xref: /linux/drivers/char/hpet.c (revision 1e525507)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Intel & MS High Precision Event Timer Implementation.
4  *
5  * Copyright (C) 2003 Intel Corporation
6  *	Venki Pallipadi
7  * (c) Copyright 2004 Hewlett-Packard Development Company, L.P.
8  *	Bob Picco <robert.picco@hp.com>
9  */
10 
11 #include <linux/interrupt.h>
12 #include <linux/kernel.h>
13 #include <linux/types.h>
14 #include <linux/miscdevice.h>
15 #include <linux/major.h>
16 #include <linux/ioport.h>
17 #include <linux/fcntl.h>
18 #include <linux/init.h>
19 #include <linux/io-64-nonatomic-lo-hi.h>
20 #include <linux/poll.h>
21 #include <linux/mm.h>
22 #include <linux/proc_fs.h>
23 #include <linux/spinlock.h>
24 #include <linux/sysctl.h>
25 #include <linux/wait.h>
26 #include <linux/sched/signal.h>
27 #include <linux/bcd.h>
28 #include <linux/seq_file.h>
29 #include <linux/bitops.h>
30 #include <linux/compat.h>
31 #include <linux/clocksource.h>
32 #include <linux/uaccess.h>
33 #include <linux/slab.h>
34 #include <linux/io.h>
35 #include <linux/acpi.h>
36 #include <linux/hpet.h>
37 #include <asm/current.h>
38 #include <asm/irq.h>
39 #include <asm/div64.h>
40 
41 /*
42  * The High Precision Event Timer driver.
43  * This driver is closely modelled after the rtc.c driver.
44  * See HPET spec revision 1.
45  */
46 #define	HPET_USER_FREQ	(64)
47 #define	HPET_DRIFT	(500)
48 
49 #define HPET_RANGE_SIZE		1024	/* from HPET spec */
50 
51 
52 /* WARNING -- don't get confused.  These macros are never used
53  * to write the (single) counter, and rarely to read it.
54  * They're badly named; to fix, someday.
55  */
56 #if BITS_PER_LONG == 64
57 #define	write_counter(V, MC)	writeq(V, MC)
58 #define	read_counter(MC)	readq(MC)
59 #else
60 #define	write_counter(V, MC)	writel(V, MC)
61 #define	read_counter(MC)	readl(MC)
62 #endif
63 
64 static DEFINE_MUTEX(hpet_mutex); /* replaces BKL */
65 static u32 hpet_nhpet, hpet_max_freq = HPET_USER_FREQ;
66 
67 /* A lock for concurrent access by app and isr hpet activity. */
68 static DEFINE_SPINLOCK(hpet_lock);
69 
70 #define	HPET_DEV_NAME	(7)
71 
72 struct hpet_dev {
73 	struct hpets *hd_hpets;
74 	struct hpet __iomem *hd_hpet;
75 	struct hpet_timer __iomem *hd_timer;
76 	unsigned long hd_ireqfreq;
77 	unsigned long hd_irqdata;
78 	wait_queue_head_t hd_waitqueue;
79 	struct fasync_struct *hd_async_queue;
80 	unsigned int hd_flags;
81 	unsigned int hd_irq;
82 	unsigned int hd_hdwirq;
83 	char hd_name[HPET_DEV_NAME];
84 };
85 
86 struct hpets {
87 	struct hpets *hp_next;
88 	struct hpet __iomem *hp_hpet;
89 	unsigned long hp_hpet_phys;
90 	unsigned long long hp_tick_freq;
91 	unsigned long hp_delta;
92 	unsigned int hp_ntimer;
93 	unsigned int hp_which;
94 	struct hpet_dev hp_dev[] __counted_by(hp_ntimer);
95 };
96 
97 static struct hpets *hpets;
98 
99 #define	HPET_OPEN		0x0001
100 #define	HPET_IE			0x0002	/* interrupt enabled */
101 #define	HPET_PERIODIC		0x0004
102 #define	HPET_SHARED_IRQ		0x0008
103 
104 static irqreturn_t hpet_interrupt(int irq, void *data)
105 {
106 	struct hpet_dev *devp;
107 	unsigned long isr;
108 
109 	devp = data;
110 	isr = 1 << (devp - devp->hd_hpets->hp_dev);
111 
112 	if ((devp->hd_flags & HPET_SHARED_IRQ) &&
113 	    !(isr & readl(&devp->hd_hpet->hpet_isr)))
114 		return IRQ_NONE;
115 
116 	spin_lock(&hpet_lock);
117 	devp->hd_irqdata++;
118 
119 	/*
120 	 * For non-periodic timers, increment the accumulator.
121 	 * This has the effect of treating non-periodic like periodic.
122 	 */
123 	if ((devp->hd_flags & (HPET_IE | HPET_PERIODIC)) == HPET_IE) {
124 		unsigned long t, mc, base, k;
125 		struct hpet __iomem *hpet = devp->hd_hpet;
126 		struct hpets *hpetp = devp->hd_hpets;
127 
128 		t = devp->hd_ireqfreq;
129 		read_counter(&devp->hd_timer->hpet_compare);
130 		mc = read_counter(&hpet->hpet_mc);
131 		/* The time for the next interrupt would logically be t + m,
132 		 * however, if we are very unlucky and the interrupt is delayed
133 		 * for longer than t then we will completely miss the next
134 		 * interrupt if we set t + m and an application will hang.
135 		 * Therefore we need to make a more complex computation assuming
136 		 * that there exists a k for which the following is true:
137 		 * k * t + base < mc + delta
138 		 * (k + 1) * t + base > mc + delta
139 		 * where t is the interval in hpet ticks for the given freq,
140 		 * base is the theoretical start value 0 < base < t,
141 		 * mc is the main counter value at the time of the interrupt,
142 		 * delta is the time it takes to write the a value to the
143 		 * comparator.
144 		 * k may then be computed as (mc - base + delta) / t .
145 		 */
146 		base = mc % t;
147 		k = (mc - base + hpetp->hp_delta) / t;
148 		write_counter(t * (k + 1) + base,
149 			      &devp->hd_timer->hpet_compare);
150 	}
151 
152 	if (devp->hd_flags & HPET_SHARED_IRQ)
153 		writel(isr, &devp->hd_hpet->hpet_isr);
154 	spin_unlock(&hpet_lock);
155 
156 	wake_up_interruptible(&devp->hd_waitqueue);
157 
158 	kill_fasync(&devp->hd_async_queue, SIGIO, POLL_IN);
159 
160 	return IRQ_HANDLED;
161 }
162 
163 static void hpet_timer_set_irq(struct hpet_dev *devp)
164 {
165 	unsigned long v;
166 	int irq, gsi;
167 	struct hpet_timer __iomem *timer;
168 
169 	spin_lock_irq(&hpet_lock);
170 	if (devp->hd_hdwirq) {
171 		spin_unlock_irq(&hpet_lock);
172 		return;
173 	}
174 
175 	timer = devp->hd_timer;
176 
177 	/* we prefer level triggered mode */
178 	v = readl(&timer->hpet_config);
179 	if (!(v & Tn_INT_TYPE_CNF_MASK)) {
180 		v |= Tn_INT_TYPE_CNF_MASK;
181 		writel(v, &timer->hpet_config);
182 	}
183 	spin_unlock_irq(&hpet_lock);
184 
185 	v = (readq(&timer->hpet_config) & Tn_INT_ROUTE_CAP_MASK) >>
186 				 Tn_INT_ROUTE_CAP_SHIFT;
187 
188 	/*
189 	 * In PIC mode, skip IRQ0-4, IRQ6-9, IRQ12-15 which is always used by
190 	 * legacy device. In IO APIC mode, we skip all the legacy IRQS.
191 	 */
192 	if (acpi_irq_model == ACPI_IRQ_MODEL_PIC)
193 		v &= ~0xf3df;
194 	else
195 		v &= ~0xffff;
196 
197 	for_each_set_bit(irq, &v, HPET_MAX_IRQ) {
198 		if (irq >= nr_irqs) {
199 			irq = HPET_MAX_IRQ;
200 			break;
201 		}
202 
203 		gsi = acpi_register_gsi(NULL, irq, ACPI_LEVEL_SENSITIVE,
204 					ACPI_ACTIVE_LOW);
205 		if (gsi > 0)
206 			break;
207 
208 		/* FIXME: Setup interrupt source table */
209 	}
210 
211 	if (irq < HPET_MAX_IRQ) {
212 		spin_lock_irq(&hpet_lock);
213 		v = readl(&timer->hpet_config);
214 		v |= irq << Tn_INT_ROUTE_CNF_SHIFT;
215 		writel(v, &timer->hpet_config);
216 		devp->hd_hdwirq = gsi;
217 		spin_unlock_irq(&hpet_lock);
218 	}
219 	return;
220 }
221 
222 static int hpet_open(struct inode *inode, struct file *file)
223 {
224 	struct hpet_dev *devp;
225 	struct hpets *hpetp;
226 	int i;
227 
228 	if (file->f_mode & FMODE_WRITE)
229 		return -EINVAL;
230 
231 	mutex_lock(&hpet_mutex);
232 	spin_lock_irq(&hpet_lock);
233 
234 	for (devp = NULL, hpetp = hpets; hpetp && !devp; hpetp = hpetp->hp_next)
235 		for (i = 0; i < hpetp->hp_ntimer; i++)
236 			if (hpetp->hp_dev[i].hd_flags & HPET_OPEN) {
237 				continue;
238 			} else {
239 				devp = &hpetp->hp_dev[i];
240 				break;
241 			}
242 
243 	if (!devp) {
244 		spin_unlock_irq(&hpet_lock);
245 		mutex_unlock(&hpet_mutex);
246 		return -EBUSY;
247 	}
248 
249 	file->private_data = devp;
250 	devp->hd_irqdata = 0;
251 	devp->hd_flags |= HPET_OPEN;
252 	spin_unlock_irq(&hpet_lock);
253 	mutex_unlock(&hpet_mutex);
254 
255 	hpet_timer_set_irq(devp);
256 
257 	return 0;
258 }
259 
260 static ssize_t
261 hpet_read(struct file *file, char __user *buf, size_t count, loff_t * ppos)
262 {
263 	DECLARE_WAITQUEUE(wait, current);
264 	unsigned long data;
265 	ssize_t retval;
266 	struct hpet_dev *devp;
267 
268 	devp = file->private_data;
269 	if (!devp->hd_ireqfreq)
270 		return -EIO;
271 
272 	if (count < sizeof(unsigned long))
273 		return -EINVAL;
274 
275 	add_wait_queue(&devp->hd_waitqueue, &wait);
276 
277 	for ( ; ; ) {
278 		set_current_state(TASK_INTERRUPTIBLE);
279 
280 		spin_lock_irq(&hpet_lock);
281 		data = devp->hd_irqdata;
282 		devp->hd_irqdata = 0;
283 		spin_unlock_irq(&hpet_lock);
284 
285 		if (data) {
286 			break;
287 		} else if (file->f_flags & O_NONBLOCK) {
288 			retval = -EAGAIN;
289 			goto out;
290 		} else if (signal_pending(current)) {
291 			retval = -ERESTARTSYS;
292 			goto out;
293 		}
294 		schedule();
295 	}
296 
297 	retval = put_user(data, (unsigned long __user *)buf);
298 	if (!retval)
299 		retval = sizeof(unsigned long);
300 out:
301 	__set_current_state(TASK_RUNNING);
302 	remove_wait_queue(&devp->hd_waitqueue, &wait);
303 
304 	return retval;
305 }
306 
307 static __poll_t hpet_poll(struct file *file, poll_table * wait)
308 {
309 	unsigned long v;
310 	struct hpet_dev *devp;
311 
312 	devp = file->private_data;
313 
314 	if (!devp->hd_ireqfreq)
315 		return 0;
316 
317 	poll_wait(file, &devp->hd_waitqueue, wait);
318 
319 	spin_lock_irq(&hpet_lock);
320 	v = devp->hd_irqdata;
321 	spin_unlock_irq(&hpet_lock);
322 
323 	if (v != 0)
324 		return EPOLLIN | EPOLLRDNORM;
325 
326 	return 0;
327 }
328 
329 #ifdef CONFIG_HPET_MMAP
330 #ifdef CONFIG_HPET_MMAP_DEFAULT
331 static int hpet_mmap_enabled = 1;
332 #else
333 static int hpet_mmap_enabled = 0;
334 #endif
335 
336 static __init int hpet_mmap_enable(char *str)
337 {
338 	get_option(&str, &hpet_mmap_enabled);
339 	pr_info("HPET mmap %s\n", hpet_mmap_enabled ? "enabled" : "disabled");
340 	return 1;
341 }
342 __setup("hpet_mmap=", hpet_mmap_enable);
343 
344 static int hpet_mmap(struct file *file, struct vm_area_struct *vma)
345 {
346 	struct hpet_dev *devp;
347 	unsigned long addr;
348 
349 	if (!hpet_mmap_enabled)
350 		return -EACCES;
351 
352 	devp = file->private_data;
353 	addr = devp->hd_hpets->hp_hpet_phys;
354 
355 	if (addr & (PAGE_SIZE - 1))
356 		return -ENOSYS;
357 
358 	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
359 	return vm_iomap_memory(vma, addr, PAGE_SIZE);
360 }
361 #else
362 static int hpet_mmap(struct file *file, struct vm_area_struct *vma)
363 {
364 	return -ENOSYS;
365 }
366 #endif
367 
368 static int hpet_fasync(int fd, struct file *file, int on)
369 {
370 	struct hpet_dev *devp;
371 
372 	devp = file->private_data;
373 
374 	if (fasync_helper(fd, file, on, &devp->hd_async_queue) >= 0)
375 		return 0;
376 	else
377 		return -EIO;
378 }
379 
380 static int hpet_release(struct inode *inode, struct file *file)
381 {
382 	struct hpet_dev *devp;
383 	struct hpet_timer __iomem *timer;
384 	int irq = 0;
385 
386 	devp = file->private_data;
387 	timer = devp->hd_timer;
388 
389 	spin_lock_irq(&hpet_lock);
390 
391 	writeq((readq(&timer->hpet_config) & ~Tn_INT_ENB_CNF_MASK),
392 	       &timer->hpet_config);
393 
394 	irq = devp->hd_irq;
395 	devp->hd_irq = 0;
396 
397 	devp->hd_ireqfreq = 0;
398 
399 	if (devp->hd_flags & HPET_PERIODIC
400 	    && readq(&timer->hpet_config) & Tn_TYPE_CNF_MASK) {
401 		unsigned long v;
402 
403 		v = readq(&timer->hpet_config);
404 		v ^= Tn_TYPE_CNF_MASK;
405 		writeq(v, &timer->hpet_config);
406 	}
407 
408 	devp->hd_flags &= ~(HPET_OPEN | HPET_IE | HPET_PERIODIC);
409 	spin_unlock_irq(&hpet_lock);
410 
411 	if (irq)
412 		free_irq(irq, devp);
413 
414 	file->private_data = NULL;
415 	return 0;
416 }
417 
418 static int hpet_ioctl_ieon(struct hpet_dev *devp)
419 {
420 	struct hpet_timer __iomem *timer;
421 	struct hpet __iomem *hpet;
422 	struct hpets *hpetp;
423 	int irq;
424 	unsigned long g, v, t, m;
425 	unsigned long flags, isr;
426 
427 	timer = devp->hd_timer;
428 	hpet = devp->hd_hpet;
429 	hpetp = devp->hd_hpets;
430 
431 	if (!devp->hd_ireqfreq)
432 		return -EIO;
433 
434 	spin_lock_irq(&hpet_lock);
435 
436 	if (devp->hd_flags & HPET_IE) {
437 		spin_unlock_irq(&hpet_lock);
438 		return -EBUSY;
439 	}
440 
441 	devp->hd_flags |= HPET_IE;
442 
443 	if (readl(&timer->hpet_config) & Tn_INT_TYPE_CNF_MASK)
444 		devp->hd_flags |= HPET_SHARED_IRQ;
445 	spin_unlock_irq(&hpet_lock);
446 
447 	irq = devp->hd_hdwirq;
448 
449 	if (irq) {
450 		unsigned long irq_flags;
451 
452 		if (devp->hd_flags & HPET_SHARED_IRQ) {
453 			/*
454 			 * To prevent the interrupt handler from seeing an
455 			 * unwanted interrupt status bit, program the timer
456 			 * so that it will not fire in the near future ...
457 			 */
458 			writel(readl(&timer->hpet_config) & ~Tn_TYPE_CNF_MASK,
459 			       &timer->hpet_config);
460 			write_counter(read_counter(&hpet->hpet_mc),
461 				      &timer->hpet_compare);
462 			/* ... and clear any left-over status. */
463 			isr = 1 << (devp - devp->hd_hpets->hp_dev);
464 			writel(isr, &hpet->hpet_isr);
465 		}
466 
467 		sprintf(devp->hd_name, "hpet%d", (int)(devp - hpetp->hp_dev));
468 		irq_flags = devp->hd_flags & HPET_SHARED_IRQ ? IRQF_SHARED : 0;
469 		if (request_irq(irq, hpet_interrupt, irq_flags,
470 				devp->hd_name, (void *)devp)) {
471 			printk(KERN_ERR "hpet: IRQ %d is not free\n", irq);
472 			irq = 0;
473 		}
474 	}
475 
476 	if (irq == 0) {
477 		spin_lock_irq(&hpet_lock);
478 		devp->hd_flags ^= HPET_IE;
479 		spin_unlock_irq(&hpet_lock);
480 		return -EIO;
481 	}
482 
483 	devp->hd_irq = irq;
484 	t = devp->hd_ireqfreq;
485 	v = readq(&timer->hpet_config);
486 
487 	/* 64-bit comparators are not yet supported through the ioctls,
488 	 * so force this into 32-bit mode if it supports both modes
489 	 */
490 	g = v | Tn_32MODE_CNF_MASK | Tn_INT_ENB_CNF_MASK;
491 
492 	if (devp->hd_flags & HPET_PERIODIC) {
493 		g |= Tn_TYPE_CNF_MASK;
494 		v |= Tn_TYPE_CNF_MASK | Tn_VAL_SET_CNF_MASK;
495 		writeq(v, &timer->hpet_config);
496 		local_irq_save(flags);
497 
498 		/*
499 		 * NOTE: First we modify the hidden accumulator
500 		 * register supported by periodic-capable comparators.
501 		 * We never want to modify the (single) counter; that
502 		 * would affect all the comparators. The value written
503 		 * is the counter value when the first interrupt is due.
504 		 */
505 		m = read_counter(&hpet->hpet_mc);
506 		write_counter(t + m + hpetp->hp_delta, &timer->hpet_compare);
507 		/*
508 		 * Then we modify the comparator, indicating the period
509 		 * for subsequent interrupt.
510 		 */
511 		write_counter(t, &timer->hpet_compare);
512 	} else {
513 		local_irq_save(flags);
514 		m = read_counter(&hpet->hpet_mc);
515 		write_counter(t + m + hpetp->hp_delta, &timer->hpet_compare);
516 	}
517 
518 	if (devp->hd_flags & HPET_SHARED_IRQ) {
519 		isr = 1 << (devp - devp->hd_hpets->hp_dev);
520 		writel(isr, &hpet->hpet_isr);
521 	}
522 	writeq(g, &timer->hpet_config);
523 	local_irq_restore(flags);
524 
525 	return 0;
526 }
527 
528 /* converts Hz to number of timer ticks */
529 static inline unsigned long hpet_time_div(struct hpets *hpets,
530 					  unsigned long dis)
531 {
532 	unsigned long long m;
533 
534 	m = hpets->hp_tick_freq + (dis >> 1);
535 	return div64_ul(m, dis);
536 }
537 
538 static int
539 hpet_ioctl_common(struct hpet_dev *devp, unsigned int cmd, unsigned long arg,
540 		  struct hpet_info *info)
541 {
542 	struct hpet_timer __iomem *timer;
543 	struct hpets *hpetp;
544 	int err;
545 	unsigned long v;
546 
547 	switch (cmd) {
548 	case HPET_IE_OFF:
549 	case HPET_INFO:
550 	case HPET_EPI:
551 	case HPET_DPI:
552 	case HPET_IRQFREQ:
553 		timer = devp->hd_timer;
554 		hpetp = devp->hd_hpets;
555 		break;
556 	case HPET_IE_ON:
557 		return hpet_ioctl_ieon(devp);
558 	default:
559 		return -EINVAL;
560 	}
561 
562 	err = 0;
563 
564 	switch (cmd) {
565 	case HPET_IE_OFF:
566 		if ((devp->hd_flags & HPET_IE) == 0)
567 			break;
568 		v = readq(&timer->hpet_config);
569 		v &= ~Tn_INT_ENB_CNF_MASK;
570 		writeq(v, &timer->hpet_config);
571 		if (devp->hd_irq) {
572 			free_irq(devp->hd_irq, devp);
573 			devp->hd_irq = 0;
574 		}
575 		devp->hd_flags ^= HPET_IE;
576 		break;
577 	case HPET_INFO:
578 		{
579 			memset(info, 0, sizeof(*info));
580 			if (devp->hd_ireqfreq)
581 				info->hi_ireqfreq =
582 					hpet_time_div(hpetp, devp->hd_ireqfreq);
583 			info->hi_flags =
584 			    readq(&timer->hpet_config) & Tn_PER_INT_CAP_MASK;
585 			info->hi_hpet = hpetp->hp_which;
586 			info->hi_timer = devp - hpetp->hp_dev;
587 			break;
588 		}
589 	case HPET_EPI:
590 		v = readq(&timer->hpet_config);
591 		if ((v & Tn_PER_INT_CAP_MASK) == 0) {
592 			err = -ENXIO;
593 			break;
594 		}
595 		devp->hd_flags |= HPET_PERIODIC;
596 		break;
597 	case HPET_DPI:
598 		v = readq(&timer->hpet_config);
599 		if ((v & Tn_PER_INT_CAP_MASK) == 0) {
600 			err = -ENXIO;
601 			break;
602 		}
603 		if (devp->hd_flags & HPET_PERIODIC &&
604 		    readq(&timer->hpet_config) & Tn_TYPE_CNF_MASK) {
605 			v = readq(&timer->hpet_config);
606 			v ^= Tn_TYPE_CNF_MASK;
607 			writeq(v, &timer->hpet_config);
608 		}
609 		devp->hd_flags &= ~HPET_PERIODIC;
610 		break;
611 	case HPET_IRQFREQ:
612 		if ((arg > hpet_max_freq) &&
613 		    !capable(CAP_SYS_RESOURCE)) {
614 			err = -EACCES;
615 			break;
616 		}
617 
618 		if (!arg) {
619 			err = -EINVAL;
620 			break;
621 		}
622 
623 		devp->hd_ireqfreq = hpet_time_div(hpetp, arg);
624 	}
625 
626 	return err;
627 }
628 
629 static long
630 hpet_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
631 {
632 	struct hpet_info info;
633 	int err;
634 
635 	mutex_lock(&hpet_mutex);
636 	err = hpet_ioctl_common(file->private_data, cmd, arg, &info);
637 	mutex_unlock(&hpet_mutex);
638 
639 	if ((cmd == HPET_INFO) && !err &&
640 	    (copy_to_user((void __user *)arg, &info, sizeof(info))))
641 		err = -EFAULT;
642 
643 	return err;
644 }
645 
646 #ifdef CONFIG_COMPAT
647 struct compat_hpet_info {
648 	compat_ulong_t hi_ireqfreq;	/* Hz */
649 	compat_ulong_t hi_flags;	/* information */
650 	unsigned short hi_hpet;
651 	unsigned short hi_timer;
652 };
653 
654 static long
655 hpet_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
656 {
657 	struct hpet_info info;
658 	int err;
659 
660 	mutex_lock(&hpet_mutex);
661 	err = hpet_ioctl_common(file->private_data, cmd, arg, &info);
662 	mutex_unlock(&hpet_mutex);
663 
664 	if ((cmd == HPET_INFO) && !err) {
665 		struct compat_hpet_info __user *u = compat_ptr(arg);
666 		if (put_user(info.hi_ireqfreq, &u->hi_ireqfreq) ||
667 		    put_user(info.hi_flags, &u->hi_flags) ||
668 		    put_user(info.hi_hpet, &u->hi_hpet) ||
669 		    put_user(info.hi_timer, &u->hi_timer))
670 			err = -EFAULT;
671 	}
672 
673 	return err;
674 }
675 #endif
676 
677 static const struct file_operations hpet_fops = {
678 	.owner = THIS_MODULE,
679 	.llseek = no_llseek,
680 	.read = hpet_read,
681 	.poll = hpet_poll,
682 	.unlocked_ioctl = hpet_ioctl,
683 #ifdef CONFIG_COMPAT
684 	.compat_ioctl = hpet_compat_ioctl,
685 #endif
686 	.open = hpet_open,
687 	.release = hpet_release,
688 	.fasync = hpet_fasync,
689 	.mmap = hpet_mmap,
690 };
691 
692 static int hpet_is_known(struct hpet_data *hdp)
693 {
694 	struct hpets *hpetp;
695 
696 	for (hpetp = hpets; hpetp; hpetp = hpetp->hp_next)
697 		if (hpetp->hp_hpet_phys == hdp->hd_phys_address)
698 			return 1;
699 
700 	return 0;
701 }
702 
703 static struct ctl_table hpet_table[] = {
704 	{
705 	 .procname = "max-user-freq",
706 	 .data = &hpet_max_freq,
707 	 .maxlen = sizeof(int),
708 	 .mode = 0644,
709 	 .proc_handler = proc_dointvec,
710 	 },
711 };
712 
713 static struct ctl_table_header *sysctl_header;
714 
715 /*
716  * Adjustment for when arming the timer with
717  * initial conditions.  That is, main counter
718  * ticks expired before interrupts are enabled.
719  */
720 #define	TICK_CALIBRATE	(1000UL)
721 
722 static unsigned long __hpet_calibrate(struct hpets *hpetp)
723 {
724 	struct hpet_timer __iomem *timer = NULL;
725 	unsigned long t, m, count, i, flags, start;
726 	struct hpet_dev *devp;
727 	int j;
728 	struct hpet __iomem *hpet;
729 
730 	for (j = 0, devp = hpetp->hp_dev; j < hpetp->hp_ntimer; j++, devp++)
731 		if ((devp->hd_flags & HPET_OPEN) == 0) {
732 			timer = devp->hd_timer;
733 			break;
734 		}
735 
736 	if (!timer)
737 		return 0;
738 
739 	hpet = hpetp->hp_hpet;
740 	t = read_counter(&timer->hpet_compare);
741 
742 	i = 0;
743 	count = hpet_time_div(hpetp, TICK_CALIBRATE);
744 
745 	local_irq_save(flags);
746 
747 	start = read_counter(&hpet->hpet_mc);
748 
749 	do {
750 		m = read_counter(&hpet->hpet_mc);
751 		write_counter(t + m + hpetp->hp_delta, &timer->hpet_compare);
752 	} while (i++, (m - start) < count);
753 
754 	local_irq_restore(flags);
755 
756 	return (m - start) / i;
757 }
758 
759 static unsigned long hpet_calibrate(struct hpets *hpetp)
760 {
761 	unsigned long ret = ~0UL;
762 	unsigned long tmp;
763 
764 	/*
765 	 * Try to calibrate until return value becomes stable small value.
766 	 * If SMI interruption occurs in calibration loop, the return value
767 	 * will be big. This avoids its impact.
768 	 */
769 	for ( ; ; ) {
770 		tmp = __hpet_calibrate(hpetp);
771 		if (ret <= tmp)
772 			break;
773 		ret = tmp;
774 	}
775 
776 	return ret;
777 }
778 
779 int hpet_alloc(struct hpet_data *hdp)
780 {
781 	u64 cap, mcfg;
782 	struct hpet_dev *devp;
783 	u32 i, ntimer;
784 	struct hpets *hpetp;
785 	struct hpet __iomem *hpet;
786 	static struct hpets *last;
787 	unsigned long period;
788 	unsigned long long temp;
789 	u32 remainder;
790 
791 	/*
792 	 * hpet_alloc can be called by platform dependent code.
793 	 * If platform dependent code has allocated the hpet that
794 	 * ACPI has also reported, then we catch it here.
795 	 */
796 	if (hpet_is_known(hdp)) {
797 		printk(KERN_DEBUG "%s: duplicate HPET ignored\n",
798 			__func__);
799 		return 0;
800 	}
801 
802 	hpetp = kzalloc(struct_size(hpetp, hp_dev, hdp->hd_nirqs),
803 			GFP_KERNEL);
804 
805 	if (!hpetp)
806 		return -ENOMEM;
807 
808 	hpetp->hp_which = hpet_nhpet++;
809 	hpetp->hp_hpet = hdp->hd_address;
810 	hpetp->hp_hpet_phys = hdp->hd_phys_address;
811 
812 	hpetp->hp_ntimer = hdp->hd_nirqs;
813 
814 	for (i = 0; i < hdp->hd_nirqs; i++)
815 		hpetp->hp_dev[i].hd_hdwirq = hdp->hd_irq[i];
816 
817 	hpet = hpetp->hp_hpet;
818 
819 	cap = readq(&hpet->hpet_cap);
820 
821 	ntimer = ((cap & HPET_NUM_TIM_CAP_MASK) >> HPET_NUM_TIM_CAP_SHIFT) + 1;
822 
823 	if (hpetp->hp_ntimer != ntimer) {
824 		printk(KERN_WARNING "hpet: number irqs doesn't agree"
825 		       " with number of timers\n");
826 		kfree(hpetp);
827 		return -ENODEV;
828 	}
829 
830 	if (last)
831 		last->hp_next = hpetp;
832 	else
833 		hpets = hpetp;
834 
835 	last = hpetp;
836 
837 	period = (cap & HPET_COUNTER_CLK_PERIOD_MASK) >>
838 		HPET_COUNTER_CLK_PERIOD_SHIFT; /* fs, 10^-15 */
839 	temp = 1000000000000000uLL; /* 10^15 femtoseconds per second */
840 	temp += period >> 1; /* round */
841 	do_div(temp, period);
842 	hpetp->hp_tick_freq = temp; /* ticks per second */
843 
844 	printk(KERN_INFO "hpet%d: at MMIO 0x%lx, IRQ%s",
845 		hpetp->hp_which, hdp->hd_phys_address,
846 		hpetp->hp_ntimer > 1 ? "s" : "");
847 	for (i = 0; i < hpetp->hp_ntimer; i++)
848 		printk(KERN_CONT "%s %d", i > 0 ? "," : "", hdp->hd_irq[i]);
849 	printk(KERN_CONT "\n");
850 
851 	temp = hpetp->hp_tick_freq;
852 	remainder = do_div(temp, 1000000);
853 	printk(KERN_INFO
854 		"hpet%u: %u comparators, %d-bit %u.%06u MHz counter\n",
855 		hpetp->hp_which, hpetp->hp_ntimer,
856 		cap & HPET_COUNTER_SIZE_MASK ? 64 : 32,
857 		(unsigned) temp, remainder);
858 
859 	mcfg = readq(&hpet->hpet_config);
860 	if ((mcfg & HPET_ENABLE_CNF_MASK) == 0) {
861 		write_counter(0L, &hpet->hpet_mc);
862 		mcfg |= HPET_ENABLE_CNF_MASK;
863 		writeq(mcfg, &hpet->hpet_config);
864 	}
865 
866 	for (i = 0, devp = hpetp->hp_dev; i < hpetp->hp_ntimer; i++, devp++) {
867 		struct hpet_timer __iomem *timer;
868 
869 		timer = &hpet->hpet_timers[devp - hpetp->hp_dev];
870 
871 		devp->hd_hpets = hpetp;
872 		devp->hd_hpet = hpet;
873 		devp->hd_timer = timer;
874 
875 		/*
876 		 * If the timer was reserved by platform code,
877 		 * then make timer unavailable for opens.
878 		 */
879 		if (hdp->hd_state & (1 << i)) {
880 			devp->hd_flags = HPET_OPEN;
881 			continue;
882 		}
883 
884 		init_waitqueue_head(&devp->hd_waitqueue);
885 	}
886 
887 	hpetp->hp_delta = hpet_calibrate(hpetp);
888 
889 	return 0;
890 }
891 
892 static acpi_status hpet_resources(struct acpi_resource *res, void *data)
893 {
894 	struct hpet_data *hdp;
895 	acpi_status status;
896 	struct acpi_resource_address64 addr;
897 
898 	hdp = data;
899 
900 	status = acpi_resource_to_address64(res, &addr);
901 
902 	if (ACPI_SUCCESS(status)) {
903 		hdp->hd_phys_address = addr.address.minimum;
904 		hdp->hd_address = ioremap(addr.address.minimum, addr.address.address_length);
905 		if (!hdp->hd_address)
906 			return AE_ERROR;
907 
908 		if (hpet_is_known(hdp)) {
909 			iounmap(hdp->hd_address);
910 			return AE_ALREADY_EXISTS;
911 		}
912 	} else if (res->type == ACPI_RESOURCE_TYPE_FIXED_MEMORY32) {
913 		struct acpi_resource_fixed_memory32 *fixmem32;
914 
915 		fixmem32 = &res->data.fixed_memory32;
916 
917 		hdp->hd_phys_address = fixmem32->address;
918 		hdp->hd_address = ioremap(fixmem32->address,
919 						HPET_RANGE_SIZE);
920 		if (!hdp->hd_address)
921 			return AE_ERROR;
922 
923 		if (hpet_is_known(hdp)) {
924 			iounmap(hdp->hd_address);
925 			return AE_ALREADY_EXISTS;
926 		}
927 	} else if (res->type == ACPI_RESOURCE_TYPE_EXTENDED_IRQ) {
928 		struct acpi_resource_extended_irq *irqp;
929 		int i, irq;
930 
931 		irqp = &res->data.extended_irq;
932 
933 		for (i = 0; i < irqp->interrupt_count; i++) {
934 			if (hdp->hd_nirqs >= HPET_MAX_TIMERS)
935 				break;
936 
937 			irq = acpi_register_gsi(NULL, irqp->interrupts[i],
938 						irqp->triggering,
939 						irqp->polarity);
940 			if (irq < 0)
941 				return AE_ERROR;
942 
943 			hdp->hd_irq[hdp->hd_nirqs] = irq;
944 			hdp->hd_nirqs++;
945 		}
946 	}
947 
948 	return AE_OK;
949 }
950 
951 static int hpet_acpi_add(struct acpi_device *device)
952 {
953 	acpi_status result;
954 	struct hpet_data data;
955 
956 	memset(&data, 0, sizeof(data));
957 
958 	result =
959 	    acpi_walk_resources(device->handle, METHOD_NAME__CRS,
960 				hpet_resources, &data);
961 
962 	if (ACPI_FAILURE(result))
963 		return -ENODEV;
964 
965 	if (!data.hd_address || !data.hd_nirqs) {
966 		if (data.hd_address)
967 			iounmap(data.hd_address);
968 		printk("%s: no address or irqs in _CRS\n", __func__);
969 		return -ENODEV;
970 	}
971 
972 	return hpet_alloc(&data);
973 }
974 
975 static const struct acpi_device_id hpet_device_ids[] = {
976 	{"PNP0103", 0},
977 	{"", 0},
978 };
979 
980 static struct acpi_driver hpet_acpi_driver = {
981 	.name = "hpet",
982 	.ids = hpet_device_ids,
983 	.ops = {
984 		.add = hpet_acpi_add,
985 		},
986 };
987 
988 static struct miscdevice hpet_misc = { HPET_MINOR, "hpet", &hpet_fops };
989 
990 static int __init hpet_init(void)
991 {
992 	int result;
993 
994 	result = misc_register(&hpet_misc);
995 	if (result < 0)
996 		return -ENODEV;
997 
998 	sysctl_header = register_sysctl("dev/hpet", hpet_table);
999 
1000 	result = acpi_bus_register_driver(&hpet_acpi_driver);
1001 	if (result < 0) {
1002 		if (sysctl_header)
1003 			unregister_sysctl_table(sysctl_header);
1004 		misc_deregister(&hpet_misc);
1005 		return result;
1006 	}
1007 
1008 	return 0;
1009 }
1010 device_initcall(hpet_init);
1011 
1012 /*
1013 MODULE_AUTHOR("Bob Picco <Robert.Picco@hp.com>");
1014 MODULE_LICENSE("GPL");
1015 */
1016