xref: /linux/drivers/base/platform.c (revision 44f57d78)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * platform.c - platform 'pseudo' bus for legacy devices
4  *
5  * Copyright (c) 2002-3 Patrick Mochel
6  * Copyright (c) 2002-3 Open Source Development Labs
7  *
8  * Please see Documentation/driver-model/platform.txt for more
9  * information.
10  */
11 
12 #include <linux/string.h>
13 #include <linux/platform_device.h>
14 #include <linux/of_device.h>
15 #include <linux/of_irq.h>
16 #include <linux/module.h>
17 #include <linux/init.h>
18 #include <linux/dma-mapping.h>
19 #include <linux/memblock.h>
20 #include <linux/err.h>
21 #include <linux/slab.h>
22 #include <linux/pm_runtime.h>
23 #include <linux/pm_domain.h>
24 #include <linux/idr.h>
25 #include <linux/acpi.h>
26 #include <linux/clk/clk-conf.h>
27 #include <linux/limits.h>
28 #include <linux/property.h>
29 #include <linux/kmemleak.h>
30 
31 #include "base.h"
32 #include "power/power.h"
33 
34 /* For automatically allocated device IDs */
35 static DEFINE_IDA(platform_devid_ida);
36 
37 struct device platform_bus = {
38 	.init_name	= "platform",
39 };
40 EXPORT_SYMBOL_GPL(platform_bus);
41 
42 /**
43  * arch_setup_pdev_archdata - Allow manipulation of archdata before its used
44  * @pdev: platform device
45  *
46  * This is called before platform_device_add() such that any pdev_archdata may
47  * be setup before the platform_notifier is called.  So if a user needs to
48  * manipulate any relevant information in the pdev_archdata they can do:
49  *
50  *	platform_device_alloc()
51  *	... manipulate ...
52  *	platform_device_add()
53  *
54  * And if they don't care they can just call platform_device_register() and
55  * everything will just work out.
56  */
57 void __weak arch_setup_pdev_archdata(struct platform_device *pdev)
58 {
59 }
60 
61 /**
62  * platform_get_resource - get a resource for a device
63  * @dev: platform device
64  * @type: resource type
65  * @num: resource index
66  */
67 struct resource *platform_get_resource(struct platform_device *dev,
68 				       unsigned int type, unsigned int num)
69 {
70 	int i;
71 
72 	for (i = 0; i < dev->num_resources; i++) {
73 		struct resource *r = &dev->resource[i];
74 
75 		if (type == resource_type(r) && num-- == 0)
76 			return r;
77 	}
78 	return NULL;
79 }
80 EXPORT_SYMBOL_GPL(platform_get_resource);
81 
82 /**
83  * devm_platform_ioremap_resource - call devm_ioremap_resource() for a platform
84  *				    device
85  *
86  * @pdev: platform device to use both for memory resource lookup as well as
87  *        resource management
88  * @index: resource index
89  */
90 #ifdef CONFIG_HAS_IOMEM
91 void __iomem *devm_platform_ioremap_resource(struct platform_device *pdev,
92 					     unsigned int index)
93 {
94 	struct resource *res;
95 
96 	res = platform_get_resource(pdev, IORESOURCE_MEM, index);
97 	return devm_ioremap_resource(&pdev->dev, res);
98 }
99 EXPORT_SYMBOL_GPL(devm_platform_ioremap_resource);
100 #endif /* CONFIG_HAS_IOMEM */
101 
102 /**
103  * platform_get_irq - get an IRQ for a device
104  * @dev: platform device
105  * @num: IRQ number index
106  */
107 int platform_get_irq(struct platform_device *dev, unsigned int num)
108 {
109 #ifdef CONFIG_SPARC
110 	/* sparc does not have irqs represented as IORESOURCE_IRQ resources */
111 	if (!dev || num >= dev->archdata.num_irqs)
112 		return -ENXIO;
113 	return dev->archdata.irqs[num];
114 #else
115 	struct resource *r;
116 	if (IS_ENABLED(CONFIG_OF_IRQ) && dev->dev.of_node) {
117 		int ret;
118 
119 		ret = of_irq_get(dev->dev.of_node, num);
120 		if (ret > 0 || ret == -EPROBE_DEFER)
121 			return ret;
122 	}
123 
124 	r = platform_get_resource(dev, IORESOURCE_IRQ, num);
125 	if (has_acpi_companion(&dev->dev)) {
126 		if (r && r->flags & IORESOURCE_DISABLED) {
127 			int ret;
128 
129 			ret = acpi_irq_get(ACPI_HANDLE(&dev->dev), num, r);
130 			if (ret)
131 				return ret;
132 		}
133 	}
134 
135 	/*
136 	 * The resources may pass trigger flags to the irqs that need
137 	 * to be set up. It so happens that the trigger flags for
138 	 * IORESOURCE_BITS correspond 1-to-1 to the IRQF_TRIGGER*
139 	 * settings.
140 	 */
141 	if (r && r->flags & IORESOURCE_BITS) {
142 		struct irq_data *irqd;
143 
144 		irqd = irq_get_irq_data(r->start);
145 		if (!irqd)
146 			return -ENXIO;
147 		irqd_set_trigger_type(irqd, r->flags & IORESOURCE_BITS);
148 	}
149 
150 	if (r)
151 		return r->start;
152 
153 	/*
154 	 * For the index 0 interrupt, allow falling back to GpioInt
155 	 * resources. While a device could have both Interrupt and GpioInt
156 	 * resources, making this fallback ambiguous, in many common cases
157 	 * the device will only expose one IRQ, and this fallback
158 	 * allows a common code path across either kind of resource.
159 	 */
160 	if (num == 0 && has_acpi_companion(&dev->dev))
161 		return acpi_dev_gpio_irq_get(ACPI_COMPANION(&dev->dev), num);
162 
163 	return -ENXIO;
164 #endif
165 }
166 EXPORT_SYMBOL_GPL(platform_get_irq);
167 
168 /**
169  * platform_irq_count - Count the number of IRQs a platform device uses
170  * @dev: platform device
171  *
172  * Return: Number of IRQs a platform device uses or EPROBE_DEFER
173  */
174 int platform_irq_count(struct platform_device *dev)
175 {
176 	int ret, nr = 0;
177 
178 	while ((ret = platform_get_irq(dev, nr)) >= 0)
179 		nr++;
180 
181 	if (ret == -EPROBE_DEFER)
182 		return ret;
183 
184 	return nr;
185 }
186 EXPORT_SYMBOL_GPL(platform_irq_count);
187 
188 /**
189  * platform_get_resource_byname - get a resource for a device by name
190  * @dev: platform device
191  * @type: resource type
192  * @name: resource name
193  */
194 struct resource *platform_get_resource_byname(struct platform_device *dev,
195 					      unsigned int type,
196 					      const char *name)
197 {
198 	int i;
199 
200 	for (i = 0; i < dev->num_resources; i++) {
201 		struct resource *r = &dev->resource[i];
202 
203 		if (unlikely(!r->name))
204 			continue;
205 
206 		if (type == resource_type(r) && !strcmp(r->name, name))
207 			return r;
208 	}
209 	return NULL;
210 }
211 EXPORT_SYMBOL_GPL(platform_get_resource_byname);
212 
213 /**
214  * platform_get_irq_byname - get an IRQ for a device by name
215  * @dev: platform device
216  * @name: IRQ name
217  */
218 int platform_get_irq_byname(struct platform_device *dev, const char *name)
219 {
220 	struct resource *r;
221 
222 	if (IS_ENABLED(CONFIG_OF_IRQ) && dev->dev.of_node) {
223 		int ret;
224 
225 		ret = of_irq_get_byname(dev->dev.of_node, name);
226 		if (ret > 0 || ret == -EPROBE_DEFER)
227 			return ret;
228 	}
229 
230 	r = platform_get_resource_byname(dev, IORESOURCE_IRQ, name);
231 	return r ? r->start : -ENXIO;
232 }
233 EXPORT_SYMBOL_GPL(platform_get_irq_byname);
234 
235 /**
236  * platform_add_devices - add a numbers of platform devices
237  * @devs: array of platform devices to add
238  * @num: number of platform devices in array
239  */
240 int platform_add_devices(struct platform_device **devs, int num)
241 {
242 	int i, ret = 0;
243 
244 	for (i = 0; i < num; i++) {
245 		ret = platform_device_register(devs[i]);
246 		if (ret) {
247 			while (--i >= 0)
248 				platform_device_unregister(devs[i]);
249 			break;
250 		}
251 	}
252 
253 	return ret;
254 }
255 EXPORT_SYMBOL_GPL(platform_add_devices);
256 
257 struct platform_object {
258 	struct platform_device pdev;
259 	char name[];
260 };
261 
262 /**
263  * platform_device_put - destroy a platform device
264  * @pdev: platform device to free
265  *
266  * Free all memory associated with a platform device.  This function must
267  * _only_ be externally called in error cases.  All other usage is a bug.
268  */
269 void platform_device_put(struct platform_device *pdev)
270 {
271 	if (!IS_ERR_OR_NULL(pdev))
272 		put_device(&pdev->dev);
273 }
274 EXPORT_SYMBOL_GPL(platform_device_put);
275 
276 static void platform_device_release(struct device *dev)
277 {
278 	struct platform_object *pa = container_of(dev, struct platform_object,
279 						  pdev.dev);
280 
281 	of_device_node_put(&pa->pdev.dev);
282 	kfree(pa->pdev.dev.platform_data);
283 	kfree(pa->pdev.mfd_cell);
284 	kfree(pa->pdev.resource);
285 	kfree(pa->pdev.driver_override);
286 	kfree(pa);
287 }
288 
289 /**
290  * platform_device_alloc - create a platform device
291  * @name: base name of the device we're adding
292  * @id: instance id
293  *
294  * Create a platform device object which can have other objects attached
295  * to it, and which will have attached objects freed when it is released.
296  */
297 struct platform_device *platform_device_alloc(const char *name, int id)
298 {
299 	struct platform_object *pa;
300 
301 	pa = kzalloc(sizeof(*pa) + strlen(name) + 1, GFP_KERNEL);
302 	if (pa) {
303 		strcpy(pa->name, name);
304 		pa->pdev.name = pa->name;
305 		pa->pdev.id = id;
306 		device_initialize(&pa->pdev.dev);
307 		pa->pdev.dev.release = platform_device_release;
308 		arch_setup_pdev_archdata(&pa->pdev);
309 	}
310 
311 	return pa ? &pa->pdev : NULL;
312 }
313 EXPORT_SYMBOL_GPL(platform_device_alloc);
314 
315 /**
316  * platform_device_add_resources - add resources to a platform device
317  * @pdev: platform device allocated by platform_device_alloc to add resources to
318  * @res: set of resources that needs to be allocated for the device
319  * @num: number of resources
320  *
321  * Add a copy of the resources to the platform device.  The memory
322  * associated with the resources will be freed when the platform device is
323  * released.
324  */
325 int platform_device_add_resources(struct platform_device *pdev,
326 				  const struct resource *res, unsigned int num)
327 {
328 	struct resource *r = NULL;
329 
330 	if (res) {
331 		r = kmemdup(res, sizeof(struct resource) * num, GFP_KERNEL);
332 		if (!r)
333 			return -ENOMEM;
334 	}
335 
336 	kfree(pdev->resource);
337 	pdev->resource = r;
338 	pdev->num_resources = num;
339 	return 0;
340 }
341 EXPORT_SYMBOL_GPL(platform_device_add_resources);
342 
343 /**
344  * platform_device_add_data - add platform-specific data to a platform device
345  * @pdev: platform device allocated by platform_device_alloc to add resources to
346  * @data: platform specific data for this platform device
347  * @size: size of platform specific data
348  *
349  * Add a copy of platform specific data to the platform device's
350  * platform_data pointer.  The memory associated with the platform data
351  * will be freed when the platform device is released.
352  */
353 int platform_device_add_data(struct platform_device *pdev, const void *data,
354 			     size_t size)
355 {
356 	void *d = NULL;
357 
358 	if (data) {
359 		d = kmemdup(data, size, GFP_KERNEL);
360 		if (!d)
361 			return -ENOMEM;
362 	}
363 
364 	kfree(pdev->dev.platform_data);
365 	pdev->dev.platform_data = d;
366 	return 0;
367 }
368 EXPORT_SYMBOL_GPL(platform_device_add_data);
369 
370 /**
371  * platform_device_add_properties - add built-in properties to a platform device
372  * @pdev: platform device to add properties to
373  * @properties: null terminated array of properties to add
374  *
375  * The function will take deep copy of @properties and attach the copy to the
376  * platform device. The memory associated with properties will be freed when the
377  * platform device is released.
378  */
379 int platform_device_add_properties(struct platform_device *pdev,
380 				   const struct property_entry *properties)
381 {
382 	return device_add_properties(&pdev->dev, properties);
383 }
384 EXPORT_SYMBOL_GPL(platform_device_add_properties);
385 
386 /**
387  * platform_device_add - add a platform device to device hierarchy
388  * @pdev: platform device we're adding
389  *
390  * This is part 2 of platform_device_register(), though may be called
391  * separately _iff_ pdev was allocated by platform_device_alloc().
392  */
393 int platform_device_add(struct platform_device *pdev)
394 {
395 	int i, ret;
396 
397 	if (!pdev)
398 		return -EINVAL;
399 
400 	if (!pdev->dev.parent)
401 		pdev->dev.parent = &platform_bus;
402 
403 	pdev->dev.bus = &platform_bus_type;
404 
405 	switch (pdev->id) {
406 	default:
407 		dev_set_name(&pdev->dev, "%s.%d", pdev->name,  pdev->id);
408 		break;
409 	case PLATFORM_DEVID_NONE:
410 		dev_set_name(&pdev->dev, "%s", pdev->name);
411 		break;
412 	case PLATFORM_DEVID_AUTO:
413 		/*
414 		 * Automatically allocated device ID. We mark it as such so
415 		 * that we remember it must be freed, and we append a suffix
416 		 * to avoid namespace collision with explicit IDs.
417 		 */
418 		ret = ida_simple_get(&platform_devid_ida, 0, 0, GFP_KERNEL);
419 		if (ret < 0)
420 			goto err_out;
421 		pdev->id = ret;
422 		pdev->id_auto = true;
423 		dev_set_name(&pdev->dev, "%s.%d.auto", pdev->name, pdev->id);
424 		break;
425 	}
426 
427 	for (i = 0; i < pdev->num_resources; i++) {
428 		struct resource *p, *r = &pdev->resource[i];
429 
430 		if (r->name == NULL)
431 			r->name = dev_name(&pdev->dev);
432 
433 		p = r->parent;
434 		if (!p) {
435 			if (resource_type(r) == IORESOURCE_MEM)
436 				p = &iomem_resource;
437 			else if (resource_type(r) == IORESOURCE_IO)
438 				p = &ioport_resource;
439 		}
440 
441 		if (p) {
442 			ret = insert_resource(p, r);
443 			if (ret) {
444 				dev_err(&pdev->dev, "failed to claim resource %d: %pR\n", i, r);
445 				goto failed;
446 			}
447 		}
448 	}
449 
450 	pr_debug("Registering platform device '%s'. Parent at %s\n",
451 		 dev_name(&pdev->dev), dev_name(pdev->dev.parent));
452 
453 	ret = device_add(&pdev->dev);
454 	if (ret == 0)
455 		return ret;
456 
457  failed:
458 	if (pdev->id_auto) {
459 		ida_simple_remove(&platform_devid_ida, pdev->id);
460 		pdev->id = PLATFORM_DEVID_AUTO;
461 	}
462 
463 	while (--i >= 0) {
464 		struct resource *r = &pdev->resource[i];
465 		if (r->parent)
466 			release_resource(r);
467 	}
468 
469  err_out:
470 	return ret;
471 }
472 EXPORT_SYMBOL_GPL(platform_device_add);
473 
474 /**
475  * platform_device_del - remove a platform-level device
476  * @pdev: platform device we're removing
477  *
478  * Note that this function will also release all memory- and port-based
479  * resources owned by the device (@dev->resource).  This function must
480  * _only_ be externally called in error cases.  All other usage is a bug.
481  */
482 void platform_device_del(struct platform_device *pdev)
483 {
484 	int i;
485 
486 	if (!IS_ERR_OR_NULL(pdev)) {
487 		device_del(&pdev->dev);
488 
489 		if (pdev->id_auto) {
490 			ida_simple_remove(&platform_devid_ida, pdev->id);
491 			pdev->id = PLATFORM_DEVID_AUTO;
492 		}
493 
494 		for (i = 0; i < pdev->num_resources; i++) {
495 			struct resource *r = &pdev->resource[i];
496 			if (r->parent)
497 				release_resource(r);
498 		}
499 	}
500 }
501 EXPORT_SYMBOL_GPL(platform_device_del);
502 
503 /**
504  * platform_device_register - add a platform-level device
505  * @pdev: platform device we're adding
506  */
507 int platform_device_register(struct platform_device *pdev)
508 {
509 	device_initialize(&pdev->dev);
510 	arch_setup_pdev_archdata(pdev);
511 	return platform_device_add(pdev);
512 }
513 EXPORT_SYMBOL_GPL(platform_device_register);
514 
515 /**
516  * platform_device_unregister - unregister a platform-level device
517  * @pdev: platform device we're unregistering
518  *
519  * Unregistration is done in 2 steps. First we release all resources
520  * and remove it from the subsystem, then we drop reference count by
521  * calling platform_device_put().
522  */
523 void platform_device_unregister(struct platform_device *pdev)
524 {
525 	platform_device_del(pdev);
526 	platform_device_put(pdev);
527 }
528 EXPORT_SYMBOL_GPL(platform_device_unregister);
529 
530 /**
531  * platform_device_register_full - add a platform-level device with
532  * resources and platform-specific data
533  *
534  * @pdevinfo: data used to create device
535  *
536  * Returns &struct platform_device pointer on success, or ERR_PTR() on error.
537  */
538 struct platform_device *platform_device_register_full(
539 		const struct platform_device_info *pdevinfo)
540 {
541 	int ret = -ENOMEM;
542 	struct platform_device *pdev;
543 
544 	pdev = platform_device_alloc(pdevinfo->name, pdevinfo->id);
545 	if (!pdev)
546 		return ERR_PTR(-ENOMEM);
547 
548 	pdev->dev.parent = pdevinfo->parent;
549 	pdev->dev.fwnode = pdevinfo->fwnode;
550 	pdev->dev.of_node = of_node_get(to_of_node(pdev->dev.fwnode));
551 	pdev->dev.of_node_reused = pdevinfo->of_node_reused;
552 
553 	if (pdevinfo->dma_mask) {
554 		/*
555 		 * This memory isn't freed when the device is put,
556 		 * I don't have a nice idea for that though.  Conceptually
557 		 * dma_mask in struct device should not be a pointer.
558 		 * See http://thread.gmane.org/gmane.linux.kernel.pci/9081
559 		 */
560 		pdev->dev.dma_mask =
561 			kmalloc(sizeof(*pdev->dev.dma_mask), GFP_KERNEL);
562 		if (!pdev->dev.dma_mask)
563 			goto err;
564 
565 		kmemleak_ignore(pdev->dev.dma_mask);
566 
567 		*pdev->dev.dma_mask = pdevinfo->dma_mask;
568 		pdev->dev.coherent_dma_mask = pdevinfo->dma_mask;
569 	}
570 
571 	ret = platform_device_add_resources(pdev,
572 			pdevinfo->res, pdevinfo->num_res);
573 	if (ret)
574 		goto err;
575 
576 	ret = platform_device_add_data(pdev,
577 			pdevinfo->data, pdevinfo->size_data);
578 	if (ret)
579 		goto err;
580 
581 	if (pdevinfo->properties) {
582 		ret = platform_device_add_properties(pdev,
583 						     pdevinfo->properties);
584 		if (ret)
585 			goto err;
586 	}
587 
588 	ret = platform_device_add(pdev);
589 	if (ret) {
590 err:
591 		ACPI_COMPANION_SET(&pdev->dev, NULL);
592 		kfree(pdev->dev.dma_mask);
593 		platform_device_put(pdev);
594 		return ERR_PTR(ret);
595 	}
596 
597 	return pdev;
598 }
599 EXPORT_SYMBOL_GPL(platform_device_register_full);
600 
601 static int platform_drv_probe(struct device *_dev)
602 {
603 	struct platform_driver *drv = to_platform_driver(_dev->driver);
604 	struct platform_device *dev = to_platform_device(_dev);
605 	int ret;
606 
607 	ret = of_clk_set_defaults(_dev->of_node, false);
608 	if (ret < 0)
609 		return ret;
610 
611 	ret = dev_pm_domain_attach(_dev, true);
612 	if (ret)
613 		goto out;
614 
615 	if (drv->probe) {
616 		ret = drv->probe(dev);
617 		if (ret)
618 			dev_pm_domain_detach(_dev, true);
619 	}
620 
621 out:
622 	if (drv->prevent_deferred_probe && ret == -EPROBE_DEFER) {
623 		dev_warn(_dev, "probe deferral not supported\n");
624 		ret = -ENXIO;
625 	}
626 
627 	return ret;
628 }
629 
630 static int platform_drv_probe_fail(struct device *_dev)
631 {
632 	return -ENXIO;
633 }
634 
635 static int platform_drv_remove(struct device *_dev)
636 {
637 	struct platform_driver *drv = to_platform_driver(_dev->driver);
638 	struct platform_device *dev = to_platform_device(_dev);
639 	int ret = 0;
640 
641 	if (drv->remove)
642 		ret = drv->remove(dev);
643 	dev_pm_domain_detach(_dev, true);
644 
645 	return ret;
646 }
647 
648 static void platform_drv_shutdown(struct device *_dev)
649 {
650 	struct platform_driver *drv = to_platform_driver(_dev->driver);
651 	struct platform_device *dev = to_platform_device(_dev);
652 
653 	if (drv->shutdown)
654 		drv->shutdown(dev);
655 }
656 
657 /**
658  * __platform_driver_register - register a driver for platform-level devices
659  * @drv: platform driver structure
660  * @owner: owning module/driver
661  */
662 int __platform_driver_register(struct platform_driver *drv,
663 				struct module *owner)
664 {
665 	drv->driver.owner = owner;
666 	drv->driver.bus = &platform_bus_type;
667 	drv->driver.probe = platform_drv_probe;
668 	drv->driver.remove = platform_drv_remove;
669 	drv->driver.shutdown = platform_drv_shutdown;
670 
671 	return driver_register(&drv->driver);
672 }
673 EXPORT_SYMBOL_GPL(__platform_driver_register);
674 
675 /**
676  * platform_driver_unregister - unregister a driver for platform-level devices
677  * @drv: platform driver structure
678  */
679 void platform_driver_unregister(struct platform_driver *drv)
680 {
681 	driver_unregister(&drv->driver);
682 }
683 EXPORT_SYMBOL_GPL(platform_driver_unregister);
684 
685 /**
686  * __platform_driver_probe - register driver for non-hotpluggable device
687  * @drv: platform driver structure
688  * @probe: the driver probe routine, probably from an __init section
689  * @module: module which will be the owner of the driver
690  *
691  * Use this instead of platform_driver_register() when you know the device
692  * is not hotpluggable and has already been registered, and you want to
693  * remove its run-once probe() infrastructure from memory after the driver
694  * has bound to the device.
695  *
696  * One typical use for this would be with drivers for controllers integrated
697  * into system-on-chip processors, where the controller devices have been
698  * configured as part of board setup.
699  *
700  * Note that this is incompatible with deferred probing.
701  *
702  * Returns zero if the driver registered and bound to a device, else returns
703  * a negative error code and with the driver not registered.
704  */
705 int __init_or_module __platform_driver_probe(struct platform_driver *drv,
706 		int (*probe)(struct platform_device *), struct module *module)
707 {
708 	int retval, code;
709 
710 	if (drv->driver.probe_type == PROBE_PREFER_ASYNCHRONOUS) {
711 		pr_err("%s: drivers registered with %s can not be probed asynchronously\n",
712 			 drv->driver.name, __func__);
713 		return -EINVAL;
714 	}
715 
716 	/*
717 	 * We have to run our probes synchronously because we check if
718 	 * we find any devices to bind to and exit with error if there
719 	 * are any.
720 	 */
721 	drv->driver.probe_type = PROBE_FORCE_SYNCHRONOUS;
722 
723 	/*
724 	 * Prevent driver from requesting probe deferral to avoid further
725 	 * futile probe attempts.
726 	 */
727 	drv->prevent_deferred_probe = true;
728 
729 	/* make sure driver won't have bind/unbind attributes */
730 	drv->driver.suppress_bind_attrs = true;
731 
732 	/* temporary section violation during probe() */
733 	drv->probe = probe;
734 	retval = code = __platform_driver_register(drv, module);
735 
736 	/*
737 	 * Fixup that section violation, being paranoid about code scanning
738 	 * the list of drivers in order to probe new devices.  Check to see
739 	 * if the probe was successful, and make sure any forced probes of
740 	 * new devices fail.
741 	 */
742 	spin_lock(&drv->driver.bus->p->klist_drivers.k_lock);
743 	drv->probe = NULL;
744 	if (code == 0 && list_empty(&drv->driver.p->klist_devices.k_list))
745 		retval = -ENODEV;
746 	drv->driver.probe = platform_drv_probe_fail;
747 	spin_unlock(&drv->driver.bus->p->klist_drivers.k_lock);
748 
749 	if (code != retval)
750 		platform_driver_unregister(drv);
751 	return retval;
752 }
753 EXPORT_SYMBOL_GPL(__platform_driver_probe);
754 
755 /**
756  * __platform_create_bundle - register driver and create corresponding device
757  * @driver: platform driver structure
758  * @probe: the driver probe routine, probably from an __init section
759  * @res: set of resources that needs to be allocated for the device
760  * @n_res: number of resources
761  * @data: platform specific data for this platform device
762  * @size: size of platform specific data
763  * @module: module which will be the owner of the driver
764  *
765  * Use this in legacy-style modules that probe hardware directly and
766  * register a single platform device and corresponding platform driver.
767  *
768  * Returns &struct platform_device pointer on success, or ERR_PTR() on error.
769  */
770 struct platform_device * __init_or_module __platform_create_bundle(
771 			struct platform_driver *driver,
772 			int (*probe)(struct platform_device *),
773 			struct resource *res, unsigned int n_res,
774 			const void *data, size_t size, struct module *module)
775 {
776 	struct platform_device *pdev;
777 	int error;
778 
779 	pdev = platform_device_alloc(driver->driver.name, -1);
780 	if (!pdev) {
781 		error = -ENOMEM;
782 		goto err_out;
783 	}
784 
785 	error = platform_device_add_resources(pdev, res, n_res);
786 	if (error)
787 		goto err_pdev_put;
788 
789 	error = platform_device_add_data(pdev, data, size);
790 	if (error)
791 		goto err_pdev_put;
792 
793 	error = platform_device_add(pdev);
794 	if (error)
795 		goto err_pdev_put;
796 
797 	error = __platform_driver_probe(driver, probe, module);
798 	if (error)
799 		goto err_pdev_del;
800 
801 	return pdev;
802 
803 err_pdev_del:
804 	platform_device_del(pdev);
805 err_pdev_put:
806 	platform_device_put(pdev);
807 err_out:
808 	return ERR_PTR(error);
809 }
810 EXPORT_SYMBOL_GPL(__platform_create_bundle);
811 
812 /**
813  * __platform_register_drivers - register an array of platform drivers
814  * @drivers: an array of drivers to register
815  * @count: the number of drivers to register
816  * @owner: module owning the drivers
817  *
818  * Registers platform drivers specified by an array. On failure to register a
819  * driver, all previously registered drivers will be unregistered. Callers of
820  * this API should use platform_unregister_drivers() to unregister drivers in
821  * the reverse order.
822  *
823  * Returns: 0 on success or a negative error code on failure.
824  */
825 int __platform_register_drivers(struct platform_driver * const *drivers,
826 				unsigned int count, struct module *owner)
827 {
828 	unsigned int i;
829 	int err;
830 
831 	for (i = 0; i < count; i++) {
832 		pr_debug("registering platform driver %ps\n", drivers[i]);
833 
834 		err = __platform_driver_register(drivers[i], owner);
835 		if (err < 0) {
836 			pr_err("failed to register platform driver %ps: %d\n",
837 			       drivers[i], err);
838 			goto error;
839 		}
840 	}
841 
842 	return 0;
843 
844 error:
845 	while (i--) {
846 		pr_debug("unregistering platform driver %ps\n", drivers[i]);
847 		platform_driver_unregister(drivers[i]);
848 	}
849 
850 	return err;
851 }
852 EXPORT_SYMBOL_GPL(__platform_register_drivers);
853 
854 /**
855  * platform_unregister_drivers - unregister an array of platform drivers
856  * @drivers: an array of drivers to unregister
857  * @count: the number of drivers to unregister
858  *
859  * Unegisters platform drivers specified by an array. This is typically used
860  * to complement an earlier call to platform_register_drivers(). Drivers are
861  * unregistered in the reverse order in which they were registered.
862  */
863 void platform_unregister_drivers(struct platform_driver * const *drivers,
864 				 unsigned int count)
865 {
866 	while (count--) {
867 		pr_debug("unregistering platform driver %ps\n", drivers[count]);
868 		platform_driver_unregister(drivers[count]);
869 	}
870 }
871 EXPORT_SYMBOL_GPL(platform_unregister_drivers);
872 
873 /* modalias support enables more hands-off userspace setup:
874  * (a) environment variable lets new-style hotplug events work once system is
875  *     fully running:  "modprobe $MODALIAS"
876  * (b) sysfs attribute lets new-style coldplug recover from hotplug events
877  *     mishandled before system is fully running:  "modprobe $(cat modalias)"
878  */
879 static ssize_t modalias_show(struct device *dev, struct device_attribute *a,
880 			     char *buf)
881 {
882 	struct platform_device	*pdev = to_platform_device(dev);
883 	int len;
884 
885 	len = of_device_modalias(dev, buf, PAGE_SIZE);
886 	if (len != -ENODEV)
887 		return len;
888 
889 	len = acpi_device_modalias(dev, buf, PAGE_SIZE -1);
890 	if (len != -ENODEV)
891 		return len;
892 
893 	len = snprintf(buf, PAGE_SIZE, "platform:%s\n", pdev->name);
894 
895 	return (len >= PAGE_SIZE) ? (PAGE_SIZE - 1) : len;
896 }
897 static DEVICE_ATTR_RO(modalias);
898 
899 static ssize_t driver_override_store(struct device *dev,
900 				     struct device_attribute *attr,
901 				     const char *buf, size_t count)
902 {
903 	struct platform_device *pdev = to_platform_device(dev);
904 	char *driver_override, *old, *cp;
905 
906 	/* We need to keep extra room for a newline */
907 	if (count >= (PAGE_SIZE - 1))
908 		return -EINVAL;
909 
910 	driver_override = kstrndup(buf, count, GFP_KERNEL);
911 	if (!driver_override)
912 		return -ENOMEM;
913 
914 	cp = strchr(driver_override, '\n');
915 	if (cp)
916 		*cp = '\0';
917 
918 	device_lock(dev);
919 	old = pdev->driver_override;
920 	if (strlen(driver_override)) {
921 		pdev->driver_override = driver_override;
922 	} else {
923 		kfree(driver_override);
924 		pdev->driver_override = NULL;
925 	}
926 	device_unlock(dev);
927 
928 	kfree(old);
929 
930 	return count;
931 }
932 
933 static ssize_t driver_override_show(struct device *dev,
934 				    struct device_attribute *attr, char *buf)
935 {
936 	struct platform_device *pdev = to_platform_device(dev);
937 	ssize_t len;
938 
939 	device_lock(dev);
940 	len = sprintf(buf, "%s\n", pdev->driver_override);
941 	device_unlock(dev);
942 	return len;
943 }
944 static DEVICE_ATTR_RW(driver_override);
945 
946 
947 static struct attribute *platform_dev_attrs[] = {
948 	&dev_attr_modalias.attr,
949 	&dev_attr_driver_override.attr,
950 	NULL,
951 };
952 ATTRIBUTE_GROUPS(platform_dev);
953 
954 static int platform_uevent(struct device *dev, struct kobj_uevent_env *env)
955 {
956 	struct platform_device	*pdev = to_platform_device(dev);
957 	int rc;
958 
959 	/* Some devices have extra OF data and an OF-style MODALIAS */
960 	rc = of_device_uevent_modalias(dev, env);
961 	if (rc != -ENODEV)
962 		return rc;
963 
964 	rc = acpi_device_uevent_modalias(dev, env);
965 	if (rc != -ENODEV)
966 		return rc;
967 
968 	add_uevent_var(env, "MODALIAS=%s%s", PLATFORM_MODULE_PREFIX,
969 			pdev->name);
970 	return 0;
971 }
972 
973 static const struct platform_device_id *platform_match_id(
974 			const struct platform_device_id *id,
975 			struct platform_device *pdev)
976 {
977 	while (id->name[0]) {
978 		if (strcmp(pdev->name, id->name) == 0) {
979 			pdev->id_entry = id;
980 			return id;
981 		}
982 		id++;
983 	}
984 	return NULL;
985 }
986 
987 /**
988  * platform_match - bind platform device to platform driver.
989  * @dev: device.
990  * @drv: driver.
991  *
992  * Platform device IDs are assumed to be encoded like this:
993  * "<name><instance>", where <name> is a short description of the type of
994  * device, like "pci" or "floppy", and <instance> is the enumerated
995  * instance of the device, like '0' or '42'.  Driver IDs are simply
996  * "<name>".  So, extract the <name> from the platform_device structure,
997  * and compare it against the name of the driver. Return whether they match
998  * or not.
999  */
1000 static int platform_match(struct device *dev, struct device_driver *drv)
1001 {
1002 	struct platform_device *pdev = to_platform_device(dev);
1003 	struct platform_driver *pdrv = to_platform_driver(drv);
1004 
1005 	/* When driver_override is set, only bind to the matching driver */
1006 	if (pdev->driver_override)
1007 		return !strcmp(pdev->driver_override, drv->name);
1008 
1009 	/* Attempt an OF style match first */
1010 	if (of_driver_match_device(dev, drv))
1011 		return 1;
1012 
1013 	/* Then try ACPI style match */
1014 	if (acpi_driver_match_device(dev, drv))
1015 		return 1;
1016 
1017 	/* Then try to match against the id table */
1018 	if (pdrv->id_table)
1019 		return platform_match_id(pdrv->id_table, pdev) != NULL;
1020 
1021 	/* fall-back to driver name match */
1022 	return (strcmp(pdev->name, drv->name) == 0);
1023 }
1024 
1025 #ifdef CONFIG_PM_SLEEP
1026 
1027 static int platform_legacy_suspend(struct device *dev, pm_message_t mesg)
1028 {
1029 	struct platform_driver *pdrv = to_platform_driver(dev->driver);
1030 	struct platform_device *pdev = to_platform_device(dev);
1031 	int ret = 0;
1032 
1033 	if (dev->driver && pdrv->suspend)
1034 		ret = pdrv->suspend(pdev, mesg);
1035 
1036 	return ret;
1037 }
1038 
1039 static int platform_legacy_resume(struct device *dev)
1040 {
1041 	struct platform_driver *pdrv = to_platform_driver(dev->driver);
1042 	struct platform_device *pdev = to_platform_device(dev);
1043 	int ret = 0;
1044 
1045 	if (dev->driver && pdrv->resume)
1046 		ret = pdrv->resume(pdev);
1047 
1048 	return ret;
1049 }
1050 
1051 #endif /* CONFIG_PM_SLEEP */
1052 
1053 #ifdef CONFIG_SUSPEND
1054 
1055 int platform_pm_suspend(struct device *dev)
1056 {
1057 	struct device_driver *drv = dev->driver;
1058 	int ret = 0;
1059 
1060 	if (!drv)
1061 		return 0;
1062 
1063 	if (drv->pm) {
1064 		if (drv->pm->suspend)
1065 			ret = drv->pm->suspend(dev);
1066 	} else {
1067 		ret = platform_legacy_suspend(dev, PMSG_SUSPEND);
1068 	}
1069 
1070 	return ret;
1071 }
1072 
1073 int platform_pm_resume(struct device *dev)
1074 {
1075 	struct device_driver *drv = dev->driver;
1076 	int ret = 0;
1077 
1078 	if (!drv)
1079 		return 0;
1080 
1081 	if (drv->pm) {
1082 		if (drv->pm->resume)
1083 			ret = drv->pm->resume(dev);
1084 	} else {
1085 		ret = platform_legacy_resume(dev);
1086 	}
1087 
1088 	return ret;
1089 }
1090 
1091 #endif /* CONFIG_SUSPEND */
1092 
1093 #ifdef CONFIG_HIBERNATE_CALLBACKS
1094 
1095 int platform_pm_freeze(struct device *dev)
1096 {
1097 	struct device_driver *drv = dev->driver;
1098 	int ret = 0;
1099 
1100 	if (!drv)
1101 		return 0;
1102 
1103 	if (drv->pm) {
1104 		if (drv->pm->freeze)
1105 			ret = drv->pm->freeze(dev);
1106 	} else {
1107 		ret = platform_legacy_suspend(dev, PMSG_FREEZE);
1108 	}
1109 
1110 	return ret;
1111 }
1112 
1113 int platform_pm_thaw(struct device *dev)
1114 {
1115 	struct device_driver *drv = dev->driver;
1116 	int ret = 0;
1117 
1118 	if (!drv)
1119 		return 0;
1120 
1121 	if (drv->pm) {
1122 		if (drv->pm->thaw)
1123 			ret = drv->pm->thaw(dev);
1124 	} else {
1125 		ret = platform_legacy_resume(dev);
1126 	}
1127 
1128 	return ret;
1129 }
1130 
1131 int platform_pm_poweroff(struct device *dev)
1132 {
1133 	struct device_driver *drv = dev->driver;
1134 	int ret = 0;
1135 
1136 	if (!drv)
1137 		return 0;
1138 
1139 	if (drv->pm) {
1140 		if (drv->pm->poweroff)
1141 			ret = drv->pm->poweroff(dev);
1142 	} else {
1143 		ret = platform_legacy_suspend(dev, PMSG_HIBERNATE);
1144 	}
1145 
1146 	return ret;
1147 }
1148 
1149 int platform_pm_restore(struct device *dev)
1150 {
1151 	struct device_driver *drv = dev->driver;
1152 	int ret = 0;
1153 
1154 	if (!drv)
1155 		return 0;
1156 
1157 	if (drv->pm) {
1158 		if (drv->pm->restore)
1159 			ret = drv->pm->restore(dev);
1160 	} else {
1161 		ret = platform_legacy_resume(dev);
1162 	}
1163 
1164 	return ret;
1165 }
1166 
1167 #endif /* CONFIG_HIBERNATE_CALLBACKS */
1168 
1169 int platform_dma_configure(struct device *dev)
1170 {
1171 	enum dev_dma_attr attr;
1172 	int ret = 0;
1173 
1174 	if (dev->of_node) {
1175 		ret = of_dma_configure(dev, dev->of_node, true);
1176 	} else if (has_acpi_companion(dev)) {
1177 		attr = acpi_get_dma_attr(to_acpi_device_node(dev->fwnode));
1178 		ret = acpi_dma_configure(dev, attr);
1179 	}
1180 
1181 	return ret;
1182 }
1183 
1184 static const struct dev_pm_ops platform_dev_pm_ops = {
1185 	.runtime_suspend = pm_generic_runtime_suspend,
1186 	.runtime_resume = pm_generic_runtime_resume,
1187 	USE_PLATFORM_PM_SLEEP_OPS
1188 };
1189 
1190 struct bus_type platform_bus_type = {
1191 	.name		= "platform",
1192 	.dev_groups	= platform_dev_groups,
1193 	.match		= platform_match,
1194 	.uevent		= platform_uevent,
1195 	.dma_configure	= platform_dma_configure,
1196 	.pm		= &platform_dev_pm_ops,
1197 };
1198 EXPORT_SYMBOL_GPL(platform_bus_type);
1199 
1200 int __init platform_bus_init(void)
1201 {
1202 	int error;
1203 
1204 	early_platform_cleanup();
1205 
1206 	error = device_register(&platform_bus);
1207 	if (error) {
1208 		put_device(&platform_bus);
1209 		return error;
1210 	}
1211 	error =  bus_register(&platform_bus_type);
1212 	if (error)
1213 		device_unregister(&platform_bus);
1214 	of_platform_register_reconfig_notifier();
1215 	return error;
1216 }
1217 
1218 static __initdata LIST_HEAD(early_platform_driver_list);
1219 static __initdata LIST_HEAD(early_platform_device_list);
1220 
1221 /**
1222  * early_platform_driver_register - register early platform driver
1223  * @epdrv: early_platform driver structure
1224  * @buf: string passed from early_param()
1225  *
1226  * Helper function for early_platform_init() / early_platform_init_buffer()
1227  */
1228 int __init early_platform_driver_register(struct early_platform_driver *epdrv,
1229 					  char *buf)
1230 {
1231 	char *tmp;
1232 	int n;
1233 
1234 	/* Simply add the driver to the end of the global list.
1235 	 * Drivers will by default be put on the list in compiled-in order.
1236 	 */
1237 	if (!epdrv->list.next) {
1238 		INIT_LIST_HEAD(&epdrv->list);
1239 		list_add_tail(&epdrv->list, &early_platform_driver_list);
1240 	}
1241 
1242 	/* If the user has specified device then make sure the driver
1243 	 * gets prioritized. The driver of the last device specified on
1244 	 * command line will be put first on the list.
1245 	 */
1246 	n = strlen(epdrv->pdrv->driver.name);
1247 	if (buf && !strncmp(buf, epdrv->pdrv->driver.name, n)) {
1248 		list_move(&epdrv->list, &early_platform_driver_list);
1249 
1250 		/* Allow passing parameters after device name */
1251 		if (buf[n] == '\0' || buf[n] == ',')
1252 			epdrv->requested_id = -1;
1253 		else {
1254 			epdrv->requested_id = simple_strtoul(&buf[n + 1],
1255 							     &tmp, 10);
1256 
1257 			if (buf[n] != '.' || (tmp == &buf[n + 1])) {
1258 				epdrv->requested_id = EARLY_PLATFORM_ID_ERROR;
1259 				n = 0;
1260 			} else
1261 				n += strcspn(&buf[n + 1], ",") + 1;
1262 		}
1263 
1264 		if (buf[n] == ',')
1265 			n++;
1266 
1267 		if (epdrv->bufsize) {
1268 			memcpy(epdrv->buffer, &buf[n],
1269 			       min_t(int, epdrv->bufsize, strlen(&buf[n]) + 1));
1270 			epdrv->buffer[epdrv->bufsize - 1] = '\0';
1271 		}
1272 	}
1273 
1274 	return 0;
1275 }
1276 
1277 /**
1278  * early_platform_add_devices - adds a number of early platform devices
1279  * @devs: array of early platform devices to add
1280  * @num: number of early platform devices in array
1281  *
1282  * Used by early architecture code to register early platform devices and
1283  * their platform data.
1284  */
1285 void __init early_platform_add_devices(struct platform_device **devs, int num)
1286 {
1287 	struct device *dev;
1288 	int i;
1289 
1290 	/* simply add the devices to list */
1291 	for (i = 0; i < num; i++) {
1292 		dev = &devs[i]->dev;
1293 
1294 		if (!dev->devres_head.next) {
1295 			pm_runtime_early_init(dev);
1296 			INIT_LIST_HEAD(&dev->devres_head);
1297 			list_add_tail(&dev->devres_head,
1298 				      &early_platform_device_list);
1299 		}
1300 	}
1301 }
1302 
1303 /**
1304  * early_platform_driver_register_all - register early platform drivers
1305  * @class_str: string to identify early platform driver class
1306  *
1307  * Used by architecture code to register all early platform drivers
1308  * for a certain class. If omitted then only early platform drivers
1309  * with matching kernel command line class parameters will be registered.
1310  */
1311 void __init early_platform_driver_register_all(char *class_str)
1312 {
1313 	/* The "class_str" parameter may or may not be present on the kernel
1314 	 * command line. If it is present then there may be more than one
1315 	 * matching parameter.
1316 	 *
1317 	 * Since we register our early platform drivers using early_param()
1318 	 * we need to make sure that they also get registered in the case
1319 	 * when the parameter is missing from the kernel command line.
1320 	 *
1321 	 * We use parse_early_options() to make sure the early_param() gets
1322 	 * called at least once. The early_param() may be called more than
1323 	 * once since the name of the preferred device may be specified on
1324 	 * the kernel command line. early_platform_driver_register() handles
1325 	 * this case for us.
1326 	 */
1327 	parse_early_options(class_str);
1328 }
1329 
1330 /**
1331  * early_platform_match - find early platform device matching driver
1332  * @epdrv: early platform driver structure
1333  * @id: id to match against
1334  */
1335 static struct platform_device * __init
1336 early_platform_match(struct early_platform_driver *epdrv, int id)
1337 {
1338 	struct platform_device *pd;
1339 
1340 	list_for_each_entry(pd, &early_platform_device_list, dev.devres_head)
1341 		if (platform_match(&pd->dev, &epdrv->pdrv->driver))
1342 			if (pd->id == id)
1343 				return pd;
1344 
1345 	return NULL;
1346 }
1347 
1348 /**
1349  * early_platform_left - check if early platform driver has matching devices
1350  * @epdrv: early platform driver structure
1351  * @id: return true if id or above exists
1352  */
1353 static int __init early_platform_left(struct early_platform_driver *epdrv,
1354 				       int id)
1355 {
1356 	struct platform_device *pd;
1357 
1358 	list_for_each_entry(pd, &early_platform_device_list, dev.devres_head)
1359 		if (platform_match(&pd->dev, &epdrv->pdrv->driver))
1360 			if (pd->id >= id)
1361 				return 1;
1362 
1363 	return 0;
1364 }
1365 
1366 /**
1367  * early_platform_driver_probe_id - probe drivers matching class_str and id
1368  * @class_str: string to identify early platform driver class
1369  * @id: id to match against
1370  * @nr_probe: number of platform devices to successfully probe before exiting
1371  */
1372 static int __init early_platform_driver_probe_id(char *class_str,
1373 						 int id,
1374 						 int nr_probe)
1375 {
1376 	struct early_platform_driver *epdrv;
1377 	struct platform_device *match;
1378 	int match_id;
1379 	int n = 0;
1380 	int left = 0;
1381 
1382 	list_for_each_entry(epdrv, &early_platform_driver_list, list) {
1383 		/* only use drivers matching our class_str */
1384 		if (strcmp(class_str, epdrv->class_str))
1385 			continue;
1386 
1387 		if (id == -2) {
1388 			match_id = epdrv->requested_id;
1389 			left = 1;
1390 
1391 		} else {
1392 			match_id = id;
1393 			left += early_platform_left(epdrv, id);
1394 
1395 			/* skip requested id */
1396 			switch (epdrv->requested_id) {
1397 			case EARLY_PLATFORM_ID_ERROR:
1398 			case EARLY_PLATFORM_ID_UNSET:
1399 				break;
1400 			default:
1401 				if (epdrv->requested_id == id)
1402 					match_id = EARLY_PLATFORM_ID_UNSET;
1403 			}
1404 		}
1405 
1406 		switch (match_id) {
1407 		case EARLY_PLATFORM_ID_ERROR:
1408 			pr_warn("%s: unable to parse %s parameter\n",
1409 				class_str, epdrv->pdrv->driver.name);
1410 			/* fall-through */
1411 		case EARLY_PLATFORM_ID_UNSET:
1412 			match = NULL;
1413 			break;
1414 		default:
1415 			match = early_platform_match(epdrv, match_id);
1416 		}
1417 
1418 		if (match) {
1419 			/*
1420 			 * Set up a sensible init_name to enable
1421 			 * dev_name() and others to be used before the
1422 			 * rest of the driver core is initialized.
1423 			 */
1424 			if (!match->dev.init_name && slab_is_available()) {
1425 				if (match->id != -1)
1426 					match->dev.init_name =
1427 						kasprintf(GFP_KERNEL, "%s.%d",
1428 							  match->name,
1429 							  match->id);
1430 				else
1431 					match->dev.init_name =
1432 						kasprintf(GFP_KERNEL, "%s",
1433 							  match->name);
1434 
1435 				if (!match->dev.init_name)
1436 					return -ENOMEM;
1437 			}
1438 
1439 			if (epdrv->pdrv->probe(match))
1440 				pr_warn("%s: unable to probe %s early.\n",
1441 					class_str, match->name);
1442 			else
1443 				n++;
1444 		}
1445 
1446 		if (n >= nr_probe)
1447 			break;
1448 	}
1449 
1450 	if (left)
1451 		return n;
1452 	else
1453 		return -ENODEV;
1454 }
1455 
1456 /**
1457  * early_platform_driver_probe - probe a class of registered drivers
1458  * @class_str: string to identify early platform driver class
1459  * @nr_probe: number of platform devices to successfully probe before exiting
1460  * @user_only: only probe user specified early platform devices
1461  *
1462  * Used by architecture code to probe registered early platform drivers
1463  * within a certain class. For probe to happen a registered early platform
1464  * device matching a registered early platform driver is needed.
1465  */
1466 int __init early_platform_driver_probe(char *class_str,
1467 				       int nr_probe,
1468 				       int user_only)
1469 {
1470 	int k, n, i;
1471 
1472 	n = 0;
1473 	for (i = -2; n < nr_probe; i++) {
1474 		k = early_platform_driver_probe_id(class_str, i, nr_probe - n);
1475 
1476 		if (k < 0)
1477 			break;
1478 
1479 		n += k;
1480 
1481 		if (user_only)
1482 			break;
1483 	}
1484 
1485 	return n;
1486 }
1487 
1488 /**
1489  * early_platform_cleanup - clean up early platform code
1490  */
1491 void __init early_platform_cleanup(void)
1492 {
1493 	struct platform_device *pd, *pd2;
1494 
1495 	/* clean up the devres list used to chain devices */
1496 	list_for_each_entry_safe(pd, pd2, &early_platform_device_list,
1497 				 dev.devres_head) {
1498 		list_del(&pd->dev.devres_head);
1499 		memset(&pd->dev.devres_head, 0, sizeof(pd->dev.devres_head));
1500 	}
1501 }
1502 
1503