xref: /linux/drivers/base/devres.c (revision 0be3ff0c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * drivers/base/devres.c - device resource management
4  *
5  * Copyright (c) 2006  SUSE Linux Products GmbH
6  * Copyright (c) 2006  Tejun Heo <teheo@suse.de>
7  */
8 
9 #include <linux/device.h>
10 #include <linux/module.h>
11 #include <linux/slab.h>
12 #include <linux/percpu.h>
13 
14 #include <asm/sections.h>
15 
16 #include "base.h"
17 #include "trace.h"
18 
19 struct devres_node {
20 	struct list_head		entry;
21 	dr_release_t			release;
22 	const char			*name;
23 	size_t				size;
24 };
25 
26 struct devres {
27 	struct devres_node		node;
28 	/*
29 	 * Some archs want to perform DMA into kmalloc caches
30 	 * and need a guaranteed alignment larger than
31 	 * the alignment of a 64-bit integer.
32 	 * Thus we use ARCH_KMALLOC_MINALIGN here and get exactly the same
33 	 * buffer alignment as if it was allocated by plain kmalloc().
34 	 */
35 	u8 __aligned(ARCH_KMALLOC_MINALIGN) data[];
36 };
37 
38 struct devres_group {
39 	struct devres_node		node[2];
40 	void				*id;
41 	int				color;
42 	/* -- 8 pointers */
43 };
44 
45 static void set_node_dbginfo(struct devres_node *node, const char *name,
46 			     size_t size)
47 {
48 	node->name = name;
49 	node->size = size;
50 }
51 
52 #ifdef CONFIG_DEBUG_DEVRES
53 static int log_devres = 0;
54 module_param_named(log, log_devres, int, S_IRUGO | S_IWUSR);
55 
56 static void devres_dbg(struct device *dev, struct devres_node *node,
57 		       const char *op)
58 {
59 	if (unlikely(log_devres))
60 		dev_err(dev, "DEVRES %3s %p %s (%zu bytes)\n",
61 			op, node, node->name, node->size);
62 }
63 #else /* CONFIG_DEBUG_DEVRES */
64 #define devres_dbg(dev, node, op)	do {} while (0)
65 #endif /* CONFIG_DEBUG_DEVRES */
66 
67 static void devres_log(struct device *dev, struct devres_node *node,
68 		       const char *op)
69 {
70 	trace_devres_log(dev, op, node, node->name, node->size);
71 	devres_dbg(dev, node, op);
72 }
73 
74 /*
75  * Release functions for devres group.  These callbacks are used only
76  * for identification.
77  */
78 static void group_open_release(struct device *dev, void *res)
79 {
80 	/* noop */
81 }
82 
83 static void group_close_release(struct device *dev, void *res)
84 {
85 	/* noop */
86 }
87 
88 static struct devres_group * node_to_group(struct devres_node *node)
89 {
90 	if (node->release == &group_open_release)
91 		return container_of(node, struct devres_group, node[0]);
92 	if (node->release == &group_close_release)
93 		return container_of(node, struct devres_group, node[1]);
94 	return NULL;
95 }
96 
97 static bool check_dr_size(size_t size, size_t *tot_size)
98 {
99 	/* We must catch any near-SIZE_MAX cases that could overflow. */
100 	if (unlikely(check_add_overflow(sizeof(struct devres),
101 					size, tot_size)))
102 		return false;
103 
104 	return true;
105 }
106 
107 static __always_inline struct devres * alloc_dr(dr_release_t release,
108 						size_t size, gfp_t gfp, int nid)
109 {
110 	size_t tot_size;
111 	struct devres *dr;
112 
113 	if (!check_dr_size(size, &tot_size))
114 		return NULL;
115 
116 	dr = kmalloc_node_track_caller(tot_size, gfp, nid);
117 	if (unlikely(!dr))
118 		return NULL;
119 
120 	memset(dr, 0, offsetof(struct devres, data));
121 
122 	INIT_LIST_HEAD(&dr->node.entry);
123 	dr->node.release = release;
124 	return dr;
125 }
126 
127 static void add_dr(struct device *dev, struct devres_node *node)
128 {
129 	devres_log(dev, node, "ADD");
130 	BUG_ON(!list_empty(&node->entry));
131 	list_add_tail(&node->entry, &dev->devres_head);
132 }
133 
134 static void replace_dr(struct device *dev,
135 		       struct devres_node *old, struct devres_node *new)
136 {
137 	devres_log(dev, old, "REPLACE");
138 	BUG_ON(!list_empty(&new->entry));
139 	list_replace(&old->entry, &new->entry);
140 }
141 
142 /**
143  * __devres_alloc_node - Allocate device resource data
144  * @release: Release function devres will be associated with
145  * @size: Allocation size
146  * @gfp: Allocation flags
147  * @nid: NUMA node
148  * @name: Name of the resource
149  *
150  * Allocate devres of @size bytes.  The allocated area is zeroed, then
151  * associated with @release.  The returned pointer can be passed to
152  * other devres_*() functions.
153  *
154  * RETURNS:
155  * Pointer to allocated devres on success, NULL on failure.
156  */
157 void *__devres_alloc_node(dr_release_t release, size_t size, gfp_t gfp, int nid,
158 			  const char *name)
159 {
160 	struct devres *dr;
161 
162 	dr = alloc_dr(release, size, gfp | __GFP_ZERO, nid);
163 	if (unlikely(!dr))
164 		return NULL;
165 	set_node_dbginfo(&dr->node, name, size);
166 	return dr->data;
167 }
168 EXPORT_SYMBOL_GPL(__devres_alloc_node);
169 
170 /**
171  * devres_for_each_res - Resource iterator
172  * @dev: Device to iterate resource from
173  * @release: Look for resources associated with this release function
174  * @match: Match function (optional)
175  * @match_data: Data for the match function
176  * @fn: Function to be called for each matched resource.
177  * @data: Data for @fn, the 3rd parameter of @fn
178  *
179  * Call @fn for each devres of @dev which is associated with @release
180  * and for which @match returns 1.
181  *
182  * RETURNS:
183  * 	void
184  */
185 void devres_for_each_res(struct device *dev, dr_release_t release,
186 			dr_match_t match, void *match_data,
187 			void (*fn)(struct device *, void *, void *),
188 			void *data)
189 {
190 	struct devres_node *node;
191 	struct devres_node *tmp;
192 	unsigned long flags;
193 
194 	if (!fn)
195 		return;
196 
197 	spin_lock_irqsave(&dev->devres_lock, flags);
198 	list_for_each_entry_safe_reverse(node, tmp,
199 			&dev->devres_head, entry) {
200 		struct devres *dr = container_of(node, struct devres, node);
201 
202 		if (node->release != release)
203 			continue;
204 		if (match && !match(dev, dr->data, match_data))
205 			continue;
206 		fn(dev, dr->data, data);
207 	}
208 	spin_unlock_irqrestore(&dev->devres_lock, flags);
209 }
210 EXPORT_SYMBOL_GPL(devres_for_each_res);
211 
212 /**
213  * devres_free - Free device resource data
214  * @res: Pointer to devres data to free
215  *
216  * Free devres created with devres_alloc().
217  */
218 void devres_free(void *res)
219 {
220 	if (res) {
221 		struct devres *dr = container_of(res, struct devres, data);
222 
223 		BUG_ON(!list_empty(&dr->node.entry));
224 		kfree(dr);
225 	}
226 }
227 EXPORT_SYMBOL_GPL(devres_free);
228 
229 /**
230  * devres_add - Register device resource
231  * @dev: Device to add resource to
232  * @res: Resource to register
233  *
234  * Register devres @res to @dev.  @res should have been allocated
235  * using devres_alloc().  On driver detach, the associated release
236  * function will be invoked and devres will be freed automatically.
237  */
238 void devres_add(struct device *dev, void *res)
239 {
240 	struct devres *dr = container_of(res, struct devres, data);
241 	unsigned long flags;
242 
243 	spin_lock_irqsave(&dev->devres_lock, flags);
244 	add_dr(dev, &dr->node);
245 	spin_unlock_irqrestore(&dev->devres_lock, flags);
246 }
247 EXPORT_SYMBOL_GPL(devres_add);
248 
249 static struct devres *find_dr(struct device *dev, dr_release_t release,
250 			      dr_match_t match, void *match_data)
251 {
252 	struct devres_node *node;
253 
254 	list_for_each_entry_reverse(node, &dev->devres_head, entry) {
255 		struct devres *dr = container_of(node, struct devres, node);
256 
257 		if (node->release != release)
258 			continue;
259 		if (match && !match(dev, dr->data, match_data))
260 			continue;
261 		return dr;
262 	}
263 
264 	return NULL;
265 }
266 
267 /**
268  * devres_find - Find device resource
269  * @dev: Device to lookup resource from
270  * @release: Look for resources associated with this release function
271  * @match: Match function (optional)
272  * @match_data: Data for the match function
273  *
274  * Find the latest devres of @dev which is associated with @release
275  * and for which @match returns 1.  If @match is NULL, it's considered
276  * to match all.
277  *
278  * RETURNS:
279  * Pointer to found devres, NULL if not found.
280  */
281 void * devres_find(struct device *dev, dr_release_t release,
282 		   dr_match_t match, void *match_data)
283 {
284 	struct devres *dr;
285 	unsigned long flags;
286 
287 	spin_lock_irqsave(&dev->devres_lock, flags);
288 	dr = find_dr(dev, release, match, match_data);
289 	spin_unlock_irqrestore(&dev->devres_lock, flags);
290 
291 	if (dr)
292 		return dr->data;
293 	return NULL;
294 }
295 EXPORT_SYMBOL_GPL(devres_find);
296 
297 /**
298  * devres_get - Find devres, if non-existent, add one atomically
299  * @dev: Device to lookup or add devres for
300  * @new_res: Pointer to new initialized devres to add if not found
301  * @match: Match function (optional)
302  * @match_data: Data for the match function
303  *
304  * Find the latest devres of @dev which has the same release function
305  * as @new_res and for which @match return 1.  If found, @new_res is
306  * freed; otherwise, @new_res is added atomically.
307  *
308  * RETURNS:
309  * Pointer to found or added devres.
310  */
311 void * devres_get(struct device *dev, void *new_res,
312 		  dr_match_t match, void *match_data)
313 {
314 	struct devres *new_dr = container_of(new_res, struct devres, data);
315 	struct devres *dr;
316 	unsigned long flags;
317 
318 	spin_lock_irqsave(&dev->devres_lock, flags);
319 	dr = find_dr(dev, new_dr->node.release, match, match_data);
320 	if (!dr) {
321 		add_dr(dev, &new_dr->node);
322 		dr = new_dr;
323 		new_res = NULL;
324 	}
325 	spin_unlock_irqrestore(&dev->devres_lock, flags);
326 	devres_free(new_res);
327 
328 	return dr->data;
329 }
330 EXPORT_SYMBOL_GPL(devres_get);
331 
332 /**
333  * devres_remove - Find a device resource and remove it
334  * @dev: Device to find resource from
335  * @release: Look for resources associated with this release function
336  * @match: Match function (optional)
337  * @match_data: Data for the match function
338  *
339  * Find the latest devres of @dev associated with @release and for
340  * which @match returns 1.  If @match is NULL, it's considered to
341  * match all.  If found, the resource is removed atomically and
342  * returned.
343  *
344  * RETURNS:
345  * Pointer to removed devres on success, NULL if not found.
346  */
347 void * devres_remove(struct device *dev, dr_release_t release,
348 		     dr_match_t match, void *match_data)
349 {
350 	struct devres *dr;
351 	unsigned long flags;
352 
353 	spin_lock_irqsave(&dev->devres_lock, flags);
354 	dr = find_dr(dev, release, match, match_data);
355 	if (dr) {
356 		list_del_init(&dr->node.entry);
357 		devres_log(dev, &dr->node, "REM");
358 	}
359 	spin_unlock_irqrestore(&dev->devres_lock, flags);
360 
361 	if (dr)
362 		return dr->data;
363 	return NULL;
364 }
365 EXPORT_SYMBOL_GPL(devres_remove);
366 
367 /**
368  * devres_destroy - Find a device resource and destroy it
369  * @dev: Device to find resource from
370  * @release: Look for resources associated with this release function
371  * @match: Match function (optional)
372  * @match_data: Data for the match function
373  *
374  * Find the latest devres of @dev associated with @release and for
375  * which @match returns 1.  If @match is NULL, it's considered to
376  * match all.  If found, the resource is removed atomically and freed.
377  *
378  * Note that the release function for the resource will not be called,
379  * only the devres-allocated data will be freed.  The caller becomes
380  * responsible for freeing any other data.
381  *
382  * RETURNS:
383  * 0 if devres is found and freed, -ENOENT if not found.
384  */
385 int devres_destroy(struct device *dev, dr_release_t release,
386 		   dr_match_t match, void *match_data)
387 {
388 	void *res;
389 
390 	res = devres_remove(dev, release, match, match_data);
391 	if (unlikely(!res))
392 		return -ENOENT;
393 
394 	devres_free(res);
395 	return 0;
396 }
397 EXPORT_SYMBOL_GPL(devres_destroy);
398 
399 
400 /**
401  * devres_release - Find a device resource and destroy it, calling release
402  * @dev: Device to find resource from
403  * @release: Look for resources associated with this release function
404  * @match: Match function (optional)
405  * @match_data: Data for the match function
406  *
407  * Find the latest devres of @dev associated with @release and for
408  * which @match returns 1.  If @match is NULL, it's considered to
409  * match all.  If found, the resource is removed atomically, the
410  * release function called and the resource freed.
411  *
412  * RETURNS:
413  * 0 if devres is found and freed, -ENOENT if not found.
414  */
415 int devres_release(struct device *dev, dr_release_t release,
416 		   dr_match_t match, void *match_data)
417 {
418 	void *res;
419 
420 	res = devres_remove(dev, release, match, match_data);
421 	if (unlikely(!res))
422 		return -ENOENT;
423 
424 	(*release)(dev, res);
425 	devres_free(res);
426 	return 0;
427 }
428 EXPORT_SYMBOL_GPL(devres_release);
429 
430 static int remove_nodes(struct device *dev,
431 			struct list_head *first, struct list_head *end,
432 			struct list_head *todo)
433 {
434 	struct devres_node *node, *n;
435 	int cnt = 0, nr_groups = 0;
436 
437 	/* First pass - move normal devres entries to @todo and clear
438 	 * devres_group colors.
439 	 */
440 	node = list_entry(first, struct devres_node, entry);
441 	list_for_each_entry_safe_from(node, n, end, entry) {
442 		struct devres_group *grp;
443 
444 		grp = node_to_group(node);
445 		if (grp) {
446 			/* clear color of group markers in the first pass */
447 			grp->color = 0;
448 			nr_groups++;
449 		} else {
450 			/* regular devres entry */
451 			if (&node->entry == first)
452 				first = first->next;
453 			list_move_tail(&node->entry, todo);
454 			cnt++;
455 		}
456 	}
457 
458 	if (!nr_groups)
459 		return cnt;
460 
461 	/* Second pass - Scan groups and color them.  A group gets
462 	 * color value of two iff the group is wholly contained in
463 	 * [current node, end). That is, for a closed group, both opening
464 	 * and closing markers should be in the range, while just the
465 	 * opening marker is enough for an open group.
466 	 */
467 	node = list_entry(first, struct devres_node, entry);
468 	list_for_each_entry_safe_from(node, n, end, entry) {
469 		struct devres_group *grp;
470 
471 		grp = node_to_group(node);
472 		BUG_ON(!grp || list_empty(&grp->node[0].entry));
473 
474 		grp->color++;
475 		if (list_empty(&grp->node[1].entry))
476 			grp->color++;
477 
478 		BUG_ON(grp->color <= 0 || grp->color > 2);
479 		if (grp->color == 2) {
480 			/* No need to update current node or end. The removed
481 			 * nodes are always before both.
482 			 */
483 			list_move_tail(&grp->node[0].entry, todo);
484 			list_del_init(&grp->node[1].entry);
485 		}
486 	}
487 
488 	return cnt;
489 }
490 
491 static void release_nodes(struct device *dev, struct list_head *todo)
492 {
493 	struct devres *dr, *tmp;
494 
495 	/* Release.  Note that both devres and devres_group are
496 	 * handled as devres in the following loop.  This is safe.
497 	 */
498 	list_for_each_entry_safe_reverse(dr, tmp, todo, node.entry) {
499 		devres_log(dev, &dr->node, "REL");
500 		dr->node.release(dev, dr->data);
501 		kfree(dr);
502 	}
503 }
504 
505 /**
506  * devres_release_all - Release all managed resources
507  * @dev: Device to release resources for
508  *
509  * Release all resources associated with @dev.  This function is
510  * called on driver detach.
511  */
512 int devres_release_all(struct device *dev)
513 {
514 	unsigned long flags;
515 	LIST_HEAD(todo);
516 	int cnt;
517 
518 	/* Looks like an uninitialized device structure */
519 	if (WARN_ON(dev->devres_head.next == NULL))
520 		return -ENODEV;
521 
522 	/* Nothing to release if list is empty */
523 	if (list_empty(&dev->devres_head))
524 		return 0;
525 
526 	spin_lock_irqsave(&dev->devres_lock, flags);
527 	cnt = remove_nodes(dev, dev->devres_head.next, &dev->devres_head, &todo);
528 	spin_unlock_irqrestore(&dev->devres_lock, flags);
529 
530 	release_nodes(dev, &todo);
531 	return cnt;
532 }
533 
534 /**
535  * devres_open_group - Open a new devres group
536  * @dev: Device to open devres group for
537  * @id: Separator ID
538  * @gfp: Allocation flags
539  *
540  * Open a new devres group for @dev with @id.  For @id, using a
541  * pointer to an object which won't be used for another group is
542  * recommended.  If @id is NULL, address-wise unique ID is created.
543  *
544  * RETURNS:
545  * ID of the new group, NULL on failure.
546  */
547 void * devres_open_group(struct device *dev, void *id, gfp_t gfp)
548 {
549 	struct devres_group *grp;
550 	unsigned long flags;
551 
552 	grp = kmalloc(sizeof(*grp), gfp);
553 	if (unlikely(!grp))
554 		return NULL;
555 
556 	grp->node[0].release = &group_open_release;
557 	grp->node[1].release = &group_close_release;
558 	INIT_LIST_HEAD(&grp->node[0].entry);
559 	INIT_LIST_HEAD(&grp->node[1].entry);
560 	set_node_dbginfo(&grp->node[0], "grp<", 0);
561 	set_node_dbginfo(&grp->node[1], "grp>", 0);
562 	grp->id = grp;
563 	if (id)
564 		grp->id = id;
565 
566 	spin_lock_irqsave(&dev->devres_lock, flags);
567 	add_dr(dev, &grp->node[0]);
568 	spin_unlock_irqrestore(&dev->devres_lock, flags);
569 	return grp->id;
570 }
571 EXPORT_SYMBOL_GPL(devres_open_group);
572 
573 /* Find devres group with ID @id.  If @id is NULL, look for the latest. */
574 static struct devres_group * find_group(struct device *dev, void *id)
575 {
576 	struct devres_node *node;
577 
578 	list_for_each_entry_reverse(node, &dev->devres_head, entry) {
579 		struct devres_group *grp;
580 
581 		if (node->release != &group_open_release)
582 			continue;
583 
584 		grp = container_of(node, struct devres_group, node[0]);
585 
586 		if (id) {
587 			if (grp->id == id)
588 				return grp;
589 		} else if (list_empty(&grp->node[1].entry))
590 			return grp;
591 	}
592 
593 	return NULL;
594 }
595 
596 /**
597  * devres_close_group - Close a devres group
598  * @dev: Device to close devres group for
599  * @id: ID of target group, can be NULL
600  *
601  * Close the group identified by @id.  If @id is NULL, the latest open
602  * group is selected.
603  */
604 void devres_close_group(struct device *dev, void *id)
605 {
606 	struct devres_group *grp;
607 	unsigned long flags;
608 
609 	spin_lock_irqsave(&dev->devres_lock, flags);
610 
611 	grp = find_group(dev, id);
612 	if (grp)
613 		add_dr(dev, &grp->node[1]);
614 	else
615 		WARN_ON(1);
616 
617 	spin_unlock_irqrestore(&dev->devres_lock, flags);
618 }
619 EXPORT_SYMBOL_GPL(devres_close_group);
620 
621 /**
622  * devres_remove_group - Remove a devres group
623  * @dev: Device to remove group for
624  * @id: ID of target group, can be NULL
625  *
626  * Remove the group identified by @id.  If @id is NULL, the latest
627  * open group is selected.  Note that removing a group doesn't affect
628  * any other resources.
629  */
630 void devres_remove_group(struct device *dev, void *id)
631 {
632 	struct devres_group *grp;
633 	unsigned long flags;
634 
635 	spin_lock_irqsave(&dev->devres_lock, flags);
636 
637 	grp = find_group(dev, id);
638 	if (grp) {
639 		list_del_init(&grp->node[0].entry);
640 		list_del_init(&grp->node[1].entry);
641 		devres_log(dev, &grp->node[0], "REM");
642 	} else
643 		WARN_ON(1);
644 
645 	spin_unlock_irqrestore(&dev->devres_lock, flags);
646 
647 	kfree(grp);
648 }
649 EXPORT_SYMBOL_GPL(devres_remove_group);
650 
651 /**
652  * devres_release_group - Release resources in a devres group
653  * @dev: Device to release group for
654  * @id: ID of target group, can be NULL
655  *
656  * Release all resources in the group identified by @id.  If @id is
657  * NULL, the latest open group is selected.  The selected group and
658  * groups properly nested inside the selected group are removed.
659  *
660  * RETURNS:
661  * The number of released non-group resources.
662  */
663 int devres_release_group(struct device *dev, void *id)
664 {
665 	struct devres_group *grp;
666 	unsigned long flags;
667 	LIST_HEAD(todo);
668 	int cnt = 0;
669 
670 	spin_lock_irqsave(&dev->devres_lock, flags);
671 
672 	grp = find_group(dev, id);
673 	if (grp) {
674 		struct list_head *first = &grp->node[0].entry;
675 		struct list_head *end = &dev->devres_head;
676 
677 		if (!list_empty(&grp->node[1].entry))
678 			end = grp->node[1].entry.next;
679 
680 		cnt = remove_nodes(dev, first, end, &todo);
681 		spin_unlock_irqrestore(&dev->devres_lock, flags);
682 
683 		release_nodes(dev, &todo);
684 	} else {
685 		WARN_ON(1);
686 		spin_unlock_irqrestore(&dev->devres_lock, flags);
687 	}
688 
689 	return cnt;
690 }
691 EXPORT_SYMBOL_GPL(devres_release_group);
692 
693 /*
694  * Custom devres actions allow inserting a simple function call
695  * into the teardown sequence.
696  */
697 
698 struct action_devres {
699 	void *data;
700 	void (*action)(void *);
701 };
702 
703 static int devm_action_match(struct device *dev, void *res, void *p)
704 {
705 	struct action_devres *devres = res;
706 	struct action_devres *target = p;
707 
708 	return devres->action == target->action &&
709 	       devres->data == target->data;
710 }
711 
712 static void devm_action_release(struct device *dev, void *res)
713 {
714 	struct action_devres *devres = res;
715 
716 	devres->action(devres->data);
717 }
718 
719 /**
720  * devm_add_action() - add a custom action to list of managed resources
721  * @dev: Device that owns the action
722  * @action: Function that should be called
723  * @data: Pointer to data passed to @action implementation
724  *
725  * This adds a custom action to the list of managed resources so that
726  * it gets executed as part of standard resource unwinding.
727  */
728 int devm_add_action(struct device *dev, void (*action)(void *), void *data)
729 {
730 	struct action_devres *devres;
731 
732 	devres = devres_alloc(devm_action_release,
733 			      sizeof(struct action_devres), GFP_KERNEL);
734 	if (!devres)
735 		return -ENOMEM;
736 
737 	devres->data = data;
738 	devres->action = action;
739 
740 	devres_add(dev, devres);
741 	return 0;
742 }
743 EXPORT_SYMBOL_GPL(devm_add_action);
744 
745 /**
746  * devm_remove_action() - removes previously added custom action
747  * @dev: Device that owns the action
748  * @action: Function implementing the action
749  * @data: Pointer to data passed to @action implementation
750  *
751  * Removes instance of @action previously added by devm_add_action().
752  * Both action and data should match one of the existing entries.
753  */
754 void devm_remove_action(struct device *dev, void (*action)(void *), void *data)
755 {
756 	struct action_devres devres = {
757 		.data = data,
758 		.action = action,
759 	};
760 
761 	WARN_ON(devres_destroy(dev, devm_action_release, devm_action_match,
762 			       &devres));
763 }
764 EXPORT_SYMBOL_GPL(devm_remove_action);
765 
766 /**
767  * devm_release_action() - release previously added custom action
768  * @dev: Device that owns the action
769  * @action: Function implementing the action
770  * @data: Pointer to data passed to @action implementation
771  *
772  * Releases and removes instance of @action previously added by
773  * devm_add_action().  Both action and data should match one of the
774  * existing entries.
775  */
776 void devm_release_action(struct device *dev, void (*action)(void *), void *data)
777 {
778 	struct action_devres devres = {
779 		.data = data,
780 		.action = action,
781 	};
782 
783 	WARN_ON(devres_release(dev, devm_action_release, devm_action_match,
784 			       &devres));
785 
786 }
787 EXPORT_SYMBOL_GPL(devm_release_action);
788 
789 /*
790  * Managed kmalloc/kfree
791  */
792 static void devm_kmalloc_release(struct device *dev, void *res)
793 {
794 	/* noop */
795 }
796 
797 static int devm_kmalloc_match(struct device *dev, void *res, void *data)
798 {
799 	return res == data;
800 }
801 
802 /**
803  * devm_kmalloc - Resource-managed kmalloc
804  * @dev: Device to allocate memory for
805  * @size: Allocation size
806  * @gfp: Allocation gfp flags
807  *
808  * Managed kmalloc.  Memory allocated with this function is
809  * automatically freed on driver detach.  Like all other devres
810  * resources, guaranteed alignment is unsigned long long.
811  *
812  * RETURNS:
813  * Pointer to allocated memory on success, NULL on failure.
814  */
815 void *devm_kmalloc(struct device *dev, size_t size, gfp_t gfp)
816 {
817 	struct devres *dr;
818 
819 	if (unlikely(!size))
820 		return ZERO_SIZE_PTR;
821 
822 	/* use raw alloc_dr for kmalloc caller tracing */
823 	dr = alloc_dr(devm_kmalloc_release, size, gfp, dev_to_node(dev));
824 	if (unlikely(!dr))
825 		return NULL;
826 
827 	/*
828 	 * This is named devm_kzalloc_release for historical reasons
829 	 * The initial implementation did not support kmalloc, only kzalloc
830 	 */
831 	set_node_dbginfo(&dr->node, "devm_kzalloc_release", size);
832 	devres_add(dev, dr->data);
833 	return dr->data;
834 }
835 EXPORT_SYMBOL_GPL(devm_kmalloc);
836 
837 /**
838  * devm_krealloc - Resource-managed krealloc()
839  * @dev: Device to re-allocate memory for
840  * @ptr: Pointer to the memory chunk to re-allocate
841  * @new_size: New allocation size
842  * @gfp: Allocation gfp flags
843  *
844  * Managed krealloc(). Resizes the memory chunk allocated with devm_kmalloc().
845  * Behaves similarly to regular krealloc(): if @ptr is NULL or ZERO_SIZE_PTR,
846  * it's the equivalent of devm_kmalloc(). If new_size is zero, it frees the
847  * previously allocated memory and returns ZERO_SIZE_PTR. This function doesn't
848  * change the order in which the release callback for the re-alloc'ed devres
849  * will be called (except when falling back to devm_kmalloc() or when freeing
850  * resources when new_size is zero). The contents of the memory are preserved
851  * up to the lesser of new and old sizes.
852  */
853 void *devm_krealloc(struct device *dev, void *ptr, size_t new_size, gfp_t gfp)
854 {
855 	size_t total_new_size, total_old_size;
856 	struct devres *old_dr, *new_dr;
857 	unsigned long flags;
858 
859 	if (unlikely(!new_size)) {
860 		devm_kfree(dev, ptr);
861 		return ZERO_SIZE_PTR;
862 	}
863 
864 	if (unlikely(ZERO_OR_NULL_PTR(ptr)))
865 		return devm_kmalloc(dev, new_size, gfp);
866 
867 	if (WARN_ON(is_kernel_rodata((unsigned long)ptr)))
868 		/*
869 		 * We cannot reliably realloc a const string returned by
870 		 * devm_kstrdup_const().
871 		 */
872 		return NULL;
873 
874 	if (!check_dr_size(new_size, &total_new_size))
875 		return NULL;
876 
877 	total_old_size = ksize(container_of(ptr, struct devres, data));
878 	if (total_old_size == 0) {
879 		WARN(1, "Pointer doesn't point to dynamically allocated memory.");
880 		return NULL;
881 	}
882 
883 	/*
884 	 * If new size is smaller or equal to the actual number of bytes
885 	 * allocated previously - just return the same pointer.
886 	 */
887 	if (total_new_size <= total_old_size)
888 		return ptr;
889 
890 	/*
891 	 * Otherwise: allocate new, larger chunk. We need to allocate before
892 	 * taking the lock as most probably the caller uses GFP_KERNEL.
893 	 */
894 	new_dr = alloc_dr(devm_kmalloc_release,
895 			  total_new_size, gfp, dev_to_node(dev));
896 	if (!new_dr)
897 		return NULL;
898 
899 	/*
900 	 * The spinlock protects the linked list against concurrent
901 	 * modifications but not the resource itself.
902 	 */
903 	spin_lock_irqsave(&dev->devres_lock, flags);
904 
905 	old_dr = find_dr(dev, devm_kmalloc_release, devm_kmalloc_match, ptr);
906 	if (!old_dr) {
907 		spin_unlock_irqrestore(&dev->devres_lock, flags);
908 		kfree(new_dr);
909 		WARN(1, "Memory chunk not managed or managed by a different device.");
910 		return NULL;
911 	}
912 
913 	replace_dr(dev, &old_dr->node, &new_dr->node);
914 
915 	spin_unlock_irqrestore(&dev->devres_lock, flags);
916 
917 	/*
918 	 * We can copy the memory contents after releasing the lock as we're
919 	 * no longer modifying the list links.
920 	 */
921 	memcpy(new_dr->data, old_dr->data,
922 	       total_old_size - offsetof(struct devres, data));
923 	/*
924 	 * Same for releasing the old devres - it's now been removed from the
925 	 * list. This is also the reason why we must not use devm_kfree() - the
926 	 * links are no longer valid.
927 	 */
928 	kfree(old_dr);
929 
930 	return new_dr->data;
931 }
932 EXPORT_SYMBOL_GPL(devm_krealloc);
933 
934 /**
935  * devm_kstrdup - Allocate resource managed space and
936  *                copy an existing string into that.
937  * @dev: Device to allocate memory for
938  * @s: the string to duplicate
939  * @gfp: the GFP mask used in the devm_kmalloc() call when
940  *       allocating memory
941  * RETURNS:
942  * Pointer to allocated string on success, NULL on failure.
943  */
944 char *devm_kstrdup(struct device *dev, const char *s, gfp_t gfp)
945 {
946 	size_t size;
947 	char *buf;
948 
949 	if (!s)
950 		return NULL;
951 
952 	size = strlen(s) + 1;
953 	buf = devm_kmalloc(dev, size, gfp);
954 	if (buf)
955 		memcpy(buf, s, size);
956 	return buf;
957 }
958 EXPORT_SYMBOL_GPL(devm_kstrdup);
959 
960 /**
961  * devm_kstrdup_const - resource managed conditional string duplication
962  * @dev: device for which to duplicate the string
963  * @s: the string to duplicate
964  * @gfp: the GFP mask used in the kmalloc() call when allocating memory
965  *
966  * Strings allocated by devm_kstrdup_const will be automatically freed when
967  * the associated device is detached.
968  *
969  * RETURNS:
970  * Source string if it is in .rodata section otherwise it falls back to
971  * devm_kstrdup.
972  */
973 const char *devm_kstrdup_const(struct device *dev, const char *s, gfp_t gfp)
974 {
975 	if (is_kernel_rodata((unsigned long)s))
976 		return s;
977 
978 	return devm_kstrdup(dev, s, gfp);
979 }
980 EXPORT_SYMBOL_GPL(devm_kstrdup_const);
981 
982 /**
983  * devm_kvasprintf - Allocate resource managed space and format a string
984  *		     into that.
985  * @dev: Device to allocate memory for
986  * @gfp: the GFP mask used in the devm_kmalloc() call when
987  *       allocating memory
988  * @fmt: The printf()-style format string
989  * @ap: Arguments for the format string
990  * RETURNS:
991  * Pointer to allocated string on success, NULL on failure.
992  */
993 char *devm_kvasprintf(struct device *dev, gfp_t gfp, const char *fmt,
994 		      va_list ap)
995 {
996 	unsigned int len;
997 	char *p;
998 	va_list aq;
999 
1000 	va_copy(aq, ap);
1001 	len = vsnprintf(NULL, 0, fmt, aq);
1002 	va_end(aq);
1003 
1004 	p = devm_kmalloc(dev, len+1, gfp);
1005 	if (!p)
1006 		return NULL;
1007 
1008 	vsnprintf(p, len+1, fmt, ap);
1009 
1010 	return p;
1011 }
1012 EXPORT_SYMBOL(devm_kvasprintf);
1013 
1014 /**
1015  * devm_kasprintf - Allocate resource managed space and format a string
1016  *		    into that.
1017  * @dev: Device to allocate memory for
1018  * @gfp: the GFP mask used in the devm_kmalloc() call when
1019  *       allocating memory
1020  * @fmt: The printf()-style format string
1021  * @...: Arguments for the format string
1022  * RETURNS:
1023  * Pointer to allocated string on success, NULL on failure.
1024  */
1025 char *devm_kasprintf(struct device *dev, gfp_t gfp, const char *fmt, ...)
1026 {
1027 	va_list ap;
1028 	char *p;
1029 
1030 	va_start(ap, fmt);
1031 	p = devm_kvasprintf(dev, gfp, fmt, ap);
1032 	va_end(ap);
1033 
1034 	return p;
1035 }
1036 EXPORT_SYMBOL_GPL(devm_kasprintf);
1037 
1038 /**
1039  * devm_kfree - Resource-managed kfree
1040  * @dev: Device this memory belongs to
1041  * @p: Memory to free
1042  *
1043  * Free memory allocated with devm_kmalloc().
1044  */
1045 void devm_kfree(struct device *dev, const void *p)
1046 {
1047 	int rc;
1048 
1049 	/*
1050 	 * Special cases: pointer to a string in .rodata returned by
1051 	 * devm_kstrdup_const() or NULL/ZERO ptr.
1052 	 */
1053 	if (unlikely(is_kernel_rodata((unsigned long)p) || ZERO_OR_NULL_PTR(p)))
1054 		return;
1055 
1056 	rc = devres_destroy(dev, devm_kmalloc_release,
1057 			    devm_kmalloc_match, (void *)p);
1058 	WARN_ON(rc);
1059 }
1060 EXPORT_SYMBOL_GPL(devm_kfree);
1061 
1062 /**
1063  * devm_kmemdup - Resource-managed kmemdup
1064  * @dev: Device this memory belongs to
1065  * @src: Memory region to duplicate
1066  * @len: Memory region length
1067  * @gfp: GFP mask to use
1068  *
1069  * Duplicate region of a memory using resource managed kmalloc
1070  */
1071 void *devm_kmemdup(struct device *dev, const void *src, size_t len, gfp_t gfp)
1072 {
1073 	void *p;
1074 
1075 	p = devm_kmalloc(dev, len, gfp);
1076 	if (p)
1077 		memcpy(p, src, len);
1078 
1079 	return p;
1080 }
1081 EXPORT_SYMBOL_GPL(devm_kmemdup);
1082 
1083 struct pages_devres {
1084 	unsigned long addr;
1085 	unsigned int order;
1086 };
1087 
1088 static int devm_pages_match(struct device *dev, void *res, void *p)
1089 {
1090 	struct pages_devres *devres = res;
1091 	struct pages_devres *target = p;
1092 
1093 	return devres->addr == target->addr;
1094 }
1095 
1096 static void devm_pages_release(struct device *dev, void *res)
1097 {
1098 	struct pages_devres *devres = res;
1099 
1100 	free_pages(devres->addr, devres->order);
1101 }
1102 
1103 /**
1104  * devm_get_free_pages - Resource-managed __get_free_pages
1105  * @dev: Device to allocate memory for
1106  * @gfp_mask: Allocation gfp flags
1107  * @order: Allocation size is (1 << order) pages
1108  *
1109  * Managed get_free_pages.  Memory allocated with this function is
1110  * automatically freed on driver detach.
1111  *
1112  * RETURNS:
1113  * Address of allocated memory on success, 0 on failure.
1114  */
1115 
1116 unsigned long devm_get_free_pages(struct device *dev,
1117 				  gfp_t gfp_mask, unsigned int order)
1118 {
1119 	struct pages_devres *devres;
1120 	unsigned long addr;
1121 
1122 	addr = __get_free_pages(gfp_mask, order);
1123 
1124 	if (unlikely(!addr))
1125 		return 0;
1126 
1127 	devres = devres_alloc(devm_pages_release,
1128 			      sizeof(struct pages_devres), GFP_KERNEL);
1129 	if (unlikely(!devres)) {
1130 		free_pages(addr, order);
1131 		return 0;
1132 	}
1133 
1134 	devres->addr = addr;
1135 	devres->order = order;
1136 
1137 	devres_add(dev, devres);
1138 	return addr;
1139 }
1140 EXPORT_SYMBOL_GPL(devm_get_free_pages);
1141 
1142 /**
1143  * devm_free_pages - Resource-managed free_pages
1144  * @dev: Device this memory belongs to
1145  * @addr: Memory to free
1146  *
1147  * Free memory allocated with devm_get_free_pages(). Unlike free_pages,
1148  * there is no need to supply the @order.
1149  */
1150 void devm_free_pages(struct device *dev, unsigned long addr)
1151 {
1152 	struct pages_devres devres = { .addr = addr };
1153 
1154 	WARN_ON(devres_release(dev, devm_pages_release, devm_pages_match,
1155 			       &devres));
1156 }
1157 EXPORT_SYMBOL_GPL(devm_free_pages);
1158 
1159 static void devm_percpu_release(struct device *dev, void *pdata)
1160 {
1161 	void __percpu *p;
1162 
1163 	p = *(void __percpu **)pdata;
1164 	free_percpu(p);
1165 }
1166 
1167 static int devm_percpu_match(struct device *dev, void *data, void *p)
1168 {
1169 	struct devres *devr = container_of(data, struct devres, data);
1170 
1171 	return *(void **)devr->data == p;
1172 }
1173 
1174 /**
1175  * __devm_alloc_percpu - Resource-managed alloc_percpu
1176  * @dev: Device to allocate per-cpu memory for
1177  * @size: Size of per-cpu memory to allocate
1178  * @align: Alignment of per-cpu memory to allocate
1179  *
1180  * Managed alloc_percpu. Per-cpu memory allocated with this function is
1181  * automatically freed on driver detach.
1182  *
1183  * RETURNS:
1184  * Pointer to allocated memory on success, NULL on failure.
1185  */
1186 void __percpu *__devm_alloc_percpu(struct device *dev, size_t size,
1187 		size_t align)
1188 {
1189 	void *p;
1190 	void __percpu *pcpu;
1191 
1192 	pcpu = __alloc_percpu(size, align);
1193 	if (!pcpu)
1194 		return NULL;
1195 
1196 	p = devres_alloc(devm_percpu_release, sizeof(void *), GFP_KERNEL);
1197 	if (!p) {
1198 		free_percpu(pcpu);
1199 		return NULL;
1200 	}
1201 
1202 	*(void __percpu **)p = pcpu;
1203 
1204 	devres_add(dev, p);
1205 
1206 	return pcpu;
1207 }
1208 EXPORT_SYMBOL_GPL(__devm_alloc_percpu);
1209 
1210 /**
1211  * devm_free_percpu - Resource-managed free_percpu
1212  * @dev: Device this memory belongs to
1213  * @pdata: Per-cpu memory to free
1214  *
1215  * Free memory allocated with devm_alloc_percpu().
1216  */
1217 void devm_free_percpu(struct device *dev, void __percpu *pdata)
1218 {
1219 	WARN_ON(devres_destroy(dev, devm_percpu_release, devm_percpu_match,
1220 			       (__force void *)pdata));
1221 }
1222 EXPORT_SYMBOL_GPL(devm_free_percpu);
1223