xref: /linux/drivers/block/pktcdvd.c (revision f023faaa)
1 /*
2  * Copyright (C) 2000 Jens Axboe <axboe@suse.de>
3  * Copyright (C) 2001-2004 Peter Osterlund <petero2@telia.com>
4  * Copyright (C) 2006 Thomas Maier <balagi@justmail.de>
5  *
6  * May be copied or modified under the terms of the GNU General Public
7  * License.  See linux/COPYING for more information.
8  *
9  * Packet writing layer for ATAPI and SCSI CD-RW, DVD+RW, DVD-RW and
10  * DVD-RAM devices.
11  *
12  * Theory of operation:
13  *
14  * At the lowest level, there is the standard driver for the CD/DVD device,
15  * such as drivers/scsi/sr.c. This driver can handle read and write requests,
16  * but it doesn't know anything about the special restrictions that apply to
17  * packet writing. One restriction is that write requests must be aligned to
18  * packet boundaries on the physical media, and the size of a write request
19  * must be equal to the packet size. Another restriction is that a
20  * GPCMD_FLUSH_CACHE command has to be issued to the drive before a read
21  * command, if the previous command was a write.
22  *
23  * The purpose of the packet writing driver is to hide these restrictions from
24  * higher layers, such as file systems, and present a block device that can be
25  * randomly read and written using 2kB-sized blocks.
26  *
27  * The lowest layer in the packet writing driver is the packet I/O scheduler.
28  * Its data is defined by the struct packet_iosched and includes two bio
29  * queues with pending read and write requests. These queues are processed
30  * by the pkt_iosched_process_queue() function. The write requests in this
31  * queue are already properly aligned and sized. This layer is responsible for
32  * issuing the flush cache commands and scheduling the I/O in a good order.
33  *
34  * The next layer transforms unaligned write requests to aligned writes. This
35  * transformation requires reading missing pieces of data from the underlying
36  * block device, assembling the pieces to full packets and queuing them to the
37  * packet I/O scheduler.
38  *
39  * At the top layer there is a custom ->submit_bio function that forwards
40  * read requests directly to the iosched queue and puts write requests in the
41  * unaligned write queue. A kernel thread performs the necessary read
42  * gathering to convert the unaligned writes to aligned writes and then feeds
43  * them to the packet I/O scheduler.
44  *
45  *************************************************************************/
46 
47 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
48 
49 #include <linux/pktcdvd.h>
50 #include <linux/module.h>
51 #include <linux/types.h>
52 #include <linux/kernel.h>
53 #include <linux/compat.h>
54 #include <linux/kthread.h>
55 #include <linux/errno.h>
56 #include <linux/spinlock.h>
57 #include <linux/file.h>
58 #include <linux/proc_fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/miscdevice.h>
61 #include <linux/freezer.h>
62 #include <linux/mutex.h>
63 #include <linux/slab.h>
64 #include <linux/backing-dev.h>
65 #include <scsi/scsi_cmnd.h>
66 #include <scsi/scsi_ioctl.h>
67 #include <scsi/scsi.h>
68 #include <linux/debugfs.h>
69 #include <linux/device.h>
70 #include <linux/nospec.h>
71 #include <linux/uaccess.h>
72 
73 #define DRIVER_NAME	"pktcdvd"
74 
75 #define MAX_SPEED 0xffff
76 
77 static DEFINE_MUTEX(pktcdvd_mutex);
78 static struct pktcdvd_device *pkt_devs[MAX_WRITERS];
79 static struct proc_dir_entry *pkt_proc;
80 static int pktdev_major;
81 static int write_congestion_on  = PKT_WRITE_CONGESTION_ON;
82 static int write_congestion_off = PKT_WRITE_CONGESTION_OFF;
83 static struct mutex ctl_mutex;	/* Serialize open/close/setup/teardown */
84 static mempool_t psd_pool;
85 static struct bio_set pkt_bio_set;
86 
87 /* /sys/class/pktcdvd */
88 static struct class	class_pktcdvd;
89 static struct dentry	*pkt_debugfs_root = NULL; /* /sys/kernel/debug/pktcdvd */
90 
91 /* forward declaration */
92 static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev);
93 static int pkt_remove_dev(dev_t pkt_dev);
94 
95 static sector_t get_zone(sector_t sector, struct pktcdvd_device *pd)
96 {
97 	return (sector + pd->offset) & ~(sector_t)(pd->settings.size - 1);
98 }
99 
100 /**********************************************************
101  * sysfs interface for pktcdvd
102  * by (C) 2006  Thomas Maier <balagi@justmail.de>
103 
104   /sys/class/pktcdvd/pktcdvd[0-7]/
105                      stat/reset
106                      stat/packets_started
107                      stat/packets_finished
108                      stat/kb_written
109                      stat/kb_read
110                      stat/kb_read_gather
111                      write_queue/size
112                      write_queue/congestion_off
113                      write_queue/congestion_on
114  **********************************************************/
115 
116 static ssize_t packets_started_show(struct device *dev,
117 				    struct device_attribute *attr, char *buf)
118 {
119 	struct pktcdvd_device *pd = dev_get_drvdata(dev);
120 
121 	return sysfs_emit(buf, "%lu\n", pd->stats.pkt_started);
122 }
123 static DEVICE_ATTR_RO(packets_started);
124 
125 static ssize_t packets_finished_show(struct device *dev,
126 				     struct device_attribute *attr, char *buf)
127 {
128 	struct pktcdvd_device *pd = dev_get_drvdata(dev);
129 
130 	return sysfs_emit(buf, "%lu\n", pd->stats.pkt_ended);
131 }
132 static DEVICE_ATTR_RO(packets_finished);
133 
134 static ssize_t kb_written_show(struct device *dev,
135 			       struct device_attribute *attr, char *buf)
136 {
137 	struct pktcdvd_device *pd = dev_get_drvdata(dev);
138 
139 	return sysfs_emit(buf, "%lu\n", pd->stats.secs_w >> 1);
140 }
141 static DEVICE_ATTR_RO(kb_written);
142 
143 static ssize_t kb_read_show(struct device *dev,
144 			    struct device_attribute *attr, char *buf)
145 {
146 	struct pktcdvd_device *pd = dev_get_drvdata(dev);
147 
148 	return sysfs_emit(buf, "%lu\n", pd->stats.secs_r >> 1);
149 }
150 static DEVICE_ATTR_RO(kb_read);
151 
152 static ssize_t kb_read_gather_show(struct device *dev,
153 				   struct device_attribute *attr, char *buf)
154 {
155 	struct pktcdvd_device *pd = dev_get_drvdata(dev);
156 
157 	return sysfs_emit(buf, "%lu\n", pd->stats.secs_rg >> 1);
158 }
159 static DEVICE_ATTR_RO(kb_read_gather);
160 
161 static ssize_t reset_store(struct device *dev, struct device_attribute *attr,
162 			   const char *buf, size_t len)
163 {
164 	struct pktcdvd_device *pd = dev_get_drvdata(dev);
165 
166 	if (len > 0) {
167 		pd->stats.pkt_started = 0;
168 		pd->stats.pkt_ended = 0;
169 		pd->stats.secs_w = 0;
170 		pd->stats.secs_rg = 0;
171 		pd->stats.secs_r = 0;
172 	}
173 	return len;
174 }
175 static DEVICE_ATTR_WO(reset);
176 
177 static struct attribute *pkt_stat_attrs[] = {
178 	&dev_attr_packets_finished.attr,
179 	&dev_attr_packets_started.attr,
180 	&dev_attr_kb_read.attr,
181 	&dev_attr_kb_written.attr,
182 	&dev_attr_kb_read_gather.attr,
183 	&dev_attr_reset.attr,
184 	NULL,
185 };
186 
187 static const struct attribute_group pkt_stat_group = {
188 	.name = "stat",
189 	.attrs = pkt_stat_attrs,
190 };
191 
192 static ssize_t size_show(struct device *dev,
193 			 struct device_attribute *attr, char *buf)
194 {
195 	struct pktcdvd_device *pd = dev_get_drvdata(dev);
196 	int n;
197 
198 	spin_lock(&pd->lock);
199 	n = sysfs_emit(buf, "%d\n", pd->bio_queue_size);
200 	spin_unlock(&pd->lock);
201 	return n;
202 }
203 static DEVICE_ATTR_RO(size);
204 
205 static void init_write_congestion_marks(int* lo, int* hi)
206 {
207 	if (*hi > 0) {
208 		*hi = max(*hi, 500);
209 		*hi = min(*hi, 1000000);
210 		if (*lo <= 0)
211 			*lo = *hi - 100;
212 		else {
213 			*lo = min(*lo, *hi - 100);
214 			*lo = max(*lo, 100);
215 		}
216 	} else {
217 		*hi = -1;
218 		*lo = -1;
219 	}
220 }
221 
222 static ssize_t congestion_off_show(struct device *dev,
223 				   struct device_attribute *attr, char *buf)
224 {
225 	struct pktcdvd_device *pd = dev_get_drvdata(dev);
226 	int n;
227 
228 	spin_lock(&pd->lock);
229 	n = sysfs_emit(buf, "%d\n", pd->write_congestion_off);
230 	spin_unlock(&pd->lock);
231 	return n;
232 }
233 
234 static ssize_t congestion_off_store(struct device *dev,
235 				    struct device_attribute *attr,
236 				    const char *buf, size_t len)
237 {
238 	struct pktcdvd_device *pd = dev_get_drvdata(dev);
239 	int val, ret;
240 
241 	ret = kstrtoint(buf, 10, &val);
242 	if (ret)
243 		return ret;
244 
245 	spin_lock(&pd->lock);
246 	pd->write_congestion_off = val;
247 	init_write_congestion_marks(&pd->write_congestion_off, &pd->write_congestion_on);
248 	spin_unlock(&pd->lock);
249 	return len;
250 }
251 static DEVICE_ATTR_RW(congestion_off);
252 
253 static ssize_t congestion_on_show(struct device *dev,
254 				  struct device_attribute *attr, char *buf)
255 {
256 	struct pktcdvd_device *pd = dev_get_drvdata(dev);
257 	int n;
258 
259 	spin_lock(&pd->lock);
260 	n = sysfs_emit(buf, "%d\n", pd->write_congestion_on);
261 	spin_unlock(&pd->lock);
262 	return n;
263 }
264 
265 static ssize_t congestion_on_store(struct device *dev,
266 				   struct device_attribute *attr,
267 				   const char *buf, size_t len)
268 {
269 	struct pktcdvd_device *pd = dev_get_drvdata(dev);
270 	int val, ret;
271 
272 	ret = kstrtoint(buf, 10, &val);
273 	if (ret)
274 		return ret;
275 
276 	spin_lock(&pd->lock);
277 	pd->write_congestion_on = val;
278 	init_write_congestion_marks(&pd->write_congestion_off, &pd->write_congestion_on);
279 	spin_unlock(&pd->lock);
280 	return len;
281 }
282 static DEVICE_ATTR_RW(congestion_on);
283 
284 static struct attribute *pkt_wq_attrs[] = {
285 	&dev_attr_congestion_on.attr,
286 	&dev_attr_congestion_off.attr,
287 	&dev_attr_size.attr,
288 	NULL,
289 };
290 
291 static const struct attribute_group pkt_wq_group = {
292 	.name = "write_queue",
293 	.attrs = pkt_wq_attrs,
294 };
295 
296 static const struct attribute_group *pkt_groups[] = {
297 	&pkt_stat_group,
298 	&pkt_wq_group,
299 	NULL,
300 };
301 
302 static void pkt_sysfs_dev_new(struct pktcdvd_device *pd)
303 {
304 	if (class_is_registered(&class_pktcdvd)) {
305 		pd->dev = device_create_with_groups(&class_pktcdvd, NULL,
306 						    MKDEV(0, 0), pd, pkt_groups,
307 						    "%s", pd->disk->disk_name);
308 		if (IS_ERR(pd->dev))
309 			pd->dev = NULL;
310 	}
311 }
312 
313 static void pkt_sysfs_dev_remove(struct pktcdvd_device *pd)
314 {
315 	if (class_is_registered(&class_pktcdvd))
316 		device_unregister(pd->dev);
317 }
318 
319 
320 /********************************************************************
321   /sys/class/pktcdvd/
322                      add            map block device
323                      remove         unmap packet dev
324                      device_map     show mappings
325  *******************************************************************/
326 
327 static ssize_t device_map_show(const struct class *c, const struct class_attribute *attr,
328 			       char *data)
329 {
330 	int n = 0;
331 	int idx;
332 	mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
333 	for (idx = 0; idx < MAX_WRITERS; idx++) {
334 		struct pktcdvd_device *pd = pkt_devs[idx];
335 		if (!pd)
336 			continue;
337 		n += sysfs_emit_at(data, n, "%s %u:%u %u:%u\n",
338 			pd->disk->disk_name,
339 			MAJOR(pd->pkt_dev), MINOR(pd->pkt_dev),
340 			MAJOR(pd->bdev->bd_dev),
341 			MINOR(pd->bdev->bd_dev));
342 	}
343 	mutex_unlock(&ctl_mutex);
344 	return n;
345 }
346 static CLASS_ATTR_RO(device_map);
347 
348 static ssize_t add_store(const struct class *c, const struct class_attribute *attr,
349 			 const char *buf, size_t count)
350 {
351 	unsigned int major, minor;
352 
353 	if (sscanf(buf, "%u:%u", &major, &minor) == 2) {
354 		/* pkt_setup_dev() expects caller to hold reference to self */
355 		if (!try_module_get(THIS_MODULE))
356 			return -ENODEV;
357 
358 		pkt_setup_dev(MKDEV(major, minor), NULL);
359 
360 		module_put(THIS_MODULE);
361 
362 		return count;
363 	}
364 
365 	return -EINVAL;
366 }
367 static CLASS_ATTR_WO(add);
368 
369 static ssize_t remove_store(const struct class *c, const struct class_attribute *attr,
370 			    const char *buf, size_t count)
371 {
372 	unsigned int major, minor;
373 	if (sscanf(buf, "%u:%u", &major, &minor) == 2) {
374 		pkt_remove_dev(MKDEV(major, minor));
375 		return count;
376 	}
377 	return -EINVAL;
378 }
379 static CLASS_ATTR_WO(remove);
380 
381 static struct attribute *class_pktcdvd_attrs[] = {
382 	&class_attr_add.attr,
383 	&class_attr_remove.attr,
384 	&class_attr_device_map.attr,
385 	NULL,
386 };
387 ATTRIBUTE_GROUPS(class_pktcdvd);
388 
389 static struct class class_pktcdvd = {
390 	.name		= DRIVER_NAME,
391 	.class_groups	= class_pktcdvd_groups,
392 };
393 
394 static int pkt_sysfs_init(void)
395 {
396 	/*
397 	 * create control files in sysfs
398 	 * /sys/class/pktcdvd/...
399 	 */
400 	return class_register(&class_pktcdvd);
401 }
402 
403 static void pkt_sysfs_cleanup(void)
404 {
405 	class_unregister(&class_pktcdvd);
406 }
407 
408 /********************************************************************
409   entries in debugfs
410 
411   /sys/kernel/debug/pktcdvd[0-7]/
412 			info
413 
414  *******************************************************************/
415 
416 static void pkt_count_states(struct pktcdvd_device *pd, int *states)
417 {
418 	struct packet_data *pkt;
419 	int i;
420 
421 	for (i = 0; i < PACKET_NUM_STATES; i++)
422 		states[i] = 0;
423 
424 	spin_lock(&pd->cdrw.active_list_lock);
425 	list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
426 		states[pkt->state]++;
427 	}
428 	spin_unlock(&pd->cdrw.active_list_lock);
429 }
430 
431 static int pkt_seq_show(struct seq_file *m, void *p)
432 {
433 	struct pktcdvd_device *pd = m->private;
434 	char *msg;
435 	int states[PACKET_NUM_STATES];
436 
437 	seq_printf(m, "Writer %s mapped to %pg:\n", pd->disk->disk_name, pd->bdev);
438 
439 	seq_printf(m, "\nSettings:\n");
440 	seq_printf(m, "\tpacket size:\t\t%dkB\n", pd->settings.size / 2);
441 
442 	if (pd->settings.write_type == 0)
443 		msg = "Packet";
444 	else
445 		msg = "Unknown";
446 	seq_printf(m, "\twrite type:\t\t%s\n", msg);
447 
448 	seq_printf(m, "\tpacket type:\t\t%s\n", pd->settings.fp ? "Fixed" : "Variable");
449 	seq_printf(m, "\tlink loss:\t\t%d\n", pd->settings.link_loss);
450 
451 	seq_printf(m, "\ttrack mode:\t\t%d\n", pd->settings.track_mode);
452 
453 	if (pd->settings.block_mode == PACKET_BLOCK_MODE1)
454 		msg = "Mode 1";
455 	else if (pd->settings.block_mode == PACKET_BLOCK_MODE2)
456 		msg = "Mode 2";
457 	else
458 		msg = "Unknown";
459 	seq_printf(m, "\tblock mode:\t\t%s\n", msg);
460 
461 	seq_printf(m, "\nStatistics:\n");
462 	seq_printf(m, "\tpackets started:\t%lu\n", pd->stats.pkt_started);
463 	seq_printf(m, "\tpackets ended:\t\t%lu\n", pd->stats.pkt_ended);
464 	seq_printf(m, "\twritten:\t\t%lukB\n", pd->stats.secs_w >> 1);
465 	seq_printf(m, "\tread gather:\t\t%lukB\n", pd->stats.secs_rg >> 1);
466 	seq_printf(m, "\tread:\t\t\t%lukB\n", pd->stats.secs_r >> 1);
467 
468 	seq_printf(m, "\nMisc:\n");
469 	seq_printf(m, "\treference count:\t%d\n", pd->refcnt);
470 	seq_printf(m, "\tflags:\t\t\t0x%lx\n", pd->flags);
471 	seq_printf(m, "\tread speed:\t\t%ukB/s\n", pd->read_speed);
472 	seq_printf(m, "\twrite speed:\t\t%ukB/s\n", pd->write_speed);
473 	seq_printf(m, "\tstart offset:\t\t%lu\n", pd->offset);
474 	seq_printf(m, "\tmode page offset:\t%u\n", pd->mode_offset);
475 
476 	seq_printf(m, "\nQueue state:\n");
477 	seq_printf(m, "\tbios queued:\t\t%d\n", pd->bio_queue_size);
478 	seq_printf(m, "\tbios pending:\t\t%d\n", atomic_read(&pd->cdrw.pending_bios));
479 	seq_printf(m, "\tcurrent sector:\t\t0x%llx\n", (unsigned long long)pd->current_sector);
480 
481 	pkt_count_states(pd, states);
482 	seq_printf(m, "\tstate:\t\t\ti:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
483 		   states[0], states[1], states[2], states[3], states[4], states[5]);
484 
485 	seq_printf(m, "\twrite congestion marks:\toff=%d on=%d\n",
486 			pd->write_congestion_off,
487 			pd->write_congestion_on);
488 	return 0;
489 }
490 
491 static int pkt_debugfs_seq_show(struct seq_file *m, void *p)
492 {
493 	return pkt_seq_show(m, p);
494 }
495 
496 static int pkt_debugfs_fops_open(struct inode *inode, struct file *file)
497 {
498 	return single_open(file, pkt_debugfs_seq_show, inode->i_private);
499 }
500 
501 static const struct file_operations debug_fops = {
502 	.open		= pkt_debugfs_fops_open,
503 	.read		= seq_read,
504 	.llseek		= seq_lseek,
505 	.release	= single_release,
506 	.owner		= THIS_MODULE,
507 };
508 
509 static void pkt_debugfs_dev_new(struct pktcdvd_device *pd)
510 {
511 	if (!pkt_debugfs_root)
512 		return;
513 	pd->dfs_d_root = debugfs_create_dir(pd->disk->disk_name, pkt_debugfs_root);
514 	if (!pd->dfs_d_root)
515 		return;
516 
517 	pd->dfs_f_info = debugfs_create_file("info", 0444,
518 					     pd->dfs_d_root, pd, &debug_fops);
519 }
520 
521 static void pkt_debugfs_dev_remove(struct pktcdvd_device *pd)
522 {
523 	if (!pkt_debugfs_root)
524 		return;
525 	debugfs_remove(pd->dfs_f_info);
526 	debugfs_remove(pd->dfs_d_root);
527 	pd->dfs_f_info = NULL;
528 	pd->dfs_d_root = NULL;
529 }
530 
531 static void pkt_debugfs_init(void)
532 {
533 	pkt_debugfs_root = debugfs_create_dir(DRIVER_NAME, NULL);
534 }
535 
536 static void pkt_debugfs_cleanup(void)
537 {
538 	debugfs_remove(pkt_debugfs_root);
539 	pkt_debugfs_root = NULL;
540 }
541 
542 /* ----------------------------------------------------------*/
543 
544 
545 static void pkt_bio_finished(struct pktcdvd_device *pd)
546 {
547 	struct device *ddev = disk_to_dev(pd->disk);
548 
549 	BUG_ON(atomic_read(&pd->cdrw.pending_bios) <= 0);
550 	if (atomic_dec_and_test(&pd->cdrw.pending_bios)) {
551 		dev_dbg(ddev, "queue empty\n");
552 		atomic_set(&pd->iosched.attention, 1);
553 		wake_up(&pd->wqueue);
554 	}
555 }
556 
557 /*
558  * Allocate a packet_data struct
559  */
560 static struct packet_data *pkt_alloc_packet_data(int frames)
561 {
562 	int i;
563 	struct packet_data *pkt;
564 
565 	pkt = kzalloc(sizeof(struct packet_data), GFP_KERNEL);
566 	if (!pkt)
567 		goto no_pkt;
568 
569 	pkt->frames = frames;
570 	pkt->w_bio = bio_kmalloc(frames, GFP_KERNEL);
571 	if (!pkt->w_bio)
572 		goto no_bio;
573 
574 	for (i = 0; i < frames / FRAMES_PER_PAGE; i++) {
575 		pkt->pages[i] = alloc_page(GFP_KERNEL|__GFP_ZERO);
576 		if (!pkt->pages[i])
577 			goto no_page;
578 	}
579 
580 	spin_lock_init(&pkt->lock);
581 	bio_list_init(&pkt->orig_bios);
582 
583 	for (i = 0; i < frames; i++) {
584 		pkt->r_bios[i] = bio_kmalloc(1, GFP_KERNEL);
585 		if (!pkt->r_bios[i])
586 			goto no_rd_bio;
587 	}
588 
589 	return pkt;
590 
591 no_rd_bio:
592 	for (i = 0; i < frames; i++)
593 		kfree(pkt->r_bios[i]);
594 no_page:
595 	for (i = 0; i < frames / FRAMES_PER_PAGE; i++)
596 		if (pkt->pages[i])
597 			__free_page(pkt->pages[i]);
598 	kfree(pkt->w_bio);
599 no_bio:
600 	kfree(pkt);
601 no_pkt:
602 	return NULL;
603 }
604 
605 /*
606  * Free a packet_data struct
607  */
608 static void pkt_free_packet_data(struct packet_data *pkt)
609 {
610 	int i;
611 
612 	for (i = 0; i < pkt->frames; i++)
613 		kfree(pkt->r_bios[i]);
614 	for (i = 0; i < pkt->frames / FRAMES_PER_PAGE; i++)
615 		__free_page(pkt->pages[i]);
616 	kfree(pkt->w_bio);
617 	kfree(pkt);
618 }
619 
620 static void pkt_shrink_pktlist(struct pktcdvd_device *pd)
621 {
622 	struct packet_data *pkt, *next;
623 
624 	BUG_ON(!list_empty(&pd->cdrw.pkt_active_list));
625 
626 	list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_free_list, list) {
627 		pkt_free_packet_data(pkt);
628 	}
629 	INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
630 }
631 
632 static int pkt_grow_pktlist(struct pktcdvd_device *pd, int nr_packets)
633 {
634 	struct packet_data *pkt;
635 
636 	BUG_ON(!list_empty(&pd->cdrw.pkt_free_list));
637 
638 	while (nr_packets > 0) {
639 		pkt = pkt_alloc_packet_data(pd->settings.size >> 2);
640 		if (!pkt) {
641 			pkt_shrink_pktlist(pd);
642 			return 0;
643 		}
644 		pkt->id = nr_packets;
645 		pkt->pd = pd;
646 		list_add(&pkt->list, &pd->cdrw.pkt_free_list);
647 		nr_packets--;
648 	}
649 	return 1;
650 }
651 
652 static inline struct pkt_rb_node *pkt_rbtree_next(struct pkt_rb_node *node)
653 {
654 	struct rb_node *n = rb_next(&node->rb_node);
655 	if (!n)
656 		return NULL;
657 	return rb_entry(n, struct pkt_rb_node, rb_node);
658 }
659 
660 static void pkt_rbtree_erase(struct pktcdvd_device *pd, struct pkt_rb_node *node)
661 {
662 	rb_erase(&node->rb_node, &pd->bio_queue);
663 	mempool_free(node, &pd->rb_pool);
664 	pd->bio_queue_size--;
665 	BUG_ON(pd->bio_queue_size < 0);
666 }
667 
668 /*
669  * Find the first node in the pd->bio_queue rb tree with a starting sector >= s.
670  */
671 static struct pkt_rb_node *pkt_rbtree_find(struct pktcdvd_device *pd, sector_t s)
672 {
673 	struct rb_node *n = pd->bio_queue.rb_node;
674 	struct rb_node *next;
675 	struct pkt_rb_node *tmp;
676 
677 	if (!n) {
678 		BUG_ON(pd->bio_queue_size > 0);
679 		return NULL;
680 	}
681 
682 	for (;;) {
683 		tmp = rb_entry(n, struct pkt_rb_node, rb_node);
684 		if (s <= tmp->bio->bi_iter.bi_sector)
685 			next = n->rb_left;
686 		else
687 			next = n->rb_right;
688 		if (!next)
689 			break;
690 		n = next;
691 	}
692 
693 	if (s > tmp->bio->bi_iter.bi_sector) {
694 		tmp = pkt_rbtree_next(tmp);
695 		if (!tmp)
696 			return NULL;
697 	}
698 	BUG_ON(s > tmp->bio->bi_iter.bi_sector);
699 	return tmp;
700 }
701 
702 /*
703  * Insert a node into the pd->bio_queue rb tree.
704  */
705 static void pkt_rbtree_insert(struct pktcdvd_device *pd, struct pkt_rb_node *node)
706 {
707 	struct rb_node **p = &pd->bio_queue.rb_node;
708 	struct rb_node *parent = NULL;
709 	sector_t s = node->bio->bi_iter.bi_sector;
710 	struct pkt_rb_node *tmp;
711 
712 	while (*p) {
713 		parent = *p;
714 		tmp = rb_entry(parent, struct pkt_rb_node, rb_node);
715 		if (s < tmp->bio->bi_iter.bi_sector)
716 			p = &(*p)->rb_left;
717 		else
718 			p = &(*p)->rb_right;
719 	}
720 	rb_link_node(&node->rb_node, parent, p);
721 	rb_insert_color(&node->rb_node, &pd->bio_queue);
722 	pd->bio_queue_size++;
723 }
724 
725 /*
726  * Send a packet_command to the underlying block device and
727  * wait for completion.
728  */
729 static int pkt_generic_packet(struct pktcdvd_device *pd, struct packet_command *cgc)
730 {
731 	struct request_queue *q = bdev_get_queue(pd->bdev);
732 	struct scsi_cmnd *scmd;
733 	struct request *rq;
734 	int ret = 0;
735 
736 	rq = scsi_alloc_request(q, (cgc->data_direction == CGC_DATA_WRITE) ?
737 			     REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0);
738 	if (IS_ERR(rq))
739 		return PTR_ERR(rq);
740 	scmd = blk_mq_rq_to_pdu(rq);
741 
742 	if (cgc->buflen) {
743 		ret = blk_rq_map_kern(q, rq, cgc->buffer, cgc->buflen,
744 				      GFP_NOIO);
745 		if (ret)
746 			goto out;
747 	}
748 
749 	scmd->cmd_len = COMMAND_SIZE(cgc->cmd[0]);
750 	memcpy(scmd->cmnd, cgc->cmd, CDROM_PACKET_SIZE);
751 
752 	rq->timeout = 60*HZ;
753 	if (cgc->quiet)
754 		rq->rq_flags |= RQF_QUIET;
755 
756 	blk_execute_rq(rq, false);
757 	if (scmd->result)
758 		ret = -EIO;
759 out:
760 	blk_mq_free_request(rq);
761 	return ret;
762 }
763 
764 static const char *sense_key_string(__u8 index)
765 {
766 	static const char * const info[] = {
767 		"No sense", "Recovered error", "Not ready",
768 		"Medium error", "Hardware error", "Illegal request",
769 		"Unit attention", "Data protect", "Blank check",
770 	};
771 
772 	return index < ARRAY_SIZE(info) ? info[index] : "INVALID";
773 }
774 
775 /*
776  * A generic sense dump / resolve mechanism should be implemented across
777  * all ATAPI + SCSI devices.
778  */
779 static void pkt_dump_sense(struct pktcdvd_device *pd,
780 			   struct packet_command *cgc)
781 {
782 	struct device *ddev = disk_to_dev(pd->disk);
783 	struct scsi_sense_hdr *sshdr = cgc->sshdr;
784 
785 	if (sshdr)
786 		dev_err(ddev, "%*ph - sense %02x.%02x.%02x (%s)\n",
787 			CDROM_PACKET_SIZE, cgc->cmd,
788 			sshdr->sense_key, sshdr->asc, sshdr->ascq,
789 			sense_key_string(sshdr->sense_key));
790 	else
791 		dev_err(ddev, "%*ph - no sense\n", CDROM_PACKET_SIZE, cgc->cmd);
792 }
793 
794 /*
795  * flush the drive cache to media
796  */
797 static int pkt_flush_cache(struct pktcdvd_device *pd)
798 {
799 	struct packet_command cgc;
800 
801 	init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
802 	cgc.cmd[0] = GPCMD_FLUSH_CACHE;
803 	cgc.quiet = 1;
804 
805 	/*
806 	 * the IMMED bit -- we default to not setting it, although that
807 	 * would allow a much faster close, this is safer
808 	 */
809 #if 0
810 	cgc.cmd[1] = 1 << 1;
811 #endif
812 	return pkt_generic_packet(pd, &cgc);
813 }
814 
815 /*
816  * speed is given as the normal factor, e.g. 4 for 4x
817  */
818 static noinline_for_stack int pkt_set_speed(struct pktcdvd_device *pd,
819 				unsigned write_speed, unsigned read_speed)
820 {
821 	struct packet_command cgc;
822 	struct scsi_sense_hdr sshdr;
823 	int ret;
824 
825 	init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
826 	cgc.sshdr = &sshdr;
827 	cgc.cmd[0] = GPCMD_SET_SPEED;
828 	cgc.cmd[2] = (read_speed >> 8) & 0xff;
829 	cgc.cmd[3] = read_speed & 0xff;
830 	cgc.cmd[4] = (write_speed >> 8) & 0xff;
831 	cgc.cmd[5] = write_speed & 0xff;
832 
833 	ret = pkt_generic_packet(pd, &cgc);
834 	if (ret)
835 		pkt_dump_sense(pd, &cgc);
836 
837 	return ret;
838 }
839 
840 /*
841  * Queue a bio for processing by the low-level CD device. Must be called
842  * from process context.
843  */
844 static void pkt_queue_bio(struct pktcdvd_device *pd, struct bio *bio)
845 {
846 	spin_lock(&pd->iosched.lock);
847 	if (bio_data_dir(bio) == READ)
848 		bio_list_add(&pd->iosched.read_queue, bio);
849 	else
850 		bio_list_add(&pd->iosched.write_queue, bio);
851 	spin_unlock(&pd->iosched.lock);
852 
853 	atomic_set(&pd->iosched.attention, 1);
854 	wake_up(&pd->wqueue);
855 }
856 
857 /*
858  * Process the queued read/write requests. This function handles special
859  * requirements for CDRW drives:
860  * - A cache flush command must be inserted before a read request if the
861  *   previous request was a write.
862  * - Switching between reading and writing is slow, so don't do it more often
863  *   than necessary.
864  * - Optimize for throughput at the expense of latency. This means that streaming
865  *   writes will never be interrupted by a read, but if the drive has to seek
866  *   before the next write, switch to reading instead if there are any pending
867  *   read requests.
868  * - Set the read speed according to current usage pattern. When only reading
869  *   from the device, it's best to use the highest possible read speed, but
870  *   when switching often between reading and writing, it's better to have the
871  *   same read and write speeds.
872  */
873 static void pkt_iosched_process_queue(struct pktcdvd_device *pd)
874 {
875 	struct device *ddev = disk_to_dev(pd->disk);
876 
877 	if (atomic_read(&pd->iosched.attention) == 0)
878 		return;
879 	atomic_set(&pd->iosched.attention, 0);
880 
881 	for (;;) {
882 		struct bio *bio;
883 		int reads_queued, writes_queued;
884 
885 		spin_lock(&pd->iosched.lock);
886 		reads_queued = !bio_list_empty(&pd->iosched.read_queue);
887 		writes_queued = !bio_list_empty(&pd->iosched.write_queue);
888 		spin_unlock(&pd->iosched.lock);
889 
890 		if (!reads_queued && !writes_queued)
891 			break;
892 
893 		if (pd->iosched.writing) {
894 			int need_write_seek = 1;
895 			spin_lock(&pd->iosched.lock);
896 			bio = bio_list_peek(&pd->iosched.write_queue);
897 			spin_unlock(&pd->iosched.lock);
898 			if (bio && (bio->bi_iter.bi_sector ==
899 				    pd->iosched.last_write))
900 				need_write_seek = 0;
901 			if (need_write_seek && reads_queued) {
902 				if (atomic_read(&pd->cdrw.pending_bios) > 0) {
903 					dev_dbg(ddev, "write, waiting\n");
904 					break;
905 				}
906 				pkt_flush_cache(pd);
907 				pd->iosched.writing = 0;
908 			}
909 		} else {
910 			if (!reads_queued && writes_queued) {
911 				if (atomic_read(&pd->cdrw.pending_bios) > 0) {
912 					dev_dbg(ddev, "read, waiting\n");
913 					break;
914 				}
915 				pd->iosched.writing = 1;
916 			}
917 		}
918 
919 		spin_lock(&pd->iosched.lock);
920 		if (pd->iosched.writing)
921 			bio = bio_list_pop(&pd->iosched.write_queue);
922 		else
923 			bio = bio_list_pop(&pd->iosched.read_queue);
924 		spin_unlock(&pd->iosched.lock);
925 
926 		if (!bio)
927 			continue;
928 
929 		if (bio_data_dir(bio) == READ)
930 			pd->iosched.successive_reads +=
931 				bio->bi_iter.bi_size >> 10;
932 		else {
933 			pd->iosched.successive_reads = 0;
934 			pd->iosched.last_write = bio_end_sector(bio);
935 		}
936 		if (pd->iosched.successive_reads >= HI_SPEED_SWITCH) {
937 			if (pd->read_speed == pd->write_speed) {
938 				pd->read_speed = MAX_SPEED;
939 				pkt_set_speed(pd, pd->write_speed, pd->read_speed);
940 			}
941 		} else {
942 			if (pd->read_speed != pd->write_speed) {
943 				pd->read_speed = pd->write_speed;
944 				pkt_set_speed(pd, pd->write_speed, pd->read_speed);
945 			}
946 		}
947 
948 		atomic_inc(&pd->cdrw.pending_bios);
949 		submit_bio_noacct(bio);
950 	}
951 }
952 
953 /*
954  * Special care is needed if the underlying block device has a small
955  * max_phys_segments value.
956  */
957 static int pkt_set_segment_merging(struct pktcdvd_device *pd, struct request_queue *q)
958 {
959 	struct device *ddev = disk_to_dev(pd->disk);
960 
961 	if ((pd->settings.size << 9) / CD_FRAMESIZE
962 	    <= queue_max_segments(q)) {
963 		/*
964 		 * The cdrom device can handle one segment/frame
965 		 */
966 		clear_bit(PACKET_MERGE_SEGS, &pd->flags);
967 		return 0;
968 	} else if ((pd->settings.size << 9) / PAGE_SIZE
969 		   <= queue_max_segments(q)) {
970 		/*
971 		 * We can handle this case at the expense of some extra memory
972 		 * copies during write operations
973 		 */
974 		set_bit(PACKET_MERGE_SEGS, &pd->flags);
975 		return 0;
976 	} else {
977 		dev_err(ddev, "cdrom max_phys_segments too small\n");
978 		return -EIO;
979 	}
980 }
981 
982 static void pkt_end_io_read(struct bio *bio)
983 {
984 	struct packet_data *pkt = bio->bi_private;
985 	struct pktcdvd_device *pd = pkt->pd;
986 	BUG_ON(!pd);
987 
988 	dev_dbg(disk_to_dev(pd->disk), "bio=%p sec0=%llx sec=%llx err=%d\n",
989 		bio, (unsigned long long)pkt->sector,
990 		(unsigned long long)bio->bi_iter.bi_sector, bio->bi_status);
991 
992 	if (bio->bi_status)
993 		atomic_inc(&pkt->io_errors);
994 	bio_uninit(bio);
995 	if (atomic_dec_and_test(&pkt->io_wait)) {
996 		atomic_inc(&pkt->run_sm);
997 		wake_up(&pd->wqueue);
998 	}
999 	pkt_bio_finished(pd);
1000 }
1001 
1002 static void pkt_end_io_packet_write(struct bio *bio)
1003 {
1004 	struct packet_data *pkt = bio->bi_private;
1005 	struct pktcdvd_device *pd = pkt->pd;
1006 	BUG_ON(!pd);
1007 
1008 	dev_dbg(disk_to_dev(pd->disk), "id=%d, err=%d\n", pkt->id, bio->bi_status);
1009 
1010 	pd->stats.pkt_ended++;
1011 
1012 	bio_uninit(bio);
1013 	pkt_bio_finished(pd);
1014 	atomic_dec(&pkt->io_wait);
1015 	atomic_inc(&pkt->run_sm);
1016 	wake_up(&pd->wqueue);
1017 }
1018 
1019 /*
1020  * Schedule reads for the holes in a packet
1021  */
1022 static void pkt_gather_data(struct pktcdvd_device *pd, struct packet_data *pkt)
1023 {
1024 	struct device *ddev = disk_to_dev(pd->disk);
1025 	int frames_read = 0;
1026 	struct bio *bio;
1027 	int f;
1028 	char written[PACKET_MAX_SIZE];
1029 
1030 	BUG_ON(bio_list_empty(&pkt->orig_bios));
1031 
1032 	atomic_set(&pkt->io_wait, 0);
1033 	atomic_set(&pkt->io_errors, 0);
1034 
1035 	/*
1036 	 * Figure out which frames we need to read before we can write.
1037 	 */
1038 	memset(written, 0, sizeof(written));
1039 	spin_lock(&pkt->lock);
1040 	bio_list_for_each(bio, &pkt->orig_bios) {
1041 		int first_frame = (bio->bi_iter.bi_sector - pkt->sector) /
1042 			(CD_FRAMESIZE >> 9);
1043 		int num_frames = bio->bi_iter.bi_size / CD_FRAMESIZE;
1044 		pd->stats.secs_w += num_frames * (CD_FRAMESIZE >> 9);
1045 		BUG_ON(first_frame < 0);
1046 		BUG_ON(first_frame + num_frames > pkt->frames);
1047 		for (f = first_frame; f < first_frame + num_frames; f++)
1048 			written[f] = 1;
1049 	}
1050 	spin_unlock(&pkt->lock);
1051 
1052 	if (pkt->cache_valid) {
1053 		dev_dbg(ddev, "zone %llx cached\n", (unsigned long long)pkt->sector);
1054 		goto out_account;
1055 	}
1056 
1057 	/*
1058 	 * Schedule reads for missing parts of the packet.
1059 	 */
1060 	for (f = 0; f < pkt->frames; f++) {
1061 		int p, offset;
1062 
1063 		if (written[f])
1064 			continue;
1065 
1066 		bio = pkt->r_bios[f];
1067 		bio_init(bio, pd->bdev, bio->bi_inline_vecs, 1, REQ_OP_READ);
1068 		bio->bi_iter.bi_sector = pkt->sector + f * (CD_FRAMESIZE >> 9);
1069 		bio->bi_end_io = pkt_end_io_read;
1070 		bio->bi_private = pkt;
1071 
1072 		p = (f * CD_FRAMESIZE) / PAGE_SIZE;
1073 		offset = (f * CD_FRAMESIZE) % PAGE_SIZE;
1074 		dev_dbg(ddev, "Adding frame %d, page:%p offs:%d\n", f,
1075 			pkt->pages[p], offset);
1076 		if (!bio_add_page(bio, pkt->pages[p], CD_FRAMESIZE, offset))
1077 			BUG();
1078 
1079 		atomic_inc(&pkt->io_wait);
1080 		pkt_queue_bio(pd, bio);
1081 		frames_read++;
1082 	}
1083 
1084 out_account:
1085 	dev_dbg(ddev, "need %d frames for zone %llx\n", frames_read,
1086 		(unsigned long long)pkt->sector);
1087 	pd->stats.pkt_started++;
1088 	pd->stats.secs_rg += frames_read * (CD_FRAMESIZE >> 9);
1089 }
1090 
1091 /*
1092  * Find a packet matching zone, or the least recently used packet if
1093  * there is no match.
1094  */
1095 static struct packet_data *pkt_get_packet_data(struct pktcdvd_device *pd, int zone)
1096 {
1097 	struct packet_data *pkt;
1098 
1099 	list_for_each_entry(pkt, &pd->cdrw.pkt_free_list, list) {
1100 		if (pkt->sector == zone || pkt->list.next == &pd->cdrw.pkt_free_list) {
1101 			list_del_init(&pkt->list);
1102 			if (pkt->sector != zone)
1103 				pkt->cache_valid = 0;
1104 			return pkt;
1105 		}
1106 	}
1107 	BUG();
1108 	return NULL;
1109 }
1110 
1111 static void pkt_put_packet_data(struct pktcdvd_device *pd, struct packet_data *pkt)
1112 {
1113 	if (pkt->cache_valid) {
1114 		list_add(&pkt->list, &pd->cdrw.pkt_free_list);
1115 	} else {
1116 		list_add_tail(&pkt->list, &pd->cdrw.pkt_free_list);
1117 	}
1118 }
1119 
1120 static inline void pkt_set_state(struct device *ddev, struct packet_data *pkt,
1121 				 enum packet_data_state state)
1122 {
1123 	static const char *state_name[] = {
1124 		"IDLE", "WAITING", "READ_WAIT", "WRITE_WAIT", "RECOVERY", "FINISHED"
1125 	};
1126 	enum packet_data_state old_state = pkt->state;
1127 
1128 	dev_dbg(ddev, "pkt %2d : s=%6llx %s -> %s\n",
1129 		pkt->id, (unsigned long long)pkt->sector,
1130 		state_name[old_state], state_name[state]);
1131 
1132 	pkt->state = state;
1133 }
1134 
1135 /*
1136  * Scan the work queue to see if we can start a new packet.
1137  * returns non-zero if any work was done.
1138  */
1139 static int pkt_handle_queue(struct pktcdvd_device *pd)
1140 {
1141 	struct device *ddev = disk_to_dev(pd->disk);
1142 	struct packet_data *pkt, *p;
1143 	struct bio *bio = NULL;
1144 	sector_t zone = 0; /* Suppress gcc warning */
1145 	struct pkt_rb_node *node, *first_node;
1146 	struct rb_node *n;
1147 
1148 	atomic_set(&pd->scan_queue, 0);
1149 
1150 	if (list_empty(&pd->cdrw.pkt_free_list)) {
1151 		dev_dbg(ddev, "no pkt\n");
1152 		return 0;
1153 	}
1154 
1155 	/*
1156 	 * Try to find a zone we are not already working on.
1157 	 */
1158 	spin_lock(&pd->lock);
1159 	first_node = pkt_rbtree_find(pd, pd->current_sector);
1160 	if (!first_node) {
1161 		n = rb_first(&pd->bio_queue);
1162 		if (n)
1163 			first_node = rb_entry(n, struct pkt_rb_node, rb_node);
1164 	}
1165 	node = first_node;
1166 	while (node) {
1167 		bio = node->bio;
1168 		zone = get_zone(bio->bi_iter.bi_sector, pd);
1169 		list_for_each_entry(p, &pd->cdrw.pkt_active_list, list) {
1170 			if (p->sector == zone) {
1171 				bio = NULL;
1172 				goto try_next_bio;
1173 			}
1174 		}
1175 		break;
1176 try_next_bio:
1177 		node = pkt_rbtree_next(node);
1178 		if (!node) {
1179 			n = rb_first(&pd->bio_queue);
1180 			if (n)
1181 				node = rb_entry(n, struct pkt_rb_node, rb_node);
1182 		}
1183 		if (node == first_node)
1184 			node = NULL;
1185 	}
1186 	spin_unlock(&pd->lock);
1187 	if (!bio) {
1188 		dev_dbg(ddev, "no bio\n");
1189 		return 0;
1190 	}
1191 
1192 	pkt = pkt_get_packet_data(pd, zone);
1193 
1194 	pd->current_sector = zone + pd->settings.size;
1195 	pkt->sector = zone;
1196 	BUG_ON(pkt->frames != pd->settings.size >> 2);
1197 	pkt->write_size = 0;
1198 
1199 	/*
1200 	 * Scan work queue for bios in the same zone and link them
1201 	 * to this packet.
1202 	 */
1203 	spin_lock(&pd->lock);
1204 	dev_dbg(ddev, "looking for zone %llx\n", (unsigned long long)zone);
1205 	while ((node = pkt_rbtree_find(pd, zone)) != NULL) {
1206 		sector_t tmp = get_zone(node->bio->bi_iter.bi_sector, pd);
1207 
1208 		bio = node->bio;
1209 		dev_dbg(ddev, "found zone=%llx\n", (unsigned long long)tmp);
1210 		if (tmp != zone)
1211 			break;
1212 		pkt_rbtree_erase(pd, node);
1213 		spin_lock(&pkt->lock);
1214 		bio_list_add(&pkt->orig_bios, bio);
1215 		pkt->write_size += bio->bi_iter.bi_size / CD_FRAMESIZE;
1216 		spin_unlock(&pkt->lock);
1217 	}
1218 	/* check write congestion marks, and if bio_queue_size is
1219 	 * below, wake up any waiters
1220 	 */
1221 	if (pd->congested &&
1222 	    pd->bio_queue_size <= pd->write_congestion_off) {
1223 		pd->congested = false;
1224 		wake_up_var(&pd->congested);
1225 	}
1226 	spin_unlock(&pd->lock);
1227 
1228 	pkt->sleep_time = max(PACKET_WAIT_TIME, 1);
1229 	pkt_set_state(ddev, pkt, PACKET_WAITING_STATE);
1230 	atomic_set(&pkt->run_sm, 1);
1231 
1232 	spin_lock(&pd->cdrw.active_list_lock);
1233 	list_add(&pkt->list, &pd->cdrw.pkt_active_list);
1234 	spin_unlock(&pd->cdrw.active_list_lock);
1235 
1236 	return 1;
1237 }
1238 
1239 /**
1240  * bio_list_copy_data - copy contents of data buffers from one chain of bios to
1241  * another
1242  * @src: source bio list
1243  * @dst: destination bio list
1244  *
1245  * Stops when it reaches the end of either the @src list or @dst list - that is,
1246  * copies min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of
1247  * bios).
1248  */
1249 static void bio_list_copy_data(struct bio *dst, struct bio *src)
1250 {
1251 	struct bvec_iter src_iter = src->bi_iter;
1252 	struct bvec_iter dst_iter = dst->bi_iter;
1253 
1254 	while (1) {
1255 		if (!src_iter.bi_size) {
1256 			src = src->bi_next;
1257 			if (!src)
1258 				break;
1259 
1260 			src_iter = src->bi_iter;
1261 		}
1262 
1263 		if (!dst_iter.bi_size) {
1264 			dst = dst->bi_next;
1265 			if (!dst)
1266 				break;
1267 
1268 			dst_iter = dst->bi_iter;
1269 		}
1270 
1271 		bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1272 	}
1273 }
1274 
1275 /*
1276  * Assemble a bio to write one packet and queue the bio for processing
1277  * by the underlying block device.
1278  */
1279 static void pkt_start_write(struct pktcdvd_device *pd, struct packet_data *pkt)
1280 {
1281 	struct device *ddev = disk_to_dev(pd->disk);
1282 	int f;
1283 
1284 	bio_init(pkt->w_bio, pd->bdev, pkt->w_bio->bi_inline_vecs, pkt->frames,
1285 		 REQ_OP_WRITE);
1286 	pkt->w_bio->bi_iter.bi_sector = pkt->sector;
1287 	pkt->w_bio->bi_end_io = pkt_end_io_packet_write;
1288 	pkt->w_bio->bi_private = pkt;
1289 
1290 	/* XXX: locking? */
1291 	for (f = 0; f < pkt->frames; f++) {
1292 		struct page *page = pkt->pages[(f * CD_FRAMESIZE) / PAGE_SIZE];
1293 		unsigned offset = (f * CD_FRAMESIZE) % PAGE_SIZE;
1294 
1295 		if (!bio_add_page(pkt->w_bio, page, CD_FRAMESIZE, offset))
1296 			BUG();
1297 	}
1298 	dev_dbg(ddev, "vcnt=%d\n", pkt->w_bio->bi_vcnt);
1299 
1300 	/*
1301 	 * Fill-in bvec with data from orig_bios.
1302 	 */
1303 	spin_lock(&pkt->lock);
1304 	bio_list_copy_data(pkt->w_bio, pkt->orig_bios.head);
1305 
1306 	pkt_set_state(ddev, pkt, PACKET_WRITE_WAIT_STATE);
1307 	spin_unlock(&pkt->lock);
1308 
1309 	dev_dbg(ddev, "Writing %d frames for zone %llx\n", pkt->write_size,
1310 		(unsigned long long)pkt->sector);
1311 
1312 	if (test_bit(PACKET_MERGE_SEGS, &pd->flags) || (pkt->write_size < pkt->frames))
1313 		pkt->cache_valid = 1;
1314 	else
1315 		pkt->cache_valid = 0;
1316 
1317 	/* Start the write request */
1318 	atomic_set(&pkt->io_wait, 1);
1319 	pkt_queue_bio(pd, pkt->w_bio);
1320 }
1321 
1322 static void pkt_finish_packet(struct packet_data *pkt, blk_status_t status)
1323 {
1324 	struct bio *bio;
1325 
1326 	if (status)
1327 		pkt->cache_valid = 0;
1328 
1329 	/* Finish all bios corresponding to this packet */
1330 	while ((bio = bio_list_pop(&pkt->orig_bios))) {
1331 		bio->bi_status = status;
1332 		bio_endio(bio);
1333 	}
1334 }
1335 
1336 static void pkt_run_state_machine(struct pktcdvd_device *pd, struct packet_data *pkt)
1337 {
1338 	struct device *ddev = disk_to_dev(pd->disk);
1339 
1340 	dev_dbg(ddev, "pkt %d\n", pkt->id);
1341 
1342 	for (;;) {
1343 		switch (pkt->state) {
1344 		case PACKET_WAITING_STATE:
1345 			if ((pkt->write_size < pkt->frames) && (pkt->sleep_time > 0))
1346 				return;
1347 
1348 			pkt->sleep_time = 0;
1349 			pkt_gather_data(pd, pkt);
1350 			pkt_set_state(ddev, pkt, PACKET_READ_WAIT_STATE);
1351 			break;
1352 
1353 		case PACKET_READ_WAIT_STATE:
1354 			if (atomic_read(&pkt->io_wait) > 0)
1355 				return;
1356 
1357 			if (atomic_read(&pkt->io_errors) > 0) {
1358 				pkt_set_state(ddev, pkt, PACKET_RECOVERY_STATE);
1359 			} else {
1360 				pkt_start_write(pd, pkt);
1361 			}
1362 			break;
1363 
1364 		case PACKET_WRITE_WAIT_STATE:
1365 			if (atomic_read(&pkt->io_wait) > 0)
1366 				return;
1367 
1368 			if (!pkt->w_bio->bi_status) {
1369 				pkt_set_state(ddev, pkt, PACKET_FINISHED_STATE);
1370 			} else {
1371 				pkt_set_state(ddev, pkt, PACKET_RECOVERY_STATE);
1372 			}
1373 			break;
1374 
1375 		case PACKET_RECOVERY_STATE:
1376 			dev_dbg(ddev, "No recovery possible\n");
1377 			pkt_set_state(ddev, pkt, PACKET_FINISHED_STATE);
1378 			break;
1379 
1380 		case PACKET_FINISHED_STATE:
1381 			pkt_finish_packet(pkt, pkt->w_bio->bi_status);
1382 			return;
1383 
1384 		default:
1385 			BUG();
1386 			break;
1387 		}
1388 	}
1389 }
1390 
1391 static void pkt_handle_packets(struct pktcdvd_device *pd)
1392 {
1393 	struct device *ddev = disk_to_dev(pd->disk);
1394 	struct packet_data *pkt, *next;
1395 
1396 	/*
1397 	 * Run state machine for active packets
1398 	 */
1399 	list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1400 		if (atomic_read(&pkt->run_sm) > 0) {
1401 			atomic_set(&pkt->run_sm, 0);
1402 			pkt_run_state_machine(pd, pkt);
1403 		}
1404 	}
1405 
1406 	/*
1407 	 * Move no longer active packets to the free list
1408 	 */
1409 	spin_lock(&pd->cdrw.active_list_lock);
1410 	list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_active_list, list) {
1411 		if (pkt->state == PACKET_FINISHED_STATE) {
1412 			list_del(&pkt->list);
1413 			pkt_put_packet_data(pd, pkt);
1414 			pkt_set_state(ddev, pkt, PACKET_IDLE_STATE);
1415 			atomic_set(&pd->scan_queue, 1);
1416 		}
1417 	}
1418 	spin_unlock(&pd->cdrw.active_list_lock);
1419 }
1420 
1421 /*
1422  * kcdrwd is woken up when writes have been queued for one of our
1423  * registered devices
1424  */
1425 static int kcdrwd(void *foobar)
1426 {
1427 	struct pktcdvd_device *pd = foobar;
1428 	struct device *ddev = disk_to_dev(pd->disk);
1429 	struct packet_data *pkt;
1430 	int states[PACKET_NUM_STATES];
1431 	long min_sleep_time, residue;
1432 
1433 	set_user_nice(current, MIN_NICE);
1434 	set_freezable();
1435 
1436 	for (;;) {
1437 		DECLARE_WAITQUEUE(wait, current);
1438 
1439 		/*
1440 		 * Wait until there is something to do
1441 		 */
1442 		add_wait_queue(&pd->wqueue, &wait);
1443 		for (;;) {
1444 			set_current_state(TASK_INTERRUPTIBLE);
1445 
1446 			/* Check if we need to run pkt_handle_queue */
1447 			if (atomic_read(&pd->scan_queue) > 0)
1448 				goto work_to_do;
1449 
1450 			/* Check if we need to run the state machine for some packet */
1451 			list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1452 				if (atomic_read(&pkt->run_sm) > 0)
1453 					goto work_to_do;
1454 			}
1455 
1456 			/* Check if we need to process the iosched queues */
1457 			if (atomic_read(&pd->iosched.attention) != 0)
1458 				goto work_to_do;
1459 
1460 			/* Otherwise, go to sleep */
1461 			pkt_count_states(pd, states);
1462 			dev_dbg(ddev, "i:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
1463 				states[0], states[1], states[2], states[3], states[4], states[5]);
1464 
1465 			min_sleep_time = MAX_SCHEDULE_TIMEOUT;
1466 			list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1467 				if (pkt->sleep_time && pkt->sleep_time < min_sleep_time)
1468 					min_sleep_time = pkt->sleep_time;
1469 			}
1470 
1471 			dev_dbg(ddev, "sleeping\n");
1472 			residue = schedule_timeout(min_sleep_time);
1473 			dev_dbg(ddev, "wake up\n");
1474 
1475 			/* make swsusp happy with our thread */
1476 			try_to_freeze();
1477 
1478 			list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1479 				if (!pkt->sleep_time)
1480 					continue;
1481 				pkt->sleep_time -= min_sleep_time - residue;
1482 				if (pkt->sleep_time <= 0) {
1483 					pkt->sleep_time = 0;
1484 					atomic_inc(&pkt->run_sm);
1485 				}
1486 			}
1487 
1488 			if (kthread_should_stop())
1489 				break;
1490 		}
1491 work_to_do:
1492 		set_current_state(TASK_RUNNING);
1493 		remove_wait_queue(&pd->wqueue, &wait);
1494 
1495 		if (kthread_should_stop())
1496 			break;
1497 
1498 		/*
1499 		 * if pkt_handle_queue returns true, we can queue
1500 		 * another request.
1501 		 */
1502 		while (pkt_handle_queue(pd))
1503 			;
1504 
1505 		/*
1506 		 * Handle packet state machine
1507 		 */
1508 		pkt_handle_packets(pd);
1509 
1510 		/*
1511 		 * Handle iosched queues
1512 		 */
1513 		pkt_iosched_process_queue(pd);
1514 	}
1515 
1516 	return 0;
1517 }
1518 
1519 static void pkt_print_settings(struct pktcdvd_device *pd)
1520 {
1521 	dev_info(disk_to_dev(pd->disk), "%s packets, %u blocks, Mode-%c disc\n",
1522 		 pd->settings.fp ? "Fixed" : "Variable",
1523 		 pd->settings.size >> 2,
1524 		 pd->settings.block_mode == 8 ? '1' : '2');
1525 }
1526 
1527 static int pkt_mode_sense(struct pktcdvd_device *pd, struct packet_command *cgc, int page_code, int page_control)
1528 {
1529 	memset(cgc->cmd, 0, sizeof(cgc->cmd));
1530 
1531 	cgc->cmd[0] = GPCMD_MODE_SENSE_10;
1532 	cgc->cmd[2] = page_code | (page_control << 6);
1533 	cgc->cmd[7] = cgc->buflen >> 8;
1534 	cgc->cmd[8] = cgc->buflen & 0xff;
1535 	cgc->data_direction = CGC_DATA_READ;
1536 	return pkt_generic_packet(pd, cgc);
1537 }
1538 
1539 static int pkt_mode_select(struct pktcdvd_device *pd, struct packet_command *cgc)
1540 {
1541 	memset(cgc->cmd, 0, sizeof(cgc->cmd));
1542 	memset(cgc->buffer, 0, 2);
1543 	cgc->cmd[0] = GPCMD_MODE_SELECT_10;
1544 	cgc->cmd[1] = 0x10;		/* PF */
1545 	cgc->cmd[7] = cgc->buflen >> 8;
1546 	cgc->cmd[8] = cgc->buflen & 0xff;
1547 	cgc->data_direction = CGC_DATA_WRITE;
1548 	return pkt_generic_packet(pd, cgc);
1549 }
1550 
1551 static int pkt_get_disc_info(struct pktcdvd_device *pd, disc_information *di)
1552 {
1553 	struct packet_command cgc;
1554 	int ret;
1555 
1556 	/* set up command and get the disc info */
1557 	init_cdrom_command(&cgc, di, sizeof(*di), CGC_DATA_READ);
1558 	cgc.cmd[0] = GPCMD_READ_DISC_INFO;
1559 	cgc.cmd[8] = cgc.buflen = 2;
1560 	cgc.quiet = 1;
1561 
1562 	ret = pkt_generic_packet(pd, &cgc);
1563 	if (ret)
1564 		return ret;
1565 
1566 	/* not all drives have the same disc_info length, so requeue
1567 	 * packet with the length the drive tells us it can supply
1568 	 */
1569 	cgc.buflen = be16_to_cpu(di->disc_information_length) +
1570 		     sizeof(di->disc_information_length);
1571 
1572 	if (cgc.buflen > sizeof(disc_information))
1573 		cgc.buflen = sizeof(disc_information);
1574 
1575 	cgc.cmd[8] = cgc.buflen;
1576 	return pkt_generic_packet(pd, &cgc);
1577 }
1578 
1579 static int pkt_get_track_info(struct pktcdvd_device *pd, __u16 track, __u8 type, track_information *ti)
1580 {
1581 	struct packet_command cgc;
1582 	int ret;
1583 
1584 	init_cdrom_command(&cgc, ti, 8, CGC_DATA_READ);
1585 	cgc.cmd[0] = GPCMD_READ_TRACK_RZONE_INFO;
1586 	cgc.cmd[1] = type & 3;
1587 	cgc.cmd[4] = (track & 0xff00) >> 8;
1588 	cgc.cmd[5] = track & 0xff;
1589 	cgc.cmd[8] = 8;
1590 	cgc.quiet = 1;
1591 
1592 	ret = pkt_generic_packet(pd, &cgc);
1593 	if (ret)
1594 		return ret;
1595 
1596 	cgc.buflen = be16_to_cpu(ti->track_information_length) +
1597 		     sizeof(ti->track_information_length);
1598 
1599 	if (cgc.buflen > sizeof(track_information))
1600 		cgc.buflen = sizeof(track_information);
1601 
1602 	cgc.cmd[8] = cgc.buflen;
1603 	return pkt_generic_packet(pd, &cgc);
1604 }
1605 
1606 static noinline_for_stack int pkt_get_last_written(struct pktcdvd_device *pd,
1607 						long *last_written)
1608 {
1609 	disc_information di;
1610 	track_information ti;
1611 	__u32 last_track;
1612 	int ret;
1613 
1614 	ret = pkt_get_disc_info(pd, &di);
1615 	if (ret)
1616 		return ret;
1617 
1618 	last_track = (di.last_track_msb << 8) | di.last_track_lsb;
1619 	ret = pkt_get_track_info(pd, last_track, 1, &ti);
1620 	if (ret)
1621 		return ret;
1622 
1623 	/* if this track is blank, try the previous. */
1624 	if (ti.blank) {
1625 		last_track--;
1626 		ret = pkt_get_track_info(pd, last_track, 1, &ti);
1627 		if (ret)
1628 			return ret;
1629 	}
1630 
1631 	/* if last recorded field is valid, return it. */
1632 	if (ti.lra_v) {
1633 		*last_written = be32_to_cpu(ti.last_rec_address);
1634 	} else {
1635 		/* make it up instead */
1636 		*last_written = be32_to_cpu(ti.track_start) +
1637 				be32_to_cpu(ti.track_size);
1638 		if (ti.free_blocks)
1639 			*last_written -= (be32_to_cpu(ti.free_blocks) + 7);
1640 	}
1641 	return 0;
1642 }
1643 
1644 /*
1645  * write mode select package based on pd->settings
1646  */
1647 static noinline_for_stack int pkt_set_write_settings(struct pktcdvd_device *pd)
1648 {
1649 	struct device *ddev = disk_to_dev(pd->disk);
1650 	struct packet_command cgc;
1651 	struct scsi_sense_hdr sshdr;
1652 	write_param_page *wp;
1653 	char buffer[128];
1654 	int ret, size;
1655 
1656 	/* doesn't apply to DVD+RW or DVD-RAM */
1657 	if ((pd->mmc3_profile == 0x1a) || (pd->mmc3_profile == 0x12))
1658 		return 0;
1659 
1660 	memset(buffer, 0, sizeof(buffer));
1661 	init_cdrom_command(&cgc, buffer, sizeof(*wp), CGC_DATA_READ);
1662 	cgc.sshdr = &sshdr;
1663 	ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0);
1664 	if (ret) {
1665 		pkt_dump_sense(pd, &cgc);
1666 		return ret;
1667 	}
1668 
1669 	size = 2 + ((buffer[0] << 8) | (buffer[1] & 0xff));
1670 	pd->mode_offset = (buffer[6] << 8) | (buffer[7] & 0xff);
1671 	if (size > sizeof(buffer))
1672 		size = sizeof(buffer);
1673 
1674 	/*
1675 	 * now get it all
1676 	 */
1677 	init_cdrom_command(&cgc, buffer, size, CGC_DATA_READ);
1678 	cgc.sshdr = &sshdr;
1679 	ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0);
1680 	if (ret) {
1681 		pkt_dump_sense(pd, &cgc);
1682 		return ret;
1683 	}
1684 
1685 	/*
1686 	 * write page is offset header + block descriptor length
1687 	 */
1688 	wp = (write_param_page *) &buffer[sizeof(struct mode_page_header) + pd->mode_offset];
1689 
1690 	wp->fp = pd->settings.fp;
1691 	wp->track_mode = pd->settings.track_mode;
1692 	wp->write_type = pd->settings.write_type;
1693 	wp->data_block_type = pd->settings.block_mode;
1694 
1695 	wp->multi_session = 0;
1696 
1697 #ifdef PACKET_USE_LS
1698 	wp->link_size = 7;
1699 	wp->ls_v = 1;
1700 #endif
1701 
1702 	if (wp->data_block_type == PACKET_BLOCK_MODE1) {
1703 		wp->session_format = 0;
1704 		wp->subhdr2 = 0x20;
1705 	} else if (wp->data_block_type == PACKET_BLOCK_MODE2) {
1706 		wp->session_format = 0x20;
1707 		wp->subhdr2 = 8;
1708 #if 0
1709 		wp->mcn[0] = 0x80;
1710 		memcpy(&wp->mcn[1], PACKET_MCN, sizeof(wp->mcn) - 1);
1711 #endif
1712 	} else {
1713 		/*
1714 		 * paranoia
1715 		 */
1716 		dev_err(ddev, "write mode wrong %d\n", wp->data_block_type);
1717 		return 1;
1718 	}
1719 	wp->packet_size = cpu_to_be32(pd->settings.size >> 2);
1720 
1721 	cgc.buflen = cgc.cmd[8] = size;
1722 	ret = pkt_mode_select(pd, &cgc);
1723 	if (ret) {
1724 		pkt_dump_sense(pd, &cgc);
1725 		return ret;
1726 	}
1727 
1728 	pkt_print_settings(pd);
1729 	return 0;
1730 }
1731 
1732 /*
1733  * 1 -- we can write to this track, 0 -- we can't
1734  */
1735 static int pkt_writable_track(struct pktcdvd_device *pd, track_information *ti)
1736 {
1737 	struct device *ddev = disk_to_dev(pd->disk);
1738 
1739 	switch (pd->mmc3_profile) {
1740 		case 0x1a: /* DVD+RW */
1741 		case 0x12: /* DVD-RAM */
1742 			/* The track is always writable on DVD+RW/DVD-RAM */
1743 			return 1;
1744 		default:
1745 			break;
1746 	}
1747 
1748 	if (!ti->packet || !ti->fp)
1749 		return 0;
1750 
1751 	/*
1752 	 * "good" settings as per Mt Fuji.
1753 	 */
1754 	if (ti->rt == 0 && ti->blank == 0)
1755 		return 1;
1756 
1757 	if (ti->rt == 0 && ti->blank == 1)
1758 		return 1;
1759 
1760 	if (ti->rt == 1 && ti->blank == 0)
1761 		return 1;
1762 
1763 	dev_err(ddev, "bad state %d-%d-%d\n", ti->rt, ti->blank, ti->packet);
1764 	return 0;
1765 }
1766 
1767 /*
1768  * 1 -- we can write to this disc, 0 -- we can't
1769  */
1770 static int pkt_writable_disc(struct pktcdvd_device *pd, disc_information *di)
1771 {
1772 	struct device *ddev = disk_to_dev(pd->disk);
1773 
1774 	switch (pd->mmc3_profile) {
1775 		case 0x0a: /* CD-RW */
1776 		case 0xffff: /* MMC3 not supported */
1777 			break;
1778 		case 0x1a: /* DVD+RW */
1779 		case 0x13: /* DVD-RW */
1780 		case 0x12: /* DVD-RAM */
1781 			return 1;
1782 		default:
1783 			dev_dbg(ddev, "Wrong disc profile (%x)\n", pd->mmc3_profile);
1784 			return 0;
1785 	}
1786 
1787 	/*
1788 	 * for disc type 0xff we should probably reserve a new track.
1789 	 * but i'm not sure, should we leave this to user apps? probably.
1790 	 */
1791 	if (di->disc_type == 0xff) {
1792 		dev_notice(ddev, "unknown disc - no track?\n");
1793 		return 0;
1794 	}
1795 
1796 	if (di->disc_type != 0x20 && di->disc_type != 0) {
1797 		dev_err(ddev, "wrong disc type (%x)\n", di->disc_type);
1798 		return 0;
1799 	}
1800 
1801 	if (di->erasable == 0) {
1802 		dev_err(ddev, "disc not erasable\n");
1803 		return 0;
1804 	}
1805 
1806 	if (di->border_status == PACKET_SESSION_RESERVED) {
1807 		dev_err(ddev, "can't write to last track (reserved)\n");
1808 		return 0;
1809 	}
1810 
1811 	return 1;
1812 }
1813 
1814 static noinline_for_stack int pkt_probe_settings(struct pktcdvd_device *pd)
1815 {
1816 	struct device *ddev = disk_to_dev(pd->disk);
1817 	struct packet_command cgc;
1818 	unsigned char buf[12];
1819 	disc_information di;
1820 	track_information ti;
1821 	int ret, track;
1822 
1823 	init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
1824 	cgc.cmd[0] = GPCMD_GET_CONFIGURATION;
1825 	cgc.cmd[8] = 8;
1826 	ret = pkt_generic_packet(pd, &cgc);
1827 	pd->mmc3_profile = ret ? 0xffff : buf[6] << 8 | buf[7];
1828 
1829 	memset(&di, 0, sizeof(disc_information));
1830 	memset(&ti, 0, sizeof(track_information));
1831 
1832 	ret = pkt_get_disc_info(pd, &di);
1833 	if (ret) {
1834 		dev_err(ddev, "failed get_disc\n");
1835 		return ret;
1836 	}
1837 
1838 	if (!pkt_writable_disc(pd, &di))
1839 		return -EROFS;
1840 
1841 	pd->type = di.erasable ? PACKET_CDRW : PACKET_CDR;
1842 
1843 	track = 1; /* (di.last_track_msb << 8) | di.last_track_lsb; */
1844 	ret = pkt_get_track_info(pd, track, 1, &ti);
1845 	if (ret) {
1846 		dev_err(ddev, "failed get_track\n");
1847 		return ret;
1848 	}
1849 
1850 	if (!pkt_writable_track(pd, &ti)) {
1851 		dev_err(ddev, "can't write to this track\n");
1852 		return -EROFS;
1853 	}
1854 
1855 	/*
1856 	 * we keep packet size in 512 byte units, makes it easier to
1857 	 * deal with request calculations.
1858 	 */
1859 	pd->settings.size = be32_to_cpu(ti.fixed_packet_size) << 2;
1860 	if (pd->settings.size == 0) {
1861 		dev_notice(ddev, "detected zero packet size!\n");
1862 		return -ENXIO;
1863 	}
1864 	if (pd->settings.size > PACKET_MAX_SECTORS) {
1865 		dev_err(ddev, "packet size is too big\n");
1866 		return -EROFS;
1867 	}
1868 	pd->settings.fp = ti.fp;
1869 	pd->offset = (be32_to_cpu(ti.track_start) << 2) & (pd->settings.size - 1);
1870 
1871 	if (ti.nwa_v) {
1872 		pd->nwa = be32_to_cpu(ti.next_writable);
1873 		set_bit(PACKET_NWA_VALID, &pd->flags);
1874 	}
1875 
1876 	/*
1877 	 * in theory we could use lra on -RW media as well and just zero
1878 	 * blocks that haven't been written yet, but in practice that
1879 	 * is just a no-go. we'll use that for -R, naturally.
1880 	 */
1881 	if (ti.lra_v) {
1882 		pd->lra = be32_to_cpu(ti.last_rec_address);
1883 		set_bit(PACKET_LRA_VALID, &pd->flags);
1884 	} else {
1885 		pd->lra = 0xffffffff;
1886 		set_bit(PACKET_LRA_VALID, &pd->flags);
1887 	}
1888 
1889 	/*
1890 	 * fine for now
1891 	 */
1892 	pd->settings.link_loss = 7;
1893 	pd->settings.write_type = 0;	/* packet */
1894 	pd->settings.track_mode = ti.track_mode;
1895 
1896 	/*
1897 	 * mode1 or mode2 disc
1898 	 */
1899 	switch (ti.data_mode) {
1900 		case PACKET_MODE1:
1901 			pd->settings.block_mode = PACKET_BLOCK_MODE1;
1902 			break;
1903 		case PACKET_MODE2:
1904 			pd->settings.block_mode = PACKET_BLOCK_MODE2;
1905 			break;
1906 		default:
1907 			dev_err(ddev, "unknown data mode\n");
1908 			return -EROFS;
1909 	}
1910 	return 0;
1911 }
1912 
1913 /*
1914  * enable/disable write caching on drive
1915  */
1916 static noinline_for_stack int pkt_write_caching(struct pktcdvd_device *pd)
1917 {
1918 	struct device *ddev = disk_to_dev(pd->disk);
1919 	struct packet_command cgc;
1920 	struct scsi_sense_hdr sshdr;
1921 	unsigned char buf[64];
1922 	bool set = IS_ENABLED(CONFIG_CDROM_PKTCDVD_WCACHE);
1923 	int ret;
1924 
1925 	init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
1926 	cgc.sshdr = &sshdr;
1927 	cgc.buflen = pd->mode_offset + 12;
1928 
1929 	/*
1930 	 * caching mode page might not be there, so quiet this command
1931 	 */
1932 	cgc.quiet = 1;
1933 
1934 	ret = pkt_mode_sense(pd, &cgc, GPMODE_WCACHING_PAGE, 0);
1935 	if (ret)
1936 		return ret;
1937 
1938 	/*
1939 	 * use drive write caching -- we need deferred error handling to be
1940 	 * able to successfully recover with this option (drive will return good
1941 	 * status as soon as the cdb is validated).
1942 	 */
1943 	buf[pd->mode_offset + 10] |= (set << 2);
1944 
1945 	cgc.buflen = cgc.cmd[8] = 2 + ((buf[0] << 8) | (buf[1] & 0xff));
1946 	ret = pkt_mode_select(pd, &cgc);
1947 	if (ret) {
1948 		dev_err(ddev, "write caching control failed\n");
1949 		pkt_dump_sense(pd, &cgc);
1950 	} else if (!ret && set)
1951 		dev_notice(ddev, "enabled write caching\n");
1952 	return ret;
1953 }
1954 
1955 static int pkt_lock_door(struct pktcdvd_device *pd, int lockflag)
1956 {
1957 	struct packet_command cgc;
1958 
1959 	init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
1960 	cgc.cmd[0] = GPCMD_PREVENT_ALLOW_MEDIUM_REMOVAL;
1961 	cgc.cmd[4] = lockflag ? 1 : 0;
1962 	return pkt_generic_packet(pd, &cgc);
1963 }
1964 
1965 /*
1966  * Returns drive maximum write speed
1967  */
1968 static noinline_for_stack int pkt_get_max_speed(struct pktcdvd_device *pd,
1969 						unsigned *write_speed)
1970 {
1971 	struct packet_command cgc;
1972 	struct scsi_sense_hdr sshdr;
1973 	unsigned char buf[256+18];
1974 	unsigned char *cap_buf;
1975 	int ret, offset;
1976 
1977 	cap_buf = &buf[sizeof(struct mode_page_header) + pd->mode_offset];
1978 	init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_UNKNOWN);
1979 	cgc.sshdr = &sshdr;
1980 
1981 	ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
1982 	if (ret) {
1983 		cgc.buflen = pd->mode_offset + cap_buf[1] + 2 +
1984 			     sizeof(struct mode_page_header);
1985 		ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
1986 		if (ret) {
1987 			pkt_dump_sense(pd, &cgc);
1988 			return ret;
1989 		}
1990 	}
1991 
1992 	offset = 20;			    /* Obsoleted field, used by older drives */
1993 	if (cap_buf[1] >= 28)
1994 		offset = 28;		    /* Current write speed selected */
1995 	if (cap_buf[1] >= 30) {
1996 		/* If the drive reports at least one "Logical Unit Write
1997 		 * Speed Performance Descriptor Block", use the information
1998 		 * in the first block. (contains the highest speed)
1999 		 */
2000 		int num_spdb = (cap_buf[30] << 8) + cap_buf[31];
2001 		if (num_spdb > 0)
2002 			offset = 34;
2003 	}
2004 
2005 	*write_speed = (cap_buf[offset] << 8) | cap_buf[offset + 1];
2006 	return 0;
2007 }
2008 
2009 /* These tables from cdrecord - I don't have orange book */
2010 /* standard speed CD-RW (1-4x) */
2011 static char clv_to_speed[16] = {
2012 	/* 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 */
2013 	   0, 2, 4, 6, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
2014 };
2015 /* high speed CD-RW (-10x) */
2016 static char hs_clv_to_speed[16] = {
2017 	/* 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 */
2018 	   0, 2, 4, 6, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
2019 };
2020 /* ultra high speed CD-RW */
2021 static char us_clv_to_speed[16] = {
2022 	/* 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 */
2023 	   0, 2, 4, 8, 0, 0,16, 0,24,32,40,48, 0, 0, 0, 0
2024 };
2025 
2026 /*
2027  * reads the maximum media speed from ATIP
2028  */
2029 static noinline_for_stack int pkt_media_speed(struct pktcdvd_device *pd,
2030 						unsigned *speed)
2031 {
2032 	struct device *ddev = disk_to_dev(pd->disk);
2033 	struct packet_command cgc;
2034 	struct scsi_sense_hdr sshdr;
2035 	unsigned char buf[64];
2036 	unsigned int size, st, sp;
2037 	int ret;
2038 
2039 	init_cdrom_command(&cgc, buf, 2, CGC_DATA_READ);
2040 	cgc.sshdr = &sshdr;
2041 	cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
2042 	cgc.cmd[1] = 2;
2043 	cgc.cmd[2] = 4; /* READ ATIP */
2044 	cgc.cmd[8] = 2;
2045 	ret = pkt_generic_packet(pd, &cgc);
2046 	if (ret) {
2047 		pkt_dump_sense(pd, &cgc);
2048 		return ret;
2049 	}
2050 	size = ((unsigned int) buf[0]<<8) + buf[1] + 2;
2051 	if (size > sizeof(buf))
2052 		size = sizeof(buf);
2053 
2054 	init_cdrom_command(&cgc, buf, size, CGC_DATA_READ);
2055 	cgc.sshdr = &sshdr;
2056 	cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
2057 	cgc.cmd[1] = 2;
2058 	cgc.cmd[2] = 4;
2059 	cgc.cmd[8] = size;
2060 	ret = pkt_generic_packet(pd, &cgc);
2061 	if (ret) {
2062 		pkt_dump_sense(pd, &cgc);
2063 		return ret;
2064 	}
2065 
2066 	if (!(buf[6] & 0x40)) {
2067 		dev_notice(ddev, "disc type is not CD-RW\n");
2068 		return 1;
2069 	}
2070 	if (!(buf[6] & 0x4)) {
2071 		dev_notice(ddev, "A1 values on media are not valid, maybe not CDRW?\n");
2072 		return 1;
2073 	}
2074 
2075 	st = (buf[6] >> 3) & 0x7; /* disc sub-type */
2076 
2077 	sp = buf[16] & 0xf; /* max speed from ATIP A1 field */
2078 
2079 	/* Info from cdrecord */
2080 	switch (st) {
2081 		case 0: /* standard speed */
2082 			*speed = clv_to_speed[sp];
2083 			break;
2084 		case 1: /* high speed */
2085 			*speed = hs_clv_to_speed[sp];
2086 			break;
2087 		case 2: /* ultra high speed */
2088 			*speed = us_clv_to_speed[sp];
2089 			break;
2090 		default:
2091 			dev_notice(ddev, "unknown disc sub-type %d\n", st);
2092 			return 1;
2093 	}
2094 	if (*speed) {
2095 		dev_info(ddev, "maximum media speed: %d\n", *speed);
2096 		return 0;
2097 	} else {
2098 		dev_notice(ddev, "unknown speed %d for sub-type %d\n", sp, st);
2099 		return 1;
2100 	}
2101 }
2102 
2103 static noinline_for_stack int pkt_perform_opc(struct pktcdvd_device *pd)
2104 {
2105 	struct device *ddev = disk_to_dev(pd->disk);
2106 	struct packet_command cgc;
2107 	struct scsi_sense_hdr sshdr;
2108 	int ret;
2109 
2110 	dev_dbg(ddev, "Performing OPC\n");
2111 
2112 	init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
2113 	cgc.sshdr = &sshdr;
2114 	cgc.timeout = 60*HZ;
2115 	cgc.cmd[0] = GPCMD_SEND_OPC;
2116 	cgc.cmd[1] = 1;
2117 	ret = pkt_generic_packet(pd, &cgc);
2118 	if (ret)
2119 		pkt_dump_sense(pd, &cgc);
2120 	return ret;
2121 }
2122 
2123 static int pkt_open_write(struct pktcdvd_device *pd)
2124 {
2125 	struct device *ddev = disk_to_dev(pd->disk);
2126 	int ret;
2127 	unsigned int write_speed, media_write_speed, read_speed;
2128 
2129 	ret = pkt_probe_settings(pd);
2130 	if (ret) {
2131 		dev_dbg(ddev, "failed probe\n");
2132 		return ret;
2133 	}
2134 
2135 	ret = pkt_set_write_settings(pd);
2136 	if (ret) {
2137 		dev_notice(ddev, "failed saving write settings\n");
2138 		return -EIO;
2139 	}
2140 
2141 	pkt_write_caching(pd);
2142 
2143 	ret = pkt_get_max_speed(pd, &write_speed);
2144 	if (ret)
2145 		write_speed = 16 * 177;
2146 	switch (pd->mmc3_profile) {
2147 		case 0x13: /* DVD-RW */
2148 		case 0x1a: /* DVD+RW */
2149 		case 0x12: /* DVD-RAM */
2150 			dev_notice(ddev, "write speed %ukB/s\n", write_speed);
2151 			break;
2152 		default:
2153 			ret = pkt_media_speed(pd, &media_write_speed);
2154 			if (ret)
2155 				media_write_speed = 16;
2156 			write_speed = min(write_speed, media_write_speed * 177);
2157 			dev_notice(ddev, "write speed %ux\n", write_speed / 176);
2158 			break;
2159 	}
2160 	read_speed = write_speed;
2161 
2162 	ret = pkt_set_speed(pd, write_speed, read_speed);
2163 	if (ret) {
2164 		dev_notice(ddev, "couldn't set write speed\n");
2165 		return -EIO;
2166 	}
2167 	pd->write_speed = write_speed;
2168 	pd->read_speed = read_speed;
2169 
2170 	ret = pkt_perform_opc(pd);
2171 	if (ret)
2172 		dev_notice(ddev, "Optimum Power Calibration failed\n");
2173 
2174 	return 0;
2175 }
2176 
2177 /*
2178  * called at open time.
2179  */
2180 static int pkt_open_dev(struct pktcdvd_device *pd, fmode_t write)
2181 {
2182 	struct device *ddev = disk_to_dev(pd->disk);
2183 	int ret;
2184 	long lba;
2185 	struct request_queue *q;
2186 	struct block_device *bdev;
2187 
2188 	/*
2189 	 * We need to re-open the cdrom device without O_NONBLOCK to be able
2190 	 * to read/write from/to it. It is already opened in O_NONBLOCK mode
2191 	 * so open should not fail.
2192 	 */
2193 	bdev = blkdev_get_by_dev(pd->bdev->bd_dev, FMODE_READ | FMODE_EXCL, pd,
2194 				 NULL);
2195 	if (IS_ERR(bdev)) {
2196 		ret = PTR_ERR(bdev);
2197 		goto out;
2198 	}
2199 
2200 	ret = pkt_get_last_written(pd, &lba);
2201 	if (ret) {
2202 		dev_err(ddev, "pkt_get_last_written failed\n");
2203 		goto out_putdev;
2204 	}
2205 
2206 	set_capacity(pd->disk, lba << 2);
2207 	set_capacity_and_notify(pd->bdev->bd_disk, lba << 2);
2208 
2209 	q = bdev_get_queue(pd->bdev);
2210 	if (write) {
2211 		ret = pkt_open_write(pd);
2212 		if (ret)
2213 			goto out_putdev;
2214 		/*
2215 		 * Some CDRW drives can not handle writes larger than one packet,
2216 		 * even if the size is a multiple of the packet size.
2217 		 */
2218 		blk_queue_max_hw_sectors(q, pd->settings.size);
2219 		set_bit(PACKET_WRITABLE, &pd->flags);
2220 	} else {
2221 		pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
2222 		clear_bit(PACKET_WRITABLE, &pd->flags);
2223 	}
2224 
2225 	ret = pkt_set_segment_merging(pd, q);
2226 	if (ret)
2227 		goto out_putdev;
2228 
2229 	if (write) {
2230 		if (!pkt_grow_pktlist(pd, CONFIG_CDROM_PKTCDVD_BUFFERS)) {
2231 			dev_err(ddev, "not enough memory for buffers\n");
2232 			ret = -ENOMEM;
2233 			goto out_putdev;
2234 		}
2235 		dev_info(ddev, "%lukB available on disc\n", lba << 1);
2236 	}
2237 
2238 	return 0;
2239 
2240 out_putdev:
2241 	blkdev_put(bdev, FMODE_READ | FMODE_EXCL);
2242 out:
2243 	return ret;
2244 }
2245 
2246 /*
2247  * called when the device is closed. makes sure that the device flushes
2248  * the internal cache before we close.
2249  */
2250 static void pkt_release_dev(struct pktcdvd_device *pd, int flush)
2251 {
2252 	struct device *ddev = disk_to_dev(pd->disk);
2253 
2254 	if (flush && pkt_flush_cache(pd))
2255 		dev_notice(ddev, "not flushing cache\n");
2256 
2257 	pkt_lock_door(pd, 0);
2258 
2259 	pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
2260 	blkdev_put(pd->bdev, FMODE_READ | FMODE_EXCL);
2261 
2262 	pkt_shrink_pktlist(pd);
2263 }
2264 
2265 static struct pktcdvd_device *pkt_find_dev_from_minor(unsigned int dev_minor)
2266 {
2267 	if (dev_minor >= MAX_WRITERS)
2268 		return NULL;
2269 
2270 	dev_minor = array_index_nospec(dev_minor, MAX_WRITERS);
2271 	return pkt_devs[dev_minor];
2272 }
2273 
2274 static int pkt_open(struct block_device *bdev, fmode_t mode)
2275 {
2276 	struct pktcdvd_device *pd = NULL;
2277 	int ret;
2278 
2279 	mutex_lock(&pktcdvd_mutex);
2280 	mutex_lock(&ctl_mutex);
2281 	pd = pkt_find_dev_from_minor(MINOR(bdev->bd_dev));
2282 	if (!pd) {
2283 		ret = -ENODEV;
2284 		goto out;
2285 	}
2286 	BUG_ON(pd->refcnt < 0);
2287 
2288 	pd->refcnt++;
2289 	if (pd->refcnt > 1) {
2290 		if ((mode & FMODE_WRITE) &&
2291 		    !test_bit(PACKET_WRITABLE, &pd->flags)) {
2292 			ret = -EBUSY;
2293 			goto out_dec;
2294 		}
2295 	} else {
2296 		ret = pkt_open_dev(pd, mode & FMODE_WRITE);
2297 		if (ret)
2298 			goto out_dec;
2299 		/*
2300 		 * needed here as well, since ext2 (among others) may change
2301 		 * the blocksize at mount time
2302 		 */
2303 		set_blocksize(bdev, CD_FRAMESIZE);
2304 	}
2305 
2306 	mutex_unlock(&ctl_mutex);
2307 	mutex_unlock(&pktcdvd_mutex);
2308 	return 0;
2309 
2310 out_dec:
2311 	pd->refcnt--;
2312 out:
2313 	mutex_unlock(&ctl_mutex);
2314 	mutex_unlock(&pktcdvd_mutex);
2315 	return ret;
2316 }
2317 
2318 static void pkt_close(struct gendisk *disk, fmode_t mode)
2319 {
2320 	struct pktcdvd_device *pd = disk->private_data;
2321 
2322 	mutex_lock(&pktcdvd_mutex);
2323 	mutex_lock(&ctl_mutex);
2324 	pd->refcnt--;
2325 	BUG_ON(pd->refcnt < 0);
2326 	if (pd->refcnt == 0) {
2327 		int flush = test_bit(PACKET_WRITABLE, &pd->flags);
2328 		pkt_release_dev(pd, flush);
2329 	}
2330 	mutex_unlock(&ctl_mutex);
2331 	mutex_unlock(&pktcdvd_mutex);
2332 }
2333 
2334 
2335 static void pkt_end_io_read_cloned(struct bio *bio)
2336 {
2337 	struct packet_stacked_data *psd = bio->bi_private;
2338 	struct pktcdvd_device *pd = psd->pd;
2339 
2340 	psd->bio->bi_status = bio->bi_status;
2341 	bio_put(bio);
2342 	bio_endio(psd->bio);
2343 	mempool_free(psd, &psd_pool);
2344 	pkt_bio_finished(pd);
2345 }
2346 
2347 static void pkt_make_request_read(struct pktcdvd_device *pd, struct bio *bio)
2348 {
2349 	struct bio *cloned_bio =
2350 		bio_alloc_clone(pd->bdev, bio, GFP_NOIO, &pkt_bio_set);
2351 	struct packet_stacked_data *psd = mempool_alloc(&psd_pool, GFP_NOIO);
2352 
2353 	psd->pd = pd;
2354 	psd->bio = bio;
2355 	cloned_bio->bi_private = psd;
2356 	cloned_bio->bi_end_io = pkt_end_io_read_cloned;
2357 	pd->stats.secs_r += bio_sectors(bio);
2358 	pkt_queue_bio(pd, cloned_bio);
2359 }
2360 
2361 static void pkt_make_request_write(struct request_queue *q, struct bio *bio)
2362 {
2363 	struct pktcdvd_device *pd = q->queuedata;
2364 	sector_t zone;
2365 	struct packet_data *pkt;
2366 	int was_empty, blocked_bio;
2367 	struct pkt_rb_node *node;
2368 
2369 	zone = get_zone(bio->bi_iter.bi_sector, pd);
2370 
2371 	/*
2372 	 * If we find a matching packet in state WAITING or READ_WAIT, we can
2373 	 * just append this bio to that packet.
2374 	 */
2375 	spin_lock(&pd->cdrw.active_list_lock);
2376 	blocked_bio = 0;
2377 	list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
2378 		if (pkt->sector == zone) {
2379 			spin_lock(&pkt->lock);
2380 			if ((pkt->state == PACKET_WAITING_STATE) ||
2381 			    (pkt->state == PACKET_READ_WAIT_STATE)) {
2382 				bio_list_add(&pkt->orig_bios, bio);
2383 				pkt->write_size +=
2384 					bio->bi_iter.bi_size / CD_FRAMESIZE;
2385 				if ((pkt->write_size >= pkt->frames) &&
2386 				    (pkt->state == PACKET_WAITING_STATE)) {
2387 					atomic_inc(&pkt->run_sm);
2388 					wake_up(&pd->wqueue);
2389 				}
2390 				spin_unlock(&pkt->lock);
2391 				spin_unlock(&pd->cdrw.active_list_lock);
2392 				return;
2393 			} else {
2394 				blocked_bio = 1;
2395 			}
2396 			spin_unlock(&pkt->lock);
2397 		}
2398 	}
2399 	spin_unlock(&pd->cdrw.active_list_lock);
2400 
2401 	/*
2402 	 * Test if there is enough room left in the bio work queue
2403 	 * (queue size >= congestion on mark).
2404 	 * If not, wait till the work queue size is below the congestion off mark.
2405 	 */
2406 	spin_lock(&pd->lock);
2407 	if (pd->write_congestion_on > 0
2408 	    && pd->bio_queue_size >= pd->write_congestion_on) {
2409 		struct wait_bit_queue_entry wqe;
2410 
2411 		init_wait_var_entry(&wqe, &pd->congested, 0);
2412 		for (;;) {
2413 			prepare_to_wait_event(__var_waitqueue(&pd->congested),
2414 					      &wqe.wq_entry,
2415 					      TASK_UNINTERRUPTIBLE);
2416 			if (pd->bio_queue_size <= pd->write_congestion_off)
2417 				break;
2418 			pd->congested = true;
2419 			spin_unlock(&pd->lock);
2420 			schedule();
2421 			spin_lock(&pd->lock);
2422 		}
2423 	}
2424 	spin_unlock(&pd->lock);
2425 
2426 	/*
2427 	 * No matching packet found. Store the bio in the work queue.
2428 	 */
2429 	node = mempool_alloc(&pd->rb_pool, GFP_NOIO);
2430 	node->bio = bio;
2431 	spin_lock(&pd->lock);
2432 	BUG_ON(pd->bio_queue_size < 0);
2433 	was_empty = (pd->bio_queue_size == 0);
2434 	pkt_rbtree_insert(pd, node);
2435 	spin_unlock(&pd->lock);
2436 
2437 	/*
2438 	 * Wake up the worker thread.
2439 	 */
2440 	atomic_set(&pd->scan_queue, 1);
2441 	if (was_empty) {
2442 		/* This wake_up is required for correct operation */
2443 		wake_up(&pd->wqueue);
2444 	} else if (!list_empty(&pd->cdrw.pkt_free_list) && !blocked_bio) {
2445 		/*
2446 		 * This wake up is not required for correct operation,
2447 		 * but improves performance in some cases.
2448 		 */
2449 		wake_up(&pd->wqueue);
2450 	}
2451 }
2452 
2453 static void pkt_submit_bio(struct bio *bio)
2454 {
2455 	struct pktcdvd_device *pd = bio->bi_bdev->bd_disk->queue->queuedata;
2456 	struct device *ddev = disk_to_dev(pd->disk);
2457 	struct bio *split;
2458 
2459 	bio = bio_split_to_limits(bio);
2460 	if (!bio)
2461 		return;
2462 
2463 	dev_dbg(ddev, "start = %6llx stop = %6llx\n",
2464 		(unsigned long long)bio->bi_iter.bi_sector,
2465 		(unsigned long long)bio_end_sector(bio));
2466 
2467 	/*
2468 	 * Clone READ bios so we can have our own bi_end_io callback.
2469 	 */
2470 	if (bio_data_dir(bio) == READ) {
2471 		pkt_make_request_read(pd, bio);
2472 		return;
2473 	}
2474 
2475 	if (!test_bit(PACKET_WRITABLE, &pd->flags)) {
2476 		dev_notice(ddev, "WRITE for ro device (%llu)\n",
2477 			   (unsigned long long)bio->bi_iter.bi_sector);
2478 		goto end_io;
2479 	}
2480 
2481 	if (!bio->bi_iter.bi_size || (bio->bi_iter.bi_size % CD_FRAMESIZE)) {
2482 		dev_err(ddev, "wrong bio size\n");
2483 		goto end_io;
2484 	}
2485 
2486 	do {
2487 		sector_t zone = get_zone(bio->bi_iter.bi_sector, pd);
2488 		sector_t last_zone = get_zone(bio_end_sector(bio) - 1, pd);
2489 
2490 		if (last_zone != zone) {
2491 			BUG_ON(last_zone != zone + pd->settings.size);
2492 
2493 			split = bio_split(bio, last_zone -
2494 					  bio->bi_iter.bi_sector,
2495 					  GFP_NOIO, &pkt_bio_set);
2496 			bio_chain(split, bio);
2497 		} else {
2498 			split = bio;
2499 		}
2500 
2501 		pkt_make_request_write(bio->bi_bdev->bd_disk->queue, split);
2502 	} while (split != bio);
2503 
2504 	return;
2505 end_io:
2506 	bio_io_error(bio);
2507 }
2508 
2509 static void pkt_init_queue(struct pktcdvd_device *pd)
2510 {
2511 	struct request_queue *q = pd->disk->queue;
2512 
2513 	blk_queue_logical_block_size(q, CD_FRAMESIZE);
2514 	blk_queue_max_hw_sectors(q, PACKET_MAX_SECTORS);
2515 	q->queuedata = pd;
2516 }
2517 
2518 static int pkt_new_dev(struct pktcdvd_device *pd, dev_t dev)
2519 {
2520 	struct device *ddev = disk_to_dev(pd->disk);
2521 	int i;
2522 	struct block_device *bdev;
2523 	struct scsi_device *sdev;
2524 
2525 	if (pd->pkt_dev == dev) {
2526 		dev_err(ddev, "recursive setup not allowed\n");
2527 		return -EBUSY;
2528 	}
2529 	for (i = 0; i < MAX_WRITERS; i++) {
2530 		struct pktcdvd_device *pd2 = pkt_devs[i];
2531 		if (!pd2)
2532 			continue;
2533 		if (pd2->bdev->bd_dev == dev) {
2534 			dev_err(ddev, "%pg already setup\n", pd2->bdev);
2535 			return -EBUSY;
2536 		}
2537 		if (pd2->pkt_dev == dev) {
2538 			dev_err(ddev, "can't chain pktcdvd devices\n");
2539 			return -EBUSY;
2540 		}
2541 	}
2542 
2543 	bdev = blkdev_get_by_dev(dev, FMODE_READ | FMODE_NDELAY, NULL, NULL);
2544 	if (IS_ERR(bdev))
2545 		return PTR_ERR(bdev);
2546 	sdev = scsi_device_from_queue(bdev->bd_disk->queue);
2547 	if (!sdev) {
2548 		blkdev_put(bdev, FMODE_READ | FMODE_NDELAY);
2549 		return -EINVAL;
2550 	}
2551 	put_device(&sdev->sdev_gendev);
2552 
2553 	/* This is safe, since we have a reference from open(). */
2554 	__module_get(THIS_MODULE);
2555 
2556 	pd->bdev = bdev;
2557 	set_blocksize(bdev, CD_FRAMESIZE);
2558 
2559 	pkt_init_queue(pd);
2560 
2561 	atomic_set(&pd->cdrw.pending_bios, 0);
2562 	pd->cdrw.thread = kthread_run(kcdrwd, pd, "%s", pd->disk->disk_name);
2563 	if (IS_ERR(pd->cdrw.thread)) {
2564 		dev_err(ddev, "can't start kernel thread\n");
2565 		goto out_mem;
2566 	}
2567 
2568 	proc_create_single_data(pd->disk->disk_name, 0, pkt_proc, pkt_seq_show, pd);
2569 	dev_notice(ddev, "writer mapped to %pg\n", bdev);
2570 	return 0;
2571 
2572 out_mem:
2573 	blkdev_put(bdev, FMODE_READ | FMODE_NDELAY);
2574 	/* This is safe: open() is still holding a reference. */
2575 	module_put(THIS_MODULE);
2576 	return -ENOMEM;
2577 }
2578 
2579 static int pkt_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd, unsigned long arg)
2580 {
2581 	struct pktcdvd_device *pd = bdev->bd_disk->private_data;
2582 	struct device *ddev = disk_to_dev(pd->disk);
2583 	int ret;
2584 
2585 	dev_dbg(ddev, "cmd %x, dev %d:%d\n", cmd, MAJOR(bdev->bd_dev), MINOR(bdev->bd_dev));
2586 
2587 	mutex_lock(&pktcdvd_mutex);
2588 	switch (cmd) {
2589 	case CDROMEJECT:
2590 		/*
2591 		 * The door gets locked when the device is opened, so we
2592 		 * have to unlock it or else the eject command fails.
2593 		 */
2594 		if (pd->refcnt == 1)
2595 			pkt_lock_door(pd, 0);
2596 		fallthrough;
2597 	/*
2598 	 * forward selected CDROM ioctls to CD-ROM, for UDF
2599 	 */
2600 	case CDROMMULTISESSION:
2601 	case CDROMREADTOCENTRY:
2602 	case CDROM_LAST_WRITTEN:
2603 	case CDROM_SEND_PACKET:
2604 	case SCSI_IOCTL_SEND_COMMAND:
2605 		if (!bdev->bd_disk->fops->ioctl)
2606 			ret = -ENOTTY;
2607 		else
2608 			ret = bdev->bd_disk->fops->ioctl(bdev, mode, cmd, arg);
2609 		break;
2610 	default:
2611 		dev_dbg(ddev, "Unknown ioctl (%x)\n", cmd);
2612 		ret = -ENOTTY;
2613 	}
2614 	mutex_unlock(&pktcdvd_mutex);
2615 
2616 	return ret;
2617 }
2618 
2619 static unsigned int pkt_check_events(struct gendisk *disk,
2620 				     unsigned int clearing)
2621 {
2622 	struct pktcdvd_device *pd = disk->private_data;
2623 	struct gendisk *attached_disk;
2624 
2625 	if (!pd)
2626 		return 0;
2627 	if (!pd->bdev)
2628 		return 0;
2629 	attached_disk = pd->bdev->bd_disk;
2630 	if (!attached_disk || !attached_disk->fops->check_events)
2631 		return 0;
2632 	return attached_disk->fops->check_events(attached_disk, clearing);
2633 }
2634 
2635 static char *pkt_devnode(struct gendisk *disk, umode_t *mode)
2636 {
2637 	return kasprintf(GFP_KERNEL, "pktcdvd/%s", disk->disk_name);
2638 }
2639 
2640 static const struct block_device_operations pktcdvd_ops = {
2641 	.owner =		THIS_MODULE,
2642 	.submit_bio =		pkt_submit_bio,
2643 	.open =			pkt_open,
2644 	.release =		pkt_close,
2645 	.ioctl =		pkt_ioctl,
2646 	.compat_ioctl =		blkdev_compat_ptr_ioctl,
2647 	.check_events =		pkt_check_events,
2648 	.devnode =		pkt_devnode,
2649 };
2650 
2651 /*
2652  * Set up mapping from pktcdvd device to CD-ROM device.
2653  */
2654 static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev)
2655 {
2656 	int idx;
2657 	int ret = -ENOMEM;
2658 	struct pktcdvd_device *pd;
2659 	struct gendisk *disk;
2660 
2661 	mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2662 
2663 	for (idx = 0; idx < MAX_WRITERS; idx++)
2664 		if (!pkt_devs[idx])
2665 			break;
2666 	if (idx == MAX_WRITERS) {
2667 		pr_err("max %d writers supported\n", MAX_WRITERS);
2668 		ret = -EBUSY;
2669 		goto out_mutex;
2670 	}
2671 
2672 	pd = kzalloc(sizeof(struct pktcdvd_device), GFP_KERNEL);
2673 	if (!pd)
2674 		goto out_mutex;
2675 
2676 	ret = mempool_init_kmalloc_pool(&pd->rb_pool, PKT_RB_POOL_SIZE,
2677 					sizeof(struct pkt_rb_node));
2678 	if (ret)
2679 		goto out_mem;
2680 
2681 	INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
2682 	INIT_LIST_HEAD(&pd->cdrw.pkt_active_list);
2683 	spin_lock_init(&pd->cdrw.active_list_lock);
2684 
2685 	spin_lock_init(&pd->lock);
2686 	spin_lock_init(&pd->iosched.lock);
2687 	bio_list_init(&pd->iosched.read_queue);
2688 	bio_list_init(&pd->iosched.write_queue);
2689 	init_waitqueue_head(&pd->wqueue);
2690 	pd->bio_queue = RB_ROOT;
2691 
2692 	pd->write_congestion_on  = write_congestion_on;
2693 	pd->write_congestion_off = write_congestion_off;
2694 
2695 	ret = -ENOMEM;
2696 	disk = blk_alloc_disk(NUMA_NO_NODE);
2697 	if (!disk)
2698 		goto out_mem;
2699 	pd->disk = disk;
2700 	disk->major = pktdev_major;
2701 	disk->first_minor = idx;
2702 	disk->minors = 1;
2703 	disk->fops = &pktcdvd_ops;
2704 	disk->flags = GENHD_FL_REMOVABLE | GENHD_FL_NO_PART;
2705 	snprintf(disk->disk_name, sizeof(disk->disk_name), DRIVER_NAME"%d", idx);
2706 	disk->private_data = pd;
2707 
2708 	pd->pkt_dev = MKDEV(pktdev_major, idx);
2709 	ret = pkt_new_dev(pd, dev);
2710 	if (ret)
2711 		goto out_mem2;
2712 
2713 	/* inherit events of the host device */
2714 	disk->events = pd->bdev->bd_disk->events;
2715 
2716 	ret = add_disk(disk);
2717 	if (ret)
2718 		goto out_mem2;
2719 
2720 	pkt_sysfs_dev_new(pd);
2721 	pkt_debugfs_dev_new(pd);
2722 
2723 	pkt_devs[idx] = pd;
2724 	if (pkt_dev)
2725 		*pkt_dev = pd->pkt_dev;
2726 
2727 	mutex_unlock(&ctl_mutex);
2728 	return 0;
2729 
2730 out_mem2:
2731 	put_disk(disk);
2732 out_mem:
2733 	mempool_exit(&pd->rb_pool);
2734 	kfree(pd);
2735 out_mutex:
2736 	mutex_unlock(&ctl_mutex);
2737 	pr_err("setup of pktcdvd device failed\n");
2738 	return ret;
2739 }
2740 
2741 /*
2742  * Tear down mapping from pktcdvd device to CD-ROM device.
2743  */
2744 static int pkt_remove_dev(dev_t pkt_dev)
2745 {
2746 	struct pktcdvd_device *pd;
2747 	struct device *ddev;
2748 	int idx;
2749 	int ret = 0;
2750 
2751 	mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2752 
2753 	for (idx = 0; idx < MAX_WRITERS; idx++) {
2754 		pd = pkt_devs[idx];
2755 		if (pd && (pd->pkt_dev == pkt_dev))
2756 			break;
2757 	}
2758 	if (idx == MAX_WRITERS) {
2759 		pr_debug("dev not setup\n");
2760 		ret = -ENXIO;
2761 		goto out;
2762 	}
2763 
2764 	if (pd->refcnt > 0) {
2765 		ret = -EBUSY;
2766 		goto out;
2767 	}
2768 
2769 	ddev = disk_to_dev(pd->disk);
2770 
2771 	if (!IS_ERR(pd->cdrw.thread))
2772 		kthread_stop(pd->cdrw.thread);
2773 
2774 	pkt_devs[idx] = NULL;
2775 
2776 	pkt_debugfs_dev_remove(pd);
2777 	pkt_sysfs_dev_remove(pd);
2778 
2779 	blkdev_put(pd->bdev, FMODE_READ | FMODE_NDELAY);
2780 
2781 	remove_proc_entry(pd->disk->disk_name, pkt_proc);
2782 	dev_notice(ddev, "writer unmapped\n");
2783 
2784 	del_gendisk(pd->disk);
2785 	put_disk(pd->disk);
2786 
2787 	mempool_exit(&pd->rb_pool);
2788 	kfree(pd);
2789 
2790 	/* This is safe: open() is still holding a reference. */
2791 	module_put(THIS_MODULE);
2792 
2793 out:
2794 	mutex_unlock(&ctl_mutex);
2795 	return ret;
2796 }
2797 
2798 static void pkt_get_status(struct pkt_ctrl_command *ctrl_cmd)
2799 {
2800 	struct pktcdvd_device *pd;
2801 
2802 	mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2803 
2804 	pd = pkt_find_dev_from_minor(ctrl_cmd->dev_index);
2805 	if (pd) {
2806 		ctrl_cmd->dev = new_encode_dev(pd->bdev->bd_dev);
2807 		ctrl_cmd->pkt_dev = new_encode_dev(pd->pkt_dev);
2808 	} else {
2809 		ctrl_cmd->dev = 0;
2810 		ctrl_cmd->pkt_dev = 0;
2811 	}
2812 	ctrl_cmd->num_devices = MAX_WRITERS;
2813 
2814 	mutex_unlock(&ctl_mutex);
2815 }
2816 
2817 static long pkt_ctl_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2818 {
2819 	void __user *argp = (void __user *)arg;
2820 	struct pkt_ctrl_command ctrl_cmd;
2821 	int ret = 0;
2822 	dev_t pkt_dev = 0;
2823 
2824 	if (cmd != PACKET_CTRL_CMD)
2825 		return -ENOTTY;
2826 
2827 	if (copy_from_user(&ctrl_cmd, argp, sizeof(struct pkt_ctrl_command)))
2828 		return -EFAULT;
2829 
2830 	switch (ctrl_cmd.command) {
2831 	case PKT_CTRL_CMD_SETUP:
2832 		if (!capable(CAP_SYS_ADMIN))
2833 			return -EPERM;
2834 		ret = pkt_setup_dev(new_decode_dev(ctrl_cmd.dev), &pkt_dev);
2835 		ctrl_cmd.pkt_dev = new_encode_dev(pkt_dev);
2836 		break;
2837 	case PKT_CTRL_CMD_TEARDOWN:
2838 		if (!capable(CAP_SYS_ADMIN))
2839 			return -EPERM;
2840 		ret = pkt_remove_dev(new_decode_dev(ctrl_cmd.pkt_dev));
2841 		break;
2842 	case PKT_CTRL_CMD_STATUS:
2843 		pkt_get_status(&ctrl_cmd);
2844 		break;
2845 	default:
2846 		return -ENOTTY;
2847 	}
2848 
2849 	if (copy_to_user(argp, &ctrl_cmd, sizeof(struct pkt_ctrl_command)))
2850 		return -EFAULT;
2851 	return ret;
2852 }
2853 
2854 #ifdef CONFIG_COMPAT
2855 static long pkt_ctl_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2856 {
2857 	return pkt_ctl_ioctl(file, cmd, (unsigned long)compat_ptr(arg));
2858 }
2859 #endif
2860 
2861 static const struct file_operations pkt_ctl_fops = {
2862 	.open		= nonseekable_open,
2863 	.unlocked_ioctl	= pkt_ctl_ioctl,
2864 #ifdef CONFIG_COMPAT
2865 	.compat_ioctl	= pkt_ctl_compat_ioctl,
2866 #endif
2867 	.owner		= THIS_MODULE,
2868 	.llseek		= no_llseek,
2869 };
2870 
2871 static struct miscdevice pkt_misc = {
2872 	.minor 		= MISC_DYNAMIC_MINOR,
2873 	.name  		= DRIVER_NAME,
2874 	.nodename	= "pktcdvd/control",
2875 	.fops  		= &pkt_ctl_fops
2876 };
2877 
2878 static int __init pkt_init(void)
2879 {
2880 	int ret;
2881 
2882 	mutex_init(&ctl_mutex);
2883 
2884 	ret = mempool_init_kmalloc_pool(&psd_pool, PSD_POOL_SIZE,
2885 				    sizeof(struct packet_stacked_data));
2886 	if (ret)
2887 		return ret;
2888 	ret = bioset_init(&pkt_bio_set, BIO_POOL_SIZE, 0, 0);
2889 	if (ret) {
2890 		mempool_exit(&psd_pool);
2891 		return ret;
2892 	}
2893 
2894 	ret = register_blkdev(pktdev_major, DRIVER_NAME);
2895 	if (ret < 0) {
2896 		pr_err("unable to register block device\n");
2897 		goto out2;
2898 	}
2899 	if (!pktdev_major)
2900 		pktdev_major = ret;
2901 
2902 	ret = pkt_sysfs_init();
2903 	if (ret)
2904 		goto out;
2905 
2906 	pkt_debugfs_init();
2907 
2908 	ret = misc_register(&pkt_misc);
2909 	if (ret) {
2910 		pr_err("unable to register misc device\n");
2911 		goto out_misc;
2912 	}
2913 
2914 	pkt_proc = proc_mkdir("driver/"DRIVER_NAME, NULL);
2915 
2916 	return 0;
2917 
2918 out_misc:
2919 	pkt_debugfs_cleanup();
2920 	pkt_sysfs_cleanup();
2921 out:
2922 	unregister_blkdev(pktdev_major, DRIVER_NAME);
2923 out2:
2924 	mempool_exit(&psd_pool);
2925 	bioset_exit(&pkt_bio_set);
2926 	return ret;
2927 }
2928 
2929 static void __exit pkt_exit(void)
2930 {
2931 	remove_proc_entry("driver/"DRIVER_NAME, NULL);
2932 	misc_deregister(&pkt_misc);
2933 
2934 	pkt_debugfs_cleanup();
2935 	pkt_sysfs_cleanup();
2936 
2937 	unregister_blkdev(pktdev_major, DRIVER_NAME);
2938 	mempool_exit(&psd_pool);
2939 	bioset_exit(&pkt_bio_set);
2940 }
2941 
2942 MODULE_DESCRIPTION("Packet writing layer for CD/DVD drives");
2943 MODULE_AUTHOR("Jens Axboe <axboe@suse.de>");
2944 MODULE_LICENSE("GPL");
2945 
2946 module_init(pkt_init);
2947 module_exit(pkt_exit);
2948