xref: /linux/drivers/clk/berlin/berlin2-avpll.c (revision 44f57d78)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2014 Marvell Technology Group Ltd.
4  *
5  * Sebastian Hesselbarth <sebastian.hesselbarth@gmail.com>
6  * Alexandre Belloni <alexandre.belloni@free-electrons.com>
7  */
8 #include <linux/clk-provider.h>
9 #include <linux/io.h>
10 #include <linux/kernel.h>
11 #include <linux/of.h>
12 #include <linux/of_address.h>
13 #include <linux/slab.h>
14 
15 #include "berlin2-avpll.h"
16 
17 /*
18  * Berlin2 SoCs comprise up to two PLLs called AVPLL built upon a
19  * VCO with 8 channels each, channel 8 is the odd-one-out and does
20  * not provide mul/div.
21  *
22  * Unfortunately, its registers are not named but just numbered. To
23  * get in at least some kind of structure, we split each AVPLL into
24  * the VCOs and each channel into separate clock drivers.
25  *
26  * Also, here and there the VCO registers are a bit different with
27  * respect to bit shifts. Make sure to add a comment for those.
28  */
29 #define NUM_CHANNELS	8
30 
31 #define AVPLL_CTRL(x)		((x) * 0x4)
32 
33 #define VCO_CTRL0		AVPLL_CTRL(0)
34 /* BG2/BG2CDs VCO_B has an additional shift of 4 for its VCO_CTRL0 reg */
35 #define  VCO_RESET		BIT(0)
36 #define  VCO_POWERUP		BIT(1)
37 #define  VCO_INTERPOL_SHIFT	2
38 #define  VCO_INTERPOL_MASK	(0xf << VCO_INTERPOL_SHIFT)
39 #define  VCO_REG1V45_SEL_SHIFT	6
40 #define  VCO_REG1V45_SEL(x)	((x) << VCO_REG1V45_SEL_SHIFT)
41 #define  VCO_REG1V45_SEL_1V40	VCO_REG1V45_SEL(0)
42 #define  VCO_REG1V45_SEL_1V45	VCO_REG1V45_SEL(1)
43 #define  VCO_REG1V45_SEL_1V50	VCO_REG1V45_SEL(2)
44 #define  VCO_REG1V45_SEL_1V55	VCO_REG1V45_SEL(3)
45 #define  VCO_REG1V45_SEL_MASK	VCO_REG1V45_SEL(3)
46 #define  VCO_REG0V9_SEL_SHIFT	8
47 #define  VCO_REG0V9_SEL_MASK	(0xf << VCO_REG0V9_SEL_SHIFT)
48 #define  VCO_VTHCAL_SHIFT	12
49 #define  VCO_VTHCAL(x)		((x) << VCO_VTHCAL_SHIFT)
50 #define  VCO_VTHCAL_0V90	VCO_VTHCAL(0)
51 #define  VCO_VTHCAL_0V95	VCO_VTHCAL(1)
52 #define  VCO_VTHCAL_1V00	VCO_VTHCAL(2)
53 #define  VCO_VTHCAL_1V05	VCO_VTHCAL(3)
54 #define  VCO_VTHCAL_MASK	VCO_VTHCAL(3)
55 #define  VCO_KVCOEXT_SHIFT	14
56 #define  VCO_KVCOEXT_MASK	(0x3 << VCO_KVCOEXT_SHIFT)
57 #define  VCO_KVCOEXT_ENABLE	BIT(17)
58 #define  VCO_V2IEXT_SHIFT	18
59 #define  VCO_V2IEXT_MASK	(0xf << VCO_V2IEXT_SHIFT)
60 #define  VCO_V2IEXT_ENABLE	BIT(22)
61 #define  VCO_SPEED_SHIFT	23
62 #define  VCO_SPEED(x)		((x) << VCO_SPEED_SHIFT)
63 #define  VCO_SPEED_1G08_1G21	VCO_SPEED(0)
64 #define  VCO_SPEED_1G21_1G40	VCO_SPEED(1)
65 #define  VCO_SPEED_1G40_1G61	VCO_SPEED(2)
66 #define  VCO_SPEED_1G61_1G86	VCO_SPEED(3)
67 #define  VCO_SPEED_1G86_2G00	VCO_SPEED(4)
68 #define  VCO_SPEED_2G00_2G22	VCO_SPEED(5)
69 #define  VCO_SPEED_2G22		VCO_SPEED(6)
70 #define  VCO_SPEED_MASK		VCO_SPEED(0x7)
71 #define  VCO_CLKDET_ENABLE	BIT(26)
72 #define VCO_CTRL1		AVPLL_CTRL(1)
73 #define  VCO_REFDIV_SHIFT	0
74 #define  VCO_REFDIV(x)		((x) << VCO_REFDIV_SHIFT)
75 #define  VCO_REFDIV_1		VCO_REFDIV(0)
76 #define  VCO_REFDIV_2		VCO_REFDIV(1)
77 #define  VCO_REFDIV_4		VCO_REFDIV(2)
78 #define  VCO_REFDIV_3		VCO_REFDIV(3)
79 #define  VCO_REFDIV_MASK	VCO_REFDIV(0x3f)
80 #define  VCO_FBDIV_SHIFT	6
81 #define  VCO_FBDIV(x)		((x) << VCO_FBDIV_SHIFT)
82 #define  VCO_FBDIV_MASK		VCO_FBDIV(0xff)
83 #define  VCO_ICP_SHIFT		14
84 /* PLL Charge Pump Current = 10uA * (x + 1) */
85 #define  VCO_ICP(x)		((x) << VCO_ICP_SHIFT)
86 #define  VCO_ICP_MASK		VCO_ICP(0xf)
87 #define  VCO_LOAD_CAP		BIT(18)
88 #define  VCO_CALIBRATION_START	BIT(19)
89 #define VCO_FREQOFFSETn(x)	AVPLL_CTRL(3 + (x))
90 #define  VCO_FREQOFFSET_MASK	0x7ffff
91 #define VCO_CTRL10		AVPLL_CTRL(10)
92 #define  VCO_POWERUP_CH1	BIT(20)
93 #define VCO_CTRL11		AVPLL_CTRL(11)
94 #define VCO_CTRL12		AVPLL_CTRL(12)
95 #define VCO_CTRL13		AVPLL_CTRL(13)
96 #define VCO_CTRL14		AVPLL_CTRL(14)
97 #define VCO_CTRL15		AVPLL_CTRL(15)
98 #define VCO_SYNC1n(x)		AVPLL_CTRL(15 + (x))
99 #define  VCO_SYNC1_MASK		0x1ffff
100 #define VCO_SYNC2n(x)		AVPLL_CTRL(23 + (x))
101 #define  VCO_SYNC2_MASK		0x1ffff
102 #define VCO_CTRL30		AVPLL_CTRL(30)
103 #define  VCO_DPLL_CH1_ENABLE	BIT(17)
104 
105 struct berlin2_avpll_vco {
106 	struct clk_hw hw;
107 	void __iomem *base;
108 	u8 flags;
109 };
110 
111 #define to_avpll_vco(hw) container_of(hw, struct berlin2_avpll_vco, hw)
112 
113 static int berlin2_avpll_vco_is_enabled(struct clk_hw *hw)
114 {
115 	struct berlin2_avpll_vco *vco = to_avpll_vco(hw);
116 	u32 reg;
117 
118 	reg = readl_relaxed(vco->base + VCO_CTRL0);
119 	if (vco->flags & BERLIN2_AVPLL_BIT_QUIRK)
120 		reg >>= 4;
121 
122 	return !!(reg & VCO_POWERUP);
123 }
124 
125 static int berlin2_avpll_vco_enable(struct clk_hw *hw)
126 {
127 	struct berlin2_avpll_vco *vco = to_avpll_vco(hw);
128 	u32 reg;
129 
130 	reg = readl_relaxed(vco->base + VCO_CTRL0);
131 	if (vco->flags & BERLIN2_AVPLL_BIT_QUIRK)
132 		reg |= VCO_POWERUP << 4;
133 	else
134 		reg |= VCO_POWERUP;
135 	writel_relaxed(reg, vco->base + VCO_CTRL0);
136 
137 	return 0;
138 }
139 
140 static void berlin2_avpll_vco_disable(struct clk_hw *hw)
141 {
142 	struct berlin2_avpll_vco *vco = to_avpll_vco(hw);
143 	u32 reg;
144 
145 	reg = readl_relaxed(vco->base + VCO_CTRL0);
146 	if (vco->flags & BERLIN2_AVPLL_BIT_QUIRK)
147 		reg &= ~(VCO_POWERUP << 4);
148 	else
149 		reg &= ~VCO_POWERUP;
150 	writel_relaxed(reg, vco->base + VCO_CTRL0);
151 }
152 
153 static u8 vco_refdiv[] = { 1, 2, 4, 3 };
154 
155 static unsigned long
156 berlin2_avpll_vco_recalc_rate(struct clk_hw *hw, unsigned long parent_rate)
157 {
158 	struct berlin2_avpll_vco *vco = to_avpll_vco(hw);
159 	u32 reg, refdiv, fbdiv;
160 	u64 freq = parent_rate;
161 
162 	/* AVPLL VCO frequency: Fvco = (Fref / refdiv) * fbdiv */
163 	reg = readl_relaxed(vco->base + VCO_CTRL1);
164 	refdiv = (reg & VCO_REFDIV_MASK) >> VCO_REFDIV_SHIFT;
165 	refdiv = vco_refdiv[refdiv];
166 	fbdiv = (reg & VCO_FBDIV_MASK) >> VCO_FBDIV_SHIFT;
167 	freq *= fbdiv;
168 	do_div(freq, refdiv);
169 
170 	return (unsigned long)freq;
171 }
172 
173 static const struct clk_ops berlin2_avpll_vco_ops = {
174 	.is_enabled	= berlin2_avpll_vco_is_enabled,
175 	.enable		= berlin2_avpll_vco_enable,
176 	.disable	= berlin2_avpll_vco_disable,
177 	.recalc_rate	= berlin2_avpll_vco_recalc_rate,
178 };
179 
180 int __init berlin2_avpll_vco_register(void __iomem *base,
181 			       const char *name, const char *parent_name,
182 			       u8 vco_flags, unsigned long flags)
183 {
184 	struct berlin2_avpll_vco *vco;
185 	struct clk_init_data init;
186 
187 	vco = kzalloc(sizeof(*vco), GFP_KERNEL);
188 	if (!vco)
189 		return -ENOMEM;
190 
191 	vco->base = base;
192 	vco->flags = vco_flags;
193 	vco->hw.init = &init;
194 	init.name = name;
195 	init.ops = &berlin2_avpll_vco_ops;
196 	init.parent_names = &parent_name;
197 	init.num_parents = 1;
198 	init.flags = flags;
199 
200 	return clk_hw_register(NULL, &vco->hw);
201 }
202 
203 struct berlin2_avpll_channel {
204 	struct clk_hw hw;
205 	void __iomem *base;
206 	u8 flags;
207 	u8 index;
208 };
209 
210 #define to_avpll_channel(hw) container_of(hw, struct berlin2_avpll_channel, hw)
211 
212 static int berlin2_avpll_channel_is_enabled(struct clk_hw *hw)
213 {
214 	struct berlin2_avpll_channel *ch = to_avpll_channel(hw);
215 	u32 reg;
216 
217 	if (ch->index == 7)
218 		return 1;
219 
220 	reg = readl_relaxed(ch->base + VCO_CTRL10);
221 	reg &= VCO_POWERUP_CH1 << ch->index;
222 
223 	return !!reg;
224 }
225 
226 static int berlin2_avpll_channel_enable(struct clk_hw *hw)
227 {
228 	struct berlin2_avpll_channel *ch = to_avpll_channel(hw);
229 	u32 reg;
230 
231 	reg = readl_relaxed(ch->base + VCO_CTRL10);
232 	reg |= VCO_POWERUP_CH1 << ch->index;
233 	writel_relaxed(reg, ch->base + VCO_CTRL10);
234 
235 	return 0;
236 }
237 
238 static void berlin2_avpll_channel_disable(struct clk_hw *hw)
239 {
240 	struct berlin2_avpll_channel *ch = to_avpll_channel(hw);
241 	u32 reg;
242 
243 	reg = readl_relaxed(ch->base + VCO_CTRL10);
244 	reg &= ~(VCO_POWERUP_CH1 << ch->index);
245 	writel_relaxed(reg, ch->base + VCO_CTRL10);
246 }
247 
248 static const u8 div_hdmi[] = { 1, 2, 4, 6 };
249 static const u8 div_av1[] = { 1, 2, 5, 5 };
250 
251 static unsigned long
252 berlin2_avpll_channel_recalc_rate(struct clk_hw *hw, unsigned long parent_rate)
253 {
254 	struct berlin2_avpll_channel *ch = to_avpll_channel(hw);
255 	u32 reg, div_av2, div_av3, divider = 1;
256 	u64 freq = parent_rate;
257 
258 	reg = readl_relaxed(ch->base + VCO_CTRL30);
259 	if ((reg & (VCO_DPLL_CH1_ENABLE << ch->index)) == 0)
260 		goto skip_div;
261 
262 	/*
263 	 * Fch = (Fref * sync2) /
264 	 *    (sync1 * div_hdmi * div_av1 * div_av2 * div_av3)
265 	 */
266 
267 	reg = readl_relaxed(ch->base + VCO_SYNC1n(ch->index));
268 	/* BG2/BG2CDs SYNC1 reg on AVPLL_B channel 1 is shifted by 4 */
269 	if (ch->flags & BERLIN2_AVPLL_BIT_QUIRK && ch->index == 0)
270 		reg >>= 4;
271 	divider = reg & VCO_SYNC1_MASK;
272 
273 	reg = readl_relaxed(ch->base + VCO_SYNC2n(ch->index));
274 	freq *= reg & VCO_SYNC2_MASK;
275 
276 	/* Channel 8 has no dividers */
277 	if (ch->index == 7)
278 		goto skip_div;
279 
280 	/*
281 	 * HDMI divider start at VCO_CTRL11, bit 7; MSB is enable, lower 2 bit
282 	 * determine divider.
283 	 */
284 	reg = readl_relaxed(ch->base + VCO_CTRL11) >> 7;
285 	reg = (reg >> (ch->index * 3));
286 	if (reg & BIT(2))
287 		divider *= div_hdmi[reg & 0x3];
288 
289 	/*
290 	 * AV1 divider start at VCO_CTRL11, bit 28; MSB is enable, lower 2 bit
291 	 * determine divider.
292 	 */
293 	if (ch->index == 0) {
294 		reg = readl_relaxed(ch->base + VCO_CTRL11);
295 		reg >>= 28;
296 	} else {
297 		reg = readl_relaxed(ch->base + VCO_CTRL12);
298 		reg >>= (ch->index-1) * 3;
299 	}
300 	if (reg & BIT(2))
301 		divider *= div_av1[reg & 0x3];
302 
303 	/*
304 	 * AV2 divider start at VCO_CTRL12, bit 18; each 7 bits wide,
305 	 * zero is not a valid value.
306 	 */
307 	if (ch->index < 2) {
308 		reg = readl_relaxed(ch->base + VCO_CTRL12);
309 		reg >>= 18 + (ch->index * 7);
310 	} else if (ch->index < 7) {
311 		reg = readl_relaxed(ch->base + VCO_CTRL13);
312 		reg >>= (ch->index - 2) * 7;
313 	} else {
314 		reg = readl_relaxed(ch->base + VCO_CTRL14);
315 	}
316 	div_av2 = reg & 0x7f;
317 	if (div_av2)
318 		divider *= div_av2;
319 
320 	/*
321 	 * AV3 divider start at VCO_CTRL14, bit 7; each 4 bits wide.
322 	 * AV2/AV3 form a fractional divider, where only specfic values for AV3
323 	 * are allowed. AV3 != 0 divides by AV2/2, AV3=0 is bypass.
324 	 */
325 	if (ch->index < 6) {
326 		reg = readl_relaxed(ch->base + VCO_CTRL14);
327 		reg >>= 7 + (ch->index * 4);
328 	} else {
329 		reg = readl_relaxed(ch->base + VCO_CTRL15);
330 	}
331 	div_av3 = reg & 0xf;
332 	if (div_av2 && div_av3)
333 		freq *= 2;
334 
335 skip_div:
336 	do_div(freq, divider);
337 	return (unsigned long)freq;
338 }
339 
340 static const struct clk_ops berlin2_avpll_channel_ops = {
341 	.is_enabled	= berlin2_avpll_channel_is_enabled,
342 	.enable		= berlin2_avpll_channel_enable,
343 	.disable	= berlin2_avpll_channel_disable,
344 	.recalc_rate	= berlin2_avpll_channel_recalc_rate,
345 };
346 
347 /*
348  * Another nice quirk:
349  * On some production SoCs, AVPLL channels are scrambled with respect
350  * to the channel numbering in the registers but still referenced by
351  * their original channel numbers. We deal with it by having a flag
352  * and a translation table for the index.
353  */
354 static const u8 quirk_index[] __initconst = { 0, 6, 5, 4, 3, 2, 1, 7 };
355 
356 int __init berlin2_avpll_channel_register(void __iomem *base,
357 			   const char *name, u8 index, const char *parent_name,
358 			   u8 ch_flags, unsigned long flags)
359 {
360 	struct berlin2_avpll_channel *ch;
361 	struct clk_init_data init;
362 
363 	ch = kzalloc(sizeof(*ch), GFP_KERNEL);
364 	if (!ch)
365 		return -ENOMEM;
366 
367 	ch->base = base;
368 	if (ch_flags & BERLIN2_AVPLL_SCRAMBLE_QUIRK)
369 		ch->index = quirk_index[index];
370 	else
371 		ch->index = index;
372 
373 	ch->flags = ch_flags;
374 	ch->hw.init = &init;
375 	init.name = name;
376 	init.ops = &berlin2_avpll_channel_ops;
377 	init.parent_names = &parent_name;
378 	init.num_parents = 1;
379 	init.flags = flags;
380 
381 	return clk_hw_register(NULL, &ch->hw);
382 }
383