xref: /linux/drivers/bluetooth/hci_qca.c (revision 1e525507)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Bluetooth Software UART Qualcomm protocol
4  *
5  *  HCI_IBS (HCI In-Band Sleep) is Qualcomm's power management
6  *  protocol extension to H4.
7  *
8  *  Copyright (C) 2007 Texas Instruments, Inc.
9  *  Copyright (c) 2010, 2012, 2018 The Linux Foundation. All rights reserved.
10  *
11  *  Acknowledgements:
12  *  This file is based on hci_ll.c, which was...
13  *  Written by Ohad Ben-Cohen <ohad@bencohen.org>
14  *  which was in turn based on hci_h4.c, which was written
15  *  by Maxim Krasnyansky and Marcel Holtmann.
16  */
17 
18 #include <linux/kernel.h>
19 #include <linux/clk.h>
20 #include <linux/completion.h>
21 #include <linux/debugfs.h>
22 #include <linux/delay.h>
23 #include <linux/devcoredump.h>
24 #include <linux/device.h>
25 #include <linux/gpio/consumer.h>
26 #include <linux/mod_devicetable.h>
27 #include <linux/module.h>
28 #include <linux/of.h>
29 #include <linux/acpi.h>
30 #include <linux/platform_device.h>
31 #include <linux/regulator/consumer.h>
32 #include <linux/serdev.h>
33 #include <linux/mutex.h>
34 #include <asm/unaligned.h>
35 
36 #include <net/bluetooth/bluetooth.h>
37 #include <net/bluetooth/hci_core.h>
38 
39 #include "hci_uart.h"
40 #include "btqca.h"
41 
42 /* HCI_IBS protocol messages */
43 #define HCI_IBS_SLEEP_IND	0xFE
44 #define HCI_IBS_WAKE_IND	0xFD
45 #define HCI_IBS_WAKE_ACK	0xFC
46 #define HCI_MAX_IBS_SIZE	10
47 
48 #define IBS_WAKE_RETRANS_TIMEOUT_MS	100
49 #define IBS_BTSOC_TX_IDLE_TIMEOUT_MS	200
50 #define IBS_HOST_TX_IDLE_TIMEOUT_MS	2000
51 #define CMD_TRANS_TIMEOUT_MS		100
52 #define MEMDUMP_TIMEOUT_MS		8000
53 #define IBS_DISABLE_SSR_TIMEOUT_MS \
54 	(MEMDUMP_TIMEOUT_MS + FW_DOWNLOAD_TIMEOUT_MS)
55 #define FW_DOWNLOAD_TIMEOUT_MS		3000
56 
57 /* susclk rate */
58 #define SUSCLK_RATE_32KHZ	32768
59 
60 /* Controller debug log header */
61 #define QCA_DEBUG_HANDLE	0x2EDC
62 
63 /* max retry count when init fails */
64 #define MAX_INIT_RETRIES 3
65 
66 /* Controller dump header */
67 #define QCA_SSR_DUMP_HANDLE		0x0108
68 #define QCA_DUMP_PACKET_SIZE		255
69 #define QCA_LAST_SEQUENCE_NUM		0xFFFF
70 #define QCA_CRASHBYTE_PACKET_LEN	1096
71 #define QCA_MEMDUMP_BYTE		0xFB
72 
73 enum qca_flags {
74 	QCA_IBS_DISABLED,
75 	QCA_DROP_VENDOR_EVENT,
76 	QCA_SUSPENDING,
77 	QCA_MEMDUMP_COLLECTION,
78 	QCA_HW_ERROR_EVENT,
79 	QCA_SSR_TRIGGERED,
80 	QCA_BT_OFF,
81 	QCA_ROM_FW,
82 	QCA_DEBUGFS_CREATED,
83 };
84 
85 enum qca_capabilities {
86 	QCA_CAP_WIDEBAND_SPEECH = BIT(0),
87 	QCA_CAP_VALID_LE_STATES = BIT(1),
88 };
89 
90 /* HCI_IBS transmit side sleep protocol states */
91 enum tx_ibs_states {
92 	HCI_IBS_TX_ASLEEP,
93 	HCI_IBS_TX_WAKING,
94 	HCI_IBS_TX_AWAKE,
95 };
96 
97 /* HCI_IBS receive side sleep protocol states */
98 enum rx_states {
99 	HCI_IBS_RX_ASLEEP,
100 	HCI_IBS_RX_AWAKE,
101 };
102 
103 /* HCI_IBS transmit and receive side clock state vote */
104 enum hci_ibs_clock_state_vote {
105 	HCI_IBS_VOTE_STATS_UPDATE,
106 	HCI_IBS_TX_VOTE_CLOCK_ON,
107 	HCI_IBS_TX_VOTE_CLOCK_OFF,
108 	HCI_IBS_RX_VOTE_CLOCK_ON,
109 	HCI_IBS_RX_VOTE_CLOCK_OFF,
110 };
111 
112 /* Controller memory dump states */
113 enum qca_memdump_states {
114 	QCA_MEMDUMP_IDLE,
115 	QCA_MEMDUMP_COLLECTING,
116 	QCA_MEMDUMP_COLLECTED,
117 	QCA_MEMDUMP_TIMEOUT,
118 };
119 
120 struct qca_memdump_info {
121 	u32 current_seq_no;
122 	u32 received_dump;
123 	u32 ram_dump_size;
124 };
125 
126 struct qca_memdump_event_hdr {
127 	__u8    evt;
128 	__u8    plen;
129 	__u16   opcode;
130 	__le16   seq_no;
131 	__u8    reserved;
132 } __packed;
133 
134 
135 struct qca_dump_size {
136 	__le32 dump_size;
137 } __packed;
138 
139 struct qca_data {
140 	struct hci_uart *hu;
141 	struct sk_buff *rx_skb;
142 	struct sk_buff_head txq;
143 	struct sk_buff_head tx_wait_q;	/* HCI_IBS wait queue	*/
144 	struct sk_buff_head rx_memdump_q;	/* Memdump wait queue	*/
145 	spinlock_t hci_ibs_lock;	/* HCI_IBS state lock	*/
146 	u8 tx_ibs_state;	/* HCI_IBS transmit side power state*/
147 	u8 rx_ibs_state;	/* HCI_IBS receive side power state */
148 	bool tx_vote;		/* Clock must be on for TX */
149 	bool rx_vote;		/* Clock must be on for RX */
150 	struct timer_list tx_idle_timer;
151 	u32 tx_idle_delay;
152 	struct timer_list wake_retrans_timer;
153 	u32 wake_retrans;
154 	struct workqueue_struct *workqueue;
155 	struct work_struct ws_awake_rx;
156 	struct work_struct ws_awake_device;
157 	struct work_struct ws_rx_vote_off;
158 	struct work_struct ws_tx_vote_off;
159 	struct work_struct ctrl_memdump_evt;
160 	struct delayed_work ctrl_memdump_timeout;
161 	struct qca_memdump_info *qca_memdump;
162 	unsigned long flags;
163 	struct completion drop_ev_comp;
164 	wait_queue_head_t suspend_wait_q;
165 	enum qca_memdump_states memdump_state;
166 	struct mutex hci_memdump_lock;
167 
168 	u16 fw_version;
169 	u16 controller_id;
170 	/* For debugging purpose */
171 	u64 ibs_sent_wacks;
172 	u64 ibs_sent_slps;
173 	u64 ibs_sent_wakes;
174 	u64 ibs_recv_wacks;
175 	u64 ibs_recv_slps;
176 	u64 ibs_recv_wakes;
177 	u64 vote_last_jif;
178 	u32 vote_on_ms;
179 	u32 vote_off_ms;
180 	u64 tx_votes_on;
181 	u64 rx_votes_on;
182 	u64 tx_votes_off;
183 	u64 rx_votes_off;
184 	u64 votes_on;
185 	u64 votes_off;
186 };
187 
188 enum qca_speed_type {
189 	QCA_INIT_SPEED = 1,
190 	QCA_OPER_SPEED
191 };
192 
193 /*
194  * Voltage regulator information required for configuring the
195  * QCA Bluetooth chipset
196  */
197 struct qca_vreg {
198 	const char *name;
199 	unsigned int load_uA;
200 };
201 
202 struct qca_device_data {
203 	enum qca_btsoc_type soc_type;
204 	struct qca_vreg *vregs;
205 	size_t num_vregs;
206 	uint32_t capabilities;
207 };
208 
209 /*
210  * Platform data for the QCA Bluetooth power driver.
211  */
212 struct qca_power {
213 	struct device *dev;
214 	struct regulator_bulk_data *vreg_bulk;
215 	int num_vregs;
216 	bool vregs_on;
217 };
218 
219 struct qca_serdev {
220 	struct hci_uart	 serdev_hu;
221 	struct gpio_desc *bt_en;
222 	struct gpio_desc *sw_ctrl;
223 	struct clk	 *susclk;
224 	enum qca_btsoc_type btsoc_type;
225 	struct qca_power *bt_power;
226 	u32 init_speed;
227 	u32 oper_speed;
228 	bool bdaddr_property_broken;
229 	const char *firmware_name;
230 };
231 
232 static int qca_regulator_enable(struct qca_serdev *qcadev);
233 static void qca_regulator_disable(struct qca_serdev *qcadev);
234 static void qca_power_shutdown(struct hci_uart *hu);
235 static int qca_power_off(struct hci_dev *hdev);
236 static void qca_controller_memdump(struct work_struct *work);
237 static void qca_dmp_hdr(struct hci_dev *hdev, struct sk_buff *skb);
238 
239 static enum qca_btsoc_type qca_soc_type(struct hci_uart *hu)
240 {
241 	enum qca_btsoc_type soc_type;
242 
243 	if (hu->serdev) {
244 		struct qca_serdev *qsd = serdev_device_get_drvdata(hu->serdev);
245 
246 		soc_type = qsd->btsoc_type;
247 	} else {
248 		soc_type = QCA_ROME;
249 	}
250 
251 	return soc_type;
252 }
253 
254 static const char *qca_get_firmware_name(struct hci_uart *hu)
255 {
256 	if (hu->serdev) {
257 		struct qca_serdev *qsd = serdev_device_get_drvdata(hu->serdev);
258 
259 		return qsd->firmware_name;
260 	} else {
261 		return NULL;
262 	}
263 }
264 
265 static void __serial_clock_on(struct tty_struct *tty)
266 {
267 	/* TODO: Some chipset requires to enable UART clock on client
268 	 * side to save power consumption or manual work is required.
269 	 * Please put your code to control UART clock here if needed
270 	 */
271 }
272 
273 static void __serial_clock_off(struct tty_struct *tty)
274 {
275 	/* TODO: Some chipset requires to disable UART clock on client
276 	 * side to save power consumption or manual work is required.
277 	 * Please put your code to control UART clock off here if needed
278 	 */
279 }
280 
281 /* serial_clock_vote needs to be called with the ibs lock held */
282 static void serial_clock_vote(unsigned long vote, struct hci_uart *hu)
283 {
284 	struct qca_data *qca = hu->priv;
285 	unsigned int diff;
286 
287 	bool old_vote = (qca->tx_vote | qca->rx_vote);
288 	bool new_vote;
289 
290 	switch (vote) {
291 	case HCI_IBS_VOTE_STATS_UPDATE:
292 		diff = jiffies_to_msecs(jiffies - qca->vote_last_jif);
293 
294 		if (old_vote)
295 			qca->vote_off_ms += diff;
296 		else
297 			qca->vote_on_ms += diff;
298 		return;
299 
300 	case HCI_IBS_TX_VOTE_CLOCK_ON:
301 		qca->tx_vote = true;
302 		qca->tx_votes_on++;
303 		break;
304 
305 	case HCI_IBS_RX_VOTE_CLOCK_ON:
306 		qca->rx_vote = true;
307 		qca->rx_votes_on++;
308 		break;
309 
310 	case HCI_IBS_TX_VOTE_CLOCK_OFF:
311 		qca->tx_vote = false;
312 		qca->tx_votes_off++;
313 		break;
314 
315 	case HCI_IBS_RX_VOTE_CLOCK_OFF:
316 		qca->rx_vote = false;
317 		qca->rx_votes_off++;
318 		break;
319 
320 	default:
321 		BT_ERR("Voting irregularity");
322 		return;
323 	}
324 
325 	new_vote = qca->rx_vote | qca->tx_vote;
326 
327 	if (new_vote != old_vote) {
328 		if (new_vote)
329 			__serial_clock_on(hu->tty);
330 		else
331 			__serial_clock_off(hu->tty);
332 
333 		BT_DBG("Vote serial clock %s(%s)", new_vote ? "true" : "false",
334 		       vote ? "true" : "false");
335 
336 		diff = jiffies_to_msecs(jiffies - qca->vote_last_jif);
337 
338 		if (new_vote) {
339 			qca->votes_on++;
340 			qca->vote_off_ms += diff;
341 		} else {
342 			qca->votes_off++;
343 			qca->vote_on_ms += diff;
344 		}
345 		qca->vote_last_jif = jiffies;
346 	}
347 }
348 
349 /* Builds and sends an HCI_IBS command packet.
350  * These are very simple packets with only 1 cmd byte.
351  */
352 static int send_hci_ibs_cmd(u8 cmd, struct hci_uart *hu)
353 {
354 	int err = 0;
355 	struct sk_buff *skb = NULL;
356 	struct qca_data *qca = hu->priv;
357 
358 	BT_DBG("hu %p send hci ibs cmd 0x%x", hu, cmd);
359 
360 	skb = bt_skb_alloc(1, GFP_ATOMIC);
361 	if (!skb) {
362 		BT_ERR("Failed to allocate memory for HCI_IBS packet");
363 		return -ENOMEM;
364 	}
365 
366 	/* Assign HCI_IBS type */
367 	skb_put_u8(skb, cmd);
368 
369 	skb_queue_tail(&qca->txq, skb);
370 
371 	return err;
372 }
373 
374 static void qca_wq_awake_device(struct work_struct *work)
375 {
376 	struct qca_data *qca = container_of(work, struct qca_data,
377 					    ws_awake_device);
378 	struct hci_uart *hu = qca->hu;
379 	unsigned long retrans_delay;
380 	unsigned long flags;
381 
382 	BT_DBG("hu %p wq awake device", hu);
383 
384 	/* Vote for serial clock */
385 	serial_clock_vote(HCI_IBS_TX_VOTE_CLOCK_ON, hu);
386 
387 	spin_lock_irqsave(&qca->hci_ibs_lock, flags);
388 
389 	/* Send wake indication to device */
390 	if (send_hci_ibs_cmd(HCI_IBS_WAKE_IND, hu) < 0)
391 		BT_ERR("Failed to send WAKE to device");
392 
393 	qca->ibs_sent_wakes++;
394 
395 	/* Start retransmit timer */
396 	retrans_delay = msecs_to_jiffies(qca->wake_retrans);
397 	mod_timer(&qca->wake_retrans_timer, jiffies + retrans_delay);
398 
399 	spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
400 
401 	/* Actually send the packets */
402 	hci_uart_tx_wakeup(hu);
403 }
404 
405 static void qca_wq_awake_rx(struct work_struct *work)
406 {
407 	struct qca_data *qca = container_of(work, struct qca_data,
408 					    ws_awake_rx);
409 	struct hci_uart *hu = qca->hu;
410 	unsigned long flags;
411 
412 	BT_DBG("hu %p wq awake rx", hu);
413 
414 	serial_clock_vote(HCI_IBS_RX_VOTE_CLOCK_ON, hu);
415 
416 	spin_lock_irqsave(&qca->hci_ibs_lock, flags);
417 	qca->rx_ibs_state = HCI_IBS_RX_AWAKE;
418 
419 	/* Always acknowledge device wake up,
420 	 * sending IBS message doesn't count as TX ON.
421 	 */
422 	if (send_hci_ibs_cmd(HCI_IBS_WAKE_ACK, hu) < 0)
423 		BT_ERR("Failed to acknowledge device wake up");
424 
425 	qca->ibs_sent_wacks++;
426 
427 	spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
428 
429 	/* Actually send the packets */
430 	hci_uart_tx_wakeup(hu);
431 }
432 
433 static void qca_wq_serial_rx_clock_vote_off(struct work_struct *work)
434 {
435 	struct qca_data *qca = container_of(work, struct qca_data,
436 					    ws_rx_vote_off);
437 	struct hci_uart *hu = qca->hu;
438 
439 	BT_DBG("hu %p rx clock vote off", hu);
440 
441 	serial_clock_vote(HCI_IBS_RX_VOTE_CLOCK_OFF, hu);
442 }
443 
444 static void qca_wq_serial_tx_clock_vote_off(struct work_struct *work)
445 {
446 	struct qca_data *qca = container_of(work, struct qca_data,
447 					    ws_tx_vote_off);
448 	struct hci_uart *hu = qca->hu;
449 
450 	BT_DBG("hu %p tx clock vote off", hu);
451 
452 	/* Run HCI tx handling unlocked */
453 	hci_uart_tx_wakeup(hu);
454 
455 	/* Now that message queued to tty driver, vote for tty clocks off.
456 	 * It is up to the tty driver to pend the clocks off until tx done.
457 	 */
458 	serial_clock_vote(HCI_IBS_TX_VOTE_CLOCK_OFF, hu);
459 }
460 
461 static void hci_ibs_tx_idle_timeout(struct timer_list *t)
462 {
463 	struct qca_data *qca = from_timer(qca, t, tx_idle_timer);
464 	struct hci_uart *hu = qca->hu;
465 	unsigned long flags;
466 
467 	BT_DBG("hu %p idle timeout in %d state", hu, qca->tx_ibs_state);
468 
469 	spin_lock_irqsave_nested(&qca->hci_ibs_lock,
470 				 flags, SINGLE_DEPTH_NESTING);
471 
472 	switch (qca->tx_ibs_state) {
473 	case HCI_IBS_TX_AWAKE:
474 		/* TX_IDLE, go to SLEEP */
475 		if (send_hci_ibs_cmd(HCI_IBS_SLEEP_IND, hu) < 0) {
476 			BT_ERR("Failed to send SLEEP to device");
477 			break;
478 		}
479 		qca->tx_ibs_state = HCI_IBS_TX_ASLEEP;
480 		qca->ibs_sent_slps++;
481 		queue_work(qca->workqueue, &qca->ws_tx_vote_off);
482 		break;
483 
484 	case HCI_IBS_TX_ASLEEP:
485 	case HCI_IBS_TX_WAKING:
486 	default:
487 		BT_ERR("Spurious timeout tx state %d", qca->tx_ibs_state);
488 		break;
489 	}
490 
491 	spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
492 }
493 
494 static void hci_ibs_wake_retrans_timeout(struct timer_list *t)
495 {
496 	struct qca_data *qca = from_timer(qca, t, wake_retrans_timer);
497 	struct hci_uart *hu = qca->hu;
498 	unsigned long flags, retrans_delay;
499 	bool retransmit = false;
500 
501 	BT_DBG("hu %p wake retransmit timeout in %d state",
502 		hu, qca->tx_ibs_state);
503 
504 	spin_lock_irqsave_nested(&qca->hci_ibs_lock,
505 				 flags, SINGLE_DEPTH_NESTING);
506 
507 	/* Don't retransmit the HCI_IBS_WAKE_IND when suspending. */
508 	if (test_bit(QCA_SUSPENDING, &qca->flags)) {
509 		spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
510 		return;
511 	}
512 
513 	switch (qca->tx_ibs_state) {
514 	case HCI_IBS_TX_WAKING:
515 		/* No WAKE_ACK, retransmit WAKE */
516 		retransmit = true;
517 		if (send_hci_ibs_cmd(HCI_IBS_WAKE_IND, hu) < 0) {
518 			BT_ERR("Failed to acknowledge device wake up");
519 			break;
520 		}
521 		qca->ibs_sent_wakes++;
522 		retrans_delay = msecs_to_jiffies(qca->wake_retrans);
523 		mod_timer(&qca->wake_retrans_timer, jiffies + retrans_delay);
524 		break;
525 
526 	case HCI_IBS_TX_ASLEEP:
527 	case HCI_IBS_TX_AWAKE:
528 	default:
529 		BT_ERR("Spurious timeout tx state %d", qca->tx_ibs_state);
530 		break;
531 	}
532 
533 	spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
534 
535 	if (retransmit)
536 		hci_uart_tx_wakeup(hu);
537 }
538 
539 
540 static void qca_controller_memdump_timeout(struct work_struct *work)
541 {
542 	struct qca_data *qca = container_of(work, struct qca_data,
543 					ctrl_memdump_timeout.work);
544 	struct hci_uart *hu = qca->hu;
545 
546 	mutex_lock(&qca->hci_memdump_lock);
547 	if (test_bit(QCA_MEMDUMP_COLLECTION, &qca->flags)) {
548 		qca->memdump_state = QCA_MEMDUMP_TIMEOUT;
549 		if (!test_bit(QCA_HW_ERROR_EVENT, &qca->flags)) {
550 			/* Inject hw error event to reset the device
551 			 * and driver.
552 			 */
553 			hci_reset_dev(hu->hdev);
554 		}
555 	}
556 
557 	mutex_unlock(&qca->hci_memdump_lock);
558 }
559 
560 
561 /* Initialize protocol */
562 static int qca_open(struct hci_uart *hu)
563 {
564 	struct qca_serdev *qcadev;
565 	struct qca_data *qca;
566 
567 	BT_DBG("hu %p qca_open", hu);
568 
569 	if (!hci_uart_has_flow_control(hu))
570 		return -EOPNOTSUPP;
571 
572 	qca = kzalloc(sizeof(struct qca_data), GFP_KERNEL);
573 	if (!qca)
574 		return -ENOMEM;
575 
576 	skb_queue_head_init(&qca->txq);
577 	skb_queue_head_init(&qca->tx_wait_q);
578 	skb_queue_head_init(&qca->rx_memdump_q);
579 	spin_lock_init(&qca->hci_ibs_lock);
580 	mutex_init(&qca->hci_memdump_lock);
581 	qca->workqueue = alloc_ordered_workqueue("qca_wq", 0);
582 	if (!qca->workqueue) {
583 		BT_ERR("QCA Workqueue not initialized properly");
584 		kfree(qca);
585 		return -ENOMEM;
586 	}
587 
588 	INIT_WORK(&qca->ws_awake_rx, qca_wq_awake_rx);
589 	INIT_WORK(&qca->ws_awake_device, qca_wq_awake_device);
590 	INIT_WORK(&qca->ws_rx_vote_off, qca_wq_serial_rx_clock_vote_off);
591 	INIT_WORK(&qca->ws_tx_vote_off, qca_wq_serial_tx_clock_vote_off);
592 	INIT_WORK(&qca->ctrl_memdump_evt, qca_controller_memdump);
593 	INIT_DELAYED_WORK(&qca->ctrl_memdump_timeout,
594 			  qca_controller_memdump_timeout);
595 	init_waitqueue_head(&qca->suspend_wait_q);
596 
597 	qca->hu = hu;
598 	init_completion(&qca->drop_ev_comp);
599 
600 	/* Assume we start with both sides asleep -- extra wakes OK */
601 	qca->tx_ibs_state = HCI_IBS_TX_ASLEEP;
602 	qca->rx_ibs_state = HCI_IBS_RX_ASLEEP;
603 
604 	qca->vote_last_jif = jiffies;
605 
606 	hu->priv = qca;
607 
608 	if (hu->serdev) {
609 		qcadev = serdev_device_get_drvdata(hu->serdev);
610 
611 		switch (qcadev->btsoc_type) {
612 		case QCA_WCN3988:
613 		case QCA_WCN3990:
614 		case QCA_WCN3991:
615 		case QCA_WCN3998:
616 		case QCA_WCN6750:
617 			hu->init_speed = qcadev->init_speed;
618 			break;
619 
620 		default:
621 			break;
622 		}
623 
624 		if (qcadev->oper_speed)
625 			hu->oper_speed = qcadev->oper_speed;
626 	}
627 
628 	timer_setup(&qca->wake_retrans_timer, hci_ibs_wake_retrans_timeout, 0);
629 	qca->wake_retrans = IBS_WAKE_RETRANS_TIMEOUT_MS;
630 
631 	timer_setup(&qca->tx_idle_timer, hci_ibs_tx_idle_timeout, 0);
632 	qca->tx_idle_delay = IBS_HOST_TX_IDLE_TIMEOUT_MS;
633 
634 	BT_DBG("HCI_UART_QCA open, tx_idle_delay=%u, wake_retrans=%u",
635 	       qca->tx_idle_delay, qca->wake_retrans);
636 
637 	return 0;
638 }
639 
640 static void qca_debugfs_init(struct hci_dev *hdev)
641 {
642 	struct hci_uart *hu = hci_get_drvdata(hdev);
643 	struct qca_data *qca = hu->priv;
644 	struct dentry *ibs_dir;
645 	umode_t mode;
646 
647 	if (!hdev->debugfs)
648 		return;
649 
650 	if (test_and_set_bit(QCA_DEBUGFS_CREATED, &qca->flags))
651 		return;
652 
653 	ibs_dir = debugfs_create_dir("ibs", hdev->debugfs);
654 
655 	/* read only */
656 	mode = 0444;
657 	debugfs_create_u8("tx_ibs_state", mode, ibs_dir, &qca->tx_ibs_state);
658 	debugfs_create_u8("rx_ibs_state", mode, ibs_dir, &qca->rx_ibs_state);
659 	debugfs_create_u64("ibs_sent_sleeps", mode, ibs_dir,
660 			   &qca->ibs_sent_slps);
661 	debugfs_create_u64("ibs_sent_wakes", mode, ibs_dir,
662 			   &qca->ibs_sent_wakes);
663 	debugfs_create_u64("ibs_sent_wake_acks", mode, ibs_dir,
664 			   &qca->ibs_sent_wacks);
665 	debugfs_create_u64("ibs_recv_sleeps", mode, ibs_dir,
666 			   &qca->ibs_recv_slps);
667 	debugfs_create_u64("ibs_recv_wakes", mode, ibs_dir,
668 			   &qca->ibs_recv_wakes);
669 	debugfs_create_u64("ibs_recv_wake_acks", mode, ibs_dir,
670 			   &qca->ibs_recv_wacks);
671 	debugfs_create_bool("tx_vote", mode, ibs_dir, &qca->tx_vote);
672 	debugfs_create_u64("tx_votes_on", mode, ibs_dir, &qca->tx_votes_on);
673 	debugfs_create_u64("tx_votes_off", mode, ibs_dir, &qca->tx_votes_off);
674 	debugfs_create_bool("rx_vote", mode, ibs_dir, &qca->rx_vote);
675 	debugfs_create_u64("rx_votes_on", mode, ibs_dir, &qca->rx_votes_on);
676 	debugfs_create_u64("rx_votes_off", mode, ibs_dir, &qca->rx_votes_off);
677 	debugfs_create_u64("votes_on", mode, ibs_dir, &qca->votes_on);
678 	debugfs_create_u64("votes_off", mode, ibs_dir, &qca->votes_off);
679 	debugfs_create_u32("vote_on_ms", mode, ibs_dir, &qca->vote_on_ms);
680 	debugfs_create_u32("vote_off_ms", mode, ibs_dir, &qca->vote_off_ms);
681 
682 	/* read/write */
683 	mode = 0644;
684 	debugfs_create_u32("wake_retrans", mode, ibs_dir, &qca->wake_retrans);
685 	debugfs_create_u32("tx_idle_delay", mode, ibs_dir,
686 			   &qca->tx_idle_delay);
687 }
688 
689 /* Flush protocol data */
690 static int qca_flush(struct hci_uart *hu)
691 {
692 	struct qca_data *qca = hu->priv;
693 
694 	BT_DBG("hu %p qca flush", hu);
695 
696 	skb_queue_purge(&qca->tx_wait_q);
697 	skb_queue_purge(&qca->txq);
698 
699 	return 0;
700 }
701 
702 /* Close protocol */
703 static int qca_close(struct hci_uart *hu)
704 {
705 	struct qca_data *qca = hu->priv;
706 
707 	BT_DBG("hu %p qca close", hu);
708 
709 	serial_clock_vote(HCI_IBS_VOTE_STATS_UPDATE, hu);
710 
711 	skb_queue_purge(&qca->tx_wait_q);
712 	skb_queue_purge(&qca->txq);
713 	skb_queue_purge(&qca->rx_memdump_q);
714 	/*
715 	 * Shut the timers down so they can't be rearmed when
716 	 * destroy_workqueue() drains pending work which in turn might try
717 	 * to arm a timer.  After shutdown rearm attempts are silently
718 	 * ignored by the timer core code.
719 	 */
720 	timer_shutdown_sync(&qca->tx_idle_timer);
721 	timer_shutdown_sync(&qca->wake_retrans_timer);
722 	destroy_workqueue(qca->workqueue);
723 	qca->hu = NULL;
724 
725 	kfree_skb(qca->rx_skb);
726 
727 	hu->priv = NULL;
728 
729 	kfree(qca);
730 
731 	return 0;
732 }
733 
734 /* Called upon a wake-up-indication from the device.
735  */
736 static void device_want_to_wakeup(struct hci_uart *hu)
737 {
738 	unsigned long flags;
739 	struct qca_data *qca = hu->priv;
740 
741 	BT_DBG("hu %p want to wake up", hu);
742 
743 	spin_lock_irqsave(&qca->hci_ibs_lock, flags);
744 
745 	qca->ibs_recv_wakes++;
746 
747 	/* Don't wake the rx up when suspending. */
748 	if (test_bit(QCA_SUSPENDING, &qca->flags)) {
749 		spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
750 		return;
751 	}
752 
753 	switch (qca->rx_ibs_state) {
754 	case HCI_IBS_RX_ASLEEP:
755 		/* Make sure clock is on - we may have turned clock off since
756 		 * receiving the wake up indicator awake rx clock.
757 		 */
758 		queue_work(qca->workqueue, &qca->ws_awake_rx);
759 		spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
760 		return;
761 
762 	case HCI_IBS_RX_AWAKE:
763 		/* Always acknowledge device wake up,
764 		 * sending IBS message doesn't count as TX ON.
765 		 */
766 		if (send_hci_ibs_cmd(HCI_IBS_WAKE_ACK, hu) < 0) {
767 			BT_ERR("Failed to acknowledge device wake up");
768 			break;
769 		}
770 		qca->ibs_sent_wacks++;
771 		break;
772 
773 	default:
774 		/* Any other state is illegal */
775 		BT_ERR("Received HCI_IBS_WAKE_IND in rx state %d",
776 		       qca->rx_ibs_state);
777 		break;
778 	}
779 
780 	spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
781 
782 	/* Actually send the packets */
783 	hci_uart_tx_wakeup(hu);
784 }
785 
786 /* Called upon a sleep-indication from the device.
787  */
788 static void device_want_to_sleep(struct hci_uart *hu)
789 {
790 	unsigned long flags;
791 	struct qca_data *qca = hu->priv;
792 
793 	BT_DBG("hu %p want to sleep in %d state", hu, qca->rx_ibs_state);
794 
795 	spin_lock_irqsave(&qca->hci_ibs_lock, flags);
796 
797 	qca->ibs_recv_slps++;
798 
799 	switch (qca->rx_ibs_state) {
800 	case HCI_IBS_RX_AWAKE:
801 		/* Update state */
802 		qca->rx_ibs_state = HCI_IBS_RX_ASLEEP;
803 		/* Vote off rx clock under workqueue */
804 		queue_work(qca->workqueue, &qca->ws_rx_vote_off);
805 		break;
806 
807 	case HCI_IBS_RX_ASLEEP:
808 		break;
809 
810 	default:
811 		/* Any other state is illegal */
812 		BT_ERR("Received HCI_IBS_SLEEP_IND in rx state %d",
813 		       qca->rx_ibs_state);
814 		break;
815 	}
816 
817 	wake_up_interruptible(&qca->suspend_wait_q);
818 
819 	spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
820 }
821 
822 /* Called upon wake-up-acknowledgement from the device
823  */
824 static void device_woke_up(struct hci_uart *hu)
825 {
826 	unsigned long flags, idle_delay;
827 	struct qca_data *qca = hu->priv;
828 	struct sk_buff *skb = NULL;
829 
830 	BT_DBG("hu %p woke up", hu);
831 
832 	spin_lock_irqsave(&qca->hci_ibs_lock, flags);
833 
834 	qca->ibs_recv_wacks++;
835 
836 	/* Don't react to the wake-up-acknowledgment when suspending. */
837 	if (test_bit(QCA_SUSPENDING, &qca->flags)) {
838 		spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
839 		return;
840 	}
841 
842 	switch (qca->tx_ibs_state) {
843 	case HCI_IBS_TX_AWAKE:
844 		/* Expect one if we send 2 WAKEs */
845 		BT_DBG("Received HCI_IBS_WAKE_ACK in tx state %d",
846 		       qca->tx_ibs_state);
847 		break;
848 
849 	case HCI_IBS_TX_WAKING:
850 		/* Send pending packets */
851 		while ((skb = skb_dequeue(&qca->tx_wait_q)))
852 			skb_queue_tail(&qca->txq, skb);
853 
854 		/* Switch timers and change state to HCI_IBS_TX_AWAKE */
855 		del_timer(&qca->wake_retrans_timer);
856 		idle_delay = msecs_to_jiffies(qca->tx_idle_delay);
857 		mod_timer(&qca->tx_idle_timer, jiffies + idle_delay);
858 		qca->tx_ibs_state = HCI_IBS_TX_AWAKE;
859 		break;
860 
861 	case HCI_IBS_TX_ASLEEP:
862 	default:
863 		BT_ERR("Received HCI_IBS_WAKE_ACK in tx state %d",
864 		       qca->tx_ibs_state);
865 		break;
866 	}
867 
868 	spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
869 
870 	/* Actually send the packets */
871 	hci_uart_tx_wakeup(hu);
872 }
873 
874 /* Enqueue frame for transmittion (padding, crc, etc) may be called from
875  * two simultaneous tasklets.
876  */
877 static int qca_enqueue(struct hci_uart *hu, struct sk_buff *skb)
878 {
879 	unsigned long flags = 0, idle_delay;
880 	struct qca_data *qca = hu->priv;
881 
882 	BT_DBG("hu %p qca enq skb %p tx_ibs_state %d", hu, skb,
883 	       qca->tx_ibs_state);
884 
885 	if (test_bit(QCA_SSR_TRIGGERED, &qca->flags)) {
886 		/* As SSR is in progress, ignore the packets */
887 		bt_dev_dbg(hu->hdev, "SSR is in progress");
888 		kfree_skb(skb);
889 		return 0;
890 	}
891 
892 	/* Prepend skb with frame type */
893 	memcpy(skb_push(skb, 1), &hci_skb_pkt_type(skb), 1);
894 
895 	spin_lock_irqsave(&qca->hci_ibs_lock, flags);
896 
897 	/* Don't go to sleep in middle of patch download or
898 	 * Out-Of-Band(GPIOs control) sleep is selected.
899 	 * Don't wake the device up when suspending.
900 	 */
901 	if (test_bit(QCA_IBS_DISABLED, &qca->flags) ||
902 	    test_bit(QCA_SUSPENDING, &qca->flags)) {
903 		skb_queue_tail(&qca->txq, skb);
904 		spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
905 		return 0;
906 	}
907 
908 	/* Act according to current state */
909 	switch (qca->tx_ibs_state) {
910 	case HCI_IBS_TX_AWAKE:
911 		BT_DBG("Device awake, sending normally");
912 		skb_queue_tail(&qca->txq, skb);
913 		idle_delay = msecs_to_jiffies(qca->tx_idle_delay);
914 		mod_timer(&qca->tx_idle_timer, jiffies + idle_delay);
915 		break;
916 
917 	case HCI_IBS_TX_ASLEEP:
918 		BT_DBG("Device asleep, waking up and queueing packet");
919 		/* Save packet for later */
920 		skb_queue_tail(&qca->tx_wait_q, skb);
921 
922 		qca->tx_ibs_state = HCI_IBS_TX_WAKING;
923 		/* Schedule a work queue to wake up device */
924 		queue_work(qca->workqueue, &qca->ws_awake_device);
925 		break;
926 
927 	case HCI_IBS_TX_WAKING:
928 		BT_DBG("Device waking up, queueing packet");
929 		/* Transient state; just keep packet for later */
930 		skb_queue_tail(&qca->tx_wait_q, skb);
931 		break;
932 
933 	default:
934 		BT_ERR("Illegal tx state: %d (losing packet)",
935 		       qca->tx_ibs_state);
936 		dev_kfree_skb_irq(skb);
937 		break;
938 	}
939 
940 	spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
941 
942 	return 0;
943 }
944 
945 static int qca_ibs_sleep_ind(struct hci_dev *hdev, struct sk_buff *skb)
946 {
947 	struct hci_uart *hu = hci_get_drvdata(hdev);
948 
949 	BT_DBG("hu %p recv hci ibs cmd 0x%x", hu, HCI_IBS_SLEEP_IND);
950 
951 	device_want_to_sleep(hu);
952 
953 	kfree_skb(skb);
954 	return 0;
955 }
956 
957 static int qca_ibs_wake_ind(struct hci_dev *hdev, struct sk_buff *skb)
958 {
959 	struct hci_uart *hu = hci_get_drvdata(hdev);
960 
961 	BT_DBG("hu %p recv hci ibs cmd 0x%x", hu, HCI_IBS_WAKE_IND);
962 
963 	device_want_to_wakeup(hu);
964 
965 	kfree_skb(skb);
966 	return 0;
967 }
968 
969 static int qca_ibs_wake_ack(struct hci_dev *hdev, struct sk_buff *skb)
970 {
971 	struct hci_uart *hu = hci_get_drvdata(hdev);
972 
973 	BT_DBG("hu %p recv hci ibs cmd 0x%x", hu, HCI_IBS_WAKE_ACK);
974 
975 	device_woke_up(hu);
976 
977 	kfree_skb(skb);
978 	return 0;
979 }
980 
981 static int qca_recv_acl_data(struct hci_dev *hdev, struct sk_buff *skb)
982 {
983 	/* We receive debug logs from chip as an ACL packets.
984 	 * Instead of sending the data to ACL to decode the
985 	 * received data, we are pushing them to the above layers
986 	 * as a diagnostic packet.
987 	 */
988 	if (get_unaligned_le16(skb->data) == QCA_DEBUG_HANDLE)
989 		return hci_recv_diag(hdev, skb);
990 
991 	return hci_recv_frame(hdev, skb);
992 }
993 
994 static void qca_dmp_hdr(struct hci_dev *hdev, struct sk_buff *skb)
995 {
996 	struct hci_uart *hu = hci_get_drvdata(hdev);
997 	struct qca_data *qca = hu->priv;
998 	char buf[80];
999 
1000 	snprintf(buf, sizeof(buf), "Controller Name: 0x%x\n",
1001 		qca->controller_id);
1002 	skb_put_data(skb, buf, strlen(buf));
1003 
1004 	snprintf(buf, sizeof(buf), "Firmware Version: 0x%x\n",
1005 		qca->fw_version);
1006 	skb_put_data(skb, buf, strlen(buf));
1007 
1008 	snprintf(buf, sizeof(buf), "Vendor:Qualcomm\n");
1009 	skb_put_data(skb, buf, strlen(buf));
1010 
1011 	snprintf(buf, sizeof(buf), "Driver: %s\n",
1012 		hu->serdev->dev.driver->name);
1013 	skb_put_data(skb, buf, strlen(buf));
1014 }
1015 
1016 static void qca_controller_memdump(struct work_struct *work)
1017 {
1018 	struct qca_data *qca = container_of(work, struct qca_data,
1019 					    ctrl_memdump_evt);
1020 	struct hci_uart *hu = qca->hu;
1021 	struct sk_buff *skb;
1022 	struct qca_memdump_event_hdr *cmd_hdr;
1023 	struct qca_memdump_info *qca_memdump = qca->qca_memdump;
1024 	struct qca_dump_size *dump;
1025 	u16 seq_no;
1026 	u32 rx_size;
1027 	int ret = 0;
1028 	enum qca_btsoc_type soc_type = qca_soc_type(hu);
1029 
1030 	while ((skb = skb_dequeue(&qca->rx_memdump_q))) {
1031 
1032 		mutex_lock(&qca->hci_memdump_lock);
1033 		/* Skip processing the received packets if timeout detected
1034 		 * or memdump collection completed.
1035 		 */
1036 		if (qca->memdump_state == QCA_MEMDUMP_TIMEOUT ||
1037 		    qca->memdump_state == QCA_MEMDUMP_COLLECTED) {
1038 			mutex_unlock(&qca->hci_memdump_lock);
1039 			return;
1040 		}
1041 
1042 		if (!qca_memdump) {
1043 			qca_memdump = kzalloc(sizeof(struct qca_memdump_info),
1044 					      GFP_ATOMIC);
1045 			if (!qca_memdump) {
1046 				mutex_unlock(&qca->hci_memdump_lock);
1047 				return;
1048 			}
1049 
1050 			qca->qca_memdump = qca_memdump;
1051 		}
1052 
1053 		qca->memdump_state = QCA_MEMDUMP_COLLECTING;
1054 		cmd_hdr = (void *) skb->data;
1055 		seq_no = __le16_to_cpu(cmd_hdr->seq_no);
1056 		skb_pull(skb, sizeof(struct qca_memdump_event_hdr));
1057 
1058 		if (!seq_no) {
1059 
1060 			/* This is the first frame of memdump packet from
1061 			 * the controller, Disable IBS to recevie dump
1062 			 * with out any interruption, ideally time required for
1063 			 * the controller to send the dump is 8 seconds. let us
1064 			 * start timer to handle this asynchronous activity.
1065 			 */
1066 			set_bit(QCA_IBS_DISABLED, &qca->flags);
1067 			set_bit(QCA_MEMDUMP_COLLECTION, &qca->flags);
1068 			dump = (void *) skb->data;
1069 			qca_memdump->ram_dump_size = __le32_to_cpu(dump->dump_size);
1070 			if (!(qca_memdump->ram_dump_size)) {
1071 				bt_dev_err(hu->hdev, "Rx invalid memdump size");
1072 				kfree(qca_memdump);
1073 				kfree_skb(skb);
1074 				mutex_unlock(&qca->hci_memdump_lock);
1075 				return;
1076 			}
1077 
1078 			queue_delayed_work(qca->workqueue,
1079 					   &qca->ctrl_memdump_timeout,
1080 					   msecs_to_jiffies(MEMDUMP_TIMEOUT_MS));
1081 			skb_pull(skb, sizeof(qca_memdump->ram_dump_size));
1082 			qca_memdump->current_seq_no = 0;
1083 			qca_memdump->received_dump = 0;
1084 			ret = hci_devcd_init(hu->hdev, qca_memdump->ram_dump_size);
1085 			bt_dev_info(hu->hdev, "hci_devcd_init Return:%d",
1086 				    ret);
1087 			if (ret < 0) {
1088 				kfree(qca->qca_memdump);
1089 				qca->qca_memdump = NULL;
1090 				qca->memdump_state = QCA_MEMDUMP_COLLECTED;
1091 				cancel_delayed_work(&qca->ctrl_memdump_timeout);
1092 				clear_bit(QCA_MEMDUMP_COLLECTION, &qca->flags);
1093 				mutex_unlock(&qca->hci_memdump_lock);
1094 				return;
1095 			}
1096 
1097 			bt_dev_info(hu->hdev, "QCA collecting dump of size:%u",
1098 				    qca_memdump->ram_dump_size);
1099 
1100 		}
1101 
1102 		/* If sequence no 0 is missed then there is no point in
1103 		 * accepting the other sequences.
1104 		 */
1105 		if (!test_bit(QCA_MEMDUMP_COLLECTION, &qca->flags)) {
1106 			bt_dev_err(hu->hdev, "QCA: Discarding other packets");
1107 			kfree(qca_memdump);
1108 			kfree_skb(skb);
1109 			mutex_unlock(&qca->hci_memdump_lock);
1110 			return;
1111 		}
1112 		/* There could be chance of missing some packets from
1113 		 * the controller. In such cases let us store the dummy
1114 		 * packets in the buffer.
1115 		 */
1116 		/* For QCA6390, controller does not lost packets but
1117 		 * sequence number field of packet sometimes has error
1118 		 * bits, so skip this checking for missing packet.
1119 		 */
1120 		while ((seq_no > qca_memdump->current_seq_no + 1) &&
1121 			(soc_type != QCA_QCA6390) &&
1122 			seq_no != QCA_LAST_SEQUENCE_NUM) {
1123 			bt_dev_err(hu->hdev, "QCA controller missed packet:%d",
1124 				   qca_memdump->current_seq_no);
1125 			rx_size = qca_memdump->received_dump;
1126 			rx_size += QCA_DUMP_PACKET_SIZE;
1127 			if (rx_size > qca_memdump->ram_dump_size) {
1128 				bt_dev_err(hu->hdev,
1129 					   "QCA memdump received %d, no space for missed packet",
1130 					   qca_memdump->received_dump);
1131 				break;
1132 			}
1133 			hci_devcd_append_pattern(hu->hdev, 0x00,
1134 				QCA_DUMP_PACKET_SIZE);
1135 			qca_memdump->received_dump += QCA_DUMP_PACKET_SIZE;
1136 			qca_memdump->current_seq_no++;
1137 		}
1138 
1139 		rx_size = qca_memdump->received_dump  + skb->len;
1140 		if (rx_size <= qca_memdump->ram_dump_size) {
1141 			if ((seq_no != QCA_LAST_SEQUENCE_NUM) &&
1142 			    (seq_no != qca_memdump->current_seq_no)) {
1143 				bt_dev_err(hu->hdev,
1144 					   "QCA memdump unexpected packet %d",
1145 					   seq_no);
1146 			}
1147 			bt_dev_dbg(hu->hdev,
1148 				   "QCA memdump packet %d with length %d",
1149 				   seq_no, skb->len);
1150 			hci_devcd_append(hu->hdev, skb);
1151 			qca_memdump->current_seq_no += 1;
1152 			qca_memdump->received_dump = rx_size;
1153 		} else {
1154 			bt_dev_err(hu->hdev,
1155 				   "QCA memdump received no space for packet %d",
1156 				    qca_memdump->current_seq_no);
1157 		}
1158 
1159 		if (seq_no == QCA_LAST_SEQUENCE_NUM) {
1160 			bt_dev_info(hu->hdev,
1161 				"QCA memdump Done, received %d, total %d",
1162 				qca_memdump->received_dump,
1163 				qca_memdump->ram_dump_size);
1164 			hci_devcd_complete(hu->hdev);
1165 			cancel_delayed_work(&qca->ctrl_memdump_timeout);
1166 			kfree(qca->qca_memdump);
1167 			qca->qca_memdump = NULL;
1168 			qca->memdump_state = QCA_MEMDUMP_COLLECTED;
1169 			clear_bit(QCA_MEMDUMP_COLLECTION, &qca->flags);
1170 		}
1171 
1172 		mutex_unlock(&qca->hci_memdump_lock);
1173 	}
1174 
1175 }
1176 
1177 static int qca_controller_memdump_event(struct hci_dev *hdev,
1178 					struct sk_buff *skb)
1179 {
1180 	struct hci_uart *hu = hci_get_drvdata(hdev);
1181 	struct qca_data *qca = hu->priv;
1182 
1183 	set_bit(QCA_SSR_TRIGGERED, &qca->flags);
1184 	skb_queue_tail(&qca->rx_memdump_q, skb);
1185 	queue_work(qca->workqueue, &qca->ctrl_memdump_evt);
1186 
1187 	return 0;
1188 }
1189 
1190 static int qca_recv_event(struct hci_dev *hdev, struct sk_buff *skb)
1191 {
1192 	struct hci_uart *hu = hci_get_drvdata(hdev);
1193 	struct qca_data *qca = hu->priv;
1194 
1195 	if (test_bit(QCA_DROP_VENDOR_EVENT, &qca->flags)) {
1196 		struct hci_event_hdr *hdr = (void *)skb->data;
1197 
1198 		/* For the WCN3990 the vendor command for a baudrate change
1199 		 * isn't sent as synchronous HCI command, because the
1200 		 * controller sends the corresponding vendor event with the
1201 		 * new baudrate. The event is received and properly decoded
1202 		 * after changing the baudrate of the host port. It needs to
1203 		 * be dropped, otherwise it can be misinterpreted as
1204 		 * response to a later firmware download command (also a
1205 		 * vendor command).
1206 		 */
1207 
1208 		if (hdr->evt == HCI_EV_VENDOR)
1209 			complete(&qca->drop_ev_comp);
1210 
1211 		kfree_skb(skb);
1212 
1213 		return 0;
1214 	}
1215 	/* We receive chip memory dump as an event packet, With a dedicated
1216 	 * handler followed by a hardware error event. When this event is
1217 	 * received we store dump into a file before closing hci. This
1218 	 * dump will help in triaging the issues.
1219 	 */
1220 	if ((skb->data[0] == HCI_VENDOR_PKT) &&
1221 	    (get_unaligned_be16(skb->data + 2) == QCA_SSR_DUMP_HANDLE))
1222 		return qca_controller_memdump_event(hdev, skb);
1223 
1224 	return hci_recv_frame(hdev, skb);
1225 }
1226 
1227 #define QCA_IBS_SLEEP_IND_EVENT \
1228 	.type = HCI_IBS_SLEEP_IND, \
1229 	.hlen = 0, \
1230 	.loff = 0, \
1231 	.lsize = 0, \
1232 	.maxlen = HCI_MAX_IBS_SIZE
1233 
1234 #define QCA_IBS_WAKE_IND_EVENT \
1235 	.type = HCI_IBS_WAKE_IND, \
1236 	.hlen = 0, \
1237 	.loff = 0, \
1238 	.lsize = 0, \
1239 	.maxlen = HCI_MAX_IBS_SIZE
1240 
1241 #define QCA_IBS_WAKE_ACK_EVENT \
1242 	.type = HCI_IBS_WAKE_ACK, \
1243 	.hlen = 0, \
1244 	.loff = 0, \
1245 	.lsize = 0, \
1246 	.maxlen = HCI_MAX_IBS_SIZE
1247 
1248 static const struct h4_recv_pkt qca_recv_pkts[] = {
1249 	{ H4_RECV_ACL,             .recv = qca_recv_acl_data },
1250 	{ H4_RECV_SCO,             .recv = hci_recv_frame    },
1251 	{ H4_RECV_EVENT,           .recv = qca_recv_event    },
1252 	{ QCA_IBS_WAKE_IND_EVENT,  .recv = qca_ibs_wake_ind  },
1253 	{ QCA_IBS_WAKE_ACK_EVENT,  .recv = qca_ibs_wake_ack  },
1254 	{ QCA_IBS_SLEEP_IND_EVENT, .recv = qca_ibs_sleep_ind },
1255 };
1256 
1257 static int qca_recv(struct hci_uart *hu, const void *data, int count)
1258 {
1259 	struct qca_data *qca = hu->priv;
1260 
1261 	if (!test_bit(HCI_UART_REGISTERED, &hu->flags))
1262 		return -EUNATCH;
1263 
1264 	qca->rx_skb = h4_recv_buf(hu->hdev, qca->rx_skb, data, count,
1265 				  qca_recv_pkts, ARRAY_SIZE(qca_recv_pkts));
1266 	if (IS_ERR(qca->rx_skb)) {
1267 		int err = PTR_ERR(qca->rx_skb);
1268 		bt_dev_err(hu->hdev, "Frame reassembly failed (%d)", err);
1269 		qca->rx_skb = NULL;
1270 		return err;
1271 	}
1272 
1273 	return count;
1274 }
1275 
1276 static struct sk_buff *qca_dequeue(struct hci_uart *hu)
1277 {
1278 	struct qca_data *qca = hu->priv;
1279 
1280 	return skb_dequeue(&qca->txq);
1281 }
1282 
1283 static uint8_t qca_get_baudrate_value(int speed)
1284 {
1285 	switch (speed) {
1286 	case 9600:
1287 		return QCA_BAUDRATE_9600;
1288 	case 19200:
1289 		return QCA_BAUDRATE_19200;
1290 	case 38400:
1291 		return QCA_BAUDRATE_38400;
1292 	case 57600:
1293 		return QCA_BAUDRATE_57600;
1294 	case 115200:
1295 		return QCA_BAUDRATE_115200;
1296 	case 230400:
1297 		return QCA_BAUDRATE_230400;
1298 	case 460800:
1299 		return QCA_BAUDRATE_460800;
1300 	case 500000:
1301 		return QCA_BAUDRATE_500000;
1302 	case 921600:
1303 		return QCA_BAUDRATE_921600;
1304 	case 1000000:
1305 		return QCA_BAUDRATE_1000000;
1306 	case 2000000:
1307 		return QCA_BAUDRATE_2000000;
1308 	case 3000000:
1309 		return QCA_BAUDRATE_3000000;
1310 	case 3200000:
1311 		return QCA_BAUDRATE_3200000;
1312 	case 3500000:
1313 		return QCA_BAUDRATE_3500000;
1314 	default:
1315 		return QCA_BAUDRATE_115200;
1316 	}
1317 }
1318 
1319 static int qca_set_baudrate(struct hci_dev *hdev, uint8_t baudrate)
1320 {
1321 	struct hci_uart *hu = hci_get_drvdata(hdev);
1322 	struct qca_data *qca = hu->priv;
1323 	struct sk_buff *skb;
1324 	u8 cmd[] = { 0x01, 0x48, 0xFC, 0x01, 0x00 };
1325 
1326 	if (baudrate > QCA_BAUDRATE_3200000)
1327 		return -EINVAL;
1328 
1329 	cmd[4] = baudrate;
1330 
1331 	skb = bt_skb_alloc(sizeof(cmd), GFP_KERNEL);
1332 	if (!skb) {
1333 		bt_dev_err(hdev, "Failed to allocate baudrate packet");
1334 		return -ENOMEM;
1335 	}
1336 
1337 	/* Assign commands to change baudrate and packet type. */
1338 	skb_put_data(skb, cmd, sizeof(cmd));
1339 	hci_skb_pkt_type(skb) = HCI_COMMAND_PKT;
1340 
1341 	skb_queue_tail(&qca->txq, skb);
1342 	hci_uart_tx_wakeup(hu);
1343 
1344 	/* Wait for the baudrate change request to be sent */
1345 
1346 	while (!skb_queue_empty(&qca->txq))
1347 		usleep_range(100, 200);
1348 
1349 	if (hu->serdev)
1350 		serdev_device_wait_until_sent(hu->serdev,
1351 		      msecs_to_jiffies(CMD_TRANS_TIMEOUT_MS));
1352 
1353 	/* Give the controller time to process the request */
1354 	switch (qca_soc_type(hu)) {
1355 	case QCA_WCN3988:
1356 	case QCA_WCN3990:
1357 	case QCA_WCN3991:
1358 	case QCA_WCN3998:
1359 	case QCA_WCN6750:
1360 	case QCA_WCN6855:
1361 	case QCA_WCN7850:
1362 		usleep_range(1000, 10000);
1363 		break;
1364 
1365 	default:
1366 		msleep(300);
1367 	}
1368 
1369 	return 0;
1370 }
1371 
1372 static inline void host_set_baudrate(struct hci_uart *hu, unsigned int speed)
1373 {
1374 	if (hu->serdev)
1375 		serdev_device_set_baudrate(hu->serdev, speed);
1376 	else
1377 		hci_uart_set_baudrate(hu, speed);
1378 }
1379 
1380 static int qca_send_power_pulse(struct hci_uart *hu, bool on)
1381 {
1382 	int ret;
1383 	int timeout = msecs_to_jiffies(CMD_TRANS_TIMEOUT_MS);
1384 	u8 cmd = on ? QCA_WCN3990_POWERON_PULSE : QCA_WCN3990_POWEROFF_PULSE;
1385 
1386 	/* These power pulses are single byte command which are sent
1387 	 * at required baudrate to wcn3990. On wcn3990, we have an external
1388 	 * circuit at Tx pin which decodes the pulse sent at specific baudrate.
1389 	 * For example, wcn3990 supports RF COEX antenna for both Wi-Fi/BT
1390 	 * and also we use the same power inputs to turn on and off for
1391 	 * Wi-Fi/BT. Powering up the power sources will not enable BT, until
1392 	 * we send a power on pulse at 115200 bps. This algorithm will help to
1393 	 * save power. Disabling hardware flow control is mandatory while
1394 	 * sending power pulses to SoC.
1395 	 */
1396 	bt_dev_dbg(hu->hdev, "sending power pulse %02x to controller", cmd);
1397 
1398 	serdev_device_write_flush(hu->serdev);
1399 	hci_uart_set_flow_control(hu, true);
1400 	ret = serdev_device_write_buf(hu->serdev, &cmd, sizeof(cmd));
1401 	if (ret < 0) {
1402 		bt_dev_err(hu->hdev, "failed to send power pulse %02x", cmd);
1403 		return ret;
1404 	}
1405 
1406 	serdev_device_wait_until_sent(hu->serdev, timeout);
1407 	hci_uart_set_flow_control(hu, false);
1408 
1409 	/* Give to controller time to boot/shutdown */
1410 	if (on)
1411 		msleep(100);
1412 	else
1413 		usleep_range(1000, 10000);
1414 
1415 	return 0;
1416 }
1417 
1418 static unsigned int qca_get_speed(struct hci_uart *hu,
1419 				  enum qca_speed_type speed_type)
1420 {
1421 	unsigned int speed = 0;
1422 
1423 	if (speed_type == QCA_INIT_SPEED) {
1424 		if (hu->init_speed)
1425 			speed = hu->init_speed;
1426 		else if (hu->proto->init_speed)
1427 			speed = hu->proto->init_speed;
1428 	} else {
1429 		if (hu->oper_speed)
1430 			speed = hu->oper_speed;
1431 		else if (hu->proto->oper_speed)
1432 			speed = hu->proto->oper_speed;
1433 	}
1434 
1435 	return speed;
1436 }
1437 
1438 static int qca_check_speeds(struct hci_uart *hu)
1439 {
1440 	switch (qca_soc_type(hu)) {
1441 	case QCA_WCN3988:
1442 	case QCA_WCN3990:
1443 	case QCA_WCN3991:
1444 	case QCA_WCN3998:
1445 	case QCA_WCN6750:
1446 	case QCA_WCN6855:
1447 	case QCA_WCN7850:
1448 		if (!qca_get_speed(hu, QCA_INIT_SPEED) &&
1449 		    !qca_get_speed(hu, QCA_OPER_SPEED))
1450 			return -EINVAL;
1451 		break;
1452 
1453 	default:
1454 		if (!qca_get_speed(hu, QCA_INIT_SPEED) ||
1455 		    !qca_get_speed(hu, QCA_OPER_SPEED))
1456 			return -EINVAL;
1457 	}
1458 
1459 	return 0;
1460 }
1461 
1462 static int qca_set_speed(struct hci_uart *hu, enum qca_speed_type speed_type)
1463 {
1464 	unsigned int speed, qca_baudrate;
1465 	struct qca_data *qca = hu->priv;
1466 	int ret = 0;
1467 
1468 	if (speed_type == QCA_INIT_SPEED) {
1469 		speed = qca_get_speed(hu, QCA_INIT_SPEED);
1470 		if (speed)
1471 			host_set_baudrate(hu, speed);
1472 	} else {
1473 		enum qca_btsoc_type soc_type = qca_soc_type(hu);
1474 
1475 		speed = qca_get_speed(hu, QCA_OPER_SPEED);
1476 		if (!speed)
1477 			return 0;
1478 
1479 		/* Disable flow control for wcn3990 to deassert RTS while
1480 		 * changing the baudrate of chip and host.
1481 		 */
1482 		switch (soc_type) {
1483 		case QCA_WCN3988:
1484 		case QCA_WCN3990:
1485 		case QCA_WCN3991:
1486 		case QCA_WCN3998:
1487 		case QCA_WCN6750:
1488 		case QCA_WCN6855:
1489 		case QCA_WCN7850:
1490 			hci_uart_set_flow_control(hu, true);
1491 			break;
1492 
1493 		default:
1494 			break;
1495 		}
1496 
1497 		switch (soc_type) {
1498 		case QCA_WCN3990:
1499 			reinit_completion(&qca->drop_ev_comp);
1500 			set_bit(QCA_DROP_VENDOR_EVENT, &qca->flags);
1501 			break;
1502 
1503 		default:
1504 			break;
1505 		}
1506 
1507 		qca_baudrate = qca_get_baudrate_value(speed);
1508 		bt_dev_dbg(hu->hdev, "Set UART speed to %d", speed);
1509 		ret = qca_set_baudrate(hu->hdev, qca_baudrate);
1510 		if (ret)
1511 			goto error;
1512 
1513 		host_set_baudrate(hu, speed);
1514 
1515 error:
1516 		switch (soc_type) {
1517 		case QCA_WCN3988:
1518 		case QCA_WCN3990:
1519 		case QCA_WCN3991:
1520 		case QCA_WCN3998:
1521 		case QCA_WCN6750:
1522 		case QCA_WCN6855:
1523 		case QCA_WCN7850:
1524 			hci_uart_set_flow_control(hu, false);
1525 			break;
1526 
1527 		default:
1528 			break;
1529 		}
1530 
1531 		switch (soc_type) {
1532 		case QCA_WCN3990:
1533 			/* Wait for the controller to send the vendor event
1534 			 * for the baudrate change command.
1535 			 */
1536 			if (!wait_for_completion_timeout(&qca->drop_ev_comp,
1537 						 msecs_to_jiffies(100))) {
1538 				bt_dev_err(hu->hdev,
1539 					   "Failed to change controller baudrate\n");
1540 				ret = -ETIMEDOUT;
1541 			}
1542 
1543 			clear_bit(QCA_DROP_VENDOR_EVENT, &qca->flags);
1544 			break;
1545 
1546 		default:
1547 			break;
1548 		}
1549 	}
1550 
1551 	return ret;
1552 }
1553 
1554 static int qca_send_crashbuffer(struct hci_uart *hu)
1555 {
1556 	struct qca_data *qca = hu->priv;
1557 	struct sk_buff *skb;
1558 
1559 	skb = bt_skb_alloc(QCA_CRASHBYTE_PACKET_LEN, GFP_KERNEL);
1560 	if (!skb) {
1561 		bt_dev_err(hu->hdev, "Failed to allocate memory for skb packet");
1562 		return -ENOMEM;
1563 	}
1564 
1565 	/* We forcefully crash the controller, by sending 0xfb byte for
1566 	 * 1024 times. We also might have chance of losing data, To be
1567 	 * on safer side we send 1096 bytes to the SoC.
1568 	 */
1569 	memset(skb_put(skb, QCA_CRASHBYTE_PACKET_LEN), QCA_MEMDUMP_BYTE,
1570 	       QCA_CRASHBYTE_PACKET_LEN);
1571 	hci_skb_pkt_type(skb) = HCI_COMMAND_PKT;
1572 	bt_dev_info(hu->hdev, "crash the soc to collect controller dump");
1573 	skb_queue_tail(&qca->txq, skb);
1574 	hci_uart_tx_wakeup(hu);
1575 
1576 	return 0;
1577 }
1578 
1579 static void qca_wait_for_dump_collection(struct hci_dev *hdev)
1580 {
1581 	struct hci_uart *hu = hci_get_drvdata(hdev);
1582 	struct qca_data *qca = hu->priv;
1583 
1584 	wait_on_bit_timeout(&qca->flags, QCA_MEMDUMP_COLLECTION,
1585 			    TASK_UNINTERRUPTIBLE, MEMDUMP_TIMEOUT_MS);
1586 
1587 	clear_bit(QCA_MEMDUMP_COLLECTION, &qca->flags);
1588 }
1589 
1590 static void qca_hw_error(struct hci_dev *hdev, u8 code)
1591 {
1592 	struct hci_uart *hu = hci_get_drvdata(hdev);
1593 	struct qca_data *qca = hu->priv;
1594 
1595 	set_bit(QCA_SSR_TRIGGERED, &qca->flags);
1596 	set_bit(QCA_HW_ERROR_EVENT, &qca->flags);
1597 	bt_dev_info(hdev, "mem_dump_status: %d", qca->memdump_state);
1598 
1599 	if (qca->memdump_state == QCA_MEMDUMP_IDLE) {
1600 		/* If hardware error event received for other than QCA
1601 		 * soc memory dump event, then we need to crash the SOC
1602 		 * and wait here for 8 seconds to get the dump packets.
1603 		 * This will block main thread to be on hold until we
1604 		 * collect dump.
1605 		 */
1606 		set_bit(QCA_MEMDUMP_COLLECTION, &qca->flags);
1607 		qca_send_crashbuffer(hu);
1608 		qca_wait_for_dump_collection(hdev);
1609 	} else if (qca->memdump_state == QCA_MEMDUMP_COLLECTING) {
1610 		/* Let us wait here until memory dump collected or
1611 		 * memory dump timer expired.
1612 		 */
1613 		bt_dev_info(hdev, "waiting for dump to complete");
1614 		qca_wait_for_dump_collection(hdev);
1615 	}
1616 
1617 	mutex_lock(&qca->hci_memdump_lock);
1618 	if (qca->memdump_state != QCA_MEMDUMP_COLLECTED) {
1619 		bt_dev_err(hu->hdev, "clearing allocated memory due to memdump timeout");
1620 		hci_devcd_abort(hu->hdev);
1621 		if (qca->qca_memdump) {
1622 			kfree(qca->qca_memdump);
1623 			qca->qca_memdump = NULL;
1624 		}
1625 		qca->memdump_state = QCA_MEMDUMP_TIMEOUT;
1626 		cancel_delayed_work(&qca->ctrl_memdump_timeout);
1627 	}
1628 	mutex_unlock(&qca->hci_memdump_lock);
1629 
1630 	if (qca->memdump_state == QCA_MEMDUMP_TIMEOUT ||
1631 	    qca->memdump_state == QCA_MEMDUMP_COLLECTED) {
1632 		cancel_work_sync(&qca->ctrl_memdump_evt);
1633 		skb_queue_purge(&qca->rx_memdump_q);
1634 	}
1635 
1636 	clear_bit(QCA_HW_ERROR_EVENT, &qca->flags);
1637 }
1638 
1639 static void qca_cmd_timeout(struct hci_dev *hdev)
1640 {
1641 	struct hci_uart *hu = hci_get_drvdata(hdev);
1642 	struct qca_data *qca = hu->priv;
1643 
1644 	set_bit(QCA_SSR_TRIGGERED, &qca->flags);
1645 	if (qca->memdump_state == QCA_MEMDUMP_IDLE) {
1646 		set_bit(QCA_MEMDUMP_COLLECTION, &qca->flags);
1647 		qca_send_crashbuffer(hu);
1648 		qca_wait_for_dump_collection(hdev);
1649 	} else if (qca->memdump_state == QCA_MEMDUMP_COLLECTING) {
1650 		/* Let us wait here until memory dump collected or
1651 		 * memory dump timer expired.
1652 		 */
1653 		bt_dev_info(hdev, "waiting for dump to complete");
1654 		qca_wait_for_dump_collection(hdev);
1655 	}
1656 
1657 	mutex_lock(&qca->hci_memdump_lock);
1658 	if (qca->memdump_state != QCA_MEMDUMP_COLLECTED) {
1659 		qca->memdump_state = QCA_MEMDUMP_TIMEOUT;
1660 		if (!test_bit(QCA_HW_ERROR_EVENT, &qca->flags)) {
1661 			/* Inject hw error event to reset the device
1662 			 * and driver.
1663 			 */
1664 			hci_reset_dev(hu->hdev);
1665 		}
1666 	}
1667 	mutex_unlock(&qca->hci_memdump_lock);
1668 }
1669 
1670 static bool qca_wakeup(struct hci_dev *hdev)
1671 {
1672 	struct hci_uart *hu = hci_get_drvdata(hdev);
1673 	bool wakeup;
1674 
1675 	/* BT SoC attached through the serial bus is handled by the serdev driver.
1676 	 * So we need to use the device handle of the serdev driver to get the
1677 	 * status of device may wakeup.
1678 	 */
1679 	wakeup = device_may_wakeup(&hu->serdev->ctrl->dev);
1680 	bt_dev_dbg(hu->hdev, "wakeup status : %d", wakeup);
1681 
1682 	return wakeup;
1683 }
1684 
1685 static int qca_regulator_init(struct hci_uart *hu)
1686 {
1687 	enum qca_btsoc_type soc_type = qca_soc_type(hu);
1688 	struct qca_serdev *qcadev;
1689 	int ret;
1690 	bool sw_ctrl_state;
1691 
1692 	/* Check for vregs status, may be hci down has turned
1693 	 * off the voltage regulator.
1694 	 */
1695 	qcadev = serdev_device_get_drvdata(hu->serdev);
1696 	if (!qcadev->bt_power->vregs_on) {
1697 		serdev_device_close(hu->serdev);
1698 		ret = qca_regulator_enable(qcadev);
1699 		if (ret)
1700 			return ret;
1701 
1702 		ret = serdev_device_open(hu->serdev);
1703 		if (ret) {
1704 			bt_dev_err(hu->hdev, "failed to open port");
1705 			return ret;
1706 		}
1707 	}
1708 
1709 	switch (soc_type) {
1710 	case QCA_WCN3988:
1711 	case QCA_WCN3990:
1712 	case QCA_WCN3991:
1713 	case QCA_WCN3998:
1714 		/* Forcefully enable wcn399x to enter in to boot mode. */
1715 		host_set_baudrate(hu, 2400);
1716 		ret = qca_send_power_pulse(hu, false);
1717 		if (ret)
1718 			return ret;
1719 		break;
1720 
1721 	default:
1722 		break;
1723 	}
1724 
1725 	/* For wcn6750 need to enable gpio bt_en */
1726 	if (qcadev->bt_en) {
1727 		gpiod_set_value_cansleep(qcadev->bt_en, 0);
1728 		msleep(50);
1729 		gpiod_set_value_cansleep(qcadev->bt_en, 1);
1730 		msleep(50);
1731 		if (qcadev->sw_ctrl) {
1732 			sw_ctrl_state = gpiod_get_value_cansleep(qcadev->sw_ctrl);
1733 			bt_dev_dbg(hu->hdev, "SW_CTRL is %d", sw_ctrl_state);
1734 		}
1735 	}
1736 
1737 	qca_set_speed(hu, QCA_INIT_SPEED);
1738 
1739 	switch (soc_type) {
1740 	case QCA_WCN3988:
1741 	case QCA_WCN3990:
1742 	case QCA_WCN3991:
1743 	case QCA_WCN3998:
1744 		ret = qca_send_power_pulse(hu, true);
1745 		if (ret)
1746 			return ret;
1747 		break;
1748 
1749 	default:
1750 		break;
1751 	}
1752 
1753 	/* Now the device is in ready state to communicate with host.
1754 	 * To sync host with device we need to reopen port.
1755 	 * Without this, we will have RTS and CTS synchronization
1756 	 * issues.
1757 	 */
1758 	serdev_device_close(hu->serdev);
1759 	ret = serdev_device_open(hu->serdev);
1760 	if (ret) {
1761 		bt_dev_err(hu->hdev, "failed to open port");
1762 		return ret;
1763 	}
1764 
1765 	hci_uart_set_flow_control(hu, false);
1766 
1767 	return 0;
1768 }
1769 
1770 static int qca_power_on(struct hci_dev *hdev)
1771 {
1772 	struct hci_uart *hu = hci_get_drvdata(hdev);
1773 	enum qca_btsoc_type soc_type = qca_soc_type(hu);
1774 	struct qca_serdev *qcadev;
1775 	struct qca_data *qca = hu->priv;
1776 	int ret = 0;
1777 
1778 	/* Non-serdev device usually is powered by external power
1779 	 * and don't need additional action in driver for power on
1780 	 */
1781 	if (!hu->serdev)
1782 		return 0;
1783 
1784 	switch (soc_type) {
1785 	case QCA_WCN3988:
1786 	case QCA_WCN3990:
1787 	case QCA_WCN3991:
1788 	case QCA_WCN3998:
1789 	case QCA_WCN6750:
1790 	case QCA_WCN6855:
1791 	case QCA_WCN7850:
1792 		ret = qca_regulator_init(hu);
1793 		break;
1794 
1795 	default:
1796 		qcadev = serdev_device_get_drvdata(hu->serdev);
1797 		if (qcadev->bt_en) {
1798 			gpiod_set_value_cansleep(qcadev->bt_en, 1);
1799 			/* Controller needs time to bootup. */
1800 			msleep(150);
1801 		}
1802 	}
1803 
1804 	clear_bit(QCA_BT_OFF, &qca->flags);
1805 	return ret;
1806 }
1807 
1808 static void hci_coredump_qca(struct hci_dev *hdev)
1809 {
1810 	int err;
1811 	static const u8 param[] = { 0x26 };
1812 
1813 	err = __hci_cmd_send(hdev, 0xfc0c, 1, param);
1814 	if (err < 0)
1815 		bt_dev_err(hdev, "%s: trigger crash failed (%d)", __func__, err);
1816 }
1817 
1818 static int qca_get_data_path_id(struct hci_dev *hdev, __u8 *data_path_id)
1819 {
1820 	/* QCA uses 1 as non-HCI data path id for HFP */
1821 	*data_path_id = 1;
1822 	return 0;
1823 }
1824 
1825 static int qca_configure_hfp_offload(struct hci_dev *hdev)
1826 {
1827 	bt_dev_info(hdev, "HFP non-HCI data transport is supported");
1828 	hdev->get_data_path_id = qca_get_data_path_id;
1829 	/* Do not need to send HCI_Configure_Data_Path to configure non-HCI
1830 	 * data transport path for QCA controllers, so set below field as NULL.
1831 	 */
1832 	hdev->get_codec_config_data = NULL;
1833 	return 0;
1834 }
1835 
1836 static int qca_setup(struct hci_uart *hu)
1837 {
1838 	struct hci_dev *hdev = hu->hdev;
1839 	struct qca_data *qca = hu->priv;
1840 	unsigned int speed, qca_baudrate = QCA_BAUDRATE_115200;
1841 	unsigned int retries = 0;
1842 	enum qca_btsoc_type soc_type = qca_soc_type(hu);
1843 	const char *firmware_name = qca_get_firmware_name(hu);
1844 	int ret;
1845 	struct qca_btsoc_version ver;
1846 	struct qca_serdev *qcadev;
1847 	const char *soc_name;
1848 
1849 	ret = qca_check_speeds(hu);
1850 	if (ret)
1851 		return ret;
1852 
1853 	clear_bit(QCA_ROM_FW, &qca->flags);
1854 	/* Patch downloading has to be done without IBS mode */
1855 	set_bit(QCA_IBS_DISABLED, &qca->flags);
1856 
1857 	/* Enable controller to do both LE scan and BR/EDR inquiry
1858 	 * simultaneously.
1859 	 */
1860 	set_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks);
1861 
1862 	switch (soc_type) {
1863 	case QCA_QCA2066:
1864 		soc_name = "qca2066";
1865 		break;
1866 
1867 	case QCA_WCN3988:
1868 	case QCA_WCN3990:
1869 	case QCA_WCN3991:
1870 	case QCA_WCN3998:
1871 		soc_name = "wcn399x";
1872 		break;
1873 
1874 	case QCA_WCN6750:
1875 		soc_name = "wcn6750";
1876 		break;
1877 
1878 	case QCA_WCN6855:
1879 		soc_name = "wcn6855";
1880 		break;
1881 
1882 	case QCA_WCN7850:
1883 		soc_name = "wcn7850";
1884 		break;
1885 
1886 	default:
1887 		soc_name = "ROME/QCA6390";
1888 	}
1889 	bt_dev_info(hdev, "setting up %s", soc_name);
1890 
1891 	qca->memdump_state = QCA_MEMDUMP_IDLE;
1892 
1893 retry:
1894 	ret = qca_power_on(hdev);
1895 	if (ret)
1896 		goto out;
1897 
1898 	clear_bit(QCA_SSR_TRIGGERED, &qca->flags);
1899 
1900 	switch (soc_type) {
1901 	case QCA_WCN3988:
1902 	case QCA_WCN3990:
1903 	case QCA_WCN3991:
1904 	case QCA_WCN3998:
1905 	case QCA_WCN6750:
1906 	case QCA_WCN6855:
1907 	case QCA_WCN7850:
1908 		set_bit(HCI_QUIRK_USE_BDADDR_PROPERTY, &hdev->quirks);
1909 
1910 		qcadev = serdev_device_get_drvdata(hu->serdev);
1911 		if (qcadev->bdaddr_property_broken)
1912 			set_bit(HCI_QUIRK_BDADDR_PROPERTY_BROKEN, &hdev->quirks);
1913 
1914 		hci_set_aosp_capable(hdev);
1915 
1916 		ret = qca_read_soc_version(hdev, &ver, soc_type);
1917 		if (ret)
1918 			goto out;
1919 		break;
1920 
1921 	default:
1922 		qca_set_speed(hu, QCA_INIT_SPEED);
1923 	}
1924 
1925 	/* Setup user speed if needed */
1926 	speed = qca_get_speed(hu, QCA_OPER_SPEED);
1927 	if (speed) {
1928 		ret = qca_set_speed(hu, QCA_OPER_SPEED);
1929 		if (ret)
1930 			goto out;
1931 
1932 		qca_baudrate = qca_get_baudrate_value(speed);
1933 	}
1934 
1935 	switch (soc_type) {
1936 	case QCA_WCN3988:
1937 	case QCA_WCN3990:
1938 	case QCA_WCN3991:
1939 	case QCA_WCN3998:
1940 	case QCA_WCN6750:
1941 	case QCA_WCN6855:
1942 	case QCA_WCN7850:
1943 		break;
1944 
1945 	default:
1946 		/* Get QCA version information */
1947 		ret = qca_read_soc_version(hdev, &ver, soc_type);
1948 		if (ret)
1949 			goto out;
1950 	}
1951 
1952 	/* Setup patch / NVM configurations */
1953 	ret = qca_uart_setup(hdev, qca_baudrate, soc_type, ver,
1954 			firmware_name);
1955 	if (!ret) {
1956 		clear_bit(QCA_IBS_DISABLED, &qca->flags);
1957 		qca_debugfs_init(hdev);
1958 		hu->hdev->hw_error = qca_hw_error;
1959 		hu->hdev->cmd_timeout = qca_cmd_timeout;
1960 		if (device_can_wakeup(hu->serdev->ctrl->dev.parent))
1961 			hu->hdev->wakeup = qca_wakeup;
1962 	} else if (ret == -ENOENT) {
1963 		/* No patch/nvm-config found, run with original fw/config */
1964 		set_bit(QCA_ROM_FW, &qca->flags);
1965 		ret = 0;
1966 	} else if (ret == -EAGAIN) {
1967 		/*
1968 		 * Userspace firmware loader will return -EAGAIN in case no
1969 		 * patch/nvm-config is found, so run with original fw/config.
1970 		 */
1971 		set_bit(QCA_ROM_FW, &qca->flags);
1972 		ret = 0;
1973 	}
1974 
1975 out:
1976 	if (ret && retries < MAX_INIT_RETRIES) {
1977 		bt_dev_warn(hdev, "Retry BT power ON:%d", retries);
1978 		qca_power_shutdown(hu);
1979 		if (hu->serdev) {
1980 			serdev_device_close(hu->serdev);
1981 			ret = serdev_device_open(hu->serdev);
1982 			if (ret) {
1983 				bt_dev_err(hdev, "failed to open port");
1984 				return ret;
1985 			}
1986 		}
1987 		retries++;
1988 		goto retry;
1989 	}
1990 
1991 	/* Setup bdaddr */
1992 	if (soc_type == QCA_ROME)
1993 		hu->hdev->set_bdaddr = qca_set_bdaddr_rome;
1994 	else
1995 		hu->hdev->set_bdaddr = qca_set_bdaddr;
1996 
1997 	if (soc_type == QCA_QCA2066)
1998 		qca_configure_hfp_offload(hdev);
1999 
2000 	qca->fw_version = le16_to_cpu(ver.patch_ver);
2001 	qca->controller_id = le16_to_cpu(ver.rom_ver);
2002 	hci_devcd_register(hdev, hci_coredump_qca, qca_dmp_hdr, NULL);
2003 
2004 	return ret;
2005 }
2006 
2007 static const struct hci_uart_proto qca_proto = {
2008 	.id		= HCI_UART_QCA,
2009 	.name		= "QCA",
2010 	.manufacturer	= 29,
2011 	.init_speed	= 115200,
2012 	.oper_speed	= 3000000,
2013 	.open		= qca_open,
2014 	.close		= qca_close,
2015 	.flush		= qca_flush,
2016 	.setup		= qca_setup,
2017 	.recv		= qca_recv,
2018 	.enqueue	= qca_enqueue,
2019 	.dequeue	= qca_dequeue,
2020 };
2021 
2022 static const struct qca_device_data qca_soc_data_wcn3988 __maybe_unused = {
2023 	.soc_type = QCA_WCN3988,
2024 	.vregs = (struct qca_vreg []) {
2025 		{ "vddio", 15000  },
2026 		{ "vddxo", 80000  },
2027 		{ "vddrf", 300000 },
2028 		{ "vddch0", 450000 },
2029 	},
2030 	.num_vregs = 4,
2031 };
2032 
2033 static const struct qca_device_data qca_soc_data_wcn3990 __maybe_unused = {
2034 	.soc_type = QCA_WCN3990,
2035 	.vregs = (struct qca_vreg []) {
2036 		{ "vddio", 15000  },
2037 		{ "vddxo", 80000  },
2038 		{ "vddrf", 300000 },
2039 		{ "vddch0", 450000 },
2040 	},
2041 	.num_vregs = 4,
2042 };
2043 
2044 static const struct qca_device_data qca_soc_data_wcn3991 __maybe_unused = {
2045 	.soc_type = QCA_WCN3991,
2046 	.vregs = (struct qca_vreg []) {
2047 		{ "vddio", 15000  },
2048 		{ "vddxo", 80000  },
2049 		{ "vddrf", 300000 },
2050 		{ "vddch0", 450000 },
2051 	},
2052 	.num_vregs = 4,
2053 	.capabilities = QCA_CAP_WIDEBAND_SPEECH | QCA_CAP_VALID_LE_STATES,
2054 };
2055 
2056 static const struct qca_device_data qca_soc_data_wcn3998 __maybe_unused = {
2057 	.soc_type = QCA_WCN3998,
2058 	.vregs = (struct qca_vreg []) {
2059 		{ "vddio", 10000  },
2060 		{ "vddxo", 80000  },
2061 		{ "vddrf", 300000 },
2062 		{ "vddch0", 450000 },
2063 	},
2064 	.num_vregs = 4,
2065 };
2066 
2067 static const struct qca_device_data qca_soc_data_qca2066 __maybe_unused = {
2068 	.soc_type = QCA_QCA2066,
2069 	.num_vregs = 0,
2070 	.capabilities = QCA_CAP_WIDEBAND_SPEECH | QCA_CAP_VALID_LE_STATES,
2071 };
2072 
2073 static const struct qca_device_data qca_soc_data_qca6390 __maybe_unused = {
2074 	.soc_type = QCA_QCA6390,
2075 	.num_vregs = 0,
2076 };
2077 
2078 static const struct qca_device_data qca_soc_data_wcn6750 __maybe_unused = {
2079 	.soc_type = QCA_WCN6750,
2080 	.vregs = (struct qca_vreg []) {
2081 		{ "vddio", 5000 },
2082 		{ "vddaon", 26000 },
2083 		{ "vddbtcxmx", 126000 },
2084 		{ "vddrfacmn", 12500 },
2085 		{ "vddrfa0p8", 102000 },
2086 		{ "vddrfa1p7", 302000 },
2087 		{ "vddrfa1p2", 257000 },
2088 		{ "vddrfa2p2", 1700000 },
2089 		{ "vddasd", 200 },
2090 	},
2091 	.num_vregs = 9,
2092 	.capabilities = QCA_CAP_WIDEBAND_SPEECH | QCA_CAP_VALID_LE_STATES,
2093 };
2094 
2095 static const struct qca_device_data qca_soc_data_wcn6855 __maybe_unused = {
2096 	.soc_type = QCA_WCN6855,
2097 	.vregs = (struct qca_vreg []) {
2098 		{ "vddio", 5000 },
2099 		{ "vddbtcxmx", 126000 },
2100 		{ "vddrfacmn", 12500 },
2101 		{ "vddrfa0p8", 102000 },
2102 		{ "vddrfa1p7", 302000 },
2103 		{ "vddrfa1p2", 257000 },
2104 	},
2105 	.num_vregs = 6,
2106 	.capabilities = QCA_CAP_WIDEBAND_SPEECH | QCA_CAP_VALID_LE_STATES,
2107 };
2108 
2109 static const struct qca_device_data qca_soc_data_wcn7850 __maybe_unused = {
2110 	.soc_type = QCA_WCN7850,
2111 	.vregs = (struct qca_vreg []) {
2112 		{ "vddio", 5000 },
2113 		{ "vddaon", 26000 },
2114 		{ "vdddig", 126000 },
2115 		{ "vddrfa0p8", 102000 },
2116 		{ "vddrfa1p2", 257000 },
2117 		{ "vddrfa1p9", 302000 },
2118 	},
2119 	.num_vregs = 6,
2120 	.capabilities = QCA_CAP_WIDEBAND_SPEECH | QCA_CAP_VALID_LE_STATES,
2121 };
2122 
2123 static void qca_power_shutdown(struct hci_uart *hu)
2124 {
2125 	struct qca_serdev *qcadev;
2126 	struct qca_data *qca = hu->priv;
2127 	unsigned long flags;
2128 	enum qca_btsoc_type soc_type = qca_soc_type(hu);
2129 	bool sw_ctrl_state;
2130 
2131 	/* From this point we go into power off state. But serial port is
2132 	 * still open, stop queueing the IBS data and flush all the buffered
2133 	 * data in skb's.
2134 	 */
2135 	spin_lock_irqsave(&qca->hci_ibs_lock, flags);
2136 	set_bit(QCA_IBS_DISABLED, &qca->flags);
2137 	qca_flush(hu);
2138 	spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
2139 
2140 	/* Non-serdev device usually is powered by external power
2141 	 * and don't need additional action in driver for power down
2142 	 */
2143 	if (!hu->serdev)
2144 		return;
2145 
2146 	qcadev = serdev_device_get_drvdata(hu->serdev);
2147 
2148 	switch (soc_type) {
2149 	case QCA_WCN3988:
2150 	case QCA_WCN3990:
2151 	case QCA_WCN3991:
2152 	case QCA_WCN3998:
2153 		host_set_baudrate(hu, 2400);
2154 		qca_send_power_pulse(hu, false);
2155 		qca_regulator_disable(qcadev);
2156 		break;
2157 
2158 	case QCA_WCN6750:
2159 	case QCA_WCN6855:
2160 		gpiod_set_value_cansleep(qcadev->bt_en, 0);
2161 		msleep(100);
2162 		qca_regulator_disable(qcadev);
2163 		if (qcadev->sw_ctrl) {
2164 			sw_ctrl_state = gpiod_get_value_cansleep(qcadev->sw_ctrl);
2165 			bt_dev_dbg(hu->hdev, "SW_CTRL is %d", sw_ctrl_state);
2166 		}
2167 		break;
2168 
2169 	default:
2170 		gpiod_set_value_cansleep(qcadev->bt_en, 0);
2171 	}
2172 
2173 	set_bit(QCA_BT_OFF, &qca->flags);
2174 }
2175 
2176 static int qca_power_off(struct hci_dev *hdev)
2177 {
2178 	struct hci_uart *hu = hci_get_drvdata(hdev);
2179 	struct qca_data *qca = hu->priv;
2180 	enum qca_btsoc_type soc_type = qca_soc_type(hu);
2181 
2182 	hu->hdev->hw_error = NULL;
2183 	hu->hdev->cmd_timeout = NULL;
2184 
2185 	del_timer_sync(&qca->wake_retrans_timer);
2186 	del_timer_sync(&qca->tx_idle_timer);
2187 
2188 	/* Stop sending shutdown command if soc crashes. */
2189 	if (soc_type != QCA_ROME
2190 		&& qca->memdump_state == QCA_MEMDUMP_IDLE) {
2191 		qca_send_pre_shutdown_cmd(hdev);
2192 		usleep_range(8000, 10000);
2193 	}
2194 
2195 	qca_power_shutdown(hu);
2196 	return 0;
2197 }
2198 
2199 static int qca_regulator_enable(struct qca_serdev *qcadev)
2200 {
2201 	struct qca_power *power = qcadev->bt_power;
2202 	int ret;
2203 
2204 	/* Already enabled */
2205 	if (power->vregs_on)
2206 		return 0;
2207 
2208 	BT_DBG("enabling %d regulators)", power->num_vregs);
2209 
2210 	ret = regulator_bulk_enable(power->num_vregs, power->vreg_bulk);
2211 	if (ret)
2212 		return ret;
2213 
2214 	power->vregs_on = true;
2215 
2216 	ret = clk_prepare_enable(qcadev->susclk);
2217 	if (ret)
2218 		qca_regulator_disable(qcadev);
2219 
2220 	return ret;
2221 }
2222 
2223 static void qca_regulator_disable(struct qca_serdev *qcadev)
2224 {
2225 	struct qca_power *power;
2226 
2227 	if (!qcadev)
2228 		return;
2229 
2230 	power = qcadev->bt_power;
2231 
2232 	/* Already disabled? */
2233 	if (!power->vregs_on)
2234 		return;
2235 
2236 	regulator_bulk_disable(power->num_vregs, power->vreg_bulk);
2237 	power->vregs_on = false;
2238 
2239 	clk_disable_unprepare(qcadev->susclk);
2240 }
2241 
2242 static int qca_init_regulators(struct qca_power *qca,
2243 				const struct qca_vreg *vregs, size_t num_vregs)
2244 {
2245 	struct regulator_bulk_data *bulk;
2246 	int ret;
2247 	int i;
2248 
2249 	bulk = devm_kcalloc(qca->dev, num_vregs, sizeof(*bulk), GFP_KERNEL);
2250 	if (!bulk)
2251 		return -ENOMEM;
2252 
2253 	for (i = 0; i < num_vregs; i++)
2254 		bulk[i].supply = vregs[i].name;
2255 
2256 	ret = devm_regulator_bulk_get(qca->dev, num_vregs, bulk);
2257 	if (ret < 0)
2258 		return ret;
2259 
2260 	for (i = 0; i < num_vregs; i++) {
2261 		ret = regulator_set_load(bulk[i].consumer, vregs[i].load_uA);
2262 		if (ret)
2263 			return ret;
2264 	}
2265 
2266 	qca->vreg_bulk = bulk;
2267 	qca->num_vregs = num_vregs;
2268 
2269 	return 0;
2270 }
2271 
2272 static int qca_serdev_probe(struct serdev_device *serdev)
2273 {
2274 	struct qca_serdev *qcadev;
2275 	struct hci_dev *hdev;
2276 	const struct qca_device_data *data;
2277 	int err;
2278 	bool power_ctrl_enabled = true;
2279 
2280 	qcadev = devm_kzalloc(&serdev->dev, sizeof(*qcadev), GFP_KERNEL);
2281 	if (!qcadev)
2282 		return -ENOMEM;
2283 
2284 	qcadev->serdev_hu.serdev = serdev;
2285 	data = device_get_match_data(&serdev->dev);
2286 	serdev_device_set_drvdata(serdev, qcadev);
2287 	device_property_read_string(&serdev->dev, "firmware-name",
2288 					 &qcadev->firmware_name);
2289 	device_property_read_u32(&serdev->dev, "max-speed",
2290 				 &qcadev->oper_speed);
2291 	if (!qcadev->oper_speed)
2292 		BT_DBG("UART will pick default operating speed");
2293 
2294 	qcadev->bdaddr_property_broken = device_property_read_bool(&serdev->dev,
2295 			"qcom,local-bd-address-broken");
2296 
2297 	if (data)
2298 		qcadev->btsoc_type = data->soc_type;
2299 	else
2300 		qcadev->btsoc_type = QCA_ROME;
2301 
2302 	switch (qcadev->btsoc_type) {
2303 	case QCA_WCN3988:
2304 	case QCA_WCN3990:
2305 	case QCA_WCN3991:
2306 	case QCA_WCN3998:
2307 	case QCA_WCN6750:
2308 	case QCA_WCN6855:
2309 	case QCA_WCN7850:
2310 		qcadev->bt_power = devm_kzalloc(&serdev->dev,
2311 						sizeof(struct qca_power),
2312 						GFP_KERNEL);
2313 		if (!qcadev->bt_power)
2314 			return -ENOMEM;
2315 
2316 		qcadev->bt_power->dev = &serdev->dev;
2317 		err = qca_init_regulators(qcadev->bt_power, data->vregs,
2318 					  data->num_vregs);
2319 		if (err) {
2320 			BT_ERR("Failed to init regulators:%d", err);
2321 			return err;
2322 		}
2323 
2324 		qcadev->bt_power->vregs_on = false;
2325 
2326 		qcadev->bt_en = devm_gpiod_get_optional(&serdev->dev, "enable",
2327 					       GPIOD_OUT_LOW);
2328 		if (IS_ERR(qcadev->bt_en) &&
2329 		    (data->soc_type == QCA_WCN6750 ||
2330 		     data->soc_type == QCA_WCN6855)) {
2331 			dev_err(&serdev->dev, "failed to acquire BT_EN gpio\n");
2332 			power_ctrl_enabled = false;
2333 		}
2334 
2335 		qcadev->sw_ctrl = devm_gpiod_get_optional(&serdev->dev, "swctrl",
2336 					       GPIOD_IN);
2337 		if (IS_ERR(qcadev->sw_ctrl) &&
2338 		    (data->soc_type == QCA_WCN6750 ||
2339 		     data->soc_type == QCA_WCN6855 ||
2340 		     data->soc_type == QCA_WCN7850))
2341 			dev_warn(&serdev->dev, "failed to acquire SW_CTRL gpio\n");
2342 
2343 		qcadev->susclk = devm_clk_get_optional(&serdev->dev, NULL);
2344 		if (IS_ERR(qcadev->susclk)) {
2345 			dev_err(&serdev->dev, "failed to acquire clk\n");
2346 			return PTR_ERR(qcadev->susclk);
2347 		}
2348 
2349 		err = hci_uart_register_device(&qcadev->serdev_hu, &qca_proto);
2350 		if (err) {
2351 			BT_ERR("wcn3990 serdev registration failed");
2352 			return err;
2353 		}
2354 		break;
2355 
2356 	default:
2357 		qcadev->bt_en = devm_gpiod_get_optional(&serdev->dev, "enable",
2358 					       GPIOD_OUT_LOW);
2359 		if (IS_ERR(qcadev->bt_en)) {
2360 			dev_warn(&serdev->dev, "failed to acquire enable gpio\n");
2361 			power_ctrl_enabled = false;
2362 		}
2363 
2364 		qcadev->susclk = devm_clk_get_optional(&serdev->dev, NULL);
2365 		if (IS_ERR(qcadev->susclk)) {
2366 			dev_warn(&serdev->dev, "failed to acquire clk\n");
2367 			return PTR_ERR(qcadev->susclk);
2368 		}
2369 		err = clk_set_rate(qcadev->susclk, SUSCLK_RATE_32KHZ);
2370 		if (err)
2371 			return err;
2372 
2373 		err = clk_prepare_enable(qcadev->susclk);
2374 		if (err)
2375 			return err;
2376 
2377 		err = hci_uart_register_device(&qcadev->serdev_hu, &qca_proto);
2378 		if (err) {
2379 			BT_ERR("Rome serdev registration failed");
2380 			clk_disable_unprepare(qcadev->susclk);
2381 			return err;
2382 		}
2383 	}
2384 
2385 	hdev = qcadev->serdev_hu.hdev;
2386 
2387 	if (power_ctrl_enabled) {
2388 		set_bit(HCI_QUIRK_NON_PERSISTENT_SETUP, &hdev->quirks);
2389 		hdev->shutdown = qca_power_off;
2390 	}
2391 
2392 	if (data) {
2393 		/* Wideband speech support must be set per driver since it can't
2394 		 * be queried via hci. Same with the valid le states quirk.
2395 		 */
2396 		if (data->capabilities & QCA_CAP_WIDEBAND_SPEECH)
2397 			set_bit(HCI_QUIRK_WIDEBAND_SPEECH_SUPPORTED,
2398 				&hdev->quirks);
2399 
2400 		if (data->capabilities & QCA_CAP_VALID_LE_STATES)
2401 			set_bit(HCI_QUIRK_VALID_LE_STATES, &hdev->quirks);
2402 	}
2403 
2404 	return 0;
2405 }
2406 
2407 static void qca_serdev_remove(struct serdev_device *serdev)
2408 {
2409 	struct qca_serdev *qcadev = serdev_device_get_drvdata(serdev);
2410 	struct qca_power *power = qcadev->bt_power;
2411 
2412 	switch (qcadev->btsoc_type) {
2413 	case QCA_WCN3988:
2414 	case QCA_WCN3990:
2415 	case QCA_WCN3991:
2416 	case QCA_WCN3998:
2417 	case QCA_WCN6750:
2418 	case QCA_WCN6855:
2419 	case QCA_WCN7850:
2420 		if (power->vregs_on) {
2421 			qca_power_shutdown(&qcadev->serdev_hu);
2422 			break;
2423 		}
2424 		fallthrough;
2425 
2426 	default:
2427 		if (qcadev->susclk)
2428 			clk_disable_unprepare(qcadev->susclk);
2429 	}
2430 
2431 	hci_uart_unregister_device(&qcadev->serdev_hu);
2432 }
2433 
2434 static void qca_serdev_shutdown(struct device *dev)
2435 {
2436 	int ret;
2437 	int timeout = msecs_to_jiffies(CMD_TRANS_TIMEOUT_MS);
2438 	struct serdev_device *serdev = to_serdev_device(dev);
2439 	struct qca_serdev *qcadev = serdev_device_get_drvdata(serdev);
2440 	struct hci_uart *hu = &qcadev->serdev_hu;
2441 	struct hci_dev *hdev = hu->hdev;
2442 	struct qca_data *qca = hu->priv;
2443 	const u8 ibs_wake_cmd[] = { 0xFD };
2444 	const u8 edl_reset_soc_cmd[] = { 0x01, 0x00, 0xFC, 0x01, 0x05 };
2445 
2446 	if (qcadev->btsoc_type == QCA_QCA6390) {
2447 		if (test_bit(QCA_BT_OFF, &qca->flags) ||
2448 		    !test_bit(HCI_RUNNING, &hdev->flags))
2449 			return;
2450 
2451 		serdev_device_write_flush(serdev);
2452 		ret = serdev_device_write_buf(serdev, ibs_wake_cmd,
2453 					      sizeof(ibs_wake_cmd));
2454 		if (ret < 0) {
2455 			BT_ERR("QCA send IBS_WAKE_IND error: %d", ret);
2456 			return;
2457 		}
2458 		serdev_device_wait_until_sent(serdev, timeout);
2459 		usleep_range(8000, 10000);
2460 
2461 		serdev_device_write_flush(serdev);
2462 		ret = serdev_device_write_buf(serdev, edl_reset_soc_cmd,
2463 					      sizeof(edl_reset_soc_cmd));
2464 		if (ret < 0) {
2465 			BT_ERR("QCA send EDL_RESET_REQ error: %d", ret);
2466 			return;
2467 		}
2468 		serdev_device_wait_until_sent(serdev, timeout);
2469 		usleep_range(8000, 10000);
2470 	}
2471 }
2472 
2473 static int __maybe_unused qca_suspend(struct device *dev)
2474 {
2475 	struct serdev_device *serdev = to_serdev_device(dev);
2476 	struct qca_serdev *qcadev = serdev_device_get_drvdata(serdev);
2477 	struct hci_uart *hu = &qcadev->serdev_hu;
2478 	struct qca_data *qca = hu->priv;
2479 	unsigned long flags;
2480 	bool tx_pending = false;
2481 	int ret = 0;
2482 	u8 cmd;
2483 	u32 wait_timeout = 0;
2484 
2485 	set_bit(QCA_SUSPENDING, &qca->flags);
2486 
2487 	/* if BT SoC is running with default firmware then it does not
2488 	 * support in-band sleep
2489 	 */
2490 	if (test_bit(QCA_ROM_FW, &qca->flags))
2491 		return 0;
2492 
2493 	/* During SSR after memory dump collection, controller will be
2494 	 * powered off and then powered on.If controller is powered off
2495 	 * during SSR then we should wait until SSR is completed.
2496 	 */
2497 	if (test_bit(QCA_BT_OFF, &qca->flags) &&
2498 	    !test_bit(QCA_SSR_TRIGGERED, &qca->flags))
2499 		return 0;
2500 
2501 	if (test_bit(QCA_IBS_DISABLED, &qca->flags) ||
2502 	    test_bit(QCA_SSR_TRIGGERED, &qca->flags)) {
2503 		wait_timeout = test_bit(QCA_SSR_TRIGGERED, &qca->flags) ?
2504 					IBS_DISABLE_SSR_TIMEOUT_MS :
2505 					FW_DOWNLOAD_TIMEOUT_MS;
2506 
2507 		/* QCA_IBS_DISABLED flag is set to true, During FW download
2508 		 * and during memory dump collection. It is reset to false,
2509 		 * After FW download complete.
2510 		 */
2511 		wait_on_bit_timeout(&qca->flags, QCA_IBS_DISABLED,
2512 			    TASK_UNINTERRUPTIBLE, msecs_to_jiffies(wait_timeout));
2513 
2514 		if (test_bit(QCA_IBS_DISABLED, &qca->flags)) {
2515 			bt_dev_err(hu->hdev, "SSR or FW download time out");
2516 			ret = -ETIMEDOUT;
2517 			goto error;
2518 		}
2519 	}
2520 
2521 	cancel_work_sync(&qca->ws_awake_device);
2522 	cancel_work_sync(&qca->ws_awake_rx);
2523 
2524 	spin_lock_irqsave_nested(&qca->hci_ibs_lock,
2525 				 flags, SINGLE_DEPTH_NESTING);
2526 
2527 	switch (qca->tx_ibs_state) {
2528 	case HCI_IBS_TX_WAKING:
2529 		del_timer(&qca->wake_retrans_timer);
2530 		fallthrough;
2531 	case HCI_IBS_TX_AWAKE:
2532 		del_timer(&qca->tx_idle_timer);
2533 
2534 		serdev_device_write_flush(hu->serdev);
2535 		cmd = HCI_IBS_SLEEP_IND;
2536 		ret = serdev_device_write_buf(hu->serdev, &cmd, sizeof(cmd));
2537 
2538 		if (ret < 0) {
2539 			BT_ERR("Failed to send SLEEP to device");
2540 			break;
2541 		}
2542 
2543 		qca->tx_ibs_state = HCI_IBS_TX_ASLEEP;
2544 		qca->ibs_sent_slps++;
2545 		tx_pending = true;
2546 		break;
2547 
2548 	case HCI_IBS_TX_ASLEEP:
2549 		break;
2550 
2551 	default:
2552 		BT_ERR("Spurious tx state %d", qca->tx_ibs_state);
2553 		ret = -EINVAL;
2554 		break;
2555 	}
2556 
2557 	spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
2558 
2559 	if (ret < 0)
2560 		goto error;
2561 
2562 	if (tx_pending) {
2563 		serdev_device_wait_until_sent(hu->serdev,
2564 					      msecs_to_jiffies(CMD_TRANS_TIMEOUT_MS));
2565 		serial_clock_vote(HCI_IBS_TX_VOTE_CLOCK_OFF, hu);
2566 	}
2567 
2568 	/* Wait for HCI_IBS_SLEEP_IND sent by device to indicate its Tx is going
2569 	 * to sleep, so that the packet does not wake the system later.
2570 	 */
2571 	ret = wait_event_interruptible_timeout(qca->suspend_wait_q,
2572 			qca->rx_ibs_state == HCI_IBS_RX_ASLEEP,
2573 			msecs_to_jiffies(IBS_BTSOC_TX_IDLE_TIMEOUT_MS));
2574 	if (ret == 0) {
2575 		ret = -ETIMEDOUT;
2576 		goto error;
2577 	}
2578 
2579 	return 0;
2580 
2581 error:
2582 	clear_bit(QCA_SUSPENDING, &qca->flags);
2583 
2584 	return ret;
2585 }
2586 
2587 static int __maybe_unused qca_resume(struct device *dev)
2588 {
2589 	struct serdev_device *serdev = to_serdev_device(dev);
2590 	struct qca_serdev *qcadev = serdev_device_get_drvdata(serdev);
2591 	struct hci_uart *hu = &qcadev->serdev_hu;
2592 	struct qca_data *qca = hu->priv;
2593 
2594 	clear_bit(QCA_SUSPENDING, &qca->flags);
2595 
2596 	return 0;
2597 }
2598 
2599 static SIMPLE_DEV_PM_OPS(qca_pm_ops, qca_suspend, qca_resume);
2600 
2601 #ifdef CONFIG_OF
2602 static const struct of_device_id qca_bluetooth_of_match[] = {
2603 	{ .compatible = "qcom,qca2066-bt", .data = &qca_soc_data_qca2066},
2604 	{ .compatible = "qcom,qca6174-bt" },
2605 	{ .compatible = "qcom,qca6390-bt", .data = &qca_soc_data_qca6390},
2606 	{ .compatible = "qcom,qca9377-bt" },
2607 	{ .compatible = "qcom,wcn3988-bt", .data = &qca_soc_data_wcn3988},
2608 	{ .compatible = "qcom,wcn3990-bt", .data = &qca_soc_data_wcn3990},
2609 	{ .compatible = "qcom,wcn3991-bt", .data = &qca_soc_data_wcn3991},
2610 	{ .compatible = "qcom,wcn3998-bt", .data = &qca_soc_data_wcn3998},
2611 	{ .compatible = "qcom,wcn6750-bt", .data = &qca_soc_data_wcn6750},
2612 	{ .compatible = "qcom,wcn6855-bt", .data = &qca_soc_data_wcn6855},
2613 	{ .compatible = "qcom,wcn7850-bt", .data = &qca_soc_data_wcn7850},
2614 	{ /* sentinel */ }
2615 };
2616 MODULE_DEVICE_TABLE(of, qca_bluetooth_of_match);
2617 #endif
2618 
2619 #ifdef CONFIG_ACPI
2620 static const struct acpi_device_id qca_bluetooth_acpi_match[] = {
2621 	{ "QCOM2066", (kernel_ulong_t)&qca_soc_data_qca2066 },
2622 	{ "QCOM6390", (kernel_ulong_t)&qca_soc_data_qca6390 },
2623 	{ "DLA16390", (kernel_ulong_t)&qca_soc_data_qca6390 },
2624 	{ "DLB16390", (kernel_ulong_t)&qca_soc_data_qca6390 },
2625 	{ "DLB26390", (kernel_ulong_t)&qca_soc_data_qca6390 },
2626 	{ },
2627 };
2628 MODULE_DEVICE_TABLE(acpi, qca_bluetooth_acpi_match);
2629 #endif
2630 
2631 #ifdef CONFIG_DEV_COREDUMP
2632 static void hciqca_coredump(struct device *dev)
2633 {
2634 	struct serdev_device *serdev = to_serdev_device(dev);
2635 	struct qca_serdev *qcadev = serdev_device_get_drvdata(serdev);
2636 	struct hci_uart *hu = &qcadev->serdev_hu;
2637 	struct hci_dev  *hdev = hu->hdev;
2638 
2639 	if (hdev->dump.coredump)
2640 		hdev->dump.coredump(hdev);
2641 }
2642 #endif
2643 
2644 static struct serdev_device_driver qca_serdev_driver = {
2645 	.probe = qca_serdev_probe,
2646 	.remove = qca_serdev_remove,
2647 	.driver = {
2648 		.name = "hci_uart_qca",
2649 		.of_match_table = of_match_ptr(qca_bluetooth_of_match),
2650 		.acpi_match_table = ACPI_PTR(qca_bluetooth_acpi_match),
2651 		.shutdown = qca_serdev_shutdown,
2652 		.pm = &qca_pm_ops,
2653 #ifdef CONFIG_DEV_COREDUMP
2654 		.coredump = hciqca_coredump,
2655 #endif
2656 	},
2657 };
2658 
2659 int __init qca_init(void)
2660 {
2661 	serdev_device_driver_register(&qca_serdev_driver);
2662 
2663 	return hci_uart_register_proto(&qca_proto);
2664 }
2665 
2666 int __exit qca_deinit(void)
2667 {
2668 	serdev_device_driver_unregister(&qca_serdev_driver);
2669 
2670 	return hci_uart_unregister_proto(&qca_proto);
2671 }
2672