_NONE)) {
2336 		printk("nicstar%d: What kind of rx buffer is this?\n",
2337 		       card->index);
2338 		dev_kfree_skb_any(skb);
2339 	} else
2340 		push_rxbufs(card, skb);
2341 }
2342 
2343 static void recycle_iovec_rx_bufs(ns_dev * card, struct iovec *iov, int count)
2344 {
2345 	while (count-- > 0)
2346 		recycle_rx_buf(card, (struct sk_buff *)(iov++)->iov_base);
2347 }
2348 
2349 static void recycle_iov_buf(ns_dev * card, struct sk_buff *iovb)
2350 {
2351 	if (card->iovpool.count < card->iovnr.max) {
2352 		skb_queue_tail(&card->iovpool.queue, iovb);
2353 		card->iovpool.count++;
2354 	} else
2355 		dev_kfree_skb_any(iovb);
2356 }
2357 
2358 static void dequeue_sm_buf(ns_dev * card, struct sk_buff *sb)
2359 {
2360 	skb_unlink(sb, &card->sbpool.queue);
2361 	if (card->sbfqc < card->sbnr.init) {
2362 		struct sk_buff *new_sb;
2363 		if ((new_sb = dev_alloc_skb(NS_SMSKBSIZE)) != NULL) {
2364 			NS_PRV_BUFTYPE(new_sb) = BUF_SM;
2365 			skb_queue_tail(&card->sbpool.queue, new_sb);
2366 			skb_reserve(new_sb, NS_AAL0_HEADER);
2367 			push_rxbufs(card, new_sb);
2368 		}
2369 	}
2370 	if (card->sbfqc < card->sbnr.init)
2371 	{
2372 		struct sk_buff *new_sb;
2373 		if ((new_sb = dev_alloc_skb(NS_SMSKBSIZE)) != NULL) {
2374 			NS_PRV_BUFTYPE(new_sb) = BUF_SM;
2375 			skb_queue_tail(&card->sbpool.queue, new_sb);
2376 			skb_reserve(new_sb, NS_AAL0_HEADER);
2377 			push_rxbufs(card, new_sb);
2378 		}
2379 	}
2380 }
2381 
2382 static void dequeue_lg_buf(ns_dev * card, struct sk_buff *lb)
2383 {
2384 	skb_unlink(lb, &card->lbpool.queue);
2385 	if (card->lbfqc < card->lbnr.init) {
2386 		struct sk_buff *new_lb;
2387 		if ((new_lb = dev_alloc_skb(NS_LGSKBSIZE)) != NULL) {
2388 			NS_PRV_BUFTYPE(new_lb) = BUF_LG;
2389 			skb_queue_tail(&card->lbpool.queue, new_lb);
2390 			skb_reserve(new_lb, NS_SMBUFSIZE);
2391 			push_rxbufs(card, new_lb);
2392 		}
2393 	}
2394 	if (card->lbfqc < card->lbnr.init)
2395 	{
2396 		struct sk_buff *new_lb;
2397 		if ((new_lb = dev_alloc_skb(NS_LGSKBSIZE)) != NULL) {
2398 			NS_PRV_BUFTYPE(new_lb) = BUF_LG;
2399 			skb_queue_tail(&card->lbpool.queue, new_lb);
2400 			skb_reserve(new_lb, NS_SMBUFSIZE);
2401 			push_rxbufs(card, new_lb);
2402 		}
2403 	}
2404 }
2405 
2406 static int ns_proc_read(struct atm_dev *dev, loff_t * pos, char *page)
2407 {
2408 	u32 stat;
2409 	ns_dev *card;
2410 	int left;
2411 
2412 	left = (int)*pos;
2413 	card = (ns_dev *) dev->dev_data;
2414 	stat = readl(card->membase + STAT);
2415 	if (!left--)
2416 		return sprintf(page, "Pool   count    min   init    max \n");
2417 	if (!left--)
2418 		return sprintf(page, "Small  %5d  %5d  %5d  %5d \n",
2419 			       ns_stat_sfbqc_get(stat), card->sbnr.min,
2420 			       card->sbnr.init, card->sbnr.max);
2421 	if (!left--)
2422 		return sprintf(page, "Large  %5d  %5d  %5d  %5d \n",
2423 			       ns_stat_lfbqc_get(stat), card->lbnr.min,
2424 			       card->lbnr.init, card->lbnr.max);
2425 	if (!left--)
2426 		return sprintf(page, "Huge   %5d  %5d  %5d  %5d \n",
2427 			       card->hbpool.count, card->hbnr.min,
2428 			       card->hbnr.init, card->hbnr.max);
2429 	if (!left--)
2430 		return sprintf(page, "Iovec  %5d  %5d  %5d  %5d \n",
2431 			       card->iovpool.count, card->iovnr.min,
2432 			       card->iovnr.init, card->iovnr.max);
2433 	if (!left--) {
2434 		int retval;
2435 		retval =
2436 		    sprintf(page, "Interrupt counter: %u \n", card->intcnt);
2437 		card->intcnt = 0;
2438 		return retval;
2439 	}
2440 #if 0
2441 	/* Dump 25.6 Mbps PHY registers */
2442 	/* Now there's a 25.6 Mbps PHY driver this code isn't needed. I left it
2443 	   here just in case it's needed for debugging. */
2444 	if (card->max_pcr == ATM_25_PCR && !left--) {
2445 		u32 phy_regs[4];
2446 		u32 i;
2447 
2448 		for (i = 0; i < 4; i++) {
2449 			while (CMD_BUSY(card)) ;
2450 			writel(NS_CMD_READ_UTILITY | 0x00000200 | i,
2451 			       card->membase + CMD);
2452 			while (CMD_BUSY(card)) ;
2453 			phy_regs[i] = readl(card->membase + DR0) & 0x000000FF;
2454 		}
2455 
2456 		return sprintf(page, "PHY regs: 0x%02X 0x%02X 0x%02X 0x%02X \n",
2457 			       phy_regs[0], phy_regs[1], phy_regs[2],
2458 			       phy_regs[3]);
2459 	}
2460 #endif /* 0 - Dump 25.6 Mbps PHY registers */
2461 #if 0
2462 	/* Dump TST */
2463 	if (left-- < NS_TST_NUM_ENTRIES) {
2464 		if (card->tste2vc[left + 1] == NULL)
2465 			return sprintf(page, "%5d - VBR/UBR \n", left + 1);
2466 		else
2467 			return sprintf(page, "%5d - %d %d \n", left + 1,
2468 				       card->tste2vc[left + 1]->tx_vcc->vpi,
2469 				       card->tste2vc[left + 1]->tx_vcc->vci);
2470 	}
2471 #endif /* 0 */
2472 	return 0;
2473 }
2474 
2475 static int ns_ioctl(struct atm_dev *dev, unsigned int cmd, void __user * arg)
2476 {
2477 	ns_dev *card;
2478 	pool_levels pl;
2479 	long btype;
2480 	unsigned long flags;
2481 
2482 	card = dev->dev_data;
2483 	switch (cmd) {
2484 	case NS_GETPSTAT:
2485 		if (get_user
2486 		    (pl.buftype, &((pool_levels __user *) arg)->buftype))
2487 			return -EFAULT;
2488 		switch (pl.buftype) {
2489 		case NS_BUFTYPE_SMALL:
2490 			pl.count =
2491 			    ns_stat_sfbqc_get(readl(card->membase + STAT));
2492 			pl.level.min = card->sbnr.min;
2493 			pl.level.init = card->sbnr.init;
2494 			pl.level.max = card->sbnr.max;
2495 			break;
2496 
2497 		case NS_BUFTYPE_LARGE:
2498 			pl.count =
2499 			    ns_stat_lfbqc_get(readl(card->membase + STAT));
2500 			pl.level.min = card->lbnr.min;
2501 			pl.level.init = card->lbnr.init;
2502 			pl.level.max = card->lbnr.max;
2503 			break;
2504 
2505 		case NS_BUFTYPE_HUGE:
2506 			pl.count = card->hbpool.count;
2507 			pl.level.min = card->hbnr.min;
2508 			pl.level.init = card->hbnr.init;
2509 			pl.level.max = card->hbnr.max;
2510 			break;
2511 
2512 		case NS_BUFTYPE_IOVEC:
2513 			pl.count = card->iovpool.count;
2514 			pl.level.min = card->iovnr.min;
2515 			pl.level.init = card->iovnr.init;
2516 			pl.level.max = card->iovnr.max;
2517 			break;
2518 
2519 		default:
2520 			return -ENOIOCTLCMD;
2521 
2522 		}
2523 		if (!copy_to_user((pool_levels __user *) arg, &pl, sizeof(pl)))
2524 			return (sizeof(pl));
2525 		else
2526 			return -EFAULT;
2527 
2528 	case NS_SETBUFLEV:
2529 		if (!capable(CAP_NET_ADMIN))
2530 			return -EPERM;
2531 		if (copy_from_user(&pl, (pool_levels __user *) arg, sizeof(pl)))
2532 			return -EFAULT;
2533 		if (pl.level.min >= pl.level.init
2534 		    || pl.level.init >= pl.level.max)
2535 			return -EINVAL;
2536 		if (pl.level.min == 0)
2537 			return -EINVAL;
2538 		switch (pl.buftype) {
2539 		case NS_BUFTYPE_SMALL:
2540 			if (pl.level.max > TOP_SB)
2541 				return -EINVAL;
2542 			card->sbnr.min = pl.level.min;
2543 			card->sbnr.init = pl.level.init;
2544 			card->sbnr.max = pl.level.max;
2545 			break;
2546 
2547 		case NS_BUFTYPE_LARGE:
2548 			if (pl.level.max > TOP_LB)
2549 				return -EINVAL;
2550 			card->lbnr.min = pl.level.min;
2551 			card->lbnr.init = pl.level.init;
2552 			card->lbnr.max = pl.level.max;
2553 			break;
2554 
2555 		case NS_BUFTYPE_HUGE:
2556 			if (pl.level.max > TOP_HB)
2557 				return -EINVAL;
2558 			card->hbnr.min = pl.level.min;
2559 			card->hbnr.init = pl.level.init;
2560 			card->hbnr.max = pl.level.max;
2561 			break;
2562 
2563 		case NS_BUFTYPE_IOVEC:
2564 			if (pl.level.max > TOP_IOVB)
2565 				return -EINVAL;
2566 			card->iovnr.min = pl.level.min;
2567 			card->iovnr.init = pl.level.init;
2568 			card->iovnr.max = pl.level.max;
2569 			break;
2570 
2571 		default:
2572 			return -EINVAL;
2573 
2574 		}
2575 		return 0;
2576 
2577 	case NS_ADJBUFLEV:
2578 		if (!capable(CAP_NET_ADMIN))
2579 			return -EPERM;
2580 		btype = (long)arg;	/* a long is the same size as a pointer or bigger */
2581 		switch (btype) {
2582 		case NS_BUFTYPE_SMALL:
2583 			while (card->sbfqc < card->sbnr.init) {
2584 				struct sk_buff *sb;
2585 
2586 				sb = __dev_alloc_skb(NS_SMSKBSIZE, GFP_KERNEL);
2587 				if (sb == NULL)
2588 					return -ENOMEM;
2589 				NS_PRV_BUFTYPE(sb) = BUF_SM;
2590 				skb_queue_tail(&card->sbpool.queue, sb);
2591 				skb_reserve(sb, NS_AAL0_HEADER);
2592 				push_rxbufs(card, sb);
2593 			}
2594 			break;
2595 
2596 		case NS_BUFTYPE_LARGE:
2597 			while (card->lbfqc < card->lbnr.init) {
2598 				struct sk_buff *lb;
2599 
2600 				lb = __dev_alloc_skb(NS_LGSKBSIZE, GFP_KERNEL);
2601 				if (lb == NULL)
2602 					return -ENOMEM;
2603 				NS_PRV_BUFTYPE(lb) = BUF_LG;
2604 				skb_queue_tail(&card->lbpool.queue, lb);
2605 				skb_reserve(lb, NS_SMBUFSIZE);
2606 				push_rxbufs(card, lb);
2607 			}
2608 			break;
2609 
2610 		case NS_BUFTYPE_HUGE:
2611 			while (card->hbpool.count > card->hbnr.init) {
2612 				struct sk_buff *hb;
2613 
2614 				spin_lock_irqsave(&card->int_lock, flags);
2615 				hb = skb_dequeue(&card->hbpool.queue);
2616 				card->hbpool.count--;
2617 				spin_unlock_irqrestore(&card->int_lock, flags);
2618 				if (hb == NULL)
2619 					printk
2620 					    ("nicstar%d: huge buffer count inconsistent.\n",
2621 					     card->index);
2622 				else
2623 					dev_kfree_skb_any(hb);
2624 
2625 			}
2626 			while (card->hbpool.count < card->hbnr.init) {
2627 				struct sk_buff *hb;
2628 
2629 				hb = __dev_alloc_skb(NS_HBUFSIZE, GFP_KERNEL);
2630 				if (hb == NULL)
2631 					return -ENOMEM;
2632 				NS_PRV_BUFTYPE(hb) = BUF_NONE;
2633 				spin_lock_irqsave(&card->int_lock, flags);
2634 				skb_queue_tail(&card->hbpool.queue, hb);
2635 				card->hbpool.count++;
2636 				spin_unlock_irqrestore(&card->int_lock, flags);
2637 			}
2638 			break;
2639 
2640 		case NS_BUFTYPE_IOVEC:
2641 			while (card->iovpool.count > card->iovnr.init) {
2642 				struct sk_buff *iovb;
2643 
2644 				spin_lock_irqsave(&card->int_lock, flags);
2645 				iovb = skb_dequeue(&card->iovpool.queue);
2646 				card->iovpool.count--;
2647 				spin_unlock_irqrestore(&card->int_lock, flags);
2648 				if (iovb == NULL)
2649 					printk
2650 					    ("nicstar%d: iovec buffer count inconsistent.\n",
2651 					     card->index);
2652 				else
2653 					dev_kfree_skb_any(iovb);
2654 
2655 			}
2656 			while (card->iovpool.count < card->iovnr.init) {
2657 				struct sk_buff *iovb;
2658 
2659 				iovb = alloc_skb(NS_IOVBUFSIZE, GFP_KERNEL);
2660 				if (iovb == NULL)
2661 					return -ENOMEM;
2662 				NS_PRV_BUFTYPE(iovb) = BUF_NONE;
2663 				spin_lock_irqsave(&card->int_lock, flags);
2664 				skb_queue_tail(&card->iovpool.queue, iovb);
2665 				card->iovpool.count++;
2666 				spin_unlock_irqrestore(&card->int_lock, flags);
2667 			}
2668 			break;
2669 
2670 		default:
2671 			return -EINVAL;
2672 
2673 		}
2674 		return 0;
2675 
2676 	default:
2677 		if (dev->phy && dev->phy->ioctl) {
2678 			return dev->phy->ioctl(dev, cmd, arg);
2679 		} else {
2680 			printk("nicstar%d: %s == NULL \n", card->index,
2681 			       dev->phy ? "dev->phy->ioctl" : "dev->phy");
2682 			return -ENOIOCTLCMD;
2683 		}
2684 	}
2685 }
2686 
2687 #ifdef EXTRA_DEBUG
2688 static void which_list(ns_dev * card, struct sk_buff *skb)
2689 {
2690 	printk("skb buf_type: 0x%08x\n", NS_PRV_BUFTYPE(skb));
2691 }
2692 #endif /* EXTRA_DEBUG */
2693 
2694 static void ns_poll(struct timer_list *unused)
2695 {
2696 	int i;
2697 	ns_dev *card;
2698 	unsigned long flags;
2699 	u32 stat_r, stat_w;
2700 
2701 	PRINTK("nicstar: Entering ns_poll().\n");
2702 	for (i = 0; i < num_cards; i++) {
2703 		card = cards[i];
2704 		if (!spin_trylock_irqsave(&card->int_lock, flags)) {
2705 			/* Probably it isn't worth spinning */
2706 			continue;
2707 		}
2708 
2709 		stat_w = 0;
2710 		stat_r = readl(card->membase + STAT);
2711 		if (stat_r & NS_STAT_TSIF)
2712 			stat_w |= NS_STAT_TSIF;
2713 		if (stat_r & NS_STAT_EOPDU)
2714 			stat_w |= NS_STAT_EOPDU;
2715 
2716 		process_tsq(card);
2717 		process_rsq(card);
2718 
2719 		writel(stat_w, card->membase + STAT);
2720 		spin_unlock_irqrestore(&card->int_lock, flags);
2721 	}
2722 	mod_timer(&ns_timer, jiffies + NS_POLL_PERIOD);
2723 	PRINTK("nicstar: Leaving ns_poll().\n");
2724 }
2725 
2726 static void ns_phy_put(struct atm_dev *dev, unsigned char value,
2727 		       unsigned long addr)
2728 {
2729 	ns_dev *card;
2730 	unsigned long flags;
2731 
2732 	card = dev->dev_data;
2733 	spin_lock_irqsave(&card->res_lock, flags);
2734 	while (CMD_BUSY(card)) ;
2735 	writel((u32) value, card->membase + DR0);
2736 	writel(NS_CMD_WRITE_UTILITY | 0x00000200 | (addr & 0x000000FF),
2737 	       card->membase + CMD);
2738 	spin_unlock_irqrestore(&card->res_lock, flags);
2739 }
2740 
2741 static unsigned char ns_phy_get(struct atm_dev *dev, unsigned long addr)
2742 {
2743 	ns_dev *card;
2744 	unsigned long flags;
2745 	u32 data;
2746 
2747 	card = dev->dev_data;
2748 	spin_lock_irqsave(&card->res_lock, flags);
2749 	while (CMD_BUSY(card)) ;
2750 	writel(NS_CMD_READ_UTILITY | 0x00000200 | (addr & 0x000000FF),
2751 	       card->membase + CMD);
2752 	while (CMD_BUSY(card)) ;
2753 	data = readl(card->membase + DR0) & 0x000000FF;
2754 	spin_unlock_irqrestore(&card->res_lock, flags);
2755 	return (unsigned char)data;
2756 }
2757 
2758 module_init(nicstar_init);
2759 module_exit(nicstar_cleanup);
2760