xref: /linux/drivers/clk/clk.c (revision 6c8c1406)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2010-2011 Canonical Ltd <jeremy.kerr@canonical.com>
4  * Copyright (C) 2011-2012 Linaro Ltd <mturquette@linaro.org>
5  *
6  * Standard functionality for the common clock API.  See Documentation/driver-api/clk.rst
7  */
8 
9 #include <linux/clk.h>
10 #include <linux/clk-provider.h>
11 #include <linux/clk/clk-conf.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/spinlock.h>
15 #include <linux/err.h>
16 #include <linux/list.h>
17 #include <linux/slab.h>
18 #include <linux/of.h>
19 #include <linux/device.h>
20 #include <linux/init.h>
21 #include <linux/pm_runtime.h>
22 #include <linux/sched.h>
23 #include <linux/clkdev.h>
24 
25 #include "clk.h"
26 
27 static DEFINE_SPINLOCK(enable_lock);
28 static DEFINE_MUTEX(prepare_lock);
29 
30 static struct task_struct *prepare_owner;
31 static struct task_struct *enable_owner;
32 
33 static int prepare_refcnt;
34 static int enable_refcnt;
35 
36 static HLIST_HEAD(clk_root_list);
37 static HLIST_HEAD(clk_orphan_list);
38 static LIST_HEAD(clk_notifier_list);
39 
40 static const struct hlist_head *all_lists[] = {
41 	&clk_root_list,
42 	&clk_orphan_list,
43 	NULL,
44 };
45 
46 /***    private data structures    ***/
47 
48 struct clk_parent_map {
49 	const struct clk_hw	*hw;
50 	struct clk_core		*core;
51 	const char		*fw_name;
52 	const char		*name;
53 	int			index;
54 };
55 
56 struct clk_core {
57 	const char		*name;
58 	const struct clk_ops	*ops;
59 	struct clk_hw		*hw;
60 	struct module		*owner;
61 	struct device		*dev;
62 	struct device_node	*of_node;
63 	struct clk_core		*parent;
64 	struct clk_parent_map	*parents;
65 	u8			num_parents;
66 	u8			new_parent_index;
67 	unsigned long		rate;
68 	unsigned long		req_rate;
69 	unsigned long		new_rate;
70 	struct clk_core		*new_parent;
71 	struct clk_core		*new_child;
72 	unsigned long		flags;
73 	bool			orphan;
74 	bool			rpm_enabled;
75 	unsigned int		enable_count;
76 	unsigned int		prepare_count;
77 	unsigned int		protect_count;
78 	unsigned long		min_rate;
79 	unsigned long		max_rate;
80 	unsigned long		accuracy;
81 	int			phase;
82 	struct clk_duty		duty;
83 	struct hlist_head	children;
84 	struct hlist_node	child_node;
85 	struct hlist_head	clks;
86 	unsigned int		notifier_count;
87 #ifdef CONFIG_DEBUG_FS
88 	struct dentry		*dentry;
89 	struct hlist_node	debug_node;
90 #endif
91 	struct kref		ref;
92 };
93 
94 #define CREATE_TRACE_POINTS
95 #include <trace/events/clk.h>
96 
97 struct clk {
98 	struct clk_core	*core;
99 	struct device *dev;
100 	const char *dev_id;
101 	const char *con_id;
102 	unsigned long min_rate;
103 	unsigned long max_rate;
104 	unsigned int exclusive_count;
105 	struct hlist_node clks_node;
106 };
107 
108 /***           runtime pm          ***/
109 static int clk_pm_runtime_get(struct clk_core *core)
110 {
111 	if (!core->rpm_enabled)
112 		return 0;
113 
114 	return pm_runtime_resume_and_get(core->dev);
115 }
116 
117 static void clk_pm_runtime_put(struct clk_core *core)
118 {
119 	if (!core->rpm_enabled)
120 		return;
121 
122 	pm_runtime_put_sync(core->dev);
123 }
124 
125 /***           locking             ***/
126 static void clk_prepare_lock(void)
127 {
128 	if (!mutex_trylock(&prepare_lock)) {
129 		if (prepare_owner == current) {
130 			prepare_refcnt++;
131 			return;
132 		}
133 		mutex_lock(&prepare_lock);
134 	}
135 	WARN_ON_ONCE(prepare_owner != NULL);
136 	WARN_ON_ONCE(prepare_refcnt != 0);
137 	prepare_owner = current;
138 	prepare_refcnt = 1;
139 }
140 
141 static void clk_prepare_unlock(void)
142 {
143 	WARN_ON_ONCE(prepare_owner != current);
144 	WARN_ON_ONCE(prepare_refcnt == 0);
145 
146 	if (--prepare_refcnt)
147 		return;
148 	prepare_owner = NULL;
149 	mutex_unlock(&prepare_lock);
150 }
151 
152 static unsigned long clk_enable_lock(void)
153 	__acquires(enable_lock)
154 {
155 	unsigned long flags;
156 
157 	/*
158 	 * On UP systems, spin_trylock_irqsave() always returns true, even if
159 	 * we already hold the lock. So, in that case, we rely only on
160 	 * reference counting.
161 	 */
162 	if (!IS_ENABLED(CONFIG_SMP) ||
163 	    !spin_trylock_irqsave(&enable_lock, flags)) {
164 		if (enable_owner == current) {
165 			enable_refcnt++;
166 			__acquire(enable_lock);
167 			if (!IS_ENABLED(CONFIG_SMP))
168 				local_save_flags(flags);
169 			return flags;
170 		}
171 		spin_lock_irqsave(&enable_lock, flags);
172 	}
173 	WARN_ON_ONCE(enable_owner != NULL);
174 	WARN_ON_ONCE(enable_refcnt != 0);
175 	enable_owner = current;
176 	enable_refcnt = 1;
177 	return flags;
178 }
179 
180 static void clk_enable_unlock(unsigned long flags)
181 	__releases(enable_lock)
182 {
183 	WARN_ON_ONCE(enable_owner != current);
184 	WARN_ON_ONCE(enable_refcnt == 0);
185 
186 	if (--enable_refcnt) {
187 		__release(enable_lock);
188 		return;
189 	}
190 	enable_owner = NULL;
191 	spin_unlock_irqrestore(&enable_lock, flags);
192 }
193 
194 static bool clk_core_rate_is_protected(struct clk_core *core)
195 {
196 	return core->protect_count;
197 }
198 
199 static bool clk_core_is_prepared(struct clk_core *core)
200 {
201 	bool ret = false;
202 
203 	/*
204 	 * .is_prepared is optional for clocks that can prepare
205 	 * fall back to software usage counter if it is missing
206 	 */
207 	if (!core->ops->is_prepared)
208 		return core->prepare_count;
209 
210 	if (!clk_pm_runtime_get(core)) {
211 		ret = core->ops->is_prepared(core->hw);
212 		clk_pm_runtime_put(core);
213 	}
214 
215 	return ret;
216 }
217 
218 static bool clk_core_is_enabled(struct clk_core *core)
219 {
220 	bool ret = false;
221 
222 	/*
223 	 * .is_enabled is only mandatory for clocks that gate
224 	 * fall back to software usage counter if .is_enabled is missing
225 	 */
226 	if (!core->ops->is_enabled)
227 		return core->enable_count;
228 
229 	/*
230 	 * Check if clock controller's device is runtime active before
231 	 * calling .is_enabled callback. If not, assume that clock is
232 	 * disabled, because we might be called from atomic context, from
233 	 * which pm_runtime_get() is not allowed.
234 	 * This function is called mainly from clk_disable_unused_subtree,
235 	 * which ensures proper runtime pm activation of controller before
236 	 * taking enable spinlock, but the below check is needed if one tries
237 	 * to call it from other places.
238 	 */
239 	if (core->rpm_enabled) {
240 		pm_runtime_get_noresume(core->dev);
241 		if (!pm_runtime_active(core->dev)) {
242 			ret = false;
243 			goto done;
244 		}
245 	}
246 
247 	ret = core->ops->is_enabled(core->hw);
248 done:
249 	if (core->rpm_enabled)
250 		pm_runtime_put(core->dev);
251 
252 	return ret;
253 }
254 
255 /***    helper functions   ***/
256 
257 const char *__clk_get_name(const struct clk *clk)
258 {
259 	return !clk ? NULL : clk->core->name;
260 }
261 EXPORT_SYMBOL_GPL(__clk_get_name);
262 
263 const char *clk_hw_get_name(const struct clk_hw *hw)
264 {
265 	return hw->core->name;
266 }
267 EXPORT_SYMBOL_GPL(clk_hw_get_name);
268 
269 struct clk_hw *__clk_get_hw(struct clk *clk)
270 {
271 	return !clk ? NULL : clk->core->hw;
272 }
273 EXPORT_SYMBOL_GPL(__clk_get_hw);
274 
275 unsigned int clk_hw_get_num_parents(const struct clk_hw *hw)
276 {
277 	return hw->core->num_parents;
278 }
279 EXPORT_SYMBOL_GPL(clk_hw_get_num_parents);
280 
281 struct clk_hw *clk_hw_get_parent(const struct clk_hw *hw)
282 {
283 	return hw->core->parent ? hw->core->parent->hw : NULL;
284 }
285 EXPORT_SYMBOL_GPL(clk_hw_get_parent);
286 
287 static struct clk_core *__clk_lookup_subtree(const char *name,
288 					     struct clk_core *core)
289 {
290 	struct clk_core *child;
291 	struct clk_core *ret;
292 
293 	if (!strcmp(core->name, name))
294 		return core;
295 
296 	hlist_for_each_entry(child, &core->children, child_node) {
297 		ret = __clk_lookup_subtree(name, child);
298 		if (ret)
299 			return ret;
300 	}
301 
302 	return NULL;
303 }
304 
305 static struct clk_core *clk_core_lookup(const char *name)
306 {
307 	struct clk_core *root_clk;
308 	struct clk_core *ret;
309 
310 	if (!name)
311 		return NULL;
312 
313 	/* search the 'proper' clk tree first */
314 	hlist_for_each_entry(root_clk, &clk_root_list, child_node) {
315 		ret = __clk_lookup_subtree(name, root_clk);
316 		if (ret)
317 			return ret;
318 	}
319 
320 	/* if not found, then search the orphan tree */
321 	hlist_for_each_entry(root_clk, &clk_orphan_list, child_node) {
322 		ret = __clk_lookup_subtree(name, root_clk);
323 		if (ret)
324 			return ret;
325 	}
326 
327 	return NULL;
328 }
329 
330 #ifdef CONFIG_OF
331 static int of_parse_clkspec(const struct device_node *np, int index,
332 			    const char *name, struct of_phandle_args *out_args);
333 static struct clk_hw *
334 of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec);
335 #else
336 static inline int of_parse_clkspec(const struct device_node *np, int index,
337 				   const char *name,
338 				   struct of_phandle_args *out_args)
339 {
340 	return -ENOENT;
341 }
342 static inline struct clk_hw *
343 of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec)
344 {
345 	return ERR_PTR(-ENOENT);
346 }
347 #endif
348 
349 /**
350  * clk_core_get - Find the clk_core parent of a clk
351  * @core: clk to find parent of
352  * @p_index: parent index to search for
353  *
354  * This is the preferred method for clk providers to find the parent of a
355  * clk when that parent is external to the clk controller. The parent_names
356  * array is indexed and treated as a local name matching a string in the device
357  * node's 'clock-names' property or as the 'con_id' matching the device's
358  * dev_name() in a clk_lookup. This allows clk providers to use their own
359  * namespace instead of looking for a globally unique parent string.
360  *
361  * For example the following DT snippet would allow a clock registered by the
362  * clock-controller@c001 that has a clk_init_data::parent_data array
363  * with 'xtal' in the 'name' member to find the clock provided by the
364  * clock-controller@f00abcd without needing to get the globally unique name of
365  * the xtal clk.
366  *
367  *      parent: clock-controller@f00abcd {
368  *              reg = <0xf00abcd 0xabcd>;
369  *              #clock-cells = <0>;
370  *      };
371  *
372  *      clock-controller@c001 {
373  *              reg = <0xc001 0xf00d>;
374  *              clocks = <&parent>;
375  *              clock-names = "xtal";
376  *              #clock-cells = <1>;
377  *      };
378  *
379  * Returns: -ENOENT when the provider can't be found or the clk doesn't
380  * exist in the provider or the name can't be found in the DT node or
381  * in a clkdev lookup. NULL when the provider knows about the clk but it
382  * isn't provided on this system.
383  * A valid clk_core pointer when the clk can be found in the provider.
384  */
385 static struct clk_core *clk_core_get(struct clk_core *core, u8 p_index)
386 {
387 	const char *name = core->parents[p_index].fw_name;
388 	int index = core->parents[p_index].index;
389 	struct clk_hw *hw = ERR_PTR(-ENOENT);
390 	struct device *dev = core->dev;
391 	const char *dev_id = dev ? dev_name(dev) : NULL;
392 	struct device_node *np = core->of_node;
393 	struct of_phandle_args clkspec;
394 
395 	if (np && (name || index >= 0) &&
396 	    !of_parse_clkspec(np, index, name, &clkspec)) {
397 		hw = of_clk_get_hw_from_clkspec(&clkspec);
398 		of_node_put(clkspec.np);
399 	} else if (name) {
400 		/*
401 		 * If the DT search above couldn't find the provider fallback to
402 		 * looking up via clkdev based clk_lookups.
403 		 */
404 		hw = clk_find_hw(dev_id, name);
405 	}
406 
407 	if (IS_ERR(hw))
408 		return ERR_CAST(hw);
409 
410 	return hw->core;
411 }
412 
413 static void clk_core_fill_parent_index(struct clk_core *core, u8 index)
414 {
415 	struct clk_parent_map *entry = &core->parents[index];
416 	struct clk_core *parent;
417 
418 	if (entry->hw) {
419 		parent = entry->hw->core;
420 	} else {
421 		parent = clk_core_get(core, index);
422 		if (PTR_ERR(parent) == -ENOENT && entry->name)
423 			parent = clk_core_lookup(entry->name);
424 	}
425 
426 	/*
427 	 * We have a direct reference but it isn't registered yet?
428 	 * Orphan it and let clk_reparent() update the orphan status
429 	 * when the parent is registered.
430 	 */
431 	if (!parent)
432 		parent = ERR_PTR(-EPROBE_DEFER);
433 
434 	/* Only cache it if it's not an error */
435 	if (!IS_ERR(parent))
436 		entry->core = parent;
437 }
438 
439 static struct clk_core *clk_core_get_parent_by_index(struct clk_core *core,
440 							 u8 index)
441 {
442 	if (!core || index >= core->num_parents || !core->parents)
443 		return NULL;
444 
445 	if (!core->parents[index].core)
446 		clk_core_fill_parent_index(core, index);
447 
448 	return core->parents[index].core;
449 }
450 
451 struct clk_hw *
452 clk_hw_get_parent_by_index(const struct clk_hw *hw, unsigned int index)
453 {
454 	struct clk_core *parent;
455 
456 	parent = clk_core_get_parent_by_index(hw->core, index);
457 
458 	return !parent ? NULL : parent->hw;
459 }
460 EXPORT_SYMBOL_GPL(clk_hw_get_parent_by_index);
461 
462 unsigned int __clk_get_enable_count(struct clk *clk)
463 {
464 	return !clk ? 0 : clk->core->enable_count;
465 }
466 
467 static unsigned long clk_core_get_rate_nolock(struct clk_core *core)
468 {
469 	if (!core)
470 		return 0;
471 
472 	if (!core->num_parents || core->parent)
473 		return core->rate;
474 
475 	/*
476 	 * Clk must have a parent because num_parents > 0 but the parent isn't
477 	 * known yet. Best to return 0 as the rate of this clk until we can
478 	 * properly recalc the rate based on the parent's rate.
479 	 */
480 	return 0;
481 }
482 
483 unsigned long clk_hw_get_rate(const struct clk_hw *hw)
484 {
485 	return clk_core_get_rate_nolock(hw->core);
486 }
487 EXPORT_SYMBOL_GPL(clk_hw_get_rate);
488 
489 static unsigned long clk_core_get_accuracy_no_lock(struct clk_core *core)
490 {
491 	if (!core)
492 		return 0;
493 
494 	return core->accuracy;
495 }
496 
497 unsigned long clk_hw_get_flags(const struct clk_hw *hw)
498 {
499 	return hw->core->flags;
500 }
501 EXPORT_SYMBOL_GPL(clk_hw_get_flags);
502 
503 bool clk_hw_is_prepared(const struct clk_hw *hw)
504 {
505 	return clk_core_is_prepared(hw->core);
506 }
507 EXPORT_SYMBOL_GPL(clk_hw_is_prepared);
508 
509 bool clk_hw_rate_is_protected(const struct clk_hw *hw)
510 {
511 	return clk_core_rate_is_protected(hw->core);
512 }
513 EXPORT_SYMBOL_GPL(clk_hw_rate_is_protected);
514 
515 bool clk_hw_is_enabled(const struct clk_hw *hw)
516 {
517 	return clk_core_is_enabled(hw->core);
518 }
519 EXPORT_SYMBOL_GPL(clk_hw_is_enabled);
520 
521 bool __clk_is_enabled(struct clk *clk)
522 {
523 	if (!clk)
524 		return false;
525 
526 	return clk_core_is_enabled(clk->core);
527 }
528 EXPORT_SYMBOL_GPL(__clk_is_enabled);
529 
530 static bool mux_is_better_rate(unsigned long rate, unsigned long now,
531 			   unsigned long best, unsigned long flags)
532 {
533 	if (flags & CLK_MUX_ROUND_CLOSEST)
534 		return abs(now - rate) < abs(best - rate);
535 
536 	return now <= rate && now > best;
537 }
538 
539 static void clk_core_init_rate_req(struct clk_core * const core,
540 				   struct clk_rate_request *req,
541 				   unsigned long rate);
542 
543 static int clk_core_round_rate_nolock(struct clk_core *core,
544 				      struct clk_rate_request *req);
545 
546 static bool clk_core_has_parent(struct clk_core *core, const struct clk_core *parent)
547 {
548 	struct clk_core *tmp;
549 	unsigned int i;
550 
551 	/* Optimize for the case where the parent is already the parent. */
552 	if (core->parent == parent)
553 		return true;
554 
555 	for (i = 0; i < core->num_parents; i++) {
556 		tmp = clk_core_get_parent_by_index(core, i);
557 		if (!tmp)
558 			continue;
559 
560 		if (tmp == parent)
561 			return true;
562 	}
563 
564 	return false;
565 }
566 
567 static void
568 clk_core_forward_rate_req(struct clk_core *core,
569 			  const struct clk_rate_request *old_req,
570 			  struct clk_core *parent,
571 			  struct clk_rate_request *req,
572 			  unsigned long parent_rate)
573 {
574 	if (WARN_ON(!clk_core_has_parent(core, parent)))
575 		return;
576 
577 	clk_core_init_rate_req(parent, req, parent_rate);
578 
579 	if (req->min_rate < old_req->min_rate)
580 		req->min_rate = old_req->min_rate;
581 
582 	if (req->max_rate > old_req->max_rate)
583 		req->max_rate = old_req->max_rate;
584 }
585 
586 int clk_mux_determine_rate_flags(struct clk_hw *hw,
587 				 struct clk_rate_request *req,
588 				 unsigned long flags)
589 {
590 	struct clk_core *core = hw->core, *parent, *best_parent = NULL;
591 	int i, num_parents, ret;
592 	unsigned long best = 0;
593 
594 	/* if NO_REPARENT flag set, pass through to current parent */
595 	if (core->flags & CLK_SET_RATE_NO_REPARENT) {
596 		parent = core->parent;
597 		if (core->flags & CLK_SET_RATE_PARENT) {
598 			struct clk_rate_request parent_req;
599 
600 			if (!parent) {
601 				req->rate = 0;
602 				return 0;
603 			}
604 
605 			clk_core_forward_rate_req(core, req, parent, &parent_req, req->rate);
606 			ret = clk_core_round_rate_nolock(parent, &parent_req);
607 			if (ret)
608 				return ret;
609 
610 			best = parent_req.rate;
611 		} else if (parent) {
612 			best = clk_core_get_rate_nolock(parent);
613 		} else {
614 			best = clk_core_get_rate_nolock(core);
615 		}
616 
617 		goto out;
618 	}
619 
620 	/* find the parent that can provide the fastest rate <= rate */
621 	num_parents = core->num_parents;
622 	for (i = 0; i < num_parents; i++) {
623 		unsigned long parent_rate;
624 
625 		parent = clk_core_get_parent_by_index(core, i);
626 		if (!parent)
627 			continue;
628 
629 		if (core->flags & CLK_SET_RATE_PARENT) {
630 			struct clk_rate_request parent_req;
631 
632 			clk_core_forward_rate_req(core, req, parent, &parent_req, req->rate);
633 			ret = clk_core_round_rate_nolock(parent, &parent_req);
634 			if (ret)
635 				continue;
636 
637 			parent_rate = parent_req.rate;
638 		} else {
639 			parent_rate = clk_core_get_rate_nolock(parent);
640 		}
641 
642 		if (mux_is_better_rate(req->rate, parent_rate,
643 				       best, flags)) {
644 			best_parent = parent;
645 			best = parent_rate;
646 		}
647 	}
648 
649 	if (!best_parent)
650 		return -EINVAL;
651 
652 out:
653 	if (best_parent)
654 		req->best_parent_hw = best_parent->hw;
655 	req->best_parent_rate = best;
656 	req->rate = best;
657 
658 	return 0;
659 }
660 EXPORT_SYMBOL_GPL(clk_mux_determine_rate_flags);
661 
662 struct clk *__clk_lookup(const char *name)
663 {
664 	struct clk_core *core = clk_core_lookup(name);
665 
666 	return !core ? NULL : core->hw->clk;
667 }
668 
669 static void clk_core_get_boundaries(struct clk_core *core,
670 				    unsigned long *min_rate,
671 				    unsigned long *max_rate)
672 {
673 	struct clk *clk_user;
674 
675 	lockdep_assert_held(&prepare_lock);
676 
677 	*min_rate = core->min_rate;
678 	*max_rate = core->max_rate;
679 
680 	hlist_for_each_entry(clk_user, &core->clks, clks_node)
681 		*min_rate = max(*min_rate, clk_user->min_rate);
682 
683 	hlist_for_each_entry(clk_user, &core->clks, clks_node)
684 		*max_rate = min(*max_rate, clk_user->max_rate);
685 }
686 
687 /*
688  * clk_hw_get_rate_range() - returns the clock rate range for a hw clk
689  * @hw: the hw clk we want to get the range from
690  * @min_rate: pointer to the variable that will hold the minimum
691  * @max_rate: pointer to the variable that will hold the maximum
692  *
693  * Fills the @min_rate and @max_rate variables with the minimum and
694  * maximum that clock can reach.
695  */
696 void clk_hw_get_rate_range(struct clk_hw *hw, unsigned long *min_rate,
697 			   unsigned long *max_rate)
698 {
699 	clk_core_get_boundaries(hw->core, min_rate, max_rate);
700 }
701 EXPORT_SYMBOL_GPL(clk_hw_get_rate_range);
702 
703 static bool clk_core_check_boundaries(struct clk_core *core,
704 				      unsigned long min_rate,
705 				      unsigned long max_rate)
706 {
707 	struct clk *user;
708 
709 	lockdep_assert_held(&prepare_lock);
710 
711 	if (min_rate > core->max_rate || max_rate < core->min_rate)
712 		return false;
713 
714 	hlist_for_each_entry(user, &core->clks, clks_node)
715 		if (min_rate > user->max_rate || max_rate < user->min_rate)
716 			return false;
717 
718 	return true;
719 }
720 
721 void clk_hw_set_rate_range(struct clk_hw *hw, unsigned long min_rate,
722 			   unsigned long max_rate)
723 {
724 	hw->core->min_rate = min_rate;
725 	hw->core->max_rate = max_rate;
726 }
727 EXPORT_SYMBOL_GPL(clk_hw_set_rate_range);
728 
729 /*
730  * __clk_mux_determine_rate - clk_ops::determine_rate implementation for a mux type clk
731  * @hw: mux type clk to determine rate on
732  * @req: rate request, also used to return preferred parent and frequencies
733  *
734  * Helper for finding best parent to provide a given frequency. This can be used
735  * directly as a determine_rate callback (e.g. for a mux), or from a more
736  * complex clock that may combine a mux with other operations.
737  *
738  * Returns: 0 on success, -EERROR value on error
739  */
740 int __clk_mux_determine_rate(struct clk_hw *hw,
741 			     struct clk_rate_request *req)
742 {
743 	return clk_mux_determine_rate_flags(hw, req, 0);
744 }
745 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate);
746 
747 int __clk_mux_determine_rate_closest(struct clk_hw *hw,
748 				     struct clk_rate_request *req)
749 {
750 	return clk_mux_determine_rate_flags(hw, req, CLK_MUX_ROUND_CLOSEST);
751 }
752 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate_closest);
753 
754 /***        clk api        ***/
755 
756 static void clk_core_rate_unprotect(struct clk_core *core)
757 {
758 	lockdep_assert_held(&prepare_lock);
759 
760 	if (!core)
761 		return;
762 
763 	if (WARN(core->protect_count == 0,
764 	    "%s already unprotected\n", core->name))
765 		return;
766 
767 	if (--core->protect_count > 0)
768 		return;
769 
770 	clk_core_rate_unprotect(core->parent);
771 }
772 
773 static int clk_core_rate_nuke_protect(struct clk_core *core)
774 {
775 	int ret;
776 
777 	lockdep_assert_held(&prepare_lock);
778 
779 	if (!core)
780 		return -EINVAL;
781 
782 	if (core->protect_count == 0)
783 		return 0;
784 
785 	ret = core->protect_count;
786 	core->protect_count = 1;
787 	clk_core_rate_unprotect(core);
788 
789 	return ret;
790 }
791 
792 /**
793  * clk_rate_exclusive_put - release exclusivity over clock rate control
794  * @clk: the clk over which the exclusivity is released
795  *
796  * clk_rate_exclusive_put() completes a critical section during which a clock
797  * consumer cannot tolerate any other consumer making any operation on the
798  * clock which could result in a rate change or rate glitch. Exclusive clocks
799  * cannot have their rate changed, either directly or indirectly due to changes
800  * further up the parent chain of clocks. As a result, clocks up parent chain
801  * also get under exclusive control of the calling consumer.
802  *
803  * If exlusivity is claimed more than once on clock, even by the same consumer,
804  * the rate effectively gets locked as exclusivity can't be preempted.
805  *
806  * Calls to clk_rate_exclusive_put() must be balanced with calls to
807  * clk_rate_exclusive_get(). Calls to this function may sleep, and do not return
808  * error status.
809  */
810 void clk_rate_exclusive_put(struct clk *clk)
811 {
812 	if (!clk)
813 		return;
814 
815 	clk_prepare_lock();
816 
817 	/*
818 	 * if there is something wrong with this consumer protect count, stop
819 	 * here before messing with the provider
820 	 */
821 	if (WARN_ON(clk->exclusive_count <= 0))
822 		goto out;
823 
824 	clk_core_rate_unprotect(clk->core);
825 	clk->exclusive_count--;
826 out:
827 	clk_prepare_unlock();
828 }
829 EXPORT_SYMBOL_GPL(clk_rate_exclusive_put);
830 
831 static void clk_core_rate_protect(struct clk_core *core)
832 {
833 	lockdep_assert_held(&prepare_lock);
834 
835 	if (!core)
836 		return;
837 
838 	if (core->protect_count == 0)
839 		clk_core_rate_protect(core->parent);
840 
841 	core->protect_count++;
842 }
843 
844 static void clk_core_rate_restore_protect(struct clk_core *core, int count)
845 {
846 	lockdep_assert_held(&prepare_lock);
847 
848 	if (!core)
849 		return;
850 
851 	if (count == 0)
852 		return;
853 
854 	clk_core_rate_protect(core);
855 	core->protect_count = count;
856 }
857 
858 /**
859  * clk_rate_exclusive_get - get exclusivity over the clk rate control
860  * @clk: the clk over which the exclusity of rate control is requested
861  *
862  * clk_rate_exclusive_get() begins a critical section during which a clock
863  * consumer cannot tolerate any other consumer making any operation on the
864  * clock which could result in a rate change or rate glitch. Exclusive clocks
865  * cannot have their rate changed, either directly or indirectly due to changes
866  * further up the parent chain of clocks. As a result, clocks up parent chain
867  * also get under exclusive control of the calling consumer.
868  *
869  * If exlusivity is claimed more than once on clock, even by the same consumer,
870  * the rate effectively gets locked as exclusivity can't be preempted.
871  *
872  * Calls to clk_rate_exclusive_get() should be balanced with calls to
873  * clk_rate_exclusive_put(). Calls to this function may sleep.
874  * Returns 0 on success, -EERROR otherwise
875  */
876 int clk_rate_exclusive_get(struct clk *clk)
877 {
878 	if (!clk)
879 		return 0;
880 
881 	clk_prepare_lock();
882 	clk_core_rate_protect(clk->core);
883 	clk->exclusive_count++;
884 	clk_prepare_unlock();
885 
886 	return 0;
887 }
888 EXPORT_SYMBOL_GPL(clk_rate_exclusive_get);
889 
890 static void clk_core_unprepare(struct clk_core *core)
891 {
892 	lockdep_assert_held(&prepare_lock);
893 
894 	if (!core)
895 		return;
896 
897 	if (WARN(core->prepare_count == 0,
898 	    "%s already unprepared\n", core->name))
899 		return;
900 
901 	if (WARN(core->prepare_count == 1 && core->flags & CLK_IS_CRITICAL,
902 	    "Unpreparing critical %s\n", core->name))
903 		return;
904 
905 	if (core->flags & CLK_SET_RATE_GATE)
906 		clk_core_rate_unprotect(core);
907 
908 	if (--core->prepare_count > 0)
909 		return;
910 
911 	WARN(core->enable_count > 0, "Unpreparing enabled %s\n", core->name);
912 
913 	trace_clk_unprepare(core);
914 
915 	if (core->ops->unprepare)
916 		core->ops->unprepare(core->hw);
917 
918 	trace_clk_unprepare_complete(core);
919 	clk_core_unprepare(core->parent);
920 	clk_pm_runtime_put(core);
921 }
922 
923 static void clk_core_unprepare_lock(struct clk_core *core)
924 {
925 	clk_prepare_lock();
926 	clk_core_unprepare(core);
927 	clk_prepare_unlock();
928 }
929 
930 /**
931  * clk_unprepare - undo preparation of a clock source
932  * @clk: the clk being unprepared
933  *
934  * clk_unprepare may sleep, which differentiates it from clk_disable.  In a
935  * simple case, clk_unprepare can be used instead of clk_disable to gate a clk
936  * if the operation may sleep.  One example is a clk which is accessed over
937  * I2c.  In the complex case a clk gate operation may require a fast and a slow
938  * part.  It is this reason that clk_unprepare and clk_disable are not mutually
939  * exclusive.  In fact clk_disable must be called before clk_unprepare.
940  */
941 void clk_unprepare(struct clk *clk)
942 {
943 	if (IS_ERR_OR_NULL(clk))
944 		return;
945 
946 	clk_core_unprepare_lock(clk->core);
947 }
948 EXPORT_SYMBOL_GPL(clk_unprepare);
949 
950 static int clk_core_prepare(struct clk_core *core)
951 {
952 	int ret = 0;
953 
954 	lockdep_assert_held(&prepare_lock);
955 
956 	if (!core)
957 		return 0;
958 
959 	if (core->prepare_count == 0) {
960 		ret = clk_pm_runtime_get(core);
961 		if (ret)
962 			return ret;
963 
964 		ret = clk_core_prepare(core->parent);
965 		if (ret)
966 			goto runtime_put;
967 
968 		trace_clk_prepare(core);
969 
970 		if (core->ops->prepare)
971 			ret = core->ops->prepare(core->hw);
972 
973 		trace_clk_prepare_complete(core);
974 
975 		if (ret)
976 			goto unprepare;
977 	}
978 
979 	core->prepare_count++;
980 
981 	/*
982 	 * CLK_SET_RATE_GATE is a special case of clock protection
983 	 * Instead of a consumer claiming exclusive rate control, it is
984 	 * actually the provider which prevents any consumer from making any
985 	 * operation which could result in a rate change or rate glitch while
986 	 * the clock is prepared.
987 	 */
988 	if (core->flags & CLK_SET_RATE_GATE)
989 		clk_core_rate_protect(core);
990 
991 	return 0;
992 unprepare:
993 	clk_core_unprepare(core->parent);
994 runtime_put:
995 	clk_pm_runtime_put(core);
996 	return ret;
997 }
998 
999 static int clk_core_prepare_lock(struct clk_core *core)
1000 {
1001 	int ret;
1002 
1003 	clk_prepare_lock();
1004 	ret = clk_core_prepare(core);
1005 	clk_prepare_unlock();
1006 
1007 	return ret;
1008 }
1009 
1010 /**
1011  * clk_prepare - prepare a clock source
1012  * @clk: the clk being prepared
1013  *
1014  * clk_prepare may sleep, which differentiates it from clk_enable.  In a simple
1015  * case, clk_prepare can be used instead of clk_enable to ungate a clk if the
1016  * operation may sleep.  One example is a clk which is accessed over I2c.  In
1017  * the complex case a clk ungate operation may require a fast and a slow part.
1018  * It is this reason that clk_prepare and clk_enable are not mutually
1019  * exclusive.  In fact clk_prepare must be called before clk_enable.
1020  * Returns 0 on success, -EERROR otherwise.
1021  */
1022 int clk_prepare(struct clk *clk)
1023 {
1024 	if (!clk)
1025 		return 0;
1026 
1027 	return clk_core_prepare_lock(clk->core);
1028 }
1029 EXPORT_SYMBOL_GPL(clk_prepare);
1030 
1031 static void clk_core_disable(struct clk_core *core)
1032 {
1033 	lockdep_assert_held(&enable_lock);
1034 
1035 	if (!core)
1036 		return;
1037 
1038 	if (WARN(core->enable_count == 0, "%s already disabled\n", core->name))
1039 		return;
1040 
1041 	if (WARN(core->enable_count == 1 && core->flags & CLK_IS_CRITICAL,
1042 	    "Disabling critical %s\n", core->name))
1043 		return;
1044 
1045 	if (--core->enable_count > 0)
1046 		return;
1047 
1048 	trace_clk_disable_rcuidle(core);
1049 
1050 	if (core->ops->disable)
1051 		core->ops->disable(core->hw);
1052 
1053 	trace_clk_disable_complete_rcuidle(core);
1054 
1055 	clk_core_disable(core->parent);
1056 }
1057 
1058 static void clk_core_disable_lock(struct clk_core *core)
1059 {
1060 	unsigned long flags;
1061 
1062 	flags = clk_enable_lock();
1063 	clk_core_disable(core);
1064 	clk_enable_unlock(flags);
1065 }
1066 
1067 /**
1068  * clk_disable - gate a clock
1069  * @clk: the clk being gated
1070  *
1071  * clk_disable must not sleep, which differentiates it from clk_unprepare.  In
1072  * a simple case, clk_disable can be used instead of clk_unprepare to gate a
1073  * clk if the operation is fast and will never sleep.  One example is a
1074  * SoC-internal clk which is controlled via simple register writes.  In the
1075  * complex case a clk gate operation may require a fast and a slow part.  It is
1076  * this reason that clk_unprepare and clk_disable are not mutually exclusive.
1077  * In fact clk_disable must be called before clk_unprepare.
1078  */
1079 void clk_disable(struct clk *clk)
1080 {
1081 	if (IS_ERR_OR_NULL(clk))
1082 		return;
1083 
1084 	clk_core_disable_lock(clk->core);
1085 }
1086 EXPORT_SYMBOL_GPL(clk_disable);
1087 
1088 static int clk_core_enable(struct clk_core *core)
1089 {
1090 	int ret = 0;
1091 
1092 	lockdep_assert_held(&enable_lock);
1093 
1094 	if (!core)
1095 		return 0;
1096 
1097 	if (WARN(core->prepare_count == 0,
1098 	    "Enabling unprepared %s\n", core->name))
1099 		return -ESHUTDOWN;
1100 
1101 	if (core->enable_count == 0) {
1102 		ret = clk_core_enable(core->parent);
1103 
1104 		if (ret)
1105 			return ret;
1106 
1107 		trace_clk_enable_rcuidle(core);
1108 
1109 		if (core->ops->enable)
1110 			ret = core->ops->enable(core->hw);
1111 
1112 		trace_clk_enable_complete_rcuidle(core);
1113 
1114 		if (ret) {
1115 			clk_core_disable(core->parent);
1116 			return ret;
1117 		}
1118 	}
1119 
1120 	core->enable_count++;
1121 	return 0;
1122 }
1123 
1124 static int clk_core_enable_lock(struct clk_core *core)
1125 {
1126 	unsigned long flags;
1127 	int ret;
1128 
1129 	flags = clk_enable_lock();
1130 	ret = clk_core_enable(core);
1131 	clk_enable_unlock(flags);
1132 
1133 	return ret;
1134 }
1135 
1136 /**
1137  * clk_gate_restore_context - restore context for poweroff
1138  * @hw: the clk_hw pointer of clock whose state is to be restored
1139  *
1140  * The clock gate restore context function enables or disables
1141  * the gate clocks based on the enable_count. This is done in cases
1142  * where the clock context is lost and based on the enable_count
1143  * the clock either needs to be enabled/disabled. This
1144  * helps restore the state of gate clocks.
1145  */
1146 void clk_gate_restore_context(struct clk_hw *hw)
1147 {
1148 	struct clk_core *core = hw->core;
1149 
1150 	if (core->enable_count)
1151 		core->ops->enable(hw);
1152 	else
1153 		core->ops->disable(hw);
1154 }
1155 EXPORT_SYMBOL_GPL(clk_gate_restore_context);
1156 
1157 static int clk_core_save_context(struct clk_core *core)
1158 {
1159 	struct clk_core *child;
1160 	int ret = 0;
1161 
1162 	hlist_for_each_entry(child, &core->children, child_node) {
1163 		ret = clk_core_save_context(child);
1164 		if (ret < 0)
1165 			return ret;
1166 	}
1167 
1168 	if (core->ops && core->ops->save_context)
1169 		ret = core->ops->save_context(core->hw);
1170 
1171 	return ret;
1172 }
1173 
1174 static void clk_core_restore_context(struct clk_core *core)
1175 {
1176 	struct clk_core *child;
1177 
1178 	if (core->ops && core->ops->restore_context)
1179 		core->ops->restore_context(core->hw);
1180 
1181 	hlist_for_each_entry(child, &core->children, child_node)
1182 		clk_core_restore_context(child);
1183 }
1184 
1185 /**
1186  * clk_save_context - save clock context for poweroff
1187  *
1188  * Saves the context of the clock register for powerstates in which the
1189  * contents of the registers will be lost. Occurs deep within the suspend
1190  * code.  Returns 0 on success.
1191  */
1192 int clk_save_context(void)
1193 {
1194 	struct clk_core *clk;
1195 	int ret;
1196 
1197 	hlist_for_each_entry(clk, &clk_root_list, child_node) {
1198 		ret = clk_core_save_context(clk);
1199 		if (ret < 0)
1200 			return ret;
1201 	}
1202 
1203 	hlist_for_each_entry(clk, &clk_orphan_list, child_node) {
1204 		ret = clk_core_save_context(clk);
1205 		if (ret < 0)
1206 			return ret;
1207 	}
1208 
1209 	return 0;
1210 }
1211 EXPORT_SYMBOL_GPL(clk_save_context);
1212 
1213 /**
1214  * clk_restore_context - restore clock context after poweroff
1215  *
1216  * Restore the saved clock context upon resume.
1217  *
1218  */
1219 void clk_restore_context(void)
1220 {
1221 	struct clk_core *core;
1222 
1223 	hlist_for_each_entry(core, &clk_root_list, child_node)
1224 		clk_core_restore_context(core);
1225 
1226 	hlist_for_each_entry(core, &clk_orphan_list, child_node)
1227 		clk_core_restore_context(core);
1228 }
1229 EXPORT_SYMBOL_GPL(clk_restore_context);
1230 
1231 /**
1232  * clk_enable - ungate a clock
1233  * @clk: the clk being ungated
1234  *
1235  * clk_enable must not sleep, which differentiates it from clk_prepare.  In a
1236  * simple case, clk_enable can be used instead of clk_prepare to ungate a clk
1237  * if the operation will never sleep.  One example is a SoC-internal clk which
1238  * is controlled via simple register writes.  In the complex case a clk ungate
1239  * operation may require a fast and a slow part.  It is this reason that
1240  * clk_enable and clk_prepare are not mutually exclusive.  In fact clk_prepare
1241  * must be called before clk_enable.  Returns 0 on success, -EERROR
1242  * otherwise.
1243  */
1244 int clk_enable(struct clk *clk)
1245 {
1246 	if (!clk)
1247 		return 0;
1248 
1249 	return clk_core_enable_lock(clk->core);
1250 }
1251 EXPORT_SYMBOL_GPL(clk_enable);
1252 
1253 /**
1254  * clk_is_enabled_when_prepared - indicate if preparing a clock also enables it.
1255  * @clk: clock source
1256  *
1257  * Returns true if clk_prepare() implicitly enables the clock, effectively
1258  * making clk_enable()/clk_disable() no-ops, false otherwise.
1259  *
1260  * This is of interest mainly to power management code where actually
1261  * disabling the clock also requires unpreparing it to have any material
1262  * effect.
1263  *
1264  * Regardless of the value returned here, the caller must always invoke
1265  * clk_enable() or clk_prepare_enable()  and counterparts for usage counts
1266  * to be right.
1267  */
1268 bool clk_is_enabled_when_prepared(struct clk *clk)
1269 {
1270 	return clk && !(clk->core->ops->enable && clk->core->ops->disable);
1271 }
1272 EXPORT_SYMBOL_GPL(clk_is_enabled_when_prepared);
1273 
1274 static int clk_core_prepare_enable(struct clk_core *core)
1275 {
1276 	int ret;
1277 
1278 	ret = clk_core_prepare_lock(core);
1279 	if (ret)
1280 		return ret;
1281 
1282 	ret = clk_core_enable_lock(core);
1283 	if (ret)
1284 		clk_core_unprepare_lock(core);
1285 
1286 	return ret;
1287 }
1288 
1289 static void clk_core_disable_unprepare(struct clk_core *core)
1290 {
1291 	clk_core_disable_lock(core);
1292 	clk_core_unprepare_lock(core);
1293 }
1294 
1295 static void __init clk_unprepare_unused_subtree(struct clk_core *core)
1296 {
1297 	struct clk_core *child;
1298 
1299 	lockdep_assert_held(&prepare_lock);
1300 
1301 	hlist_for_each_entry(child, &core->children, child_node)
1302 		clk_unprepare_unused_subtree(child);
1303 
1304 	if (core->prepare_count)
1305 		return;
1306 
1307 	if (core->flags & CLK_IGNORE_UNUSED)
1308 		return;
1309 
1310 	if (clk_pm_runtime_get(core))
1311 		return;
1312 
1313 	if (clk_core_is_prepared(core)) {
1314 		trace_clk_unprepare(core);
1315 		if (core->ops->unprepare_unused)
1316 			core->ops->unprepare_unused(core->hw);
1317 		else if (core->ops->unprepare)
1318 			core->ops->unprepare(core->hw);
1319 		trace_clk_unprepare_complete(core);
1320 	}
1321 
1322 	clk_pm_runtime_put(core);
1323 }
1324 
1325 static void __init clk_disable_unused_subtree(struct clk_core *core)
1326 {
1327 	struct clk_core *child;
1328 	unsigned long flags;
1329 
1330 	lockdep_assert_held(&prepare_lock);
1331 
1332 	hlist_for_each_entry(child, &core->children, child_node)
1333 		clk_disable_unused_subtree(child);
1334 
1335 	if (core->flags & CLK_OPS_PARENT_ENABLE)
1336 		clk_core_prepare_enable(core->parent);
1337 
1338 	if (clk_pm_runtime_get(core))
1339 		goto unprepare_out;
1340 
1341 	flags = clk_enable_lock();
1342 
1343 	if (core->enable_count)
1344 		goto unlock_out;
1345 
1346 	if (core->flags & CLK_IGNORE_UNUSED)
1347 		goto unlock_out;
1348 
1349 	/*
1350 	 * some gate clocks have special needs during the disable-unused
1351 	 * sequence.  call .disable_unused if available, otherwise fall
1352 	 * back to .disable
1353 	 */
1354 	if (clk_core_is_enabled(core)) {
1355 		trace_clk_disable(core);
1356 		if (core->ops->disable_unused)
1357 			core->ops->disable_unused(core->hw);
1358 		else if (core->ops->disable)
1359 			core->ops->disable(core->hw);
1360 		trace_clk_disable_complete(core);
1361 	}
1362 
1363 unlock_out:
1364 	clk_enable_unlock(flags);
1365 	clk_pm_runtime_put(core);
1366 unprepare_out:
1367 	if (core->flags & CLK_OPS_PARENT_ENABLE)
1368 		clk_core_disable_unprepare(core->parent);
1369 }
1370 
1371 static bool clk_ignore_unused __initdata;
1372 static int __init clk_ignore_unused_setup(char *__unused)
1373 {
1374 	clk_ignore_unused = true;
1375 	return 1;
1376 }
1377 __setup("clk_ignore_unused", clk_ignore_unused_setup);
1378 
1379 static int __init clk_disable_unused(void)
1380 {
1381 	struct clk_core *core;
1382 
1383 	if (clk_ignore_unused) {
1384 		pr_warn("clk: Not disabling unused clocks\n");
1385 		return 0;
1386 	}
1387 
1388 	clk_prepare_lock();
1389 
1390 	hlist_for_each_entry(core, &clk_root_list, child_node)
1391 		clk_disable_unused_subtree(core);
1392 
1393 	hlist_for_each_entry(core, &clk_orphan_list, child_node)
1394 		clk_disable_unused_subtree(core);
1395 
1396 	hlist_for_each_entry(core, &clk_root_list, child_node)
1397 		clk_unprepare_unused_subtree(core);
1398 
1399 	hlist_for_each_entry(core, &clk_orphan_list, child_node)
1400 		clk_unprepare_unused_subtree(core);
1401 
1402 	clk_prepare_unlock();
1403 
1404 	return 0;
1405 }
1406 late_initcall_sync(clk_disable_unused);
1407 
1408 static int clk_core_determine_round_nolock(struct clk_core *core,
1409 					   struct clk_rate_request *req)
1410 {
1411 	long rate;
1412 
1413 	lockdep_assert_held(&prepare_lock);
1414 
1415 	if (!core)
1416 		return 0;
1417 
1418 	/*
1419 	 * Some clock providers hand-craft their clk_rate_requests and
1420 	 * might not fill min_rate and max_rate.
1421 	 *
1422 	 * If it's the case, clamping the rate is equivalent to setting
1423 	 * the rate to 0 which is bad. Skip the clamping but complain so
1424 	 * that it gets fixed, hopefully.
1425 	 */
1426 	if (!req->min_rate && !req->max_rate)
1427 		pr_warn("%s: %s: clk_rate_request has initialized min or max rate.\n",
1428 			__func__, core->name);
1429 	else
1430 		req->rate = clamp(req->rate, req->min_rate, req->max_rate);
1431 
1432 	/*
1433 	 * At this point, core protection will be disabled
1434 	 * - if the provider is not protected at all
1435 	 * - if the calling consumer is the only one which has exclusivity
1436 	 *   over the provider
1437 	 */
1438 	if (clk_core_rate_is_protected(core)) {
1439 		req->rate = core->rate;
1440 	} else if (core->ops->determine_rate) {
1441 		return core->ops->determine_rate(core->hw, req);
1442 	} else if (core->ops->round_rate) {
1443 		rate = core->ops->round_rate(core->hw, req->rate,
1444 					     &req->best_parent_rate);
1445 		if (rate < 0)
1446 			return rate;
1447 
1448 		req->rate = rate;
1449 	} else {
1450 		return -EINVAL;
1451 	}
1452 
1453 	return 0;
1454 }
1455 
1456 static void clk_core_init_rate_req(struct clk_core * const core,
1457 				   struct clk_rate_request *req,
1458 				   unsigned long rate)
1459 {
1460 	struct clk_core *parent;
1461 
1462 	if (WARN_ON(!req))
1463 		return;
1464 
1465 	memset(req, 0, sizeof(*req));
1466 	req->max_rate = ULONG_MAX;
1467 
1468 	if (!core)
1469 		return;
1470 
1471 	req->rate = rate;
1472 	clk_core_get_boundaries(core, &req->min_rate, &req->max_rate);
1473 
1474 	parent = core->parent;
1475 	if (parent) {
1476 		req->best_parent_hw = parent->hw;
1477 		req->best_parent_rate = parent->rate;
1478 	} else {
1479 		req->best_parent_hw = NULL;
1480 		req->best_parent_rate = 0;
1481 	}
1482 }
1483 
1484 /**
1485  * clk_hw_init_rate_request - Initializes a clk_rate_request
1486  * @hw: the clk for which we want to submit a rate request
1487  * @req: the clk_rate_request structure we want to initialise
1488  * @rate: the rate which is to be requested
1489  *
1490  * Initializes a clk_rate_request structure to submit to
1491  * __clk_determine_rate() or similar functions.
1492  */
1493 void clk_hw_init_rate_request(const struct clk_hw *hw,
1494 			      struct clk_rate_request *req,
1495 			      unsigned long rate)
1496 {
1497 	if (WARN_ON(!hw || !req))
1498 		return;
1499 
1500 	clk_core_init_rate_req(hw->core, req, rate);
1501 }
1502 EXPORT_SYMBOL_GPL(clk_hw_init_rate_request);
1503 
1504 /**
1505  * clk_hw_forward_rate_request - Forwards a clk_rate_request to a clock's parent
1506  * @hw: the original clock that got the rate request
1507  * @old_req: the original clk_rate_request structure we want to forward
1508  * @parent: the clk we want to forward @old_req to
1509  * @req: the clk_rate_request structure we want to initialise
1510  * @parent_rate: The rate which is to be requested to @parent
1511  *
1512  * Initializes a clk_rate_request structure to submit to a clock parent
1513  * in __clk_determine_rate() or similar functions.
1514  */
1515 void clk_hw_forward_rate_request(const struct clk_hw *hw,
1516 				 const struct clk_rate_request *old_req,
1517 				 const struct clk_hw *parent,
1518 				 struct clk_rate_request *req,
1519 				 unsigned long parent_rate)
1520 {
1521 	if (WARN_ON(!hw || !old_req || !parent || !req))
1522 		return;
1523 
1524 	clk_core_forward_rate_req(hw->core, old_req,
1525 				  parent->core, req,
1526 				  parent_rate);
1527 }
1528 
1529 static bool clk_core_can_round(struct clk_core * const core)
1530 {
1531 	return core->ops->determine_rate || core->ops->round_rate;
1532 }
1533 
1534 static int clk_core_round_rate_nolock(struct clk_core *core,
1535 				      struct clk_rate_request *req)
1536 {
1537 	int ret;
1538 
1539 	lockdep_assert_held(&prepare_lock);
1540 
1541 	if (!core) {
1542 		req->rate = 0;
1543 		return 0;
1544 	}
1545 
1546 	if (clk_core_can_round(core))
1547 		return clk_core_determine_round_nolock(core, req);
1548 
1549 	if (core->flags & CLK_SET_RATE_PARENT) {
1550 		struct clk_rate_request parent_req;
1551 
1552 		clk_core_forward_rate_req(core, req, core->parent, &parent_req, req->rate);
1553 		ret = clk_core_round_rate_nolock(core->parent, &parent_req);
1554 		if (ret)
1555 			return ret;
1556 
1557 		req->best_parent_rate = parent_req.rate;
1558 		req->rate = parent_req.rate;
1559 
1560 		return 0;
1561 	}
1562 
1563 	req->rate = core->rate;
1564 	return 0;
1565 }
1566 
1567 /**
1568  * __clk_determine_rate - get the closest rate actually supported by a clock
1569  * @hw: determine the rate of this clock
1570  * @req: target rate request
1571  *
1572  * Useful for clk_ops such as .set_rate and .determine_rate.
1573  */
1574 int __clk_determine_rate(struct clk_hw *hw, struct clk_rate_request *req)
1575 {
1576 	if (!hw) {
1577 		req->rate = 0;
1578 		return 0;
1579 	}
1580 
1581 	return clk_core_round_rate_nolock(hw->core, req);
1582 }
1583 EXPORT_SYMBOL_GPL(__clk_determine_rate);
1584 
1585 /**
1586  * clk_hw_round_rate() - round the given rate for a hw clk
1587  * @hw: the hw clk for which we are rounding a rate
1588  * @rate: the rate which is to be rounded
1589  *
1590  * Takes in a rate as input and rounds it to a rate that the clk can actually
1591  * use.
1592  *
1593  * Context: prepare_lock must be held.
1594  *          For clk providers to call from within clk_ops such as .round_rate,
1595  *          .determine_rate.
1596  *
1597  * Return: returns rounded rate of hw clk if clk supports round_rate operation
1598  *         else returns the parent rate.
1599  */
1600 unsigned long clk_hw_round_rate(struct clk_hw *hw, unsigned long rate)
1601 {
1602 	int ret;
1603 	struct clk_rate_request req;
1604 
1605 	clk_core_init_rate_req(hw->core, &req, rate);
1606 
1607 	ret = clk_core_round_rate_nolock(hw->core, &req);
1608 	if (ret)
1609 		return 0;
1610 
1611 	return req.rate;
1612 }
1613 EXPORT_SYMBOL_GPL(clk_hw_round_rate);
1614 
1615 /**
1616  * clk_round_rate - round the given rate for a clk
1617  * @clk: the clk for which we are rounding a rate
1618  * @rate: the rate which is to be rounded
1619  *
1620  * Takes in a rate as input and rounds it to a rate that the clk can actually
1621  * use which is then returned.  If clk doesn't support round_rate operation
1622  * then the parent rate is returned.
1623  */
1624 long clk_round_rate(struct clk *clk, unsigned long rate)
1625 {
1626 	struct clk_rate_request req;
1627 	int ret;
1628 
1629 	if (!clk)
1630 		return 0;
1631 
1632 	clk_prepare_lock();
1633 
1634 	if (clk->exclusive_count)
1635 		clk_core_rate_unprotect(clk->core);
1636 
1637 	clk_core_init_rate_req(clk->core, &req, rate);
1638 
1639 	ret = clk_core_round_rate_nolock(clk->core, &req);
1640 
1641 	if (clk->exclusive_count)
1642 		clk_core_rate_protect(clk->core);
1643 
1644 	clk_prepare_unlock();
1645 
1646 	if (ret)
1647 		return ret;
1648 
1649 	return req.rate;
1650 }
1651 EXPORT_SYMBOL_GPL(clk_round_rate);
1652 
1653 /**
1654  * __clk_notify - call clk notifier chain
1655  * @core: clk that is changing rate
1656  * @msg: clk notifier type (see include/linux/clk.h)
1657  * @old_rate: old clk rate
1658  * @new_rate: new clk rate
1659  *
1660  * Triggers a notifier call chain on the clk rate-change notification
1661  * for 'clk'.  Passes a pointer to the struct clk and the previous
1662  * and current rates to the notifier callback.  Intended to be called by
1663  * internal clock code only.  Returns NOTIFY_DONE from the last driver
1664  * called if all went well, or NOTIFY_STOP or NOTIFY_BAD immediately if
1665  * a driver returns that.
1666  */
1667 static int __clk_notify(struct clk_core *core, unsigned long msg,
1668 		unsigned long old_rate, unsigned long new_rate)
1669 {
1670 	struct clk_notifier *cn;
1671 	struct clk_notifier_data cnd;
1672 	int ret = NOTIFY_DONE;
1673 
1674 	cnd.old_rate = old_rate;
1675 	cnd.new_rate = new_rate;
1676 
1677 	list_for_each_entry(cn, &clk_notifier_list, node) {
1678 		if (cn->clk->core == core) {
1679 			cnd.clk = cn->clk;
1680 			ret = srcu_notifier_call_chain(&cn->notifier_head, msg,
1681 					&cnd);
1682 			if (ret & NOTIFY_STOP_MASK)
1683 				return ret;
1684 		}
1685 	}
1686 
1687 	return ret;
1688 }
1689 
1690 /**
1691  * __clk_recalc_accuracies
1692  * @core: first clk in the subtree
1693  *
1694  * Walks the subtree of clks starting with clk and recalculates accuracies as
1695  * it goes.  Note that if a clk does not implement the .recalc_accuracy
1696  * callback then it is assumed that the clock will take on the accuracy of its
1697  * parent.
1698  */
1699 static void __clk_recalc_accuracies(struct clk_core *core)
1700 {
1701 	unsigned long parent_accuracy = 0;
1702 	struct clk_core *child;
1703 
1704 	lockdep_assert_held(&prepare_lock);
1705 
1706 	if (core->parent)
1707 		parent_accuracy = core->parent->accuracy;
1708 
1709 	if (core->ops->recalc_accuracy)
1710 		core->accuracy = core->ops->recalc_accuracy(core->hw,
1711 							  parent_accuracy);
1712 	else
1713 		core->accuracy = parent_accuracy;
1714 
1715 	hlist_for_each_entry(child, &core->children, child_node)
1716 		__clk_recalc_accuracies(child);
1717 }
1718 
1719 static long clk_core_get_accuracy_recalc(struct clk_core *core)
1720 {
1721 	if (core && (core->flags & CLK_GET_ACCURACY_NOCACHE))
1722 		__clk_recalc_accuracies(core);
1723 
1724 	return clk_core_get_accuracy_no_lock(core);
1725 }
1726 
1727 /**
1728  * clk_get_accuracy - return the accuracy of clk
1729  * @clk: the clk whose accuracy is being returned
1730  *
1731  * Simply returns the cached accuracy of the clk, unless
1732  * CLK_GET_ACCURACY_NOCACHE flag is set, which means a recalc_rate will be
1733  * issued.
1734  * If clk is NULL then returns 0.
1735  */
1736 long clk_get_accuracy(struct clk *clk)
1737 {
1738 	long accuracy;
1739 
1740 	if (!clk)
1741 		return 0;
1742 
1743 	clk_prepare_lock();
1744 	accuracy = clk_core_get_accuracy_recalc(clk->core);
1745 	clk_prepare_unlock();
1746 
1747 	return accuracy;
1748 }
1749 EXPORT_SYMBOL_GPL(clk_get_accuracy);
1750 
1751 static unsigned long clk_recalc(struct clk_core *core,
1752 				unsigned long parent_rate)
1753 {
1754 	unsigned long rate = parent_rate;
1755 
1756 	if (core->ops->recalc_rate && !clk_pm_runtime_get(core)) {
1757 		rate = core->ops->recalc_rate(core->hw, parent_rate);
1758 		clk_pm_runtime_put(core);
1759 	}
1760 	return rate;
1761 }
1762 
1763 /**
1764  * __clk_recalc_rates
1765  * @core: first clk in the subtree
1766  * @update_req: Whether req_rate should be updated with the new rate
1767  * @msg: notification type (see include/linux/clk.h)
1768  *
1769  * Walks the subtree of clks starting with clk and recalculates rates as it
1770  * goes.  Note that if a clk does not implement the .recalc_rate callback then
1771  * it is assumed that the clock will take on the rate of its parent.
1772  *
1773  * clk_recalc_rates also propagates the POST_RATE_CHANGE notification,
1774  * if necessary.
1775  */
1776 static void __clk_recalc_rates(struct clk_core *core, bool update_req,
1777 			       unsigned long msg)
1778 {
1779 	unsigned long old_rate;
1780 	unsigned long parent_rate = 0;
1781 	struct clk_core *child;
1782 
1783 	lockdep_assert_held(&prepare_lock);
1784 
1785 	old_rate = core->rate;
1786 
1787 	if (core->parent)
1788 		parent_rate = core->parent->rate;
1789 
1790 	core->rate = clk_recalc(core, parent_rate);
1791 	if (update_req)
1792 		core->req_rate = core->rate;
1793 
1794 	/*
1795 	 * ignore NOTIFY_STOP and NOTIFY_BAD return values for POST_RATE_CHANGE
1796 	 * & ABORT_RATE_CHANGE notifiers
1797 	 */
1798 	if (core->notifier_count && msg)
1799 		__clk_notify(core, msg, old_rate, core->rate);
1800 
1801 	hlist_for_each_entry(child, &core->children, child_node)
1802 		__clk_recalc_rates(child, update_req, msg);
1803 }
1804 
1805 static unsigned long clk_core_get_rate_recalc(struct clk_core *core)
1806 {
1807 	if (core && (core->flags & CLK_GET_RATE_NOCACHE))
1808 		__clk_recalc_rates(core, false, 0);
1809 
1810 	return clk_core_get_rate_nolock(core);
1811 }
1812 
1813 /**
1814  * clk_get_rate - return the rate of clk
1815  * @clk: the clk whose rate is being returned
1816  *
1817  * Simply returns the cached rate of the clk, unless CLK_GET_RATE_NOCACHE flag
1818  * is set, which means a recalc_rate will be issued. Can be called regardless of
1819  * the clock enabledness. If clk is NULL, or if an error occurred, then returns
1820  * 0.
1821  */
1822 unsigned long clk_get_rate(struct clk *clk)
1823 {
1824 	unsigned long rate;
1825 
1826 	if (!clk)
1827 		return 0;
1828 
1829 	clk_prepare_lock();
1830 	rate = clk_core_get_rate_recalc(clk->core);
1831 	clk_prepare_unlock();
1832 
1833 	return rate;
1834 }
1835 EXPORT_SYMBOL_GPL(clk_get_rate);
1836 
1837 static int clk_fetch_parent_index(struct clk_core *core,
1838 				  struct clk_core *parent)
1839 {
1840 	int i;
1841 
1842 	if (!parent)
1843 		return -EINVAL;
1844 
1845 	for (i = 0; i < core->num_parents; i++) {
1846 		/* Found it first try! */
1847 		if (core->parents[i].core == parent)
1848 			return i;
1849 
1850 		/* Something else is here, so keep looking */
1851 		if (core->parents[i].core)
1852 			continue;
1853 
1854 		/* Maybe core hasn't been cached but the hw is all we know? */
1855 		if (core->parents[i].hw) {
1856 			if (core->parents[i].hw == parent->hw)
1857 				break;
1858 
1859 			/* Didn't match, but we're expecting a clk_hw */
1860 			continue;
1861 		}
1862 
1863 		/* Maybe it hasn't been cached (clk_set_parent() path) */
1864 		if (parent == clk_core_get(core, i))
1865 			break;
1866 
1867 		/* Fallback to comparing globally unique names */
1868 		if (core->parents[i].name &&
1869 		    !strcmp(parent->name, core->parents[i].name))
1870 			break;
1871 	}
1872 
1873 	if (i == core->num_parents)
1874 		return -EINVAL;
1875 
1876 	core->parents[i].core = parent;
1877 	return i;
1878 }
1879 
1880 /**
1881  * clk_hw_get_parent_index - return the index of the parent clock
1882  * @hw: clk_hw associated with the clk being consumed
1883  *
1884  * Fetches and returns the index of parent clock. Returns -EINVAL if the given
1885  * clock does not have a current parent.
1886  */
1887 int clk_hw_get_parent_index(struct clk_hw *hw)
1888 {
1889 	struct clk_hw *parent = clk_hw_get_parent(hw);
1890 
1891 	if (WARN_ON(parent == NULL))
1892 		return -EINVAL;
1893 
1894 	return clk_fetch_parent_index(hw->core, parent->core);
1895 }
1896 EXPORT_SYMBOL_GPL(clk_hw_get_parent_index);
1897 
1898 /*
1899  * Update the orphan status of @core and all its children.
1900  */
1901 static void clk_core_update_orphan_status(struct clk_core *core, bool is_orphan)
1902 {
1903 	struct clk_core *child;
1904 
1905 	core->orphan = is_orphan;
1906 
1907 	hlist_for_each_entry(child, &core->children, child_node)
1908 		clk_core_update_orphan_status(child, is_orphan);
1909 }
1910 
1911 static void clk_reparent(struct clk_core *core, struct clk_core *new_parent)
1912 {
1913 	bool was_orphan = core->orphan;
1914 
1915 	hlist_del(&core->child_node);
1916 
1917 	if (new_parent) {
1918 		bool becomes_orphan = new_parent->orphan;
1919 
1920 		/* avoid duplicate POST_RATE_CHANGE notifications */
1921 		if (new_parent->new_child == core)
1922 			new_parent->new_child = NULL;
1923 
1924 		hlist_add_head(&core->child_node, &new_parent->children);
1925 
1926 		if (was_orphan != becomes_orphan)
1927 			clk_core_update_orphan_status(core, becomes_orphan);
1928 	} else {
1929 		hlist_add_head(&core->child_node, &clk_orphan_list);
1930 		if (!was_orphan)
1931 			clk_core_update_orphan_status(core, true);
1932 	}
1933 
1934 	core->parent = new_parent;
1935 }
1936 
1937 static struct clk_core *__clk_set_parent_before(struct clk_core *core,
1938 					   struct clk_core *parent)
1939 {
1940 	unsigned long flags;
1941 	struct clk_core *old_parent = core->parent;
1942 
1943 	/*
1944 	 * 1. enable parents for CLK_OPS_PARENT_ENABLE clock
1945 	 *
1946 	 * 2. Migrate prepare state between parents and prevent race with
1947 	 * clk_enable().
1948 	 *
1949 	 * If the clock is not prepared, then a race with
1950 	 * clk_enable/disable() is impossible since we already have the
1951 	 * prepare lock (future calls to clk_enable() need to be preceded by
1952 	 * a clk_prepare()).
1953 	 *
1954 	 * If the clock is prepared, migrate the prepared state to the new
1955 	 * parent and also protect against a race with clk_enable() by
1956 	 * forcing the clock and the new parent on.  This ensures that all
1957 	 * future calls to clk_enable() are practically NOPs with respect to
1958 	 * hardware and software states.
1959 	 *
1960 	 * See also: Comment for clk_set_parent() below.
1961 	 */
1962 
1963 	/* enable old_parent & parent if CLK_OPS_PARENT_ENABLE is set */
1964 	if (core->flags & CLK_OPS_PARENT_ENABLE) {
1965 		clk_core_prepare_enable(old_parent);
1966 		clk_core_prepare_enable(parent);
1967 	}
1968 
1969 	/* migrate prepare count if > 0 */
1970 	if (core->prepare_count) {
1971 		clk_core_prepare_enable(parent);
1972 		clk_core_enable_lock(core);
1973 	}
1974 
1975 	/* update the clk tree topology */
1976 	flags = clk_enable_lock();
1977 	clk_reparent(core, parent);
1978 	clk_enable_unlock(flags);
1979 
1980 	return old_parent;
1981 }
1982 
1983 static void __clk_set_parent_after(struct clk_core *core,
1984 				   struct clk_core *parent,
1985 				   struct clk_core *old_parent)
1986 {
1987 	/*
1988 	 * Finish the migration of prepare state and undo the changes done
1989 	 * for preventing a race with clk_enable().
1990 	 */
1991 	if (core->prepare_count) {
1992 		clk_core_disable_lock(core);
1993 		clk_core_disable_unprepare(old_parent);
1994 	}
1995 
1996 	/* re-balance ref counting if CLK_OPS_PARENT_ENABLE is set */
1997 	if (core->flags & CLK_OPS_PARENT_ENABLE) {
1998 		clk_core_disable_unprepare(parent);
1999 		clk_core_disable_unprepare(old_parent);
2000 	}
2001 }
2002 
2003 static int __clk_set_parent(struct clk_core *core, struct clk_core *parent,
2004 			    u8 p_index)
2005 {
2006 	unsigned long flags;
2007 	int ret = 0;
2008 	struct clk_core *old_parent;
2009 
2010 	old_parent = __clk_set_parent_before(core, parent);
2011 
2012 	trace_clk_set_parent(core, parent);
2013 
2014 	/* change clock input source */
2015 	if (parent && core->ops->set_parent)
2016 		ret = core->ops->set_parent(core->hw, p_index);
2017 
2018 	trace_clk_set_parent_complete(core, parent);
2019 
2020 	if (ret) {
2021 		flags = clk_enable_lock();
2022 		clk_reparent(core, old_parent);
2023 		clk_enable_unlock(flags);
2024 
2025 		__clk_set_parent_after(core, old_parent, parent);
2026 
2027 		return ret;
2028 	}
2029 
2030 	__clk_set_parent_after(core, parent, old_parent);
2031 
2032 	return 0;
2033 }
2034 
2035 /**
2036  * __clk_speculate_rates
2037  * @core: first clk in the subtree
2038  * @parent_rate: the "future" rate of clk's parent
2039  *
2040  * Walks the subtree of clks starting with clk, speculating rates as it
2041  * goes and firing off PRE_RATE_CHANGE notifications as necessary.
2042  *
2043  * Unlike clk_recalc_rates, clk_speculate_rates exists only for sending
2044  * pre-rate change notifications and returns early if no clks in the
2045  * subtree have subscribed to the notifications.  Note that if a clk does not
2046  * implement the .recalc_rate callback then it is assumed that the clock will
2047  * take on the rate of its parent.
2048  */
2049 static int __clk_speculate_rates(struct clk_core *core,
2050 				 unsigned long parent_rate)
2051 {
2052 	struct clk_core *child;
2053 	unsigned long new_rate;
2054 	int ret = NOTIFY_DONE;
2055 
2056 	lockdep_assert_held(&prepare_lock);
2057 
2058 	new_rate = clk_recalc(core, parent_rate);
2059 
2060 	/* abort rate change if a driver returns NOTIFY_BAD or NOTIFY_STOP */
2061 	if (core->notifier_count)
2062 		ret = __clk_notify(core, PRE_RATE_CHANGE, core->rate, new_rate);
2063 
2064 	if (ret & NOTIFY_STOP_MASK) {
2065 		pr_debug("%s: clk notifier callback for clock %s aborted with error %d\n",
2066 				__func__, core->name, ret);
2067 		goto out;
2068 	}
2069 
2070 	hlist_for_each_entry(child, &core->children, child_node) {
2071 		ret = __clk_speculate_rates(child, new_rate);
2072 		if (ret & NOTIFY_STOP_MASK)
2073 			break;
2074 	}
2075 
2076 out:
2077 	return ret;
2078 }
2079 
2080 static void clk_calc_subtree(struct clk_core *core, unsigned long new_rate,
2081 			     struct clk_core *new_parent, u8 p_index)
2082 {
2083 	struct clk_core *child;
2084 
2085 	core->new_rate = new_rate;
2086 	core->new_parent = new_parent;
2087 	core->new_parent_index = p_index;
2088 	/* include clk in new parent's PRE_RATE_CHANGE notifications */
2089 	core->new_child = NULL;
2090 	if (new_parent && new_parent != core->parent)
2091 		new_parent->new_child = core;
2092 
2093 	hlist_for_each_entry(child, &core->children, child_node) {
2094 		child->new_rate = clk_recalc(child, new_rate);
2095 		clk_calc_subtree(child, child->new_rate, NULL, 0);
2096 	}
2097 }
2098 
2099 /*
2100  * calculate the new rates returning the topmost clock that has to be
2101  * changed.
2102  */
2103 static struct clk_core *clk_calc_new_rates(struct clk_core *core,
2104 					   unsigned long rate)
2105 {
2106 	struct clk_core *top = core;
2107 	struct clk_core *old_parent, *parent;
2108 	unsigned long best_parent_rate = 0;
2109 	unsigned long new_rate;
2110 	unsigned long min_rate;
2111 	unsigned long max_rate;
2112 	int p_index = 0;
2113 	long ret;
2114 
2115 	/* sanity */
2116 	if (IS_ERR_OR_NULL(core))
2117 		return NULL;
2118 
2119 	/* save parent rate, if it exists */
2120 	parent = old_parent = core->parent;
2121 	if (parent)
2122 		best_parent_rate = parent->rate;
2123 
2124 	clk_core_get_boundaries(core, &min_rate, &max_rate);
2125 
2126 	/* find the closest rate and parent clk/rate */
2127 	if (clk_core_can_round(core)) {
2128 		struct clk_rate_request req;
2129 
2130 		clk_core_init_rate_req(core, &req, rate);
2131 
2132 		ret = clk_core_determine_round_nolock(core, &req);
2133 		if (ret < 0)
2134 			return NULL;
2135 
2136 		best_parent_rate = req.best_parent_rate;
2137 		new_rate = req.rate;
2138 		parent = req.best_parent_hw ? req.best_parent_hw->core : NULL;
2139 
2140 		if (new_rate < min_rate || new_rate > max_rate)
2141 			return NULL;
2142 	} else if (!parent || !(core->flags & CLK_SET_RATE_PARENT)) {
2143 		/* pass-through clock without adjustable parent */
2144 		core->new_rate = core->rate;
2145 		return NULL;
2146 	} else {
2147 		/* pass-through clock with adjustable parent */
2148 		top = clk_calc_new_rates(parent, rate);
2149 		new_rate = parent->new_rate;
2150 		goto out;
2151 	}
2152 
2153 	/* some clocks must be gated to change parent */
2154 	if (parent != old_parent &&
2155 	    (core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) {
2156 		pr_debug("%s: %s not gated but wants to reparent\n",
2157 			 __func__, core->name);
2158 		return NULL;
2159 	}
2160 
2161 	/* try finding the new parent index */
2162 	if (parent && core->num_parents > 1) {
2163 		p_index = clk_fetch_parent_index(core, parent);
2164 		if (p_index < 0) {
2165 			pr_debug("%s: clk %s can not be parent of clk %s\n",
2166 				 __func__, parent->name, core->name);
2167 			return NULL;
2168 		}
2169 	}
2170 
2171 	if ((core->flags & CLK_SET_RATE_PARENT) && parent &&
2172 	    best_parent_rate != parent->rate)
2173 		top = clk_calc_new_rates(parent, best_parent_rate);
2174 
2175 out:
2176 	clk_calc_subtree(core, new_rate, parent, p_index);
2177 
2178 	return top;
2179 }
2180 
2181 /*
2182  * Notify about rate changes in a subtree. Always walk down the whole tree
2183  * so that in case of an error we can walk down the whole tree again and
2184  * abort the change.
2185  */
2186 static struct clk_core *clk_propagate_rate_change(struct clk_core *core,
2187 						  unsigned long event)
2188 {
2189 	struct clk_core *child, *tmp_clk, *fail_clk = NULL;
2190 	int ret = NOTIFY_DONE;
2191 
2192 	if (core->rate == core->new_rate)
2193 		return NULL;
2194 
2195 	if (core->notifier_count) {
2196 		ret = __clk_notify(core, event, core->rate, core->new_rate);
2197 		if (ret & NOTIFY_STOP_MASK)
2198 			fail_clk = core;
2199 	}
2200 
2201 	hlist_for_each_entry(child, &core->children, child_node) {
2202 		/* Skip children who will be reparented to another clock */
2203 		if (child->new_parent && child->new_parent != core)
2204 			continue;
2205 		tmp_clk = clk_propagate_rate_change(child, event);
2206 		if (tmp_clk)
2207 			fail_clk = tmp_clk;
2208 	}
2209 
2210 	/* handle the new child who might not be in core->children yet */
2211 	if (core->new_child) {
2212 		tmp_clk = clk_propagate_rate_change(core->new_child, event);
2213 		if (tmp_clk)
2214 			fail_clk = tmp_clk;
2215 	}
2216 
2217 	return fail_clk;
2218 }
2219 
2220 /*
2221  * walk down a subtree and set the new rates notifying the rate
2222  * change on the way
2223  */
2224 static void clk_change_rate(struct clk_core *core)
2225 {
2226 	struct clk_core *child;
2227 	struct hlist_node *tmp;
2228 	unsigned long old_rate;
2229 	unsigned long best_parent_rate = 0;
2230 	bool skip_set_rate = false;
2231 	struct clk_core *old_parent;
2232 	struct clk_core *parent = NULL;
2233 
2234 	old_rate = core->rate;
2235 
2236 	if (core->new_parent) {
2237 		parent = core->new_parent;
2238 		best_parent_rate = core->new_parent->rate;
2239 	} else if (core->parent) {
2240 		parent = core->parent;
2241 		best_parent_rate = core->parent->rate;
2242 	}
2243 
2244 	if (clk_pm_runtime_get(core))
2245 		return;
2246 
2247 	if (core->flags & CLK_SET_RATE_UNGATE) {
2248 		clk_core_prepare(core);
2249 		clk_core_enable_lock(core);
2250 	}
2251 
2252 	if (core->new_parent && core->new_parent != core->parent) {
2253 		old_parent = __clk_set_parent_before(core, core->new_parent);
2254 		trace_clk_set_parent(core, core->new_parent);
2255 
2256 		if (core->ops->set_rate_and_parent) {
2257 			skip_set_rate = true;
2258 			core->ops->set_rate_and_parent(core->hw, core->new_rate,
2259 					best_parent_rate,
2260 					core->new_parent_index);
2261 		} else if (core->ops->set_parent) {
2262 			core->ops->set_parent(core->hw, core->new_parent_index);
2263 		}
2264 
2265 		trace_clk_set_parent_complete(core, core->new_parent);
2266 		__clk_set_parent_after(core, core->new_parent, old_parent);
2267 	}
2268 
2269 	if (core->flags & CLK_OPS_PARENT_ENABLE)
2270 		clk_core_prepare_enable(parent);
2271 
2272 	trace_clk_set_rate(core, core->new_rate);
2273 
2274 	if (!skip_set_rate && core->ops->set_rate)
2275 		core->ops->set_rate(core->hw, core->new_rate, best_parent_rate);
2276 
2277 	trace_clk_set_rate_complete(core, core->new_rate);
2278 
2279 	core->rate = clk_recalc(core, best_parent_rate);
2280 
2281 	if (core->flags & CLK_SET_RATE_UNGATE) {
2282 		clk_core_disable_lock(core);
2283 		clk_core_unprepare(core);
2284 	}
2285 
2286 	if (core->flags & CLK_OPS_PARENT_ENABLE)
2287 		clk_core_disable_unprepare(parent);
2288 
2289 	if (core->notifier_count && old_rate != core->rate)
2290 		__clk_notify(core, POST_RATE_CHANGE, old_rate, core->rate);
2291 
2292 	if (core->flags & CLK_RECALC_NEW_RATES)
2293 		(void)clk_calc_new_rates(core, core->new_rate);
2294 
2295 	/*
2296 	 * Use safe iteration, as change_rate can actually swap parents
2297 	 * for certain clock types.
2298 	 */
2299 	hlist_for_each_entry_safe(child, tmp, &core->children, child_node) {
2300 		/* Skip children who will be reparented to another clock */
2301 		if (child->new_parent && child->new_parent != core)
2302 			continue;
2303 		clk_change_rate(child);
2304 	}
2305 
2306 	/* handle the new child who might not be in core->children yet */
2307 	if (core->new_child)
2308 		clk_change_rate(core->new_child);
2309 
2310 	clk_pm_runtime_put(core);
2311 }
2312 
2313 static unsigned long clk_core_req_round_rate_nolock(struct clk_core *core,
2314 						     unsigned long req_rate)
2315 {
2316 	int ret, cnt;
2317 	struct clk_rate_request req;
2318 
2319 	lockdep_assert_held(&prepare_lock);
2320 
2321 	if (!core)
2322 		return 0;
2323 
2324 	/* simulate what the rate would be if it could be freely set */
2325 	cnt = clk_core_rate_nuke_protect(core);
2326 	if (cnt < 0)
2327 		return cnt;
2328 
2329 	clk_core_init_rate_req(core, &req, req_rate);
2330 
2331 	ret = clk_core_round_rate_nolock(core, &req);
2332 
2333 	/* restore the protection */
2334 	clk_core_rate_restore_protect(core, cnt);
2335 
2336 	return ret ? 0 : req.rate;
2337 }
2338 
2339 static int clk_core_set_rate_nolock(struct clk_core *core,
2340 				    unsigned long req_rate)
2341 {
2342 	struct clk_core *top, *fail_clk;
2343 	unsigned long rate;
2344 	int ret;
2345 
2346 	if (!core)
2347 		return 0;
2348 
2349 	rate = clk_core_req_round_rate_nolock(core, req_rate);
2350 
2351 	/* bail early if nothing to do */
2352 	if (rate == clk_core_get_rate_nolock(core))
2353 		return 0;
2354 
2355 	/* fail on a direct rate set of a protected provider */
2356 	if (clk_core_rate_is_protected(core))
2357 		return -EBUSY;
2358 
2359 	/* calculate new rates and get the topmost changed clock */
2360 	top = clk_calc_new_rates(core, req_rate);
2361 	if (!top)
2362 		return -EINVAL;
2363 
2364 	ret = clk_pm_runtime_get(core);
2365 	if (ret)
2366 		return ret;
2367 
2368 	/* notify that we are about to change rates */
2369 	fail_clk = clk_propagate_rate_change(top, PRE_RATE_CHANGE);
2370 	if (fail_clk) {
2371 		pr_debug("%s: failed to set %s rate\n", __func__,
2372 				fail_clk->name);
2373 		clk_propagate_rate_change(top, ABORT_RATE_CHANGE);
2374 		ret = -EBUSY;
2375 		goto err;
2376 	}
2377 
2378 	/* change the rates */
2379 	clk_change_rate(top);
2380 
2381 	core->req_rate = req_rate;
2382 err:
2383 	clk_pm_runtime_put(core);
2384 
2385 	return ret;
2386 }
2387 
2388 /**
2389  * clk_set_rate - specify a new rate for clk
2390  * @clk: the clk whose rate is being changed
2391  * @rate: the new rate for clk
2392  *
2393  * In the simplest case clk_set_rate will only adjust the rate of clk.
2394  *
2395  * Setting the CLK_SET_RATE_PARENT flag allows the rate change operation to
2396  * propagate up to clk's parent; whether or not this happens depends on the
2397  * outcome of clk's .round_rate implementation.  If *parent_rate is unchanged
2398  * after calling .round_rate then upstream parent propagation is ignored.  If
2399  * *parent_rate comes back with a new rate for clk's parent then we propagate
2400  * up to clk's parent and set its rate.  Upward propagation will continue
2401  * until either a clk does not support the CLK_SET_RATE_PARENT flag or
2402  * .round_rate stops requesting changes to clk's parent_rate.
2403  *
2404  * Rate changes are accomplished via tree traversal that also recalculates the
2405  * rates for the clocks and fires off POST_RATE_CHANGE notifiers.
2406  *
2407  * Returns 0 on success, -EERROR otherwise.
2408  */
2409 int clk_set_rate(struct clk *clk, unsigned long rate)
2410 {
2411 	int ret;
2412 
2413 	if (!clk)
2414 		return 0;
2415 
2416 	/* prevent racing with updates to the clock topology */
2417 	clk_prepare_lock();
2418 
2419 	if (clk->exclusive_count)
2420 		clk_core_rate_unprotect(clk->core);
2421 
2422 	ret = clk_core_set_rate_nolock(clk->core, rate);
2423 
2424 	if (clk->exclusive_count)
2425 		clk_core_rate_protect(clk->core);
2426 
2427 	clk_prepare_unlock();
2428 
2429 	return ret;
2430 }
2431 EXPORT_SYMBOL_GPL(clk_set_rate);
2432 
2433 /**
2434  * clk_set_rate_exclusive - specify a new rate and get exclusive control
2435  * @clk: the clk whose rate is being changed
2436  * @rate: the new rate for clk
2437  *
2438  * This is a combination of clk_set_rate() and clk_rate_exclusive_get()
2439  * within a critical section
2440  *
2441  * This can be used initially to ensure that at least 1 consumer is
2442  * satisfied when several consumers are competing for exclusivity over the
2443  * same clock provider.
2444  *
2445  * The exclusivity is not applied if setting the rate failed.
2446  *
2447  * Calls to clk_rate_exclusive_get() should be balanced with calls to
2448  * clk_rate_exclusive_put().
2449  *
2450  * Returns 0 on success, -EERROR otherwise.
2451  */
2452 int clk_set_rate_exclusive(struct clk *clk, unsigned long rate)
2453 {
2454 	int ret;
2455 
2456 	if (!clk)
2457 		return 0;
2458 
2459 	/* prevent racing with updates to the clock topology */
2460 	clk_prepare_lock();
2461 
2462 	/*
2463 	 * The temporary protection removal is not here, on purpose
2464 	 * This function is meant to be used instead of clk_rate_protect,
2465 	 * so before the consumer code path protect the clock provider
2466 	 */
2467 
2468 	ret = clk_core_set_rate_nolock(clk->core, rate);
2469 	if (!ret) {
2470 		clk_core_rate_protect(clk->core);
2471 		clk->exclusive_count++;
2472 	}
2473 
2474 	clk_prepare_unlock();
2475 
2476 	return ret;
2477 }
2478 EXPORT_SYMBOL_GPL(clk_set_rate_exclusive);
2479 
2480 static int clk_set_rate_range_nolock(struct clk *clk,
2481 				     unsigned long min,
2482 				     unsigned long max)
2483 {
2484 	int ret = 0;
2485 	unsigned long old_min, old_max, rate;
2486 
2487 	lockdep_assert_held(&prepare_lock);
2488 
2489 	if (!clk)
2490 		return 0;
2491 
2492 	trace_clk_set_rate_range(clk->core, min, max);
2493 
2494 	if (min > max) {
2495 		pr_err("%s: clk %s dev %s con %s: invalid range [%lu, %lu]\n",
2496 		       __func__, clk->core->name, clk->dev_id, clk->con_id,
2497 		       min, max);
2498 		return -EINVAL;
2499 	}
2500 
2501 	if (clk->exclusive_count)
2502 		clk_core_rate_unprotect(clk->core);
2503 
2504 	/* Save the current values in case we need to rollback the change */
2505 	old_min = clk->min_rate;
2506 	old_max = clk->max_rate;
2507 	clk->min_rate = min;
2508 	clk->max_rate = max;
2509 
2510 	if (!clk_core_check_boundaries(clk->core, min, max)) {
2511 		ret = -EINVAL;
2512 		goto out;
2513 	}
2514 
2515 	rate = clk->core->req_rate;
2516 	if (clk->core->flags & CLK_GET_RATE_NOCACHE)
2517 		rate = clk_core_get_rate_recalc(clk->core);
2518 
2519 	/*
2520 	 * Since the boundaries have been changed, let's give the
2521 	 * opportunity to the provider to adjust the clock rate based on
2522 	 * the new boundaries.
2523 	 *
2524 	 * We also need to handle the case where the clock is currently
2525 	 * outside of the boundaries. Clamping the last requested rate
2526 	 * to the current minimum and maximum will also handle this.
2527 	 *
2528 	 * FIXME:
2529 	 * There is a catch. It may fail for the usual reason (clock
2530 	 * broken, clock protected, etc) but also because:
2531 	 * - round_rate() was not favorable and fell on the wrong
2532 	 *   side of the boundary
2533 	 * - the determine_rate() callback does not really check for
2534 	 *   this corner case when determining the rate
2535 	 */
2536 	rate = clamp(rate, min, max);
2537 	ret = clk_core_set_rate_nolock(clk->core, rate);
2538 	if (ret) {
2539 		/* rollback the changes */
2540 		clk->min_rate = old_min;
2541 		clk->max_rate = old_max;
2542 	}
2543 
2544 out:
2545 	if (clk->exclusive_count)
2546 		clk_core_rate_protect(clk->core);
2547 
2548 	return ret;
2549 }
2550 
2551 /**
2552  * clk_set_rate_range - set a rate range for a clock source
2553  * @clk: clock source
2554  * @min: desired minimum clock rate in Hz, inclusive
2555  * @max: desired maximum clock rate in Hz, inclusive
2556  *
2557  * Return: 0 for success or negative errno on failure.
2558  */
2559 int clk_set_rate_range(struct clk *clk, unsigned long min, unsigned long max)
2560 {
2561 	int ret;
2562 
2563 	if (!clk)
2564 		return 0;
2565 
2566 	clk_prepare_lock();
2567 
2568 	ret = clk_set_rate_range_nolock(clk, min, max);
2569 
2570 	clk_prepare_unlock();
2571 
2572 	return ret;
2573 }
2574 EXPORT_SYMBOL_GPL(clk_set_rate_range);
2575 
2576 /**
2577  * clk_set_min_rate - set a minimum clock rate for a clock source
2578  * @clk: clock source
2579  * @rate: desired minimum clock rate in Hz, inclusive
2580  *
2581  * Returns success (0) or negative errno.
2582  */
2583 int clk_set_min_rate(struct clk *clk, unsigned long rate)
2584 {
2585 	if (!clk)
2586 		return 0;
2587 
2588 	trace_clk_set_min_rate(clk->core, rate);
2589 
2590 	return clk_set_rate_range(clk, rate, clk->max_rate);
2591 }
2592 EXPORT_SYMBOL_GPL(clk_set_min_rate);
2593 
2594 /**
2595  * clk_set_max_rate - set a maximum clock rate for a clock source
2596  * @clk: clock source
2597  * @rate: desired maximum clock rate in Hz, inclusive
2598  *
2599  * Returns success (0) or negative errno.
2600  */
2601 int clk_set_max_rate(struct clk *clk, unsigned long rate)
2602 {
2603 	if (!clk)
2604 		return 0;
2605 
2606 	trace_clk_set_max_rate(clk->core, rate);
2607 
2608 	return clk_set_rate_range(clk, clk->min_rate, rate);
2609 }
2610 EXPORT_SYMBOL_GPL(clk_set_max_rate);
2611 
2612 /**
2613  * clk_get_parent - return the parent of a clk
2614  * @clk: the clk whose parent gets returned
2615  *
2616  * Simply returns clk->parent.  Returns NULL if clk is NULL.
2617  */
2618 struct clk *clk_get_parent(struct clk *clk)
2619 {
2620 	struct clk *parent;
2621 
2622 	if (!clk)
2623 		return NULL;
2624 
2625 	clk_prepare_lock();
2626 	/* TODO: Create a per-user clk and change callers to call clk_put */
2627 	parent = !clk->core->parent ? NULL : clk->core->parent->hw->clk;
2628 	clk_prepare_unlock();
2629 
2630 	return parent;
2631 }
2632 EXPORT_SYMBOL_GPL(clk_get_parent);
2633 
2634 static struct clk_core *__clk_init_parent(struct clk_core *core)
2635 {
2636 	u8 index = 0;
2637 
2638 	if (core->num_parents > 1 && core->ops->get_parent)
2639 		index = core->ops->get_parent(core->hw);
2640 
2641 	return clk_core_get_parent_by_index(core, index);
2642 }
2643 
2644 static void clk_core_reparent(struct clk_core *core,
2645 				  struct clk_core *new_parent)
2646 {
2647 	clk_reparent(core, new_parent);
2648 	__clk_recalc_accuracies(core);
2649 	__clk_recalc_rates(core, true, POST_RATE_CHANGE);
2650 }
2651 
2652 void clk_hw_reparent(struct clk_hw *hw, struct clk_hw *new_parent)
2653 {
2654 	if (!hw)
2655 		return;
2656 
2657 	clk_core_reparent(hw->core, !new_parent ? NULL : new_parent->core);
2658 }
2659 
2660 /**
2661  * clk_has_parent - check if a clock is a possible parent for another
2662  * @clk: clock source
2663  * @parent: parent clock source
2664  *
2665  * This function can be used in drivers that need to check that a clock can be
2666  * the parent of another without actually changing the parent.
2667  *
2668  * Returns true if @parent is a possible parent for @clk, false otherwise.
2669  */
2670 bool clk_has_parent(const struct clk *clk, const struct clk *parent)
2671 {
2672 	/* NULL clocks should be nops, so return success if either is NULL. */
2673 	if (!clk || !parent)
2674 		return true;
2675 
2676 	return clk_core_has_parent(clk->core, parent->core);
2677 }
2678 EXPORT_SYMBOL_GPL(clk_has_parent);
2679 
2680 static int clk_core_set_parent_nolock(struct clk_core *core,
2681 				      struct clk_core *parent)
2682 {
2683 	int ret = 0;
2684 	int p_index = 0;
2685 	unsigned long p_rate = 0;
2686 
2687 	lockdep_assert_held(&prepare_lock);
2688 
2689 	if (!core)
2690 		return 0;
2691 
2692 	if (core->parent == parent)
2693 		return 0;
2694 
2695 	/* verify ops for multi-parent clks */
2696 	if (core->num_parents > 1 && !core->ops->set_parent)
2697 		return -EPERM;
2698 
2699 	/* check that we are allowed to re-parent if the clock is in use */
2700 	if ((core->flags & CLK_SET_PARENT_GATE) && core->prepare_count)
2701 		return -EBUSY;
2702 
2703 	if (clk_core_rate_is_protected(core))
2704 		return -EBUSY;
2705 
2706 	/* try finding the new parent index */
2707 	if (parent) {
2708 		p_index = clk_fetch_parent_index(core, parent);
2709 		if (p_index < 0) {
2710 			pr_debug("%s: clk %s can not be parent of clk %s\n",
2711 					__func__, parent->name, core->name);
2712 			return p_index;
2713 		}
2714 		p_rate = parent->rate;
2715 	}
2716 
2717 	ret = clk_pm_runtime_get(core);
2718 	if (ret)
2719 		return ret;
2720 
2721 	/* propagate PRE_RATE_CHANGE notifications */
2722 	ret = __clk_speculate_rates(core, p_rate);
2723 
2724 	/* abort if a driver objects */
2725 	if (ret & NOTIFY_STOP_MASK)
2726 		goto runtime_put;
2727 
2728 	/* do the re-parent */
2729 	ret = __clk_set_parent(core, parent, p_index);
2730 
2731 	/* propagate rate an accuracy recalculation accordingly */
2732 	if (ret) {
2733 		__clk_recalc_rates(core, true, ABORT_RATE_CHANGE);
2734 	} else {
2735 		__clk_recalc_rates(core, true, POST_RATE_CHANGE);
2736 		__clk_recalc_accuracies(core);
2737 	}
2738 
2739 runtime_put:
2740 	clk_pm_runtime_put(core);
2741 
2742 	return ret;
2743 }
2744 
2745 int clk_hw_set_parent(struct clk_hw *hw, struct clk_hw *parent)
2746 {
2747 	return clk_core_set_parent_nolock(hw->core, parent->core);
2748 }
2749 EXPORT_SYMBOL_GPL(clk_hw_set_parent);
2750 
2751 /**
2752  * clk_set_parent - switch the parent of a mux clk
2753  * @clk: the mux clk whose input we are switching
2754  * @parent: the new input to clk
2755  *
2756  * Re-parent clk to use parent as its new input source.  If clk is in
2757  * prepared state, the clk will get enabled for the duration of this call. If
2758  * that's not acceptable for a specific clk (Eg: the consumer can't handle
2759  * that, the reparenting is glitchy in hardware, etc), use the
2760  * CLK_SET_PARENT_GATE flag to allow reparenting only when clk is unprepared.
2761  *
2762  * After successfully changing clk's parent clk_set_parent will update the
2763  * clk topology, sysfs topology and propagate rate recalculation via
2764  * __clk_recalc_rates.
2765  *
2766  * Returns 0 on success, -EERROR otherwise.
2767  */
2768 int clk_set_parent(struct clk *clk, struct clk *parent)
2769 {
2770 	int ret;
2771 
2772 	if (!clk)
2773 		return 0;
2774 
2775 	clk_prepare_lock();
2776 
2777 	if (clk->exclusive_count)
2778 		clk_core_rate_unprotect(clk->core);
2779 
2780 	ret = clk_core_set_parent_nolock(clk->core,
2781 					 parent ? parent->core : NULL);
2782 
2783 	if (clk->exclusive_count)
2784 		clk_core_rate_protect(clk->core);
2785 
2786 	clk_prepare_unlock();
2787 
2788 	return ret;
2789 }
2790 EXPORT_SYMBOL_GPL(clk_set_parent);
2791 
2792 static int clk_core_set_phase_nolock(struct clk_core *core, int degrees)
2793 {
2794 	int ret = -EINVAL;
2795 
2796 	lockdep_assert_held(&prepare_lock);
2797 
2798 	if (!core)
2799 		return 0;
2800 
2801 	if (clk_core_rate_is_protected(core))
2802 		return -EBUSY;
2803 
2804 	trace_clk_set_phase(core, degrees);
2805 
2806 	if (core->ops->set_phase) {
2807 		ret = core->ops->set_phase(core->hw, degrees);
2808 		if (!ret)
2809 			core->phase = degrees;
2810 	}
2811 
2812 	trace_clk_set_phase_complete(core, degrees);
2813 
2814 	return ret;
2815 }
2816 
2817 /**
2818  * clk_set_phase - adjust the phase shift of a clock signal
2819  * @clk: clock signal source
2820  * @degrees: number of degrees the signal is shifted
2821  *
2822  * Shifts the phase of a clock signal by the specified
2823  * degrees. Returns 0 on success, -EERROR otherwise.
2824  *
2825  * This function makes no distinction about the input or reference
2826  * signal that we adjust the clock signal phase against. For example
2827  * phase locked-loop clock signal generators we may shift phase with
2828  * respect to feedback clock signal input, but for other cases the
2829  * clock phase may be shifted with respect to some other, unspecified
2830  * signal.
2831  *
2832  * Additionally the concept of phase shift does not propagate through
2833  * the clock tree hierarchy, which sets it apart from clock rates and
2834  * clock accuracy. A parent clock phase attribute does not have an
2835  * impact on the phase attribute of a child clock.
2836  */
2837 int clk_set_phase(struct clk *clk, int degrees)
2838 {
2839 	int ret;
2840 
2841 	if (!clk)
2842 		return 0;
2843 
2844 	/* sanity check degrees */
2845 	degrees %= 360;
2846 	if (degrees < 0)
2847 		degrees += 360;
2848 
2849 	clk_prepare_lock();
2850 
2851 	if (clk->exclusive_count)
2852 		clk_core_rate_unprotect(clk->core);
2853 
2854 	ret = clk_core_set_phase_nolock(clk->core, degrees);
2855 
2856 	if (clk->exclusive_count)
2857 		clk_core_rate_protect(clk->core);
2858 
2859 	clk_prepare_unlock();
2860 
2861 	return ret;
2862 }
2863 EXPORT_SYMBOL_GPL(clk_set_phase);
2864 
2865 static int clk_core_get_phase(struct clk_core *core)
2866 {
2867 	int ret;
2868 
2869 	lockdep_assert_held(&prepare_lock);
2870 	if (!core->ops->get_phase)
2871 		return 0;
2872 
2873 	/* Always try to update cached phase if possible */
2874 	ret = core->ops->get_phase(core->hw);
2875 	if (ret >= 0)
2876 		core->phase = ret;
2877 
2878 	return ret;
2879 }
2880 
2881 /**
2882  * clk_get_phase - return the phase shift of a clock signal
2883  * @clk: clock signal source
2884  *
2885  * Returns the phase shift of a clock node in degrees, otherwise returns
2886  * -EERROR.
2887  */
2888 int clk_get_phase(struct clk *clk)
2889 {
2890 	int ret;
2891 
2892 	if (!clk)
2893 		return 0;
2894 
2895 	clk_prepare_lock();
2896 	ret = clk_core_get_phase(clk->core);
2897 	clk_prepare_unlock();
2898 
2899 	return ret;
2900 }
2901 EXPORT_SYMBOL_GPL(clk_get_phase);
2902 
2903 static void clk_core_reset_duty_cycle_nolock(struct clk_core *core)
2904 {
2905 	/* Assume a default value of 50% */
2906 	core->duty.num = 1;
2907 	core->duty.den = 2;
2908 }
2909 
2910 static int clk_core_update_duty_cycle_parent_nolock(struct clk_core *core);
2911 
2912 static int clk_core_update_duty_cycle_nolock(struct clk_core *core)
2913 {
2914 	struct clk_duty *duty = &core->duty;
2915 	int ret = 0;
2916 
2917 	if (!core->ops->get_duty_cycle)
2918 		return clk_core_update_duty_cycle_parent_nolock(core);
2919 
2920 	ret = core->ops->get_duty_cycle(core->hw, duty);
2921 	if (ret)
2922 		goto reset;
2923 
2924 	/* Don't trust the clock provider too much */
2925 	if (duty->den == 0 || duty->num > duty->den) {
2926 		ret = -EINVAL;
2927 		goto reset;
2928 	}
2929 
2930 	return 0;
2931 
2932 reset:
2933 	clk_core_reset_duty_cycle_nolock(core);
2934 	return ret;
2935 }
2936 
2937 static int clk_core_update_duty_cycle_parent_nolock(struct clk_core *core)
2938 {
2939 	int ret = 0;
2940 
2941 	if (core->parent &&
2942 	    core->flags & CLK_DUTY_CYCLE_PARENT) {
2943 		ret = clk_core_update_duty_cycle_nolock(core->parent);
2944 		memcpy(&core->duty, &core->parent->duty, sizeof(core->duty));
2945 	} else {
2946 		clk_core_reset_duty_cycle_nolock(core);
2947 	}
2948 
2949 	return ret;
2950 }
2951 
2952 static int clk_core_set_duty_cycle_parent_nolock(struct clk_core *core,
2953 						 struct clk_duty *duty);
2954 
2955 static int clk_core_set_duty_cycle_nolock(struct clk_core *core,
2956 					  struct clk_duty *duty)
2957 {
2958 	int ret;
2959 
2960 	lockdep_assert_held(&prepare_lock);
2961 
2962 	if (clk_core_rate_is_protected(core))
2963 		return -EBUSY;
2964 
2965 	trace_clk_set_duty_cycle(core, duty);
2966 
2967 	if (!core->ops->set_duty_cycle)
2968 		return clk_core_set_duty_cycle_parent_nolock(core, duty);
2969 
2970 	ret = core->ops->set_duty_cycle(core->hw, duty);
2971 	if (!ret)
2972 		memcpy(&core->duty, duty, sizeof(*duty));
2973 
2974 	trace_clk_set_duty_cycle_complete(core, duty);
2975 
2976 	return ret;
2977 }
2978 
2979 static int clk_core_set_duty_cycle_parent_nolock(struct clk_core *core,
2980 						 struct clk_duty *duty)
2981 {
2982 	int ret = 0;
2983 
2984 	if (core->parent &&
2985 	    core->flags & (CLK_DUTY_CYCLE_PARENT | CLK_SET_RATE_PARENT)) {
2986 		ret = clk_core_set_duty_cycle_nolock(core->parent, duty);
2987 		memcpy(&core->duty, &core->parent->duty, sizeof(core->duty));
2988 	}
2989 
2990 	return ret;
2991 }
2992 
2993 /**
2994  * clk_set_duty_cycle - adjust the duty cycle ratio of a clock signal
2995  * @clk: clock signal source
2996  * @num: numerator of the duty cycle ratio to be applied
2997  * @den: denominator of the duty cycle ratio to be applied
2998  *
2999  * Apply the duty cycle ratio if the ratio is valid and the clock can
3000  * perform this operation
3001  *
3002  * Returns (0) on success, a negative errno otherwise.
3003  */
3004 int clk_set_duty_cycle(struct clk *clk, unsigned int num, unsigned int den)
3005 {
3006 	int ret;
3007 	struct clk_duty duty;
3008 
3009 	if (!clk)
3010 		return 0;
3011 
3012 	/* sanity check the ratio */
3013 	if (den == 0 || num > den)
3014 		return -EINVAL;
3015 
3016 	duty.num = num;
3017 	duty.den = den;
3018 
3019 	clk_prepare_lock();
3020 
3021 	if (clk->exclusive_count)
3022 		clk_core_rate_unprotect(clk->core);
3023 
3024 	ret = clk_core_set_duty_cycle_nolock(clk->core, &duty);
3025 
3026 	if (clk->exclusive_count)
3027 		clk_core_rate_protect(clk->core);
3028 
3029 	clk_prepare_unlock();
3030 
3031 	return ret;
3032 }
3033 EXPORT_SYMBOL_GPL(clk_set_duty_cycle);
3034 
3035 static int clk_core_get_scaled_duty_cycle(struct clk_core *core,
3036 					  unsigned int scale)
3037 {
3038 	struct clk_duty *duty = &core->duty;
3039 	int ret;
3040 
3041 	clk_prepare_lock();
3042 
3043 	ret = clk_core_update_duty_cycle_nolock(core);
3044 	if (!ret)
3045 		ret = mult_frac(scale, duty->num, duty->den);
3046 
3047 	clk_prepare_unlock();
3048 
3049 	return ret;
3050 }
3051 
3052 /**
3053  * clk_get_scaled_duty_cycle - return the duty cycle ratio of a clock signal
3054  * @clk: clock signal source
3055  * @scale: scaling factor to be applied to represent the ratio as an integer
3056  *
3057  * Returns the duty cycle ratio of a clock node multiplied by the provided
3058  * scaling factor, or negative errno on error.
3059  */
3060 int clk_get_scaled_duty_cycle(struct clk *clk, unsigned int scale)
3061 {
3062 	if (!clk)
3063 		return 0;
3064 
3065 	return clk_core_get_scaled_duty_cycle(clk->core, scale);
3066 }
3067 EXPORT_SYMBOL_GPL(clk_get_scaled_duty_cycle);
3068 
3069 /**
3070  * clk_is_match - check if two clk's point to the same hardware clock
3071  * @p: clk compared against q
3072  * @q: clk compared against p
3073  *
3074  * Returns true if the two struct clk pointers both point to the same hardware
3075  * clock node. Put differently, returns true if struct clk *p and struct clk *q
3076  * share the same struct clk_core object.
3077  *
3078  * Returns false otherwise. Note that two NULL clks are treated as matching.
3079  */
3080 bool clk_is_match(const struct clk *p, const struct clk *q)
3081 {
3082 	/* trivial case: identical struct clk's or both NULL */
3083 	if (p == q)
3084 		return true;
3085 
3086 	/* true if clk->core pointers match. Avoid dereferencing garbage */
3087 	if (!IS_ERR_OR_NULL(p) && !IS_ERR_OR_NULL(q))
3088 		if (p->core == q->core)
3089 			return true;
3090 
3091 	return false;
3092 }
3093 EXPORT_SYMBOL_GPL(clk_is_match);
3094 
3095 /***        debugfs support        ***/
3096 
3097 #ifdef CONFIG_DEBUG_FS
3098 #include <linux/debugfs.h>
3099 
3100 static struct dentry *rootdir;
3101 static int inited = 0;
3102 static DEFINE_MUTEX(clk_debug_lock);
3103 static HLIST_HEAD(clk_debug_list);
3104 
3105 static struct hlist_head *orphan_list[] = {
3106 	&clk_orphan_list,
3107 	NULL,
3108 };
3109 
3110 static void clk_summary_show_one(struct seq_file *s, struct clk_core *c,
3111 				 int level)
3112 {
3113 	int phase;
3114 
3115 	seq_printf(s, "%*s%-*s %7d %8d %8d %11lu %10lu ",
3116 		   level * 3 + 1, "",
3117 		   30 - level * 3, c->name,
3118 		   c->enable_count, c->prepare_count, c->protect_count,
3119 		   clk_core_get_rate_recalc(c),
3120 		   clk_core_get_accuracy_recalc(c));
3121 
3122 	phase = clk_core_get_phase(c);
3123 	if (phase >= 0)
3124 		seq_printf(s, "%5d", phase);
3125 	else
3126 		seq_puts(s, "-----");
3127 
3128 	seq_printf(s, " %6d", clk_core_get_scaled_duty_cycle(c, 100000));
3129 
3130 	if (c->ops->is_enabled)
3131 		seq_printf(s, " %9c\n", clk_core_is_enabled(c) ? 'Y' : 'N');
3132 	else if (!c->ops->enable)
3133 		seq_printf(s, " %9c\n", 'Y');
3134 	else
3135 		seq_printf(s, " %9c\n", '?');
3136 }
3137 
3138 static void clk_summary_show_subtree(struct seq_file *s, struct clk_core *c,
3139 				     int level)
3140 {
3141 	struct clk_core *child;
3142 
3143 	clk_pm_runtime_get(c);
3144 	clk_summary_show_one(s, c, level);
3145 	clk_pm_runtime_put(c);
3146 
3147 	hlist_for_each_entry(child, &c->children, child_node)
3148 		clk_summary_show_subtree(s, child, level + 1);
3149 }
3150 
3151 static int clk_summary_show(struct seq_file *s, void *data)
3152 {
3153 	struct clk_core *c;
3154 	struct hlist_head **lists = (struct hlist_head **)s->private;
3155 
3156 	seq_puts(s, "                                 enable  prepare  protect                                duty  hardware\n");
3157 	seq_puts(s, "   clock                          count    count    count        rate   accuracy phase  cycle    enable\n");
3158 	seq_puts(s, "-------------------------------------------------------------------------------------------------------\n");
3159 
3160 	clk_prepare_lock();
3161 
3162 	for (; *lists; lists++)
3163 		hlist_for_each_entry(c, *lists, child_node)
3164 			clk_summary_show_subtree(s, c, 0);
3165 
3166 	clk_prepare_unlock();
3167 
3168 	return 0;
3169 }
3170 DEFINE_SHOW_ATTRIBUTE(clk_summary);
3171 
3172 static void clk_dump_one(struct seq_file *s, struct clk_core *c, int level)
3173 {
3174 	int phase;
3175 	unsigned long min_rate, max_rate;
3176 
3177 	clk_core_get_boundaries(c, &min_rate, &max_rate);
3178 
3179 	/* This should be JSON format, i.e. elements separated with a comma */
3180 	seq_printf(s, "\"%s\": { ", c->name);
3181 	seq_printf(s, "\"enable_count\": %d,", c->enable_count);
3182 	seq_printf(s, "\"prepare_count\": %d,", c->prepare_count);
3183 	seq_printf(s, "\"protect_count\": %d,", c->protect_count);
3184 	seq_printf(s, "\"rate\": %lu,", clk_core_get_rate_recalc(c));
3185 	seq_printf(s, "\"min_rate\": %lu,", min_rate);
3186 	seq_printf(s, "\"max_rate\": %lu,", max_rate);
3187 	seq_printf(s, "\"accuracy\": %lu,", clk_core_get_accuracy_recalc(c));
3188 	phase = clk_core_get_phase(c);
3189 	if (phase >= 0)
3190 		seq_printf(s, "\"phase\": %d,", phase);
3191 	seq_printf(s, "\"duty_cycle\": %u",
3192 		   clk_core_get_scaled_duty_cycle(c, 100000));
3193 }
3194 
3195 static void clk_dump_subtree(struct seq_file *s, struct clk_core *c, int level)
3196 {
3197 	struct clk_core *child;
3198 
3199 	clk_dump_one(s, c, level);
3200 
3201 	hlist_for_each_entry(child, &c->children, child_node) {
3202 		seq_putc(s, ',');
3203 		clk_dump_subtree(s, child, level + 1);
3204 	}
3205 
3206 	seq_putc(s, '}');
3207 }
3208 
3209 static int clk_dump_show(struct seq_file *s, void *data)
3210 {
3211 	struct clk_core *c;
3212 	bool first_node = true;
3213 	struct hlist_head **lists = (struct hlist_head **)s->private;
3214 
3215 	seq_putc(s, '{');
3216 	clk_prepare_lock();
3217 
3218 	for (; *lists; lists++) {
3219 		hlist_for_each_entry(c, *lists, child_node) {
3220 			if (!first_node)
3221 				seq_putc(s, ',');
3222 			first_node = false;
3223 			clk_dump_subtree(s, c, 0);
3224 		}
3225 	}
3226 
3227 	clk_prepare_unlock();
3228 
3229 	seq_puts(s, "}\n");
3230 	return 0;
3231 }
3232 DEFINE_SHOW_ATTRIBUTE(clk_dump);
3233 
3234 #undef CLOCK_ALLOW_WRITE_DEBUGFS
3235 #ifdef CLOCK_ALLOW_WRITE_DEBUGFS
3236 /*
3237  * This can be dangerous, therefore don't provide any real compile time
3238  * configuration option for this feature.
3239  * People who want to use this will need to modify the source code directly.
3240  */
3241 static int clk_rate_set(void *data, u64 val)
3242 {
3243 	struct clk_core *core = data;
3244 	int ret;
3245 
3246 	clk_prepare_lock();
3247 	ret = clk_core_set_rate_nolock(core, val);
3248 	clk_prepare_unlock();
3249 
3250 	return ret;
3251 }
3252 
3253 #define clk_rate_mode	0644
3254 
3255 static int clk_prepare_enable_set(void *data, u64 val)
3256 {
3257 	struct clk_core *core = data;
3258 	int ret = 0;
3259 
3260 	if (val)
3261 		ret = clk_prepare_enable(core->hw->clk);
3262 	else
3263 		clk_disable_unprepare(core->hw->clk);
3264 
3265 	return ret;
3266 }
3267 
3268 static int clk_prepare_enable_get(void *data, u64 *val)
3269 {
3270 	struct clk_core *core = data;
3271 
3272 	*val = core->enable_count && core->prepare_count;
3273 	return 0;
3274 }
3275 
3276 DEFINE_DEBUGFS_ATTRIBUTE(clk_prepare_enable_fops, clk_prepare_enable_get,
3277 			 clk_prepare_enable_set, "%llu\n");
3278 
3279 #else
3280 #define clk_rate_set	NULL
3281 #define clk_rate_mode	0444
3282 #endif
3283 
3284 static int clk_rate_get(void *data, u64 *val)
3285 {
3286 	struct clk_core *core = data;
3287 
3288 	clk_prepare_lock();
3289 	*val = clk_core_get_rate_recalc(core);
3290 	clk_prepare_unlock();
3291 
3292 	return 0;
3293 }
3294 
3295 DEFINE_DEBUGFS_ATTRIBUTE(clk_rate_fops, clk_rate_get, clk_rate_set, "%llu\n");
3296 
3297 static const struct {
3298 	unsigned long flag;
3299 	const char *name;
3300 } clk_flags[] = {
3301 #define ENTRY(f) { f, #f }
3302 	ENTRY(CLK_SET_RATE_GATE),
3303 	ENTRY(CLK_SET_PARENT_GATE),
3304 	ENTRY(CLK_SET_RATE_PARENT),
3305 	ENTRY(CLK_IGNORE_UNUSED),
3306 	ENTRY(CLK_GET_RATE_NOCACHE),
3307 	ENTRY(CLK_SET_RATE_NO_REPARENT),
3308 	ENTRY(CLK_GET_ACCURACY_NOCACHE),
3309 	ENTRY(CLK_RECALC_NEW_RATES),
3310 	ENTRY(CLK_SET_RATE_UNGATE),
3311 	ENTRY(CLK_IS_CRITICAL),
3312 	ENTRY(CLK_OPS_PARENT_ENABLE),
3313 	ENTRY(CLK_DUTY_CYCLE_PARENT),
3314 #undef ENTRY
3315 };
3316 
3317 static int clk_flags_show(struct seq_file *s, void *data)
3318 {
3319 	struct clk_core *core = s->private;
3320 	unsigned long flags = core->flags;
3321 	unsigned int i;
3322 
3323 	for (i = 0; flags && i < ARRAY_SIZE(clk_flags); i++) {
3324 		if (flags & clk_flags[i].flag) {
3325 			seq_printf(s, "%s\n", clk_flags[i].name);
3326 			flags &= ~clk_flags[i].flag;
3327 		}
3328 	}
3329 	if (flags) {
3330 		/* Unknown flags */
3331 		seq_printf(s, "0x%lx\n", flags);
3332 	}
3333 
3334 	return 0;
3335 }
3336 DEFINE_SHOW_ATTRIBUTE(clk_flags);
3337 
3338 static void possible_parent_show(struct seq_file *s, struct clk_core *core,
3339 				 unsigned int i, char terminator)
3340 {
3341 	struct clk_core *parent;
3342 
3343 	/*
3344 	 * Go through the following options to fetch a parent's name.
3345 	 *
3346 	 * 1. Fetch the registered parent clock and use its name
3347 	 * 2. Use the global (fallback) name if specified
3348 	 * 3. Use the local fw_name if provided
3349 	 * 4. Fetch parent clock's clock-output-name if DT index was set
3350 	 *
3351 	 * This may still fail in some cases, such as when the parent is
3352 	 * specified directly via a struct clk_hw pointer, but it isn't
3353 	 * registered (yet).
3354 	 */
3355 	parent = clk_core_get_parent_by_index(core, i);
3356 	if (parent)
3357 		seq_puts(s, parent->name);
3358 	else if (core->parents[i].name)
3359 		seq_puts(s, core->parents[i].name);
3360 	else if (core->parents[i].fw_name)
3361 		seq_printf(s, "<%s>(fw)", core->parents[i].fw_name);
3362 	else if (core->parents[i].index >= 0)
3363 		seq_puts(s,
3364 			 of_clk_get_parent_name(core->of_node,
3365 						core->parents[i].index));
3366 	else
3367 		seq_puts(s, "(missing)");
3368 
3369 	seq_putc(s, terminator);
3370 }
3371 
3372 static int possible_parents_show(struct seq_file *s, void *data)
3373 {
3374 	struct clk_core *core = s->private;
3375 	int i;
3376 
3377 	for (i = 0; i < core->num_parents - 1; i++)
3378 		possible_parent_show(s, core, i, ' ');
3379 
3380 	possible_parent_show(s, core, i, '\n');
3381 
3382 	return 0;
3383 }
3384 DEFINE_SHOW_ATTRIBUTE(possible_parents);
3385 
3386 static int current_parent_show(struct seq_file *s, void *data)
3387 {
3388 	struct clk_core *core = s->private;
3389 
3390 	if (core->parent)
3391 		seq_printf(s, "%s\n", core->parent->name);
3392 
3393 	return 0;
3394 }
3395 DEFINE_SHOW_ATTRIBUTE(current_parent);
3396 
3397 #ifdef CLOCK_ALLOW_WRITE_DEBUGFS
3398 static ssize_t current_parent_write(struct file *file, const char __user *ubuf,
3399 				    size_t count, loff_t *ppos)
3400 {
3401 	struct seq_file *s = file->private_data;
3402 	struct clk_core *core = s->private;
3403 	struct clk_core *parent;
3404 	u8 idx;
3405 	int err;
3406 
3407 	err = kstrtou8_from_user(ubuf, count, 0, &idx);
3408 	if (err < 0)
3409 		return err;
3410 
3411 	parent = clk_core_get_parent_by_index(core, idx);
3412 	if (!parent)
3413 		return -ENOENT;
3414 
3415 	clk_prepare_lock();
3416 	err = clk_core_set_parent_nolock(core, parent);
3417 	clk_prepare_unlock();
3418 	if (err)
3419 		return err;
3420 
3421 	return count;
3422 }
3423 
3424 static const struct file_operations current_parent_rw_fops = {
3425 	.open		= current_parent_open,
3426 	.write		= current_parent_write,
3427 	.read		= seq_read,
3428 	.llseek		= seq_lseek,
3429 	.release	= single_release,
3430 };
3431 #endif
3432 
3433 static int clk_duty_cycle_show(struct seq_file *s, void *data)
3434 {
3435 	struct clk_core *core = s->private;
3436 	struct clk_duty *duty = &core->duty;
3437 
3438 	seq_printf(s, "%u/%u\n", duty->num, duty->den);
3439 
3440 	return 0;
3441 }
3442 DEFINE_SHOW_ATTRIBUTE(clk_duty_cycle);
3443 
3444 static int clk_min_rate_show(struct seq_file *s, void *data)
3445 {
3446 	struct clk_core *core = s->private;
3447 	unsigned long min_rate, max_rate;
3448 
3449 	clk_prepare_lock();
3450 	clk_core_get_boundaries(core, &min_rate, &max_rate);
3451 	clk_prepare_unlock();
3452 	seq_printf(s, "%lu\n", min_rate);
3453 
3454 	return 0;
3455 }
3456 DEFINE_SHOW_ATTRIBUTE(clk_min_rate);
3457 
3458 static int clk_max_rate_show(struct seq_file *s, void *data)
3459 {
3460 	struct clk_core *core = s->private;
3461 	unsigned long min_rate, max_rate;
3462 
3463 	clk_prepare_lock();
3464 	clk_core_get_boundaries(core, &min_rate, &max_rate);
3465 	clk_prepare_unlock();
3466 	seq_printf(s, "%lu\n", max_rate);
3467 
3468 	return 0;
3469 }
3470 DEFINE_SHOW_ATTRIBUTE(clk_max_rate);
3471 
3472 static void clk_debug_create_one(struct clk_core *core, struct dentry *pdentry)
3473 {
3474 	struct dentry *root;
3475 
3476 	if (!core || !pdentry)
3477 		return;
3478 
3479 	root = debugfs_create_dir(core->name, pdentry);
3480 	core->dentry = root;
3481 
3482 	debugfs_create_file("clk_rate", clk_rate_mode, root, core,
3483 			    &clk_rate_fops);
3484 	debugfs_create_file("clk_min_rate", 0444, root, core, &clk_min_rate_fops);
3485 	debugfs_create_file("clk_max_rate", 0444, root, core, &clk_max_rate_fops);
3486 	debugfs_create_ulong("clk_accuracy", 0444, root, &core->accuracy);
3487 	debugfs_create_u32("clk_phase", 0444, root, &core->phase);
3488 	debugfs_create_file("clk_flags", 0444, root, core, &clk_flags_fops);
3489 	debugfs_create_u32("clk_prepare_count", 0444, root, &core->prepare_count);
3490 	debugfs_create_u32("clk_enable_count", 0444, root, &core->enable_count);
3491 	debugfs_create_u32("clk_protect_count", 0444, root, &core->protect_count);
3492 	debugfs_create_u32("clk_notifier_count", 0444, root, &core->notifier_count);
3493 	debugfs_create_file("clk_duty_cycle", 0444, root, core,
3494 			    &clk_duty_cycle_fops);
3495 #ifdef CLOCK_ALLOW_WRITE_DEBUGFS
3496 	debugfs_create_file("clk_prepare_enable", 0644, root, core,
3497 			    &clk_prepare_enable_fops);
3498 
3499 	if (core->num_parents > 1)
3500 		debugfs_create_file("clk_parent", 0644, root, core,
3501 				    &current_parent_rw_fops);
3502 	else
3503 #endif
3504 	if (core->num_parents > 0)
3505 		debugfs_create_file("clk_parent", 0444, root, core,
3506 				    &current_parent_fops);
3507 
3508 	if (core->num_parents > 1)
3509 		debugfs_create_file("clk_possible_parents", 0444, root, core,
3510 				    &possible_parents_fops);
3511 
3512 	if (core->ops->debug_init)
3513 		core->ops->debug_init(core->hw, core->dentry);
3514 }
3515 
3516 /**
3517  * clk_debug_register - add a clk node to the debugfs clk directory
3518  * @core: the clk being added to the debugfs clk directory
3519  *
3520  * Dynamically adds a clk to the debugfs clk directory if debugfs has been
3521  * initialized.  Otherwise it bails out early since the debugfs clk directory
3522  * will be created lazily by clk_debug_init as part of a late_initcall.
3523  */
3524 static void clk_debug_register(struct clk_core *core)
3525 {
3526 	mutex_lock(&clk_debug_lock);
3527 	hlist_add_head(&core->debug_node, &clk_debug_list);
3528 	if (inited)
3529 		clk_debug_create_one(core, rootdir);
3530 	mutex_unlock(&clk_debug_lock);
3531 }
3532 
3533  /**
3534  * clk_debug_unregister - remove a clk node from the debugfs clk directory
3535  * @core: the clk being removed from the debugfs clk directory
3536  *
3537  * Dynamically removes a clk and all its child nodes from the
3538  * debugfs clk directory if clk->dentry points to debugfs created by
3539  * clk_debug_register in __clk_core_init.
3540  */
3541 static void clk_debug_unregister(struct clk_core *core)
3542 {
3543 	mutex_lock(&clk_debug_lock);
3544 	hlist_del_init(&core->debug_node);
3545 	debugfs_remove_recursive(core->dentry);
3546 	core->dentry = NULL;
3547 	mutex_unlock(&clk_debug_lock);
3548 }
3549 
3550 /**
3551  * clk_debug_init - lazily populate the debugfs clk directory
3552  *
3553  * clks are often initialized very early during boot before memory can be
3554  * dynamically allocated and well before debugfs is setup. This function
3555  * populates the debugfs clk directory once at boot-time when we know that
3556  * debugfs is setup. It should only be called once at boot-time, all other clks
3557  * added dynamically will be done so with clk_debug_register.
3558  */
3559 static int __init clk_debug_init(void)
3560 {
3561 	struct clk_core *core;
3562 
3563 #ifdef CLOCK_ALLOW_WRITE_DEBUGFS
3564 	pr_warn("\n");
3565 	pr_warn("********************************************************************\n");
3566 	pr_warn("**     NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE           **\n");
3567 	pr_warn("**                                                                **\n");
3568 	pr_warn("**  WRITEABLE clk DebugFS SUPPORT HAS BEEN ENABLED IN THIS KERNEL **\n");
3569 	pr_warn("**                                                                **\n");
3570 	pr_warn("** This means that this kernel is built to expose clk operations  **\n");
3571 	pr_warn("** such as parent or rate setting, enabling, disabling, etc.      **\n");
3572 	pr_warn("** to userspace, which may compromise security on your system.    **\n");
3573 	pr_warn("**                                                                **\n");
3574 	pr_warn("** If you see this message and you are not debugging the          **\n");
3575 	pr_warn("** kernel, report this immediately to your vendor!                **\n");
3576 	pr_warn("**                                                                **\n");
3577 	pr_warn("**     NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE           **\n");
3578 	pr_warn("********************************************************************\n");
3579 #endif
3580 
3581 	rootdir = debugfs_create_dir("clk", NULL);
3582 
3583 	debugfs_create_file("clk_summary", 0444, rootdir, &all_lists,
3584 			    &clk_summary_fops);
3585 	debugfs_create_file("clk_dump", 0444, rootdir, &all_lists,
3586 			    &clk_dump_fops);
3587 	debugfs_create_file("clk_orphan_summary", 0444, rootdir, &orphan_list,
3588 			    &clk_summary_fops);
3589 	debugfs_create_file("clk_orphan_dump", 0444, rootdir, &orphan_list,
3590 			    &clk_dump_fops);
3591 
3592 	mutex_lock(&clk_debug_lock);
3593 	hlist_for_each_entry(core, &clk_debug_list, debug_node)
3594 		clk_debug_create_one(core, rootdir);
3595 
3596 	inited = 1;
3597 	mutex_unlock(&clk_debug_lock);
3598 
3599 	return 0;
3600 }
3601 late_initcall(clk_debug_init);
3602 #else
3603 static inline void clk_debug_register(struct clk_core *core) { }
3604 static inline void clk_debug_unregister(struct clk_core *core)
3605 {
3606 }
3607 #endif
3608 
3609 static void clk_core_reparent_orphans_nolock(void)
3610 {
3611 	struct clk_core *orphan;
3612 	struct hlist_node *tmp2;
3613 
3614 	/*
3615 	 * walk the list of orphan clocks and reparent any that newly finds a
3616 	 * parent.
3617 	 */
3618 	hlist_for_each_entry_safe(orphan, tmp2, &clk_orphan_list, child_node) {
3619 		struct clk_core *parent = __clk_init_parent(orphan);
3620 
3621 		/*
3622 		 * We need to use __clk_set_parent_before() and _after() to
3623 		 * properly migrate any prepare/enable count of the orphan
3624 		 * clock. This is important for CLK_IS_CRITICAL clocks, which
3625 		 * are enabled during init but might not have a parent yet.
3626 		 */
3627 		if (parent) {
3628 			/* update the clk tree topology */
3629 			__clk_set_parent_before(orphan, parent);
3630 			__clk_set_parent_after(orphan, parent, NULL);
3631 			__clk_recalc_accuracies(orphan);
3632 			__clk_recalc_rates(orphan, true, 0);
3633 
3634 			/*
3635 			 * __clk_init_parent() will set the initial req_rate to
3636 			 * 0 if the clock doesn't have clk_ops::recalc_rate and
3637 			 * is an orphan when it's registered.
3638 			 *
3639 			 * 'req_rate' is used by clk_set_rate_range() and
3640 			 * clk_put() to trigger a clk_set_rate() call whenever
3641 			 * the boundaries are modified. Let's make sure
3642 			 * 'req_rate' is set to something non-zero so that
3643 			 * clk_set_rate_range() doesn't drop the frequency.
3644 			 */
3645 			orphan->req_rate = orphan->rate;
3646 		}
3647 	}
3648 }
3649 
3650 /**
3651  * __clk_core_init - initialize the data structures in a struct clk_core
3652  * @core:	clk_core being initialized
3653  *
3654  * Initializes the lists in struct clk_core, queries the hardware for the
3655  * parent and rate and sets them both.
3656  */
3657 static int __clk_core_init(struct clk_core *core)
3658 {
3659 	int ret;
3660 	struct clk_core *parent;
3661 	unsigned long rate;
3662 	int phase;
3663 
3664 	clk_prepare_lock();
3665 
3666 	/*
3667 	 * Set hw->core after grabbing the prepare_lock to synchronize with
3668 	 * callers of clk_core_fill_parent_index() where we treat hw->core
3669 	 * being NULL as the clk not being registered yet. This is crucial so
3670 	 * that clks aren't parented until their parent is fully registered.
3671 	 */
3672 	core->hw->core = core;
3673 
3674 	ret = clk_pm_runtime_get(core);
3675 	if (ret)
3676 		goto unlock;
3677 
3678 	/* check to see if a clock with this name is already registered */
3679 	if (clk_core_lookup(core->name)) {
3680 		pr_debug("%s: clk %s already initialized\n",
3681 				__func__, core->name);
3682 		ret = -EEXIST;
3683 		goto out;
3684 	}
3685 
3686 	/* check that clk_ops are sane.  See Documentation/driver-api/clk.rst */
3687 	if (core->ops->set_rate &&
3688 	    !((core->ops->round_rate || core->ops->determine_rate) &&
3689 	      core->ops->recalc_rate)) {
3690 		pr_err("%s: %s must implement .round_rate or .determine_rate in addition to .recalc_rate\n",
3691 		       __func__, core->name);
3692 		ret = -EINVAL;
3693 		goto out;
3694 	}
3695 
3696 	if (core->ops->set_parent && !core->ops->get_parent) {
3697 		pr_err("%s: %s must implement .get_parent & .set_parent\n",
3698 		       __func__, core->name);
3699 		ret = -EINVAL;
3700 		goto out;
3701 	}
3702 
3703 	if (core->num_parents > 1 && !core->ops->get_parent) {
3704 		pr_err("%s: %s must implement .get_parent as it has multi parents\n",
3705 		       __func__, core->name);
3706 		ret = -EINVAL;
3707 		goto out;
3708 	}
3709 
3710 	if (core->ops->set_rate_and_parent &&
3711 			!(core->ops->set_parent && core->ops->set_rate)) {
3712 		pr_err("%s: %s must implement .set_parent & .set_rate\n",
3713 				__func__, core->name);
3714 		ret = -EINVAL;
3715 		goto out;
3716 	}
3717 
3718 	/*
3719 	 * optional platform-specific magic
3720 	 *
3721 	 * The .init callback is not used by any of the basic clock types, but
3722 	 * exists for weird hardware that must perform initialization magic for
3723 	 * CCF to get an accurate view of clock for any other callbacks. It may
3724 	 * also be used needs to perform dynamic allocations. Such allocation
3725 	 * must be freed in the terminate() callback.
3726 	 * This callback shall not be used to initialize the parameters state,
3727 	 * such as rate, parent, etc ...
3728 	 *
3729 	 * If it exist, this callback should called before any other callback of
3730 	 * the clock
3731 	 */
3732 	if (core->ops->init) {
3733 		ret = core->ops->init(core->hw);
3734 		if (ret)
3735 			goto out;
3736 	}
3737 
3738 	parent = core->parent = __clk_init_parent(core);
3739 
3740 	/*
3741 	 * Populate core->parent if parent has already been clk_core_init'd. If
3742 	 * parent has not yet been clk_core_init'd then place clk in the orphan
3743 	 * list.  If clk doesn't have any parents then place it in the root
3744 	 * clk list.
3745 	 *
3746 	 * Every time a new clk is clk_init'd then we walk the list of orphan
3747 	 * clocks and re-parent any that are children of the clock currently
3748 	 * being clk_init'd.
3749 	 */
3750 	if (parent) {
3751 		hlist_add_head(&core->child_node, &parent->children);
3752 		core->orphan = parent->orphan;
3753 	} else if (!core->num_parents) {
3754 		hlist_add_head(&core->child_node, &clk_root_list);
3755 		core->orphan = false;
3756 	} else {
3757 		hlist_add_head(&core->child_node, &clk_orphan_list);
3758 		core->orphan = true;
3759 	}
3760 
3761 	/*
3762 	 * Set clk's accuracy.  The preferred method is to use
3763 	 * .recalc_accuracy. For simple clocks and lazy developers the default
3764 	 * fallback is to use the parent's accuracy.  If a clock doesn't have a
3765 	 * parent (or is orphaned) then accuracy is set to zero (perfect
3766 	 * clock).
3767 	 */
3768 	if (core->ops->recalc_accuracy)
3769 		core->accuracy = core->ops->recalc_accuracy(core->hw,
3770 					clk_core_get_accuracy_no_lock(parent));
3771 	else if (parent)
3772 		core->accuracy = parent->accuracy;
3773 	else
3774 		core->accuracy = 0;
3775 
3776 	/*
3777 	 * Set clk's phase by clk_core_get_phase() caching the phase.
3778 	 * Since a phase is by definition relative to its parent, just
3779 	 * query the current clock phase, or just assume it's in phase.
3780 	 */
3781 	phase = clk_core_get_phase(core);
3782 	if (phase < 0) {
3783 		ret = phase;
3784 		pr_warn("%s: Failed to get phase for clk '%s'\n", __func__,
3785 			core->name);
3786 		goto out;
3787 	}
3788 
3789 	/*
3790 	 * Set clk's duty cycle.
3791 	 */
3792 	clk_core_update_duty_cycle_nolock(core);
3793 
3794 	/*
3795 	 * Set clk's rate.  The preferred method is to use .recalc_rate.  For
3796 	 * simple clocks and lazy developers the default fallback is to use the
3797 	 * parent's rate.  If a clock doesn't have a parent (or is orphaned)
3798 	 * then rate is set to zero.
3799 	 */
3800 	if (core->ops->recalc_rate)
3801 		rate = core->ops->recalc_rate(core->hw,
3802 				clk_core_get_rate_nolock(parent));
3803 	else if (parent)
3804 		rate = parent->rate;
3805 	else
3806 		rate = 0;
3807 	core->rate = core->req_rate = rate;
3808 
3809 	/*
3810 	 * Enable CLK_IS_CRITICAL clocks so newly added critical clocks
3811 	 * don't get accidentally disabled when walking the orphan tree and
3812 	 * reparenting clocks
3813 	 */
3814 	if (core->flags & CLK_IS_CRITICAL) {
3815 		ret = clk_core_prepare(core);
3816 		if (ret) {
3817 			pr_warn("%s: critical clk '%s' failed to prepare\n",
3818 			       __func__, core->name);
3819 			goto out;
3820 		}
3821 
3822 		ret = clk_core_enable_lock(core);
3823 		if (ret) {
3824 			pr_warn("%s: critical clk '%s' failed to enable\n",
3825 			       __func__, core->name);
3826 			clk_core_unprepare(core);
3827 			goto out;
3828 		}
3829 	}
3830 
3831 	clk_core_reparent_orphans_nolock();
3832 
3833 	kref_init(&core->ref);
3834 out:
3835 	clk_pm_runtime_put(core);
3836 unlock:
3837 	if (ret) {
3838 		hlist_del_init(&core->child_node);
3839 		core->hw->core = NULL;
3840 	}
3841 
3842 	clk_prepare_unlock();
3843 
3844 	if (!ret)
3845 		clk_debug_register(core);
3846 
3847 	return ret;
3848 }
3849 
3850 /**
3851  * clk_core_link_consumer - Add a clk consumer to the list of consumers in a clk_core
3852  * @core: clk to add consumer to
3853  * @clk: consumer to link to a clk
3854  */
3855 static void clk_core_link_consumer(struct clk_core *core, struct clk *clk)
3856 {
3857 	clk_prepare_lock();
3858 	hlist_add_head(&clk->clks_node, &core->clks);
3859 	clk_prepare_unlock();
3860 }
3861 
3862 /**
3863  * clk_core_unlink_consumer - Remove a clk consumer from the list of consumers in a clk_core
3864  * @clk: consumer to unlink
3865  */
3866 static void clk_core_unlink_consumer(struct clk *clk)
3867 {
3868 	lockdep_assert_held(&prepare_lock);
3869 	hlist_del(&clk->clks_node);
3870 }
3871 
3872 /**
3873  * alloc_clk - Allocate a clk consumer, but leave it unlinked to the clk_core
3874  * @core: clk to allocate a consumer for
3875  * @dev_id: string describing device name
3876  * @con_id: connection ID string on device
3877  *
3878  * Returns: clk consumer left unlinked from the consumer list
3879  */
3880 static struct clk *alloc_clk(struct clk_core *core, const char *dev_id,
3881 			     const char *con_id)
3882 {
3883 	struct clk *clk;
3884 
3885 	clk = kzalloc(sizeof(*clk), GFP_KERNEL);
3886 	if (!clk)
3887 		return ERR_PTR(-ENOMEM);
3888 
3889 	clk->core = core;
3890 	clk->dev_id = dev_id;
3891 	clk->con_id = kstrdup_const(con_id, GFP_KERNEL);
3892 	clk->max_rate = ULONG_MAX;
3893 
3894 	return clk;
3895 }
3896 
3897 /**
3898  * free_clk - Free a clk consumer
3899  * @clk: clk consumer to free
3900  *
3901  * Note, this assumes the clk has been unlinked from the clk_core consumer
3902  * list.
3903  */
3904 static void free_clk(struct clk *clk)
3905 {
3906 	kfree_const(clk->con_id);
3907 	kfree(clk);
3908 }
3909 
3910 /**
3911  * clk_hw_create_clk: Allocate and link a clk consumer to a clk_core given
3912  * a clk_hw
3913  * @dev: clk consumer device
3914  * @hw: clk_hw associated with the clk being consumed
3915  * @dev_id: string describing device name
3916  * @con_id: connection ID string on device
3917  *
3918  * This is the main function used to create a clk pointer for use by clk
3919  * consumers. It connects a consumer to the clk_core and clk_hw structures
3920  * used by the framework and clk provider respectively.
3921  */
3922 struct clk *clk_hw_create_clk(struct device *dev, struct clk_hw *hw,
3923 			      const char *dev_id, const char *con_id)
3924 {
3925 	struct clk *clk;
3926 	struct clk_core *core;
3927 
3928 	/* This is to allow this function to be chained to others */
3929 	if (IS_ERR_OR_NULL(hw))
3930 		return ERR_CAST(hw);
3931 
3932 	core = hw->core;
3933 	clk = alloc_clk(core, dev_id, con_id);
3934 	if (IS_ERR(clk))
3935 		return clk;
3936 	clk->dev = dev;
3937 
3938 	if (!try_module_get(core->owner)) {
3939 		free_clk(clk);
3940 		return ERR_PTR(-ENOENT);
3941 	}
3942 
3943 	kref_get(&core->ref);
3944 	clk_core_link_consumer(core, clk);
3945 
3946 	return clk;
3947 }
3948 
3949 /**
3950  * clk_hw_get_clk - get clk consumer given an clk_hw
3951  * @hw: clk_hw associated with the clk being consumed
3952  * @con_id: connection ID string on device
3953  *
3954  * Returns: new clk consumer
3955  * This is the function to be used by providers which need
3956  * to get a consumer clk and act on the clock element
3957  * Calls to this function must be balanced with calls clk_put()
3958  */
3959 struct clk *clk_hw_get_clk(struct clk_hw *hw, const char *con_id)
3960 {
3961 	struct device *dev = hw->core->dev;
3962 	const char *name = dev ? dev_name(dev) : NULL;
3963 
3964 	return clk_hw_create_clk(dev, hw, name, con_id);
3965 }
3966 EXPORT_SYMBOL(clk_hw_get_clk);
3967 
3968 static int clk_cpy_name(const char **dst_p, const char *src, bool must_exist)
3969 {
3970 	const char *dst;
3971 
3972 	if (!src) {
3973 		if (must_exist)
3974 			return -EINVAL;
3975 		return 0;
3976 	}
3977 
3978 	*dst_p = dst = kstrdup_const(src, GFP_KERNEL);
3979 	if (!dst)
3980 		return -ENOMEM;
3981 
3982 	return 0;
3983 }
3984 
3985 static int clk_core_populate_parent_map(struct clk_core *core,
3986 					const struct clk_init_data *init)
3987 {
3988 	u8 num_parents = init->num_parents;
3989 	const char * const *parent_names = init->parent_names;
3990 	const struct clk_hw **parent_hws = init->parent_hws;
3991 	const struct clk_parent_data *parent_data = init->parent_data;
3992 	int i, ret = 0;
3993 	struct clk_parent_map *parents, *parent;
3994 
3995 	if (!num_parents)
3996 		return 0;
3997 
3998 	/*
3999 	 * Avoid unnecessary string look-ups of clk_core's possible parents by
4000 	 * having a cache of names/clk_hw pointers to clk_core pointers.
4001 	 */
4002 	parents = kcalloc(num_parents, sizeof(*parents), GFP_KERNEL);
4003 	core->parents = parents;
4004 	if (!parents)
4005 		return -ENOMEM;
4006 
4007 	/* Copy everything over because it might be __initdata */
4008 	for (i = 0, parent = parents; i < num_parents; i++, parent++) {
4009 		parent->index = -1;
4010 		if (parent_names) {
4011 			/* throw a WARN if any entries are NULL */
4012 			WARN(!parent_names[i],
4013 				"%s: invalid NULL in %s's .parent_names\n",
4014 				__func__, core->name);
4015 			ret = clk_cpy_name(&parent->name, parent_names[i],
4016 					   true);
4017 		} else if (parent_data) {
4018 			parent->hw = parent_data[i].hw;
4019 			parent->index = parent_data[i].index;
4020 			ret = clk_cpy_name(&parent->fw_name,
4021 					   parent_data[i].fw_name, false);
4022 			if (!ret)
4023 				ret = clk_cpy_name(&parent->name,
4024 						   parent_data[i].name,
4025 						   false);
4026 		} else if (parent_hws) {
4027 			parent->hw = parent_hws[i];
4028 		} else {
4029 			ret = -EINVAL;
4030 			WARN(1, "Must specify parents if num_parents > 0\n");
4031 		}
4032 
4033 		if (ret) {
4034 			do {
4035 				kfree_const(parents[i].name);
4036 				kfree_const(parents[i].fw_name);
4037 			} while (--i >= 0);
4038 			kfree(parents);
4039 
4040 			return ret;
4041 		}
4042 	}
4043 
4044 	return 0;
4045 }
4046 
4047 static void clk_core_free_parent_map(struct clk_core *core)
4048 {
4049 	int i = core->num_parents;
4050 
4051 	if (!core->num_parents)
4052 		return;
4053 
4054 	while (--i >= 0) {
4055 		kfree_const(core->parents[i].name);
4056 		kfree_const(core->parents[i].fw_name);
4057 	}
4058 
4059 	kfree(core->parents);
4060 }
4061 
4062 static struct clk *
4063 __clk_register(struct device *dev, struct device_node *np, struct clk_hw *hw)
4064 {
4065 	int ret;
4066 	struct clk_core *core;
4067 	const struct clk_init_data *init = hw->init;
4068 
4069 	/*
4070 	 * The init data is not supposed to be used outside of registration path.
4071 	 * Set it to NULL so that provider drivers can't use it either and so that
4072 	 * we catch use of hw->init early on in the core.
4073 	 */
4074 	hw->init = NULL;
4075 
4076 	core = kzalloc(sizeof(*core), GFP_KERNEL);
4077 	if (!core) {
4078 		ret = -ENOMEM;
4079 		goto fail_out;
4080 	}
4081 
4082 	core->name = kstrdup_const(init->name, GFP_KERNEL);
4083 	if (!core->name) {
4084 		ret = -ENOMEM;
4085 		goto fail_name;
4086 	}
4087 
4088 	if (WARN_ON(!init->ops)) {
4089 		ret = -EINVAL;
4090 		goto fail_ops;
4091 	}
4092 	core->ops = init->ops;
4093 
4094 	if (dev && pm_runtime_enabled(dev))
4095 		core->rpm_enabled = true;
4096 	core->dev = dev;
4097 	core->of_node = np;
4098 	if (dev && dev->driver)
4099 		core->owner = dev->driver->owner;
4100 	core->hw = hw;
4101 	core->flags = init->flags;
4102 	core->num_parents = init->num_parents;
4103 	core->min_rate = 0;
4104 	core->max_rate = ULONG_MAX;
4105 
4106 	ret = clk_core_populate_parent_map(core, init);
4107 	if (ret)
4108 		goto fail_parents;
4109 
4110 	INIT_HLIST_HEAD(&core->clks);
4111 
4112 	/*
4113 	 * Don't call clk_hw_create_clk() here because that would pin the
4114 	 * provider module to itself and prevent it from ever being removed.
4115 	 */
4116 	hw->clk = alloc_clk(core, NULL, NULL);
4117 	if (IS_ERR(hw->clk)) {
4118 		ret = PTR_ERR(hw->clk);
4119 		goto fail_create_clk;
4120 	}
4121 
4122 	clk_core_link_consumer(core, hw->clk);
4123 
4124 	ret = __clk_core_init(core);
4125 	if (!ret)
4126 		return hw->clk;
4127 
4128 	clk_prepare_lock();
4129 	clk_core_unlink_consumer(hw->clk);
4130 	clk_prepare_unlock();
4131 
4132 	free_clk(hw->clk);
4133 	hw->clk = NULL;
4134 
4135 fail_create_clk:
4136 	clk_core_free_parent_map(core);
4137 fail_parents:
4138 fail_ops:
4139 	kfree_const(core->name);
4140 fail_name:
4141 	kfree(core);
4142 fail_out:
4143 	return ERR_PTR(ret);
4144 }
4145 
4146 /**
4147  * dev_or_parent_of_node() - Get device node of @dev or @dev's parent
4148  * @dev: Device to get device node of
4149  *
4150  * Return: device node pointer of @dev, or the device node pointer of
4151  * @dev->parent if dev doesn't have a device node, or NULL if neither
4152  * @dev or @dev->parent have a device node.
4153  */
4154 static struct device_node *dev_or_parent_of_node(struct device *dev)
4155 {
4156 	struct device_node *np;
4157 
4158 	if (!dev)
4159 		return NULL;
4160 
4161 	np = dev_of_node(dev);
4162 	if (!np)
4163 		np = dev_of_node(dev->parent);
4164 
4165 	return np;
4166 }
4167 
4168 /**
4169  * clk_register - allocate a new clock, register it and return an opaque cookie
4170  * @dev: device that is registering this clock
4171  * @hw: link to hardware-specific clock data
4172  *
4173  * clk_register is the *deprecated* interface for populating the clock tree with
4174  * new clock nodes. Use clk_hw_register() instead.
4175  *
4176  * Returns: a pointer to the newly allocated struct clk which
4177  * cannot be dereferenced by driver code but may be used in conjunction with the
4178  * rest of the clock API.  In the event of an error clk_register will return an
4179  * error code; drivers must test for an error code after calling clk_register.
4180  */
4181 struct clk *clk_register(struct device *dev, struct clk_hw *hw)
4182 {
4183 	return __clk_register(dev, dev_or_parent_of_node(dev), hw);
4184 }
4185 EXPORT_SYMBOL_GPL(clk_register);
4186 
4187 /**
4188  * clk_hw_register - register a clk_hw and return an error code
4189  * @dev: device that is registering this clock
4190  * @hw: link to hardware-specific clock data
4191  *
4192  * clk_hw_register is the primary interface for populating the clock tree with
4193  * new clock nodes. It returns an integer equal to zero indicating success or
4194  * less than zero indicating failure. Drivers must test for an error code after
4195  * calling clk_hw_register().
4196  */
4197 int clk_hw_register(struct device *dev, struct clk_hw *hw)
4198 {
4199 	return PTR_ERR_OR_ZERO(__clk_register(dev, dev_or_parent_of_node(dev),
4200 			       hw));
4201 }
4202 EXPORT_SYMBOL_GPL(clk_hw_register);
4203 
4204 /*
4205  * of_clk_hw_register - register a clk_hw and return an error code
4206  * @node: device_node of device that is registering this clock
4207  * @hw: link to hardware-specific clock data
4208  *
4209  * of_clk_hw_register() is the primary interface for populating the clock tree
4210  * with new clock nodes when a struct device is not available, but a struct
4211  * device_node is. It returns an integer equal to zero indicating success or
4212  * less than zero indicating failure. Drivers must test for an error code after
4213  * calling of_clk_hw_register().
4214  */
4215 int of_clk_hw_register(struct device_node *node, struct clk_hw *hw)
4216 {
4217 	return PTR_ERR_OR_ZERO(__clk_register(NULL, node, hw));
4218 }
4219 EXPORT_SYMBOL_GPL(of_clk_hw_register);
4220 
4221 /* Free memory allocated for a clock. */
4222 static void __clk_release(struct kref *ref)
4223 {
4224 	struct clk_core *core = container_of(ref, struct clk_core, ref);
4225 
4226 	lockdep_assert_held(&prepare_lock);
4227 
4228 	clk_core_free_parent_map(core);
4229 	kfree_const(core->name);
4230 	kfree(core);
4231 }
4232 
4233 /*
4234  * Empty clk_ops for unregistered clocks. These are used temporarily
4235  * after clk_unregister() was called on a clock and until last clock
4236  * consumer calls clk_put() and the struct clk object is freed.
4237  */
4238 static int clk_nodrv_prepare_enable(struct clk_hw *hw)
4239 {
4240 	return -ENXIO;
4241 }
4242 
4243 static void clk_nodrv_disable_unprepare(struct clk_hw *hw)
4244 {
4245 	WARN_ON_ONCE(1);
4246 }
4247 
4248 static int clk_nodrv_set_rate(struct clk_hw *hw, unsigned long rate,
4249 					unsigned long parent_rate)
4250 {
4251 	return -ENXIO;
4252 }
4253 
4254 static int clk_nodrv_set_parent(struct clk_hw *hw, u8 index)
4255 {
4256 	return -ENXIO;
4257 }
4258 
4259 static const struct clk_ops clk_nodrv_ops = {
4260 	.enable		= clk_nodrv_prepare_enable,
4261 	.disable	= clk_nodrv_disable_unprepare,
4262 	.prepare	= clk_nodrv_prepare_enable,
4263 	.unprepare	= clk_nodrv_disable_unprepare,
4264 	.set_rate	= clk_nodrv_set_rate,
4265 	.set_parent	= clk_nodrv_set_parent,
4266 };
4267 
4268 static void clk_core_evict_parent_cache_subtree(struct clk_core *root,
4269 						const struct clk_core *target)
4270 {
4271 	int i;
4272 	struct clk_core *child;
4273 
4274 	for (i = 0; i < root->num_parents; i++)
4275 		if (root->parents[i].core == target)
4276 			root->parents[i].core = NULL;
4277 
4278 	hlist_for_each_entry(child, &root->children, child_node)
4279 		clk_core_evict_parent_cache_subtree(child, target);
4280 }
4281 
4282 /* Remove this clk from all parent caches */
4283 static void clk_core_evict_parent_cache(struct clk_core *core)
4284 {
4285 	const struct hlist_head **lists;
4286 	struct clk_core *root;
4287 
4288 	lockdep_assert_held(&prepare_lock);
4289 
4290 	for (lists = all_lists; *lists; lists++)
4291 		hlist_for_each_entry(root, *lists, child_node)
4292 			clk_core_evict_parent_cache_subtree(root, core);
4293 
4294 }
4295 
4296 /**
4297  * clk_unregister - unregister a currently registered clock
4298  * @clk: clock to unregister
4299  */
4300 void clk_unregister(struct clk *clk)
4301 {
4302 	unsigned long flags;
4303 	const struct clk_ops *ops;
4304 
4305 	if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
4306 		return;
4307 
4308 	clk_debug_unregister(clk->core);
4309 
4310 	clk_prepare_lock();
4311 
4312 	ops = clk->core->ops;
4313 	if (ops == &clk_nodrv_ops) {
4314 		pr_err("%s: unregistered clock: %s\n", __func__,
4315 		       clk->core->name);
4316 		goto unlock;
4317 	}
4318 	/*
4319 	 * Assign empty clock ops for consumers that might still hold
4320 	 * a reference to this clock.
4321 	 */
4322 	flags = clk_enable_lock();
4323 	clk->core->ops = &clk_nodrv_ops;
4324 	clk_enable_unlock(flags);
4325 
4326 	if (ops->terminate)
4327 		ops->terminate(clk->core->hw);
4328 
4329 	if (!hlist_empty(&clk->core->children)) {
4330 		struct clk_core *child;
4331 		struct hlist_node *t;
4332 
4333 		/* Reparent all children to the orphan list. */
4334 		hlist_for_each_entry_safe(child, t, &clk->core->children,
4335 					  child_node)
4336 			clk_core_set_parent_nolock(child, NULL);
4337 	}
4338 
4339 	clk_core_evict_parent_cache(clk->core);
4340 
4341 	hlist_del_init(&clk->core->child_node);
4342 
4343 	if (clk->core->prepare_count)
4344 		pr_warn("%s: unregistering prepared clock: %s\n",
4345 					__func__, clk->core->name);
4346 
4347 	if (clk->core->protect_count)
4348 		pr_warn("%s: unregistering protected clock: %s\n",
4349 					__func__, clk->core->name);
4350 
4351 	kref_put(&clk->core->ref, __clk_release);
4352 	free_clk(clk);
4353 unlock:
4354 	clk_prepare_unlock();
4355 }
4356 EXPORT_SYMBOL_GPL(clk_unregister);
4357 
4358 /**
4359  * clk_hw_unregister - unregister a currently registered clk_hw
4360  * @hw: hardware-specific clock data to unregister
4361  */
4362 void clk_hw_unregister(struct clk_hw *hw)
4363 {
4364 	clk_unregister(hw->clk);
4365 }
4366 EXPORT_SYMBOL_GPL(clk_hw_unregister);
4367 
4368 static void devm_clk_unregister_cb(struct device *dev, void *res)
4369 {
4370 	clk_unregister(*(struct clk **)res);
4371 }
4372 
4373 static void devm_clk_hw_unregister_cb(struct device *dev, void *res)
4374 {
4375 	clk_hw_unregister(*(struct clk_hw **)res);
4376 }
4377 
4378 /**
4379  * devm_clk_register - resource managed clk_register()
4380  * @dev: device that is registering this clock
4381  * @hw: link to hardware-specific clock data
4382  *
4383  * Managed clk_register(). This function is *deprecated*, use devm_clk_hw_register() instead.
4384  *
4385  * Clocks returned from this function are automatically clk_unregister()ed on
4386  * driver detach. See clk_register() for more information.
4387  */
4388 struct clk *devm_clk_register(struct device *dev, struct clk_hw *hw)
4389 {
4390 	struct clk *clk;
4391 	struct clk **clkp;
4392 
4393 	clkp = devres_alloc(devm_clk_unregister_cb, sizeof(*clkp), GFP_KERNEL);
4394 	if (!clkp)
4395 		return ERR_PTR(-ENOMEM);
4396 
4397 	clk = clk_register(dev, hw);
4398 	if (!IS_ERR(clk)) {
4399 		*clkp = clk;
4400 		devres_add(dev, clkp);
4401 	} else {
4402 		devres_free(clkp);
4403 	}
4404 
4405 	return clk;
4406 }
4407 EXPORT_SYMBOL_GPL(devm_clk_register);
4408 
4409 /**
4410  * devm_clk_hw_register - resource managed clk_hw_register()
4411  * @dev: device that is registering this clock
4412  * @hw: link to hardware-specific clock data
4413  *
4414  * Managed clk_hw_register(). Clocks registered by this function are
4415  * automatically clk_hw_unregister()ed on driver detach. See clk_hw_register()
4416  * for more information.
4417  */
4418 int devm_clk_hw_register(struct device *dev, struct clk_hw *hw)
4419 {
4420 	struct clk_hw **hwp;
4421 	int ret;
4422 
4423 	hwp = devres_alloc(devm_clk_hw_unregister_cb, sizeof(*hwp), GFP_KERNEL);
4424 	if (!hwp)
4425 		return -ENOMEM;
4426 
4427 	ret = clk_hw_register(dev, hw);
4428 	if (!ret) {
4429 		*hwp = hw;
4430 		devres_add(dev, hwp);
4431 	} else {
4432 		devres_free(hwp);
4433 	}
4434 
4435 	return ret;
4436 }
4437 EXPORT_SYMBOL_GPL(devm_clk_hw_register);
4438 
4439 static void devm_clk_release(struct device *dev, void *res)
4440 {
4441 	clk_put(*(struct clk **)res);
4442 }
4443 
4444 /**
4445  * devm_clk_hw_get_clk - resource managed clk_hw_get_clk()
4446  * @dev: device that is registering this clock
4447  * @hw: clk_hw associated with the clk being consumed
4448  * @con_id: connection ID string on device
4449  *
4450  * Managed clk_hw_get_clk(). Clocks got with this function are
4451  * automatically clk_put() on driver detach. See clk_put()
4452  * for more information.
4453  */
4454 struct clk *devm_clk_hw_get_clk(struct device *dev, struct clk_hw *hw,
4455 				const char *con_id)
4456 {
4457 	struct clk *clk;
4458 	struct clk **clkp;
4459 
4460 	/* This should not happen because it would mean we have drivers
4461 	 * passing around clk_hw pointers instead of having the caller use
4462 	 * proper clk_get() style APIs
4463 	 */
4464 	WARN_ON_ONCE(dev != hw->core->dev);
4465 
4466 	clkp = devres_alloc(devm_clk_release, sizeof(*clkp), GFP_KERNEL);
4467 	if (!clkp)
4468 		return ERR_PTR(-ENOMEM);
4469 
4470 	clk = clk_hw_get_clk(hw, con_id);
4471 	if (!IS_ERR(clk)) {
4472 		*clkp = clk;
4473 		devres_add(dev, clkp);
4474 	} else {
4475 		devres_free(clkp);
4476 	}
4477 
4478 	return clk;
4479 }
4480 EXPORT_SYMBOL_GPL(devm_clk_hw_get_clk);
4481 
4482 /*
4483  * clkdev helpers
4484  */
4485 
4486 void __clk_put(struct clk *clk)
4487 {
4488 	struct module *owner;
4489 
4490 	if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
4491 		return;
4492 
4493 	clk_prepare_lock();
4494 
4495 	/*
4496 	 * Before calling clk_put, all calls to clk_rate_exclusive_get() from a
4497 	 * given user should be balanced with calls to clk_rate_exclusive_put()
4498 	 * and by that same consumer
4499 	 */
4500 	if (WARN_ON(clk->exclusive_count)) {
4501 		/* We voiced our concern, let's sanitize the situation */
4502 		clk->core->protect_count -= (clk->exclusive_count - 1);
4503 		clk_core_rate_unprotect(clk->core);
4504 		clk->exclusive_count = 0;
4505 	}
4506 
4507 	hlist_del(&clk->clks_node);
4508 
4509 	/* If we had any boundaries on that clock, let's drop them. */
4510 	if (clk->min_rate > 0 || clk->max_rate < ULONG_MAX)
4511 		clk_set_rate_range_nolock(clk, 0, ULONG_MAX);
4512 
4513 	owner = clk->core->owner;
4514 	kref_put(&clk->core->ref, __clk_release);
4515 
4516 	clk_prepare_unlock();
4517 
4518 	module_put(owner);
4519 
4520 	free_clk(clk);
4521 }
4522 
4523 /***        clk rate change notifiers        ***/
4524 
4525 /**
4526  * clk_notifier_register - add a clk rate change notifier
4527  * @clk: struct clk * to watch
4528  * @nb: struct notifier_block * with callback info
4529  *
4530  * Request notification when clk's rate changes.  This uses an SRCU
4531  * notifier because we want it to block and notifier unregistrations are
4532  * uncommon.  The callbacks associated with the notifier must not
4533  * re-enter into the clk framework by calling any top-level clk APIs;
4534  * this will cause a nested prepare_lock mutex.
4535  *
4536  * In all notification cases (pre, post and abort rate change) the original
4537  * clock rate is passed to the callback via struct clk_notifier_data.old_rate
4538  * and the new frequency is passed via struct clk_notifier_data.new_rate.
4539  *
4540  * clk_notifier_register() must be called from non-atomic context.
4541  * Returns -EINVAL if called with null arguments, -ENOMEM upon
4542  * allocation failure; otherwise, passes along the return value of
4543  * srcu_notifier_chain_register().
4544  */
4545 int clk_notifier_register(struct clk *clk, struct notifier_block *nb)
4546 {
4547 	struct clk_notifier *cn;
4548 	int ret = -ENOMEM;
4549 
4550 	if (!clk || !nb)
4551 		return -EINVAL;
4552 
4553 	clk_prepare_lock();
4554 
4555 	/* search the list of notifiers for this clk */
4556 	list_for_each_entry(cn, &clk_notifier_list, node)
4557 		if (cn->clk == clk)
4558 			goto found;
4559 
4560 	/* if clk wasn't in the notifier list, allocate new clk_notifier */
4561 	cn = kzalloc(sizeof(*cn), GFP_KERNEL);
4562 	if (!cn)
4563 		goto out;
4564 
4565 	cn->clk = clk;
4566 	srcu_init_notifier_head(&cn->notifier_head);
4567 
4568 	list_add(&cn->node, &clk_notifier_list);
4569 
4570 found:
4571 	ret = srcu_notifier_chain_register(&cn->notifier_head, nb);
4572 
4573 	clk->core->notifier_count++;
4574 
4575 out:
4576 	clk_prepare_unlock();
4577 
4578 	return ret;
4579 }
4580 EXPORT_SYMBOL_GPL(clk_notifier_register);
4581 
4582 /**
4583  * clk_notifier_unregister - remove a clk rate change notifier
4584  * @clk: struct clk *
4585  * @nb: struct notifier_block * with callback info
4586  *
4587  * Request no further notification for changes to 'clk' and frees memory
4588  * allocated in clk_notifier_register.
4589  *
4590  * Returns -EINVAL if called with null arguments; otherwise, passes
4591  * along the return value of srcu_notifier_chain_unregister().
4592  */
4593 int clk_notifier_unregister(struct clk *clk, struct notifier_block *nb)
4594 {
4595 	struct clk_notifier *cn;
4596 	int ret = -ENOENT;
4597 
4598 	if (!clk || !nb)
4599 		return -EINVAL;
4600 
4601 	clk_prepare_lock();
4602 
4603 	list_for_each_entry(cn, &clk_notifier_list, node) {
4604 		if (cn->clk == clk) {
4605 			ret = srcu_notifier_chain_unregister(&cn->notifier_head, nb);
4606 
4607 			clk->core->notifier_count--;
4608 
4609 			/* XXX the notifier code should handle this better */
4610 			if (!cn->notifier_head.head) {
4611 				srcu_cleanup_notifier_head(&cn->notifier_head);
4612 				list_del(&cn->node);
4613 				kfree(cn);
4614 			}
4615 			break;
4616 		}
4617 	}
4618 
4619 	clk_prepare_unlock();
4620 
4621 	return ret;
4622 }
4623 EXPORT_SYMBOL_GPL(clk_notifier_unregister);
4624 
4625 struct clk_notifier_devres {
4626 	struct clk *clk;
4627 	struct notifier_block *nb;
4628 };
4629 
4630 static void devm_clk_notifier_release(struct device *dev, void *res)
4631 {
4632 	struct clk_notifier_devres *devres = res;
4633 
4634 	clk_notifier_unregister(devres->clk, devres->nb);
4635 }
4636 
4637 int devm_clk_notifier_register(struct device *dev, struct clk *clk,
4638 			       struct notifier_block *nb)
4639 {
4640 	struct clk_notifier_devres *devres;
4641 	int ret;
4642 
4643 	devres = devres_alloc(devm_clk_notifier_release,
4644 			      sizeof(*devres), GFP_KERNEL);
4645 
4646 	if (!devres)
4647 		return -ENOMEM;
4648 
4649 	ret = clk_notifier_register(clk, nb);
4650 	if (!ret) {
4651 		devres->clk = clk;
4652 		devres->nb = nb;
4653 	} else {
4654 		devres_free(devres);
4655 	}
4656 
4657 	return ret;
4658 }
4659 EXPORT_SYMBOL_GPL(devm_clk_notifier_register);
4660 
4661 #ifdef CONFIG_OF
4662 static void clk_core_reparent_orphans(void)
4663 {
4664 	clk_prepare_lock();
4665 	clk_core_reparent_orphans_nolock();
4666 	clk_prepare_unlock();
4667 }
4668 
4669 /**
4670  * struct of_clk_provider - Clock provider registration structure
4671  * @link: Entry in global list of clock providers
4672  * @node: Pointer to device tree node of clock provider
4673  * @get: Get clock callback.  Returns NULL or a struct clk for the
4674  *       given clock specifier
4675  * @get_hw: Get clk_hw callback.  Returns NULL, ERR_PTR or a
4676  *       struct clk_hw for the given clock specifier
4677  * @data: context pointer to be passed into @get callback
4678  */
4679 struct of_clk_provider {
4680 	struct list_head link;
4681 
4682 	struct device_node *node;
4683 	struct clk *(*get)(struct of_phandle_args *clkspec, void *data);
4684 	struct clk_hw *(*get_hw)(struct of_phandle_args *clkspec, void *data);
4685 	void *data;
4686 };
4687 
4688 extern struct of_device_id __clk_of_table;
4689 static const struct of_device_id __clk_of_table_sentinel
4690 	__used __section("__clk_of_table_end");
4691 
4692 static LIST_HEAD(of_clk_providers);
4693 static DEFINE_MUTEX(of_clk_mutex);
4694 
4695 struct clk *of_clk_src_simple_get(struct of_phandle_args *clkspec,
4696 				     void *data)
4697 {
4698 	return data;
4699 }
4700 EXPORT_SYMBOL_GPL(of_clk_src_simple_get);
4701 
4702 struct clk_hw *of_clk_hw_simple_get(struct of_phandle_args *clkspec, void *data)
4703 {
4704 	return data;
4705 }
4706 EXPORT_SYMBOL_GPL(of_clk_hw_simple_get);
4707 
4708 struct clk *of_clk_src_onecell_get(struct of_phandle_args *clkspec, void *data)
4709 {
4710 	struct clk_onecell_data *clk_data = data;
4711 	unsigned int idx = clkspec->args[0];
4712 
4713 	if (idx >= clk_data->clk_num) {
4714 		pr_err("%s: invalid clock index %u\n", __func__, idx);
4715 		return ERR_PTR(-EINVAL);
4716 	}
4717 
4718 	return clk_data->clks[idx];
4719 }
4720 EXPORT_SYMBOL_GPL(of_clk_src_onecell_get);
4721 
4722 struct clk_hw *
4723 of_clk_hw_onecell_get(struct of_phandle_args *clkspec, void *data)
4724 {
4725 	struct clk_hw_onecell_data *hw_data = data;
4726 	unsigned int idx = clkspec->args[0];
4727 
4728 	if (idx >= hw_data->num) {
4729 		pr_err("%s: invalid index %u\n", __func__, idx);
4730 		return ERR_PTR(-EINVAL);
4731 	}
4732 
4733 	return hw_data->hws[idx];
4734 }
4735 EXPORT_SYMBOL_GPL(of_clk_hw_onecell_get);
4736 
4737 /**
4738  * of_clk_add_provider() - Register a clock provider for a node
4739  * @np: Device node pointer associated with clock provider
4740  * @clk_src_get: callback for decoding clock
4741  * @data: context pointer for @clk_src_get callback.
4742  *
4743  * This function is *deprecated*. Use of_clk_add_hw_provider() instead.
4744  */
4745 int of_clk_add_provider(struct device_node *np,
4746 			struct clk *(*clk_src_get)(struct of_phandle_args *clkspec,
4747 						   void *data),
4748 			void *data)
4749 {
4750 	struct of_clk_provider *cp;
4751 	int ret;
4752 
4753 	if (!np)
4754 		return 0;
4755 
4756 	cp = kzalloc(sizeof(*cp), GFP_KERNEL);
4757 	if (!cp)
4758 		return -ENOMEM;
4759 
4760 	cp->node = of_node_get(np);
4761 	cp->data = data;
4762 	cp->get = clk_src_get;
4763 
4764 	mutex_lock(&of_clk_mutex);
4765 	list_add(&cp->link, &of_clk_providers);
4766 	mutex_unlock(&of_clk_mutex);
4767 	pr_debug("Added clock from %pOF\n", np);
4768 
4769 	clk_core_reparent_orphans();
4770 
4771 	ret = of_clk_set_defaults(np, true);
4772 	if (ret < 0)
4773 		of_clk_del_provider(np);
4774 
4775 	fwnode_dev_initialized(&np->fwnode, true);
4776 
4777 	return ret;
4778 }
4779 EXPORT_SYMBOL_GPL(of_clk_add_provider);
4780 
4781 /**
4782  * of_clk_add_hw_provider() - Register a clock provider for a node
4783  * @np: Device node pointer associated with clock provider
4784  * @get: callback for decoding clk_hw
4785  * @data: context pointer for @get callback.
4786  */
4787 int of_clk_add_hw_provider(struct device_node *np,
4788 			   struct clk_hw *(*get)(struct of_phandle_args *clkspec,
4789 						 void *data),
4790 			   void *data)
4791 {
4792 	struct of_clk_provider *cp;
4793 	int ret;
4794 
4795 	if (!np)
4796 		return 0;
4797 
4798 	cp = kzalloc(sizeof(*cp), GFP_KERNEL);
4799 	if (!cp)
4800 		return -ENOMEM;
4801 
4802 	cp->node = of_node_get(np);
4803 	cp->data = data;
4804 	cp->get_hw = get;
4805 
4806 	mutex_lock(&of_clk_mutex);
4807 	list_add(&cp->link, &of_clk_providers);
4808 	mutex_unlock(&of_clk_mutex);
4809 	pr_debug("Added clk_hw provider from %pOF\n", np);
4810 
4811 	clk_core_reparent_orphans();
4812 
4813 	ret = of_clk_set_defaults(np, true);
4814 	if (ret < 0)
4815 		of_clk_del_provider(np);
4816 
4817 	fwnode_dev_initialized(&np->fwnode, true);
4818 
4819 	return ret;
4820 }
4821 EXPORT_SYMBOL_GPL(of_clk_add_hw_provider);
4822 
4823 static void devm_of_clk_release_provider(struct device *dev, void *res)
4824 {
4825 	of_clk_del_provider(*(struct device_node **)res);
4826 }
4827 
4828 /*
4829  * We allow a child device to use its parent device as the clock provider node
4830  * for cases like MFD sub-devices where the child device driver wants to use
4831  * devm_*() APIs but not list the device in DT as a sub-node.
4832  */
4833 static struct device_node *get_clk_provider_node(struct device *dev)
4834 {
4835 	struct device_node *np, *parent_np;
4836 
4837 	np = dev->of_node;
4838 	parent_np = dev->parent ? dev->parent->of_node : NULL;
4839 
4840 	if (!of_find_property(np, "#clock-cells", NULL))
4841 		if (of_find_property(parent_np, "#clock-cells", NULL))
4842 			np = parent_np;
4843 
4844 	return np;
4845 }
4846 
4847 /**
4848  * devm_of_clk_add_hw_provider() - Managed clk provider node registration
4849  * @dev: Device acting as the clock provider (used for DT node and lifetime)
4850  * @get: callback for decoding clk_hw
4851  * @data: context pointer for @get callback
4852  *
4853  * Registers clock provider for given device's node. If the device has no DT
4854  * node or if the device node lacks of clock provider information (#clock-cells)
4855  * then the parent device's node is scanned for this information. If parent node
4856  * has the #clock-cells then it is used in registration. Provider is
4857  * automatically released at device exit.
4858  *
4859  * Return: 0 on success or an errno on failure.
4860  */
4861 int devm_of_clk_add_hw_provider(struct device *dev,
4862 			struct clk_hw *(*get)(struct of_phandle_args *clkspec,
4863 					      void *data),
4864 			void *data)
4865 {
4866 	struct device_node **ptr, *np;
4867 	int ret;
4868 
4869 	ptr = devres_alloc(devm_of_clk_release_provider, sizeof(*ptr),
4870 			   GFP_KERNEL);
4871 	if (!ptr)
4872 		return -ENOMEM;
4873 
4874 	np = get_clk_provider_node(dev);
4875 	ret = of_clk_add_hw_provider(np, get, data);
4876 	if (!ret) {
4877 		*ptr = np;
4878 		devres_add(dev, ptr);
4879 	} else {
4880 		devres_free(ptr);
4881 	}
4882 
4883 	return ret;
4884 }
4885 EXPORT_SYMBOL_GPL(devm_of_clk_add_hw_provider);
4886 
4887 /**
4888  * of_clk_del_provider() - Remove a previously registered clock provider
4889  * @np: Device node pointer associated with clock provider
4890  */
4891 void of_clk_del_provider(struct device_node *np)
4892 {
4893 	struct of_clk_provider *cp;
4894 
4895 	if (!np)
4896 		return;
4897 
4898 	mutex_lock(&of_clk_mutex);
4899 	list_for_each_entry(cp, &of_clk_providers, link) {
4900 		if (cp->node == np) {
4901 			list_del(&cp->link);
4902 			fwnode_dev_initialized(&np->fwnode, false);
4903 			of_node_put(cp->node);
4904 			kfree(cp);
4905 			break;
4906 		}
4907 	}
4908 	mutex_unlock(&of_clk_mutex);
4909 }
4910 EXPORT_SYMBOL_GPL(of_clk_del_provider);
4911 
4912 /**
4913  * of_parse_clkspec() - Parse a DT clock specifier for a given device node
4914  * @np: device node to parse clock specifier from
4915  * @index: index of phandle to parse clock out of. If index < 0, @name is used
4916  * @name: clock name to find and parse. If name is NULL, the index is used
4917  * @out_args: Result of parsing the clock specifier
4918  *
4919  * Parses a device node's "clocks" and "clock-names" properties to find the
4920  * phandle and cells for the index or name that is desired. The resulting clock
4921  * specifier is placed into @out_args, or an errno is returned when there's a
4922  * parsing error. The @index argument is ignored if @name is non-NULL.
4923  *
4924  * Example:
4925  *
4926  * phandle1: clock-controller@1 {
4927  *	#clock-cells = <2>;
4928  * }
4929  *
4930  * phandle2: clock-controller@2 {
4931  *	#clock-cells = <1>;
4932  * }
4933  *
4934  * clock-consumer@3 {
4935  *	clocks = <&phandle1 1 2 &phandle2 3>;
4936  *	clock-names = "name1", "name2";
4937  * }
4938  *
4939  * To get a device_node for `clock-controller@2' node you may call this
4940  * function a few different ways:
4941  *
4942  *   of_parse_clkspec(clock-consumer@3, -1, "name2", &args);
4943  *   of_parse_clkspec(clock-consumer@3, 1, NULL, &args);
4944  *   of_parse_clkspec(clock-consumer@3, 1, "name2", &args);
4945  *
4946  * Return: 0 upon successfully parsing the clock specifier. Otherwise, -ENOENT
4947  * if @name is NULL or -EINVAL if @name is non-NULL and it can't be found in
4948  * the "clock-names" property of @np.
4949  */
4950 static int of_parse_clkspec(const struct device_node *np, int index,
4951 			    const char *name, struct of_phandle_args *out_args)
4952 {
4953 	int ret = -ENOENT;
4954 
4955 	/* Walk up the tree of devices looking for a clock property that matches */
4956 	while (np) {
4957 		/*
4958 		 * For named clocks, first look up the name in the
4959 		 * "clock-names" property.  If it cannot be found, then index
4960 		 * will be an error code and of_parse_phandle_with_args() will
4961 		 * return -EINVAL.
4962 		 */
4963 		if (name)
4964 			index = of_property_match_string(np, "clock-names", name);
4965 		ret = of_parse_phandle_with_args(np, "clocks", "#clock-cells",
4966 						 index, out_args);
4967 		if (!ret)
4968 			break;
4969 		if (name && index >= 0)
4970 			break;
4971 
4972 		/*
4973 		 * No matching clock found on this node.  If the parent node
4974 		 * has a "clock-ranges" property, then we can try one of its
4975 		 * clocks.
4976 		 */
4977 		np = np->parent;
4978 		if (np && !of_get_property(np, "clock-ranges", NULL))
4979 			break;
4980 		index = 0;
4981 	}
4982 
4983 	return ret;
4984 }
4985 
4986 static struct clk_hw *
4987 __of_clk_get_hw_from_provider(struct of_clk_provider *provider,
4988 			      struct of_phandle_args *clkspec)
4989 {
4990 	struct clk *clk;
4991 
4992 	if (provider->get_hw)
4993 		return provider->get_hw(clkspec, provider->data);
4994 
4995 	clk = provider->get(clkspec, provider->data);
4996 	if (IS_ERR(clk))
4997 		return ERR_CAST(clk);
4998 	return __clk_get_hw(clk);
4999 }
5000 
5001 static struct clk_hw *
5002 of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec)
5003 {
5004 	struct of_clk_provider *provider;
5005 	struct clk_hw *hw = ERR_PTR(-EPROBE_DEFER);
5006 
5007 	if (!clkspec)
5008 		return ERR_PTR(-EINVAL);
5009 
5010 	mutex_lock(&of_clk_mutex);
5011 	list_for_each_entry(provider, &of_clk_providers, link) {
5012 		if (provider->node == clkspec->np) {
5013 			hw = __of_clk_get_hw_from_provider(provider, clkspec);
5014 			if (!IS_ERR(hw))
5015 				break;
5016 		}
5017 	}
5018 	mutex_unlock(&of_clk_mutex);
5019 
5020 	return hw;
5021 }
5022 
5023 /**
5024  * of_clk_get_from_provider() - Lookup a clock from a clock provider
5025  * @clkspec: pointer to a clock specifier data structure
5026  *
5027  * This function looks up a struct clk from the registered list of clock
5028  * providers, an input is a clock specifier data structure as returned
5029  * from the of_parse_phandle_with_args() function call.
5030  */
5031 struct clk *of_clk_get_from_provider(struct of_phandle_args *clkspec)
5032 {
5033 	struct clk_hw *hw = of_clk_get_hw_from_clkspec(clkspec);
5034 
5035 	return clk_hw_create_clk(NULL, hw, NULL, __func__);
5036 }
5037 EXPORT_SYMBOL_GPL(of_clk_get_from_provider);
5038 
5039 struct clk_hw *of_clk_get_hw(struct device_node *np, int index,
5040 			     const char *con_id)
5041 {
5042 	int ret;
5043 	struct clk_hw *hw;
5044 	struct of_phandle_args clkspec;
5045 
5046 	ret = of_parse_clkspec(np, index, con_id, &clkspec);
5047 	if (ret)
5048 		return ERR_PTR(ret);
5049 
5050 	hw = of_clk_get_hw_from_clkspec(&clkspec);
5051 	of_node_put(clkspec.np);
5052 
5053 	return hw;
5054 }
5055 
5056 static struct clk *__of_clk_get(struct device_node *np,
5057 				int index, const char *dev_id,
5058 				const char *con_id)
5059 {
5060 	struct clk_hw *hw = of_clk_get_hw(np, index, con_id);
5061 
5062 	return clk_hw_create_clk(NULL, hw, dev_id, con_id);
5063 }
5064 
5065 struct clk *of_clk_get(struct device_node *np, int index)
5066 {
5067 	return __of_clk_get(np, index, np->full_name, NULL);
5068 }
5069 EXPORT_SYMBOL(of_clk_get);
5070 
5071 /**
5072  * of_clk_get_by_name() - Parse and lookup a clock referenced by a device node
5073  * @np: pointer to clock consumer node
5074  * @name: name of consumer's clock input, or NULL for the first clock reference
5075  *
5076  * This function parses the clocks and clock-names properties,
5077  * and uses them to look up the struct clk from the registered list of clock
5078  * providers.
5079  */
5080 struct clk *of_clk_get_by_name(struct device_node *np, const char *name)
5081 {
5082 	if (!np)
5083 		return ERR_PTR(-ENOENT);
5084 
5085 	return __of_clk_get(np, 0, np->full_name, name);
5086 }
5087 EXPORT_SYMBOL(of_clk_get_by_name);
5088 
5089 /**
5090  * of_clk_get_parent_count() - Count the number of clocks a device node has
5091  * @np: device node to count
5092  *
5093  * Returns: The number of clocks that are possible parents of this node
5094  */
5095 unsigned int of_clk_get_parent_count(const struct device_node *np)
5096 {
5097 	int count;
5098 
5099 	count = of_count_phandle_with_args(np, "clocks", "#clock-cells");
5100 	if (count < 0)
5101 		return 0;
5102 
5103 	return count;
5104 }
5105 EXPORT_SYMBOL_GPL(of_clk_get_parent_count);
5106 
5107 const char *of_clk_get_parent_name(const struct device_node *np, int index)
5108 {
5109 	struct of_phandle_args clkspec;
5110 	struct property *prop;
5111 	const char *clk_name;
5112 	const __be32 *vp;
5113 	u32 pv;
5114 	int rc;
5115 	int count;
5116 	struct clk *clk;
5117 
5118 	rc = of_parse_phandle_with_args(np, "clocks", "#clock-cells", index,
5119 					&clkspec);
5120 	if (rc)
5121 		return NULL;
5122 
5123 	index = clkspec.args_count ? clkspec.args[0] : 0;
5124 	count = 0;
5125 
5126 	/* if there is an indices property, use it to transfer the index
5127 	 * specified into an array offset for the clock-output-names property.
5128 	 */
5129 	of_property_for_each_u32(clkspec.np, "clock-indices", prop, vp, pv) {
5130 		if (index == pv) {
5131 			index = count;
5132 			break;
5133 		}
5134 		count++;
5135 	}
5136 	/* We went off the end of 'clock-indices' without finding it */
5137 	if (prop && !vp)
5138 		return NULL;
5139 
5140 	if (of_property_read_string_index(clkspec.np, "clock-output-names",
5141 					  index,
5142 					  &clk_name) < 0) {
5143 		/*
5144 		 * Best effort to get the name if the clock has been
5145 		 * registered with the framework. If the clock isn't
5146 		 * registered, we return the node name as the name of
5147 		 * the clock as long as #clock-cells = 0.
5148 		 */
5149 		clk = of_clk_get_from_provider(&clkspec);
5150 		if (IS_ERR(clk)) {
5151 			if (clkspec.args_count == 0)
5152 				clk_name = clkspec.np->name;
5153 			else
5154 				clk_name = NULL;
5155 		} else {
5156 			clk_name = __clk_get_name(clk);
5157 			clk_put(clk);
5158 		}
5159 	}
5160 
5161 
5162 	of_node_put(clkspec.np);
5163 	return clk_name;
5164 }
5165 EXPORT_SYMBOL_GPL(of_clk_get_parent_name);
5166 
5167 /**
5168  * of_clk_parent_fill() - Fill @parents with names of @np's parents and return
5169  * number of parents
5170  * @np: Device node pointer associated with clock provider
5171  * @parents: pointer to char array that hold the parents' names
5172  * @size: size of the @parents array
5173  *
5174  * Return: number of parents for the clock node.
5175  */
5176 int of_clk_parent_fill(struct device_node *np, const char **parents,
5177 		       unsigned int size)
5178 {
5179 	unsigned int i = 0;
5180 
5181 	while (i < size && (parents[i] = of_clk_get_parent_name(np, i)) != NULL)
5182 		i++;
5183 
5184 	return i;
5185 }
5186 EXPORT_SYMBOL_GPL(of_clk_parent_fill);
5187 
5188 struct clock_provider {
5189 	void (*clk_init_cb)(struct device_node *);
5190 	struct device_node *np;
5191 	struct list_head node;
5192 };
5193 
5194 /*
5195  * This function looks for a parent clock. If there is one, then it
5196  * checks that the provider for this parent clock was initialized, in
5197  * this case the parent clock will be ready.
5198  */
5199 static int parent_ready(struct device_node *np)
5200 {
5201 	int i = 0;
5202 
5203 	while (true) {
5204 		struct clk *clk = of_clk_get(np, i);
5205 
5206 		/* this parent is ready we can check the next one */
5207 		if (!IS_ERR(clk)) {
5208 			clk_put(clk);
5209 			i++;
5210 			continue;
5211 		}
5212 
5213 		/* at least one parent is not ready, we exit now */
5214 		if (PTR_ERR(clk) == -EPROBE_DEFER)
5215 			return 0;
5216 
5217 		/*
5218 		 * Here we make assumption that the device tree is
5219 		 * written correctly. So an error means that there is
5220 		 * no more parent. As we didn't exit yet, then the
5221 		 * previous parent are ready. If there is no clock
5222 		 * parent, no need to wait for them, then we can
5223 		 * consider their absence as being ready
5224 		 */
5225 		return 1;
5226 	}
5227 }
5228 
5229 /**
5230  * of_clk_detect_critical() - set CLK_IS_CRITICAL flag from Device Tree
5231  * @np: Device node pointer associated with clock provider
5232  * @index: clock index
5233  * @flags: pointer to top-level framework flags
5234  *
5235  * Detects if the clock-critical property exists and, if so, sets the
5236  * corresponding CLK_IS_CRITICAL flag.
5237  *
5238  * Do not use this function. It exists only for legacy Device Tree
5239  * bindings, such as the one-clock-per-node style that are outdated.
5240  * Those bindings typically put all clock data into .dts and the Linux
5241  * driver has no clock data, thus making it impossible to set this flag
5242  * correctly from the driver. Only those drivers may call
5243  * of_clk_detect_critical from their setup functions.
5244  *
5245  * Return: error code or zero on success
5246  */
5247 int of_clk_detect_critical(struct device_node *np, int index,
5248 			   unsigned long *flags)
5249 {
5250 	struct property *prop;
5251 	const __be32 *cur;
5252 	uint32_t idx;
5253 
5254 	if (!np || !flags)
5255 		return -EINVAL;
5256 
5257 	of_property_for_each_u32(np, "clock-critical", prop, cur, idx)
5258 		if (index == idx)
5259 			*flags |= CLK_IS_CRITICAL;
5260 
5261 	return 0;
5262 }
5263 
5264 /**
5265  * of_clk_init() - Scan and init clock providers from the DT
5266  * @matches: array of compatible values and init functions for providers.
5267  *
5268  * This function scans the device tree for matching clock providers
5269  * and calls their initialization functions. It also does it by trying
5270  * to follow the dependencies.
5271  */
5272 void __init of_clk_init(const struct of_device_id *matches)
5273 {
5274 	const struct of_device_id *match;
5275 	struct device_node *np;
5276 	struct clock_provider *clk_provider, *next;
5277 	bool is_init_done;
5278 	bool force = false;
5279 	LIST_HEAD(clk_provider_list);
5280 
5281 	if (!matches)
5282 		matches = &__clk_of_table;
5283 
5284 	/* First prepare the list of the clocks providers */
5285 	for_each_matching_node_and_match(np, matches, &match) {
5286 		struct clock_provider *parent;
5287 
5288 		if (!of_device_is_available(np))
5289 			continue;
5290 
5291 		parent = kzalloc(sizeof(*parent), GFP_KERNEL);
5292 		if (!parent) {
5293 			list_for_each_entry_safe(clk_provider, next,
5294 						 &clk_provider_list, node) {
5295 				list_del(&clk_provider->node);
5296 				of_node_put(clk_provider->np);
5297 				kfree(clk_provider);
5298 			}
5299 			of_node_put(np);
5300 			return;
5301 		}
5302 
5303 		parent->clk_init_cb = match->data;
5304 		parent->np = of_node_get(np);
5305 		list_add_tail(&parent->node, &clk_provider_list);
5306 	}
5307 
5308 	while (!list_empty(&clk_provider_list)) {
5309 		is_init_done = false;
5310 		list_for_each_entry_safe(clk_provider, next,
5311 					&clk_provider_list, node) {
5312 			if (force || parent_ready(clk_provider->np)) {
5313 
5314 				/* Don't populate platform devices */
5315 				of_node_set_flag(clk_provider->np,
5316 						 OF_POPULATED);
5317 
5318 				clk_provider->clk_init_cb(clk_provider->np);
5319 				of_clk_set_defaults(clk_provider->np, true);
5320 
5321 				list_del(&clk_provider->node);
5322 				of_node_put(clk_provider->np);
5323 				kfree(clk_provider);
5324 				is_init_done = true;
5325 			}
5326 		}
5327 
5328 		/*
5329 		 * We didn't manage to initialize any of the
5330 		 * remaining providers during the last loop, so now we
5331 		 * initialize all the remaining ones unconditionally
5332 		 * in case the clock parent was not mandatory
5333 		 */
5334 		if (!is_init_done)
5335 			force = true;
5336 	}
5337 }
5338 #endif
5339