xref: /linux/drivers/clk/bcm/clk-kona.c (revision 0be3ff0c)
1 /*
2  * Copyright (C) 2013 Broadcom Corporation
3  * Copyright 2013 Linaro Limited
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation version 2.
8  *
9  * This program is distributed "as is" WITHOUT ANY WARRANTY of any
10  * kind, whether express or implied; without even the implied warranty
11  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  */
14 
15 #include "clk-kona.h"
16 
17 #include <linux/delay.h>
18 #include <linux/io.h>
19 #include <linux/kernel.h>
20 #include <linux/clk-provider.h>
21 
22 /*
23  * "Policies" affect the frequencies of bus clocks provided by a
24  * CCU.  (I believe these polices are named "Deep Sleep", "Economy",
25  * "Normal", and "Turbo".)  A lower policy number has lower power
26  * consumption, and policy 2 is the default.
27  */
28 #define CCU_POLICY_COUNT	4
29 
30 #define CCU_ACCESS_PASSWORD      0xA5A500
31 #define CLK_GATE_DELAY_LOOP      2000
32 
33 /* Bitfield operations */
34 
35 /* Produces a mask of set bits covering a range of a 32-bit value */
36 static inline u32 bitfield_mask(u32 shift, u32 width)
37 {
38 	return ((1 << width) - 1) << shift;
39 }
40 
41 /* Extract the value of a bitfield found within a given register value */
42 static inline u32 bitfield_extract(u32 reg_val, u32 shift, u32 width)
43 {
44 	return (reg_val & bitfield_mask(shift, width)) >> shift;
45 }
46 
47 /* Replace the value of a bitfield found within a given register value */
48 static inline u32 bitfield_replace(u32 reg_val, u32 shift, u32 width, u32 val)
49 {
50 	u32 mask = bitfield_mask(shift, width);
51 
52 	return (reg_val & ~mask) | (val << shift);
53 }
54 
55 /* Divider and scaling helpers */
56 
57 /* Convert a divider into the scaled divisor value it represents. */
58 static inline u64 scaled_div_value(struct bcm_clk_div *div, u32 reg_div)
59 {
60 	return (u64)reg_div + ((u64)1 << div->u.s.frac_width);
61 }
62 
63 /*
64  * Build a scaled divider value as close as possible to the
65  * given whole part (div_value) and fractional part (expressed
66  * in billionths).
67  */
68 u64 scaled_div_build(struct bcm_clk_div *div, u32 div_value, u32 billionths)
69 {
70 	u64 combined;
71 
72 	BUG_ON(!div_value);
73 	BUG_ON(billionths >= BILLION);
74 
75 	combined = (u64)div_value * BILLION + billionths;
76 	combined <<= div->u.s.frac_width;
77 
78 	return DIV_ROUND_CLOSEST_ULL(combined, BILLION);
79 }
80 
81 /* The scaled minimum divisor representable by a divider */
82 static inline u64
83 scaled_div_min(struct bcm_clk_div *div)
84 {
85 	if (divider_is_fixed(div))
86 		return (u64)div->u.fixed;
87 
88 	return scaled_div_value(div, 0);
89 }
90 
91 /* The scaled maximum divisor representable by a divider */
92 u64 scaled_div_max(struct bcm_clk_div *div)
93 {
94 	u32 reg_div;
95 
96 	if (divider_is_fixed(div))
97 		return (u64)div->u.fixed;
98 
99 	reg_div = ((u32)1 << div->u.s.width) - 1;
100 
101 	return scaled_div_value(div, reg_div);
102 }
103 
104 /*
105  * Convert a scaled divisor into its divider representation as
106  * stored in a divider register field.
107  */
108 static inline u32
109 divider(struct bcm_clk_div *div, u64 scaled_div)
110 {
111 	BUG_ON(scaled_div < scaled_div_min(div));
112 	BUG_ON(scaled_div > scaled_div_max(div));
113 
114 	return (u32)(scaled_div - ((u64)1 << div->u.s.frac_width));
115 }
116 
117 /* Return a rate scaled for use when dividing by a scaled divisor. */
118 static inline u64
119 scale_rate(struct bcm_clk_div *div, u32 rate)
120 {
121 	if (divider_is_fixed(div))
122 		return (u64)rate;
123 
124 	return (u64)rate << div->u.s.frac_width;
125 }
126 
127 /* CCU access */
128 
129 /* Read a 32-bit register value from a CCU's address space. */
130 static inline u32 __ccu_read(struct ccu_data *ccu, u32 reg_offset)
131 {
132 	return readl(ccu->base + reg_offset);
133 }
134 
135 /* Write a 32-bit register value into a CCU's address space. */
136 static inline void
137 __ccu_write(struct ccu_data *ccu, u32 reg_offset, u32 reg_val)
138 {
139 	writel(reg_val, ccu->base + reg_offset);
140 }
141 
142 static inline unsigned long ccu_lock(struct ccu_data *ccu)
143 {
144 	unsigned long flags;
145 
146 	spin_lock_irqsave(&ccu->lock, flags);
147 
148 	return flags;
149 }
150 static inline void ccu_unlock(struct ccu_data *ccu, unsigned long flags)
151 {
152 	spin_unlock_irqrestore(&ccu->lock, flags);
153 }
154 
155 /*
156  * Enable/disable write access to CCU protected registers.  The
157  * WR_ACCESS register for all CCUs is at offset 0.
158  */
159 static inline void __ccu_write_enable(struct ccu_data *ccu)
160 {
161 	if (ccu->write_enabled) {
162 		pr_err("%s: access already enabled for %s\n", __func__,
163 			ccu->name);
164 		return;
165 	}
166 	ccu->write_enabled = true;
167 	__ccu_write(ccu, 0, CCU_ACCESS_PASSWORD | 1);
168 }
169 
170 static inline void __ccu_write_disable(struct ccu_data *ccu)
171 {
172 	if (!ccu->write_enabled) {
173 		pr_err("%s: access wasn't enabled for %s\n", __func__,
174 			ccu->name);
175 		return;
176 	}
177 
178 	__ccu_write(ccu, 0, CCU_ACCESS_PASSWORD);
179 	ccu->write_enabled = false;
180 }
181 
182 /*
183  * Poll a register in a CCU's address space, returning when the
184  * specified bit in that register's value is set (or clear).  Delay
185  * a microsecond after each read of the register.  Returns true if
186  * successful, or false if we gave up trying.
187  *
188  * Caller must ensure the CCU lock is held.
189  */
190 static inline bool
191 __ccu_wait_bit(struct ccu_data *ccu, u32 reg_offset, u32 bit, bool want)
192 {
193 	unsigned int tries;
194 	u32 bit_mask = 1 << bit;
195 
196 	for (tries = 0; tries < CLK_GATE_DELAY_LOOP; tries++) {
197 		u32 val;
198 		bool bit_val;
199 
200 		val = __ccu_read(ccu, reg_offset);
201 		bit_val = (val & bit_mask) != 0;
202 		if (bit_val == want)
203 			return true;
204 		udelay(1);
205 	}
206 	pr_warn("%s: %s/0x%04x bit %u was never %s\n", __func__,
207 		ccu->name, reg_offset, bit, want ? "set" : "clear");
208 
209 	return false;
210 }
211 
212 /* Policy operations */
213 
214 static bool __ccu_policy_engine_start(struct ccu_data *ccu, bool sync)
215 {
216 	struct bcm_policy_ctl *control = &ccu->policy.control;
217 	u32 offset;
218 	u32 go_bit;
219 	u32 mask;
220 	bool ret;
221 
222 	/* If we don't need to control policy for this CCU, we're done. */
223 	if (!policy_ctl_exists(control))
224 		return true;
225 
226 	offset = control->offset;
227 	go_bit = control->go_bit;
228 
229 	/* Ensure we're not busy before we start */
230 	ret = __ccu_wait_bit(ccu, offset, go_bit, false);
231 	if (!ret) {
232 		pr_err("%s: ccu %s policy engine wouldn't go idle\n",
233 			__func__, ccu->name);
234 		return false;
235 	}
236 
237 	/*
238 	 * If it's a synchronous request, we'll wait for the voltage
239 	 * and frequency of the active load to stabilize before
240 	 * returning.  To do this we select the active load by
241 	 * setting the ATL bit.
242 	 *
243 	 * An asynchronous request instead ramps the voltage in the
244 	 * background, and when that process stabilizes, the target
245 	 * load is copied to the active load and the CCU frequency
246 	 * is switched.  We do this by selecting the target load
247 	 * (ATL bit clear) and setting the request auto-copy (AC bit
248 	 * set).
249 	 *
250 	 * Note, we do NOT read-modify-write this register.
251 	 */
252 	mask = (u32)1 << go_bit;
253 	if (sync)
254 		mask |= 1 << control->atl_bit;
255 	else
256 		mask |= 1 << control->ac_bit;
257 	__ccu_write(ccu, offset, mask);
258 
259 	/* Wait for indication that operation is complete. */
260 	ret = __ccu_wait_bit(ccu, offset, go_bit, false);
261 	if (!ret)
262 		pr_err("%s: ccu %s policy engine never started\n",
263 			__func__, ccu->name);
264 
265 	return ret;
266 }
267 
268 static bool __ccu_policy_engine_stop(struct ccu_data *ccu)
269 {
270 	struct bcm_lvm_en *enable = &ccu->policy.enable;
271 	u32 offset;
272 	u32 enable_bit;
273 	bool ret;
274 
275 	/* If we don't need to control policy for this CCU, we're done. */
276 	if (!policy_lvm_en_exists(enable))
277 		return true;
278 
279 	/* Ensure we're not busy before we start */
280 	offset = enable->offset;
281 	enable_bit = enable->bit;
282 	ret = __ccu_wait_bit(ccu, offset, enable_bit, false);
283 	if (!ret) {
284 		pr_err("%s: ccu %s policy engine already stopped\n",
285 			__func__, ccu->name);
286 		return false;
287 	}
288 
289 	/* Now set the bit to stop the engine (NO read-modify-write) */
290 	__ccu_write(ccu, offset, (u32)1 << enable_bit);
291 
292 	/* Wait for indication that it has stopped. */
293 	ret = __ccu_wait_bit(ccu, offset, enable_bit, false);
294 	if (!ret)
295 		pr_err("%s: ccu %s policy engine never stopped\n",
296 			__func__, ccu->name);
297 
298 	return ret;
299 }
300 
301 /*
302  * A CCU has four operating conditions ("policies"), and some clocks
303  * can be disabled or enabled based on which policy is currently in
304  * effect.  Such clocks have a bit in a "policy mask" register for
305  * each policy indicating whether the clock is enabled for that
306  * policy or not.  The bit position for a clock is the same for all
307  * four registers, and the 32-bit registers are at consecutive
308  * addresses.
309  */
310 static bool policy_init(struct ccu_data *ccu, struct bcm_clk_policy *policy)
311 {
312 	u32 offset;
313 	u32 mask;
314 	int i;
315 	bool ret;
316 
317 	if (!policy_exists(policy))
318 		return true;
319 
320 	/*
321 	 * We need to stop the CCU policy engine to allow update
322 	 * of our policy bits.
323 	 */
324 	if (!__ccu_policy_engine_stop(ccu)) {
325 		pr_err("%s: unable to stop CCU %s policy engine\n",
326 			__func__, ccu->name);
327 		return false;
328 	}
329 
330 	/*
331 	 * For now, if a clock defines its policy bit we just mark
332 	 * it "enabled" for all four policies.
333 	 */
334 	offset = policy->offset;
335 	mask = (u32)1 << policy->bit;
336 	for (i = 0; i < CCU_POLICY_COUNT; i++) {
337 		u32 reg_val;
338 
339 		reg_val = __ccu_read(ccu, offset);
340 		reg_val |= mask;
341 		__ccu_write(ccu, offset, reg_val);
342 		offset += sizeof(u32);
343 	}
344 
345 	/* We're done updating; fire up the policy engine again. */
346 	ret = __ccu_policy_engine_start(ccu, true);
347 	if (!ret)
348 		pr_err("%s: unable to restart CCU %s policy engine\n",
349 			__func__, ccu->name);
350 
351 	return ret;
352 }
353 
354 /* Gate operations */
355 
356 /* Determine whether a clock is gated.  CCU lock must be held.  */
357 static bool
358 __is_clk_gate_enabled(struct ccu_data *ccu, struct bcm_clk_gate *gate)
359 {
360 	u32 bit_mask;
361 	u32 reg_val;
362 
363 	/* If there is no gate we can assume it's enabled. */
364 	if (!gate_exists(gate))
365 		return true;
366 
367 	bit_mask = 1 << gate->status_bit;
368 	reg_val = __ccu_read(ccu, gate->offset);
369 
370 	return (reg_val & bit_mask) != 0;
371 }
372 
373 /* Determine whether a clock is gated. */
374 static bool
375 is_clk_gate_enabled(struct ccu_data *ccu, struct bcm_clk_gate *gate)
376 {
377 	long flags;
378 	bool ret;
379 
380 	/* Avoid taking the lock if we can */
381 	if (!gate_exists(gate))
382 		return true;
383 
384 	flags = ccu_lock(ccu);
385 	ret = __is_clk_gate_enabled(ccu, gate);
386 	ccu_unlock(ccu, flags);
387 
388 	return ret;
389 }
390 
391 /*
392  * Commit our desired gate state to the hardware.
393  * Returns true if successful, false otherwise.
394  */
395 static bool
396 __gate_commit(struct ccu_data *ccu, struct bcm_clk_gate *gate)
397 {
398 	u32 reg_val;
399 	u32 mask;
400 	bool enabled = false;
401 
402 	BUG_ON(!gate_exists(gate));
403 	if (!gate_is_sw_controllable(gate))
404 		return true;		/* Nothing we can change */
405 
406 	reg_val = __ccu_read(ccu, gate->offset);
407 
408 	/* For a hardware/software gate, set which is in control */
409 	if (gate_is_hw_controllable(gate)) {
410 		mask = (u32)1 << gate->hw_sw_sel_bit;
411 		if (gate_is_sw_managed(gate))
412 			reg_val |= mask;
413 		else
414 			reg_val &= ~mask;
415 	}
416 
417 	/*
418 	 * If software is in control, enable or disable the gate.
419 	 * If hardware is, clear the enabled bit for good measure.
420 	 * If a software controlled gate can't be disabled, we're
421 	 * required to write a 0 into the enable bit (but the gate
422 	 * will be enabled).
423 	 */
424 	mask = (u32)1 << gate->en_bit;
425 	if (gate_is_sw_managed(gate) && (enabled = gate_is_enabled(gate)) &&
426 			!gate_is_no_disable(gate))
427 		reg_val |= mask;
428 	else
429 		reg_val &= ~mask;
430 
431 	__ccu_write(ccu, gate->offset, reg_val);
432 
433 	/* For a hardware controlled gate, we're done */
434 	if (!gate_is_sw_managed(gate))
435 		return true;
436 
437 	/* Otherwise wait for the gate to be in desired state */
438 	return __ccu_wait_bit(ccu, gate->offset, gate->status_bit, enabled);
439 }
440 
441 /*
442  * Initialize a gate.  Our desired state (hardware/software select,
443  * and if software, its enable state) is committed to hardware
444  * without the usual checks to see if it's already set up that way.
445  * Returns true if successful, false otherwise.
446  */
447 static bool gate_init(struct ccu_data *ccu, struct bcm_clk_gate *gate)
448 {
449 	if (!gate_exists(gate))
450 		return true;
451 	return __gate_commit(ccu, gate);
452 }
453 
454 /*
455  * Set a gate to enabled or disabled state.  Does nothing if the
456  * gate is not currently under software control, or if it is already
457  * in the requested state.  Returns true if successful, false
458  * otherwise.  CCU lock must be held.
459  */
460 static bool
461 __clk_gate(struct ccu_data *ccu, struct bcm_clk_gate *gate, bool enable)
462 {
463 	bool ret;
464 
465 	if (!gate_exists(gate) || !gate_is_sw_managed(gate))
466 		return true;	/* Nothing to do */
467 
468 	if (!enable && gate_is_no_disable(gate)) {
469 		pr_warn("%s: invalid gate disable request (ignoring)\n",
470 			__func__);
471 		return true;
472 	}
473 
474 	if (enable == gate_is_enabled(gate))
475 		return true;	/* No change */
476 
477 	gate_flip_enabled(gate);
478 	ret = __gate_commit(ccu, gate);
479 	if (!ret)
480 		gate_flip_enabled(gate);	/* Revert the change */
481 
482 	return ret;
483 }
484 
485 /* Enable or disable a gate.  Returns 0 if successful, -EIO otherwise */
486 static int clk_gate(struct ccu_data *ccu, const char *name,
487 			struct bcm_clk_gate *gate, bool enable)
488 {
489 	unsigned long flags;
490 	bool success;
491 
492 	/*
493 	 * Avoid taking the lock if we can.  We quietly ignore
494 	 * requests to change state that don't make sense.
495 	 */
496 	if (!gate_exists(gate) || !gate_is_sw_managed(gate))
497 		return 0;
498 	if (!enable && gate_is_no_disable(gate))
499 		return 0;
500 
501 	flags = ccu_lock(ccu);
502 	__ccu_write_enable(ccu);
503 
504 	success = __clk_gate(ccu, gate, enable);
505 
506 	__ccu_write_disable(ccu);
507 	ccu_unlock(ccu, flags);
508 
509 	if (success)
510 		return 0;
511 
512 	pr_err("%s: failed to %s gate for %s\n", __func__,
513 		enable ? "enable" : "disable", name);
514 
515 	return -EIO;
516 }
517 
518 /* Hysteresis operations */
519 
520 /*
521  * If a clock gate requires a turn-off delay it will have
522  * "hysteresis" register bits defined.  The first, if set, enables
523  * the delay; and if enabled, the second bit determines whether the
524  * delay is "low" or "high" (1 means high).  For now, if it's
525  * defined for a clock, we set it.
526  */
527 static bool hyst_init(struct ccu_data *ccu, struct bcm_clk_hyst *hyst)
528 {
529 	u32 offset;
530 	u32 reg_val;
531 	u32 mask;
532 
533 	if (!hyst_exists(hyst))
534 		return true;
535 
536 	offset = hyst->offset;
537 	mask = (u32)1 << hyst->en_bit;
538 	mask |= (u32)1 << hyst->val_bit;
539 
540 	reg_val = __ccu_read(ccu, offset);
541 	reg_val |= mask;
542 	__ccu_write(ccu, offset, reg_val);
543 
544 	return true;
545 }
546 
547 /* Trigger operations */
548 
549 /*
550  * Caller must ensure CCU lock is held and access is enabled.
551  * Returns true if successful, false otherwise.
552  */
553 static bool __clk_trigger(struct ccu_data *ccu, struct bcm_clk_trig *trig)
554 {
555 	/* Trigger the clock and wait for it to finish */
556 	__ccu_write(ccu, trig->offset, 1 << trig->bit);
557 
558 	return __ccu_wait_bit(ccu, trig->offset, trig->bit, false);
559 }
560 
561 /* Divider operations */
562 
563 /* Read a divider value and return the scaled divisor it represents. */
564 static u64 divider_read_scaled(struct ccu_data *ccu, struct bcm_clk_div *div)
565 {
566 	unsigned long flags;
567 	u32 reg_val;
568 	u32 reg_div;
569 
570 	if (divider_is_fixed(div))
571 		return (u64)div->u.fixed;
572 
573 	flags = ccu_lock(ccu);
574 	reg_val = __ccu_read(ccu, div->u.s.offset);
575 	ccu_unlock(ccu, flags);
576 
577 	/* Extract the full divider field from the register value */
578 	reg_div = bitfield_extract(reg_val, div->u.s.shift, div->u.s.width);
579 
580 	/* Return the scaled divisor value it represents */
581 	return scaled_div_value(div, reg_div);
582 }
583 
584 /*
585  * Convert a divider's scaled divisor value into its recorded form
586  * and commit it into the hardware divider register.
587  *
588  * Returns 0 on success.  Returns -EINVAL for invalid arguments.
589  * Returns -ENXIO if gating failed, and -EIO if a trigger failed.
590  */
591 static int __div_commit(struct ccu_data *ccu, struct bcm_clk_gate *gate,
592 			struct bcm_clk_div *div, struct bcm_clk_trig *trig)
593 {
594 	bool enabled;
595 	u32 reg_div;
596 	u32 reg_val;
597 	int ret = 0;
598 
599 	BUG_ON(divider_is_fixed(div));
600 
601 	/*
602 	 * If we're just initializing the divider, and no initial
603 	 * state was defined in the device tree, we just find out
604 	 * what its current value is rather than updating it.
605 	 */
606 	if (div->u.s.scaled_div == BAD_SCALED_DIV_VALUE) {
607 		reg_val = __ccu_read(ccu, div->u.s.offset);
608 		reg_div = bitfield_extract(reg_val, div->u.s.shift,
609 						div->u.s.width);
610 		div->u.s.scaled_div = scaled_div_value(div, reg_div);
611 
612 		return 0;
613 	}
614 
615 	/* Convert the scaled divisor to the value we need to record */
616 	reg_div = divider(div, div->u.s.scaled_div);
617 
618 	/* Clock needs to be enabled before changing the rate */
619 	enabled = __is_clk_gate_enabled(ccu, gate);
620 	if (!enabled && !__clk_gate(ccu, gate, true)) {
621 		ret = -ENXIO;
622 		goto out;
623 	}
624 
625 	/* Replace the divider value and record the result */
626 	reg_val = __ccu_read(ccu, div->u.s.offset);
627 	reg_val = bitfield_replace(reg_val, div->u.s.shift, div->u.s.width,
628 					reg_div);
629 	__ccu_write(ccu, div->u.s.offset, reg_val);
630 
631 	/* If the trigger fails we still want to disable the gate */
632 	if (!__clk_trigger(ccu, trig))
633 		ret = -EIO;
634 
635 	/* Disable the clock again if it was disabled to begin with */
636 	if (!enabled && !__clk_gate(ccu, gate, false))
637 		ret = ret ? ret : -ENXIO;	/* return first error */
638 out:
639 	return ret;
640 }
641 
642 /*
643  * Initialize a divider by committing our desired state to hardware
644  * without the usual checks to see if it's already set up that way.
645  * Returns true if successful, false otherwise.
646  */
647 static bool div_init(struct ccu_data *ccu, struct bcm_clk_gate *gate,
648 			struct bcm_clk_div *div, struct bcm_clk_trig *trig)
649 {
650 	if (!divider_exists(div) || divider_is_fixed(div))
651 		return true;
652 	return !__div_commit(ccu, gate, div, trig);
653 }
654 
655 static int divider_write(struct ccu_data *ccu, struct bcm_clk_gate *gate,
656 			struct bcm_clk_div *div, struct bcm_clk_trig *trig,
657 			u64 scaled_div)
658 {
659 	unsigned long flags;
660 	u64 previous;
661 	int ret;
662 
663 	BUG_ON(divider_is_fixed(div));
664 
665 	previous = div->u.s.scaled_div;
666 	if (previous == scaled_div)
667 		return 0;	/* No change */
668 
669 	div->u.s.scaled_div = scaled_div;
670 
671 	flags = ccu_lock(ccu);
672 	__ccu_write_enable(ccu);
673 
674 	ret = __div_commit(ccu, gate, div, trig);
675 
676 	__ccu_write_disable(ccu);
677 	ccu_unlock(ccu, flags);
678 
679 	if (ret)
680 		div->u.s.scaled_div = previous;		/* Revert the change */
681 
682 	return ret;
683 
684 }
685 
686 /* Common clock rate helpers */
687 
688 /*
689  * Implement the common clock framework recalc_rate method, taking
690  * into account a divider and an optional pre-divider.  The
691  * pre-divider register pointer may be NULL.
692  */
693 static unsigned long clk_recalc_rate(struct ccu_data *ccu,
694 			struct bcm_clk_div *div, struct bcm_clk_div *pre_div,
695 			unsigned long parent_rate)
696 {
697 	u64 scaled_parent_rate;
698 	u64 scaled_div;
699 	u64 result;
700 
701 	if (!divider_exists(div))
702 		return parent_rate;
703 
704 	if (parent_rate > (unsigned long)LONG_MAX)
705 		return 0;	/* actually this would be a caller bug */
706 
707 	/*
708 	 * If there is a pre-divider, divide the scaled parent rate
709 	 * by the pre-divider value first.  In this case--to improve
710 	 * accuracy--scale the parent rate by *both* the pre-divider
711 	 * value and the divider before actually computing the
712 	 * result of the pre-divider.
713 	 *
714 	 * If there's only one divider, just scale the parent rate.
715 	 */
716 	if (pre_div && divider_exists(pre_div)) {
717 		u64 scaled_rate;
718 
719 		scaled_rate = scale_rate(pre_div, parent_rate);
720 		scaled_rate = scale_rate(div, scaled_rate);
721 		scaled_div = divider_read_scaled(ccu, pre_div);
722 		scaled_parent_rate = DIV_ROUND_CLOSEST_ULL(scaled_rate,
723 							scaled_div);
724 	} else  {
725 		scaled_parent_rate = scale_rate(div, parent_rate);
726 	}
727 
728 	/*
729 	 * Get the scaled divisor value, and divide the scaled
730 	 * parent rate by that to determine this clock's resulting
731 	 * rate.
732 	 */
733 	scaled_div = divider_read_scaled(ccu, div);
734 	result = DIV_ROUND_CLOSEST_ULL(scaled_parent_rate, scaled_div);
735 
736 	return (unsigned long)result;
737 }
738 
739 /*
740  * Compute the output rate produced when a given parent rate is fed
741  * into two dividers.  The pre-divider can be NULL, and even if it's
742  * non-null it may be nonexistent.  It's also OK for the divider to
743  * be nonexistent, and in that case the pre-divider is also ignored.
744  *
745  * If scaled_div is non-null, it is used to return the scaled divisor
746  * value used by the (downstream) divider to produce that rate.
747  */
748 static long round_rate(struct ccu_data *ccu, struct bcm_clk_div *div,
749 				struct bcm_clk_div *pre_div,
750 				unsigned long rate, unsigned long parent_rate,
751 				u64 *scaled_div)
752 {
753 	u64 scaled_parent_rate;
754 	u64 min_scaled_div;
755 	u64 max_scaled_div;
756 	u64 best_scaled_div;
757 	u64 result;
758 
759 	BUG_ON(!divider_exists(div));
760 	BUG_ON(!rate);
761 	BUG_ON(parent_rate > (u64)LONG_MAX);
762 
763 	/*
764 	 * If there is a pre-divider, divide the scaled parent rate
765 	 * by the pre-divider value first.  In this case--to improve
766 	 * accuracy--scale the parent rate by *both* the pre-divider
767 	 * value and the divider before actually computing the
768 	 * result of the pre-divider.
769 	 *
770 	 * If there's only one divider, just scale the parent rate.
771 	 *
772 	 * For simplicity we treat the pre-divider as fixed (for now).
773 	 */
774 	if (divider_exists(pre_div)) {
775 		u64 scaled_rate;
776 		u64 scaled_pre_div;
777 
778 		scaled_rate = scale_rate(pre_div, parent_rate);
779 		scaled_rate = scale_rate(div, scaled_rate);
780 		scaled_pre_div = divider_read_scaled(ccu, pre_div);
781 		scaled_parent_rate = DIV_ROUND_CLOSEST_ULL(scaled_rate,
782 							scaled_pre_div);
783 	} else {
784 		scaled_parent_rate = scale_rate(div, parent_rate);
785 	}
786 
787 	/*
788 	 * Compute the best possible divider and ensure it is in
789 	 * range.  A fixed divider can't be changed, so just report
790 	 * the best we can do.
791 	 */
792 	if (!divider_is_fixed(div)) {
793 		best_scaled_div = DIV_ROUND_CLOSEST_ULL(scaled_parent_rate,
794 							rate);
795 		min_scaled_div = scaled_div_min(div);
796 		max_scaled_div = scaled_div_max(div);
797 		if (best_scaled_div > max_scaled_div)
798 			best_scaled_div = max_scaled_div;
799 		else if (best_scaled_div < min_scaled_div)
800 			best_scaled_div = min_scaled_div;
801 	} else {
802 		best_scaled_div = divider_read_scaled(ccu, div);
803 	}
804 
805 	/* OK, figure out the resulting rate */
806 	result = DIV_ROUND_CLOSEST_ULL(scaled_parent_rate, best_scaled_div);
807 
808 	if (scaled_div)
809 		*scaled_div = best_scaled_div;
810 
811 	return (long)result;
812 }
813 
814 /* Common clock parent helpers */
815 
816 /*
817  * For a given parent selector (register field) value, find the
818  * index into a selector's parent_sel array that contains it.
819  * Returns the index, or BAD_CLK_INDEX if it's not found.
820  */
821 static u8 parent_index(struct bcm_clk_sel *sel, u8 parent_sel)
822 {
823 	u8 i;
824 
825 	BUG_ON(sel->parent_count > (u32)U8_MAX);
826 	for (i = 0; i < sel->parent_count; i++)
827 		if (sel->parent_sel[i] == parent_sel)
828 			return i;
829 	return BAD_CLK_INDEX;
830 }
831 
832 /*
833  * Fetch the current value of the selector, and translate that into
834  * its corresponding index in the parent array we registered with
835  * the clock framework.
836  *
837  * Returns parent array index that corresponds with the value found,
838  * or BAD_CLK_INDEX if the found value is out of range.
839  */
840 static u8 selector_read_index(struct ccu_data *ccu, struct bcm_clk_sel *sel)
841 {
842 	unsigned long flags;
843 	u32 reg_val;
844 	u32 parent_sel;
845 	u8 index;
846 
847 	/* If there's no selector, there's only one parent */
848 	if (!selector_exists(sel))
849 		return 0;
850 
851 	/* Get the value in the selector register */
852 	flags = ccu_lock(ccu);
853 	reg_val = __ccu_read(ccu, sel->offset);
854 	ccu_unlock(ccu, flags);
855 
856 	parent_sel = bitfield_extract(reg_val, sel->shift, sel->width);
857 
858 	/* Look up that selector's parent array index and return it */
859 	index = parent_index(sel, parent_sel);
860 	if (index == BAD_CLK_INDEX)
861 		pr_err("%s: out-of-range parent selector %u (%s 0x%04x)\n",
862 			__func__, parent_sel, ccu->name, sel->offset);
863 
864 	return index;
865 }
866 
867 /*
868  * Commit our desired selector value to the hardware.
869  *
870  * Returns 0 on success.  Returns -EINVAL for invalid arguments.
871  * Returns -ENXIO if gating failed, and -EIO if a trigger failed.
872  */
873 static int
874 __sel_commit(struct ccu_data *ccu, struct bcm_clk_gate *gate,
875 			struct bcm_clk_sel *sel, struct bcm_clk_trig *trig)
876 {
877 	u32 parent_sel;
878 	u32 reg_val;
879 	bool enabled;
880 	int ret = 0;
881 
882 	BUG_ON(!selector_exists(sel));
883 
884 	/*
885 	 * If we're just initializing the selector, and no initial
886 	 * state was defined in the device tree, we just find out
887 	 * what its current value is rather than updating it.
888 	 */
889 	if (sel->clk_index == BAD_CLK_INDEX) {
890 		u8 index;
891 
892 		reg_val = __ccu_read(ccu, sel->offset);
893 		parent_sel = bitfield_extract(reg_val, sel->shift, sel->width);
894 		index = parent_index(sel, parent_sel);
895 		if (index == BAD_CLK_INDEX)
896 			return -EINVAL;
897 		sel->clk_index = index;
898 
899 		return 0;
900 	}
901 
902 	BUG_ON((u32)sel->clk_index >= sel->parent_count);
903 	parent_sel = sel->parent_sel[sel->clk_index];
904 
905 	/* Clock needs to be enabled before changing the parent */
906 	enabled = __is_clk_gate_enabled(ccu, gate);
907 	if (!enabled && !__clk_gate(ccu, gate, true))
908 		return -ENXIO;
909 
910 	/* Replace the selector value and record the result */
911 	reg_val = __ccu_read(ccu, sel->offset);
912 	reg_val = bitfield_replace(reg_val, sel->shift, sel->width, parent_sel);
913 	__ccu_write(ccu, sel->offset, reg_val);
914 
915 	/* If the trigger fails we still want to disable the gate */
916 	if (!__clk_trigger(ccu, trig))
917 		ret = -EIO;
918 
919 	/* Disable the clock again if it was disabled to begin with */
920 	if (!enabled && !__clk_gate(ccu, gate, false))
921 		ret = ret ? ret : -ENXIO;	/* return first error */
922 
923 	return ret;
924 }
925 
926 /*
927  * Initialize a selector by committing our desired state to hardware
928  * without the usual checks to see if it's already set up that way.
929  * Returns true if successful, false otherwise.
930  */
931 static bool sel_init(struct ccu_data *ccu, struct bcm_clk_gate *gate,
932 			struct bcm_clk_sel *sel, struct bcm_clk_trig *trig)
933 {
934 	if (!selector_exists(sel))
935 		return true;
936 	return !__sel_commit(ccu, gate, sel, trig);
937 }
938 
939 /*
940  * Write a new value into a selector register to switch to a
941  * different parent clock.  Returns 0 on success, or an error code
942  * (from __sel_commit()) otherwise.
943  */
944 static int selector_write(struct ccu_data *ccu, struct bcm_clk_gate *gate,
945 			struct bcm_clk_sel *sel, struct bcm_clk_trig *trig,
946 			u8 index)
947 {
948 	unsigned long flags;
949 	u8 previous;
950 	int ret;
951 
952 	previous = sel->clk_index;
953 	if (previous == index)
954 		return 0;	/* No change */
955 
956 	sel->clk_index = index;
957 
958 	flags = ccu_lock(ccu);
959 	__ccu_write_enable(ccu);
960 
961 	ret = __sel_commit(ccu, gate, sel, trig);
962 
963 	__ccu_write_disable(ccu);
964 	ccu_unlock(ccu, flags);
965 
966 	if (ret)
967 		sel->clk_index = previous;	/* Revert the change */
968 
969 	return ret;
970 }
971 
972 /* Clock operations */
973 
974 static int kona_peri_clk_enable(struct clk_hw *hw)
975 {
976 	struct kona_clk *bcm_clk = to_kona_clk(hw);
977 	struct bcm_clk_gate *gate = &bcm_clk->u.peri->gate;
978 
979 	return clk_gate(bcm_clk->ccu, bcm_clk->init_data.name, gate, true);
980 }
981 
982 static void kona_peri_clk_disable(struct clk_hw *hw)
983 {
984 	struct kona_clk *bcm_clk = to_kona_clk(hw);
985 	struct bcm_clk_gate *gate = &bcm_clk->u.peri->gate;
986 
987 	(void)clk_gate(bcm_clk->ccu, bcm_clk->init_data.name, gate, false);
988 }
989 
990 static int kona_peri_clk_is_enabled(struct clk_hw *hw)
991 {
992 	struct kona_clk *bcm_clk = to_kona_clk(hw);
993 	struct bcm_clk_gate *gate = &bcm_clk->u.peri->gate;
994 
995 	return is_clk_gate_enabled(bcm_clk->ccu, gate) ? 1 : 0;
996 }
997 
998 static unsigned long kona_peri_clk_recalc_rate(struct clk_hw *hw,
999 			unsigned long parent_rate)
1000 {
1001 	struct kona_clk *bcm_clk = to_kona_clk(hw);
1002 	struct peri_clk_data *data = bcm_clk->u.peri;
1003 
1004 	return clk_recalc_rate(bcm_clk->ccu, &data->div, &data->pre_div,
1005 				parent_rate);
1006 }
1007 
1008 static long kona_peri_clk_round_rate(struct clk_hw *hw, unsigned long rate,
1009 			unsigned long *parent_rate)
1010 {
1011 	struct kona_clk *bcm_clk = to_kona_clk(hw);
1012 	struct bcm_clk_div *div = &bcm_clk->u.peri->div;
1013 
1014 	if (!divider_exists(div))
1015 		return clk_hw_get_rate(hw);
1016 
1017 	/* Quietly avoid a zero rate */
1018 	return round_rate(bcm_clk->ccu, div, &bcm_clk->u.peri->pre_div,
1019 				rate ? rate : 1, *parent_rate, NULL);
1020 }
1021 
1022 static int kona_peri_clk_determine_rate(struct clk_hw *hw,
1023 					struct clk_rate_request *req)
1024 {
1025 	struct kona_clk *bcm_clk = to_kona_clk(hw);
1026 	struct clk_hw *current_parent;
1027 	unsigned long parent_rate;
1028 	unsigned long best_delta;
1029 	unsigned long best_rate;
1030 	u32 parent_count;
1031 	long rate;
1032 	u32 which;
1033 
1034 	/*
1035 	 * If there is no other parent to choose, use the current one.
1036 	 * Note:  We don't honor (or use) CLK_SET_RATE_NO_REPARENT.
1037 	 */
1038 	WARN_ON_ONCE(bcm_clk->init_data.flags & CLK_SET_RATE_NO_REPARENT);
1039 	parent_count = (u32)bcm_clk->init_data.num_parents;
1040 	if (parent_count < 2) {
1041 		rate = kona_peri_clk_round_rate(hw, req->rate,
1042 						&req->best_parent_rate);
1043 		if (rate < 0)
1044 			return rate;
1045 
1046 		req->rate = rate;
1047 		return 0;
1048 	}
1049 
1050 	/* Unless we can do better, stick with current parent */
1051 	current_parent = clk_hw_get_parent(hw);
1052 	parent_rate = clk_hw_get_rate(current_parent);
1053 	best_rate = kona_peri_clk_round_rate(hw, req->rate, &parent_rate);
1054 	best_delta = abs(best_rate - req->rate);
1055 
1056 	/* Check whether any other parent clock can produce a better result */
1057 	for (which = 0; which < parent_count; which++) {
1058 		struct clk_hw *parent = clk_hw_get_parent_by_index(hw, which);
1059 		unsigned long delta;
1060 		unsigned long other_rate;
1061 
1062 		BUG_ON(!parent);
1063 		if (parent == current_parent)
1064 			continue;
1065 
1066 		/* We don't support CLK_SET_RATE_PARENT */
1067 		parent_rate = clk_hw_get_rate(parent);
1068 		other_rate = kona_peri_clk_round_rate(hw, req->rate,
1069 						      &parent_rate);
1070 		delta = abs(other_rate - req->rate);
1071 		if (delta < best_delta) {
1072 			best_delta = delta;
1073 			best_rate = other_rate;
1074 			req->best_parent_hw = parent;
1075 			req->best_parent_rate = parent_rate;
1076 		}
1077 	}
1078 
1079 	req->rate = best_rate;
1080 	return 0;
1081 }
1082 
1083 static int kona_peri_clk_set_parent(struct clk_hw *hw, u8 index)
1084 {
1085 	struct kona_clk *bcm_clk = to_kona_clk(hw);
1086 	struct peri_clk_data *data = bcm_clk->u.peri;
1087 	struct bcm_clk_sel *sel = &data->sel;
1088 	struct bcm_clk_trig *trig;
1089 	int ret;
1090 
1091 	BUG_ON(index >= sel->parent_count);
1092 
1093 	/* If there's only one parent we don't require a selector */
1094 	if (!selector_exists(sel))
1095 		return 0;
1096 
1097 	/*
1098 	 * The regular trigger is used by default, but if there's a
1099 	 * pre-trigger we want to use that instead.
1100 	 */
1101 	trig = trigger_exists(&data->pre_trig) ? &data->pre_trig
1102 					       : &data->trig;
1103 
1104 	ret = selector_write(bcm_clk->ccu, &data->gate, sel, trig, index);
1105 	if (ret == -ENXIO) {
1106 		pr_err("%s: gating failure for %s\n", __func__,
1107 			bcm_clk->init_data.name);
1108 		ret = -EIO;	/* Don't proliferate weird errors */
1109 	} else if (ret == -EIO) {
1110 		pr_err("%s: %strigger failed for %s\n", __func__,
1111 			trig == &data->pre_trig ? "pre-" : "",
1112 			bcm_clk->init_data.name);
1113 	}
1114 
1115 	return ret;
1116 }
1117 
1118 static u8 kona_peri_clk_get_parent(struct clk_hw *hw)
1119 {
1120 	struct kona_clk *bcm_clk = to_kona_clk(hw);
1121 	struct peri_clk_data *data = bcm_clk->u.peri;
1122 	u8 index;
1123 
1124 	index = selector_read_index(bcm_clk->ccu, &data->sel);
1125 
1126 	/* Not all callers would handle an out-of-range value gracefully */
1127 	return index == BAD_CLK_INDEX ? 0 : index;
1128 }
1129 
1130 static int kona_peri_clk_set_rate(struct clk_hw *hw, unsigned long rate,
1131 			unsigned long parent_rate)
1132 {
1133 	struct kona_clk *bcm_clk = to_kona_clk(hw);
1134 	struct peri_clk_data *data = bcm_clk->u.peri;
1135 	struct bcm_clk_div *div = &data->div;
1136 	u64 scaled_div = 0;
1137 	int ret;
1138 
1139 	if (parent_rate > (unsigned long)LONG_MAX)
1140 		return -EINVAL;
1141 
1142 	if (rate == clk_hw_get_rate(hw))
1143 		return 0;
1144 
1145 	if (!divider_exists(div))
1146 		return rate == parent_rate ? 0 : -EINVAL;
1147 
1148 	/*
1149 	 * A fixed divider can't be changed.  (Nor can a fixed
1150 	 * pre-divider be, but for now we never actually try to
1151 	 * change that.)  Tolerate a request for a no-op change.
1152 	 */
1153 	if (divider_is_fixed(&data->div))
1154 		return rate == parent_rate ? 0 : -EINVAL;
1155 
1156 	/*
1157 	 * Get the scaled divisor value needed to achieve a clock
1158 	 * rate as close as possible to what was requested, given
1159 	 * the parent clock rate supplied.
1160 	 */
1161 	(void)round_rate(bcm_clk->ccu, div, &data->pre_div,
1162 				rate ? rate : 1, parent_rate, &scaled_div);
1163 
1164 	/*
1165 	 * We aren't updating any pre-divider at this point, so
1166 	 * we'll use the regular trigger.
1167 	 */
1168 	ret = divider_write(bcm_clk->ccu, &data->gate, &data->div,
1169 				&data->trig, scaled_div);
1170 	if (ret == -ENXIO) {
1171 		pr_err("%s: gating failure for %s\n", __func__,
1172 			bcm_clk->init_data.name);
1173 		ret = -EIO;	/* Don't proliferate weird errors */
1174 	} else if (ret == -EIO) {
1175 		pr_err("%s: trigger failed for %s\n", __func__,
1176 			bcm_clk->init_data.name);
1177 	}
1178 
1179 	return ret;
1180 }
1181 
1182 struct clk_ops kona_peri_clk_ops = {
1183 	.enable = kona_peri_clk_enable,
1184 	.disable = kona_peri_clk_disable,
1185 	.is_enabled = kona_peri_clk_is_enabled,
1186 	.recalc_rate = kona_peri_clk_recalc_rate,
1187 	.determine_rate = kona_peri_clk_determine_rate,
1188 	.set_parent = kona_peri_clk_set_parent,
1189 	.get_parent = kona_peri_clk_get_parent,
1190 	.set_rate = kona_peri_clk_set_rate,
1191 };
1192 
1193 /* Put a peripheral clock into its initial state */
1194 static bool __peri_clk_init(struct kona_clk *bcm_clk)
1195 {
1196 	struct ccu_data *ccu = bcm_clk->ccu;
1197 	struct peri_clk_data *peri = bcm_clk->u.peri;
1198 	const char *name = bcm_clk->init_data.name;
1199 	struct bcm_clk_trig *trig;
1200 
1201 	BUG_ON(bcm_clk->type != bcm_clk_peri);
1202 
1203 	if (!policy_init(ccu, &peri->policy)) {
1204 		pr_err("%s: error initializing policy for %s\n",
1205 			__func__, name);
1206 		return false;
1207 	}
1208 	if (!gate_init(ccu, &peri->gate)) {
1209 		pr_err("%s: error initializing gate for %s\n", __func__, name);
1210 		return false;
1211 	}
1212 	if (!hyst_init(ccu, &peri->hyst)) {
1213 		pr_err("%s: error initializing hyst for %s\n", __func__, name);
1214 		return false;
1215 	}
1216 	if (!div_init(ccu, &peri->gate, &peri->div, &peri->trig)) {
1217 		pr_err("%s: error initializing divider for %s\n", __func__,
1218 			name);
1219 		return false;
1220 	}
1221 
1222 	/*
1223 	 * For the pre-divider and selector, the pre-trigger is used
1224 	 * if it's present, otherwise we just use the regular trigger.
1225 	 */
1226 	trig = trigger_exists(&peri->pre_trig) ? &peri->pre_trig
1227 					       : &peri->trig;
1228 
1229 	if (!div_init(ccu, &peri->gate, &peri->pre_div, trig)) {
1230 		pr_err("%s: error initializing pre-divider for %s\n", __func__,
1231 			name);
1232 		return false;
1233 	}
1234 
1235 	if (!sel_init(ccu, &peri->gate, &peri->sel, trig)) {
1236 		pr_err("%s: error initializing selector for %s\n", __func__,
1237 			name);
1238 		return false;
1239 	}
1240 
1241 	return true;
1242 }
1243 
1244 static bool __kona_clk_init(struct kona_clk *bcm_clk)
1245 {
1246 	switch (bcm_clk->type) {
1247 	case bcm_clk_peri:
1248 		return __peri_clk_init(bcm_clk);
1249 	default:
1250 		BUG();
1251 	}
1252 	return false;
1253 }
1254 
1255 /* Set a CCU and all its clocks into their desired initial state */
1256 bool __init kona_ccu_init(struct ccu_data *ccu)
1257 {
1258 	unsigned long flags;
1259 	unsigned int which;
1260 	struct kona_clk *kona_clks = ccu->kona_clks;
1261 	bool success = true;
1262 
1263 	flags = ccu_lock(ccu);
1264 	__ccu_write_enable(ccu);
1265 
1266 	for (which = 0; which < ccu->clk_num; which++) {
1267 		struct kona_clk *bcm_clk = &kona_clks[which];
1268 
1269 		if (!bcm_clk->ccu)
1270 			continue;
1271 
1272 		success &= __kona_clk_init(bcm_clk);
1273 	}
1274 
1275 	__ccu_write_disable(ccu);
1276 	ccu_unlock(ccu, flags);
1277 	return success;
1278 }
1279