xref: /linux/drivers/clk/clk.c (revision f86fd32d)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2010-2011 Canonical Ltd <jeremy.kerr@canonical.com>
4  * Copyright (C) 2011-2012 Linaro Ltd <mturquette@linaro.org>
5  *
6  * Standard functionality for the common clock API.  See Documentation/driver-api/clk.rst
7  */
8 
9 #include <linux/clk.h>
10 #include <linux/clk-provider.h>
11 #include <linux/clk/clk-conf.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/spinlock.h>
15 #include <linux/err.h>
16 #include <linux/list.h>
17 #include <linux/slab.h>
18 #include <linux/of.h>
19 #include <linux/device.h>
20 #include <linux/init.h>
21 #include <linux/pm_runtime.h>
22 #include <linux/sched.h>
23 #include <linux/clkdev.h>
24 
25 #include "clk.h"
26 
27 static DEFINE_SPINLOCK(enable_lock);
28 static DEFINE_MUTEX(prepare_lock);
29 
30 static struct task_struct *prepare_owner;
31 static struct task_struct *enable_owner;
32 
33 static int prepare_refcnt;
34 static int enable_refcnt;
35 
36 static HLIST_HEAD(clk_root_list);
37 static HLIST_HEAD(clk_orphan_list);
38 static LIST_HEAD(clk_notifier_list);
39 
40 static struct hlist_head *all_lists[] = {
41 	&clk_root_list,
42 	&clk_orphan_list,
43 	NULL,
44 };
45 
46 /***    private data structures    ***/
47 
48 struct clk_parent_map {
49 	const struct clk_hw	*hw;
50 	struct clk_core		*core;
51 	const char		*fw_name;
52 	const char		*name;
53 	int			index;
54 };
55 
56 struct clk_core {
57 	const char		*name;
58 	const struct clk_ops	*ops;
59 	struct clk_hw		*hw;
60 	struct module		*owner;
61 	struct device		*dev;
62 	struct device_node	*of_node;
63 	struct clk_core		*parent;
64 	struct clk_parent_map	*parents;
65 	u8			num_parents;
66 	u8			new_parent_index;
67 	unsigned long		rate;
68 	unsigned long		req_rate;
69 	unsigned long		new_rate;
70 	struct clk_core		*new_parent;
71 	struct clk_core		*new_child;
72 	unsigned long		flags;
73 	bool			orphan;
74 	bool			rpm_enabled;
75 	unsigned int		enable_count;
76 	unsigned int		prepare_count;
77 	unsigned int		protect_count;
78 	unsigned long		min_rate;
79 	unsigned long		max_rate;
80 	unsigned long		accuracy;
81 	int			phase;
82 	struct clk_duty		duty;
83 	struct hlist_head	children;
84 	struct hlist_node	child_node;
85 	struct hlist_head	clks;
86 	unsigned int		notifier_count;
87 #ifdef CONFIG_DEBUG_FS
88 	struct dentry		*dentry;
89 	struct hlist_node	debug_node;
90 #endif
91 	struct kref		ref;
92 };
93 
94 #define CREATE_TRACE_POINTS
95 #include <trace/events/clk.h>
96 
97 struct clk {
98 	struct clk_core	*core;
99 	struct device *dev;
100 	const char *dev_id;
101 	const char *con_id;
102 	unsigned long min_rate;
103 	unsigned long max_rate;
104 	unsigned int exclusive_count;
105 	struct hlist_node clks_node;
106 };
107 
108 /***           runtime pm          ***/
109 static int clk_pm_runtime_get(struct clk_core *core)
110 {
111 	int ret;
112 
113 	if (!core->rpm_enabled)
114 		return 0;
115 
116 	ret = pm_runtime_get_sync(core->dev);
117 	return ret < 0 ? ret : 0;
118 }
119 
120 static void clk_pm_runtime_put(struct clk_core *core)
121 {
122 	if (!core->rpm_enabled)
123 		return;
124 
125 	pm_runtime_put_sync(core->dev);
126 }
127 
128 /***           locking             ***/
129 static void clk_prepare_lock(void)
130 {
131 	if (!mutex_trylock(&prepare_lock)) {
132 		if (prepare_owner == current) {
133 			prepare_refcnt++;
134 			return;
135 		}
136 		mutex_lock(&prepare_lock);
137 	}
138 	WARN_ON_ONCE(prepare_owner != NULL);
139 	WARN_ON_ONCE(prepare_refcnt != 0);
140 	prepare_owner = current;
141 	prepare_refcnt = 1;
142 }
143 
144 static void clk_prepare_unlock(void)
145 {
146 	WARN_ON_ONCE(prepare_owner != current);
147 	WARN_ON_ONCE(prepare_refcnt == 0);
148 
149 	if (--prepare_refcnt)
150 		return;
151 	prepare_owner = NULL;
152 	mutex_unlock(&prepare_lock);
153 }
154 
155 static unsigned long clk_enable_lock(void)
156 	__acquires(enable_lock)
157 {
158 	unsigned long flags;
159 
160 	/*
161 	 * On UP systems, spin_trylock_irqsave() always returns true, even if
162 	 * we already hold the lock. So, in that case, we rely only on
163 	 * reference counting.
164 	 */
165 	if (!IS_ENABLED(CONFIG_SMP) ||
166 	    !spin_trylock_irqsave(&enable_lock, flags)) {
167 		if (enable_owner == current) {
168 			enable_refcnt++;
169 			__acquire(enable_lock);
170 			if (!IS_ENABLED(CONFIG_SMP))
171 				local_save_flags(flags);
172 			return flags;
173 		}
174 		spin_lock_irqsave(&enable_lock, flags);
175 	}
176 	WARN_ON_ONCE(enable_owner != NULL);
177 	WARN_ON_ONCE(enable_refcnt != 0);
178 	enable_owner = current;
179 	enable_refcnt = 1;
180 	return flags;
181 }
182 
183 static void clk_enable_unlock(unsigned long flags)
184 	__releases(enable_lock)
185 {
186 	WARN_ON_ONCE(enable_owner != current);
187 	WARN_ON_ONCE(enable_refcnt == 0);
188 
189 	if (--enable_refcnt) {
190 		__release(enable_lock);
191 		return;
192 	}
193 	enable_owner = NULL;
194 	spin_unlock_irqrestore(&enable_lock, flags);
195 }
196 
197 static bool clk_core_rate_is_protected(struct clk_core *core)
198 {
199 	return core->protect_count;
200 }
201 
202 static bool clk_core_is_prepared(struct clk_core *core)
203 {
204 	bool ret = false;
205 
206 	/*
207 	 * .is_prepared is optional for clocks that can prepare
208 	 * fall back to software usage counter if it is missing
209 	 */
210 	if (!core->ops->is_prepared)
211 		return core->prepare_count;
212 
213 	if (!clk_pm_runtime_get(core)) {
214 		ret = core->ops->is_prepared(core->hw);
215 		clk_pm_runtime_put(core);
216 	}
217 
218 	return ret;
219 }
220 
221 static bool clk_core_is_enabled(struct clk_core *core)
222 {
223 	bool ret = false;
224 
225 	/*
226 	 * .is_enabled is only mandatory for clocks that gate
227 	 * fall back to software usage counter if .is_enabled is missing
228 	 */
229 	if (!core->ops->is_enabled)
230 		return core->enable_count;
231 
232 	/*
233 	 * Check if clock controller's device is runtime active before
234 	 * calling .is_enabled callback. If not, assume that clock is
235 	 * disabled, because we might be called from atomic context, from
236 	 * which pm_runtime_get() is not allowed.
237 	 * This function is called mainly from clk_disable_unused_subtree,
238 	 * which ensures proper runtime pm activation of controller before
239 	 * taking enable spinlock, but the below check is needed if one tries
240 	 * to call it from other places.
241 	 */
242 	if (core->rpm_enabled) {
243 		pm_runtime_get_noresume(core->dev);
244 		if (!pm_runtime_active(core->dev)) {
245 			ret = false;
246 			goto done;
247 		}
248 	}
249 
250 	ret = core->ops->is_enabled(core->hw);
251 done:
252 	if (core->rpm_enabled)
253 		pm_runtime_put(core->dev);
254 
255 	return ret;
256 }
257 
258 /***    helper functions   ***/
259 
260 const char *__clk_get_name(const struct clk *clk)
261 {
262 	return !clk ? NULL : clk->core->name;
263 }
264 EXPORT_SYMBOL_GPL(__clk_get_name);
265 
266 const char *clk_hw_get_name(const struct clk_hw *hw)
267 {
268 	return hw->core->name;
269 }
270 EXPORT_SYMBOL_GPL(clk_hw_get_name);
271 
272 struct clk_hw *__clk_get_hw(struct clk *clk)
273 {
274 	return !clk ? NULL : clk->core->hw;
275 }
276 EXPORT_SYMBOL_GPL(__clk_get_hw);
277 
278 unsigned int clk_hw_get_num_parents(const struct clk_hw *hw)
279 {
280 	return hw->core->num_parents;
281 }
282 EXPORT_SYMBOL_GPL(clk_hw_get_num_parents);
283 
284 struct clk_hw *clk_hw_get_parent(const struct clk_hw *hw)
285 {
286 	return hw->core->parent ? hw->core->parent->hw : NULL;
287 }
288 EXPORT_SYMBOL_GPL(clk_hw_get_parent);
289 
290 static struct clk_core *__clk_lookup_subtree(const char *name,
291 					     struct clk_core *core)
292 {
293 	struct clk_core *child;
294 	struct clk_core *ret;
295 
296 	if (!strcmp(core->name, name))
297 		return core;
298 
299 	hlist_for_each_entry(child, &core->children, child_node) {
300 		ret = __clk_lookup_subtree(name, child);
301 		if (ret)
302 			return ret;
303 	}
304 
305 	return NULL;
306 }
307 
308 static struct clk_core *clk_core_lookup(const char *name)
309 {
310 	struct clk_core *root_clk;
311 	struct clk_core *ret;
312 
313 	if (!name)
314 		return NULL;
315 
316 	/* search the 'proper' clk tree first */
317 	hlist_for_each_entry(root_clk, &clk_root_list, child_node) {
318 		ret = __clk_lookup_subtree(name, root_clk);
319 		if (ret)
320 			return ret;
321 	}
322 
323 	/* if not found, then search the orphan tree */
324 	hlist_for_each_entry(root_clk, &clk_orphan_list, child_node) {
325 		ret = __clk_lookup_subtree(name, root_clk);
326 		if (ret)
327 			return ret;
328 	}
329 
330 	return NULL;
331 }
332 
333 #ifdef CONFIG_OF
334 static int of_parse_clkspec(const struct device_node *np, int index,
335 			    const char *name, struct of_phandle_args *out_args);
336 static struct clk_hw *
337 of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec);
338 #else
339 static inline int of_parse_clkspec(const struct device_node *np, int index,
340 				   const char *name,
341 				   struct of_phandle_args *out_args)
342 {
343 	return -ENOENT;
344 }
345 static inline struct clk_hw *
346 of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec)
347 {
348 	return ERR_PTR(-ENOENT);
349 }
350 #endif
351 
352 /**
353  * clk_core_get - Find the clk_core parent of a clk
354  * @core: clk to find parent of
355  * @p_index: parent index to search for
356  *
357  * This is the preferred method for clk providers to find the parent of a
358  * clk when that parent is external to the clk controller. The parent_names
359  * array is indexed and treated as a local name matching a string in the device
360  * node's 'clock-names' property or as the 'con_id' matching the device's
361  * dev_name() in a clk_lookup. This allows clk providers to use their own
362  * namespace instead of looking for a globally unique parent string.
363  *
364  * For example the following DT snippet would allow a clock registered by the
365  * clock-controller@c001 that has a clk_init_data::parent_data array
366  * with 'xtal' in the 'name' member to find the clock provided by the
367  * clock-controller@f00abcd without needing to get the globally unique name of
368  * the xtal clk.
369  *
370  *      parent: clock-controller@f00abcd {
371  *              reg = <0xf00abcd 0xabcd>;
372  *              #clock-cells = <0>;
373  *      };
374  *
375  *      clock-controller@c001 {
376  *              reg = <0xc001 0xf00d>;
377  *              clocks = <&parent>;
378  *              clock-names = "xtal";
379  *              #clock-cells = <1>;
380  *      };
381  *
382  * Returns: -ENOENT when the provider can't be found or the clk doesn't
383  * exist in the provider or the name can't be found in the DT node or
384  * in a clkdev lookup. NULL when the provider knows about the clk but it
385  * isn't provided on this system.
386  * A valid clk_core pointer when the clk can be found in the provider.
387  */
388 static struct clk_core *clk_core_get(struct clk_core *core, u8 p_index)
389 {
390 	const char *name = core->parents[p_index].fw_name;
391 	int index = core->parents[p_index].index;
392 	struct clk_hw *hw = ERR_PTR(-ENOENT);
393 	struct device *dev = core->dev;
394 	const char *dev_id = dev ? dev_name(dev) : NULL;
395 	struct device_node *np = core->of_node;
396 	struct of_phandle_args clkspec;
397 
398 	if (np && (name || index >= 0) &&
399 	    !of_parse_clkspec(np, index, name, &clkspec)) {
400 		hw = of_clk_get_hw_from_clkspec(&clkspec);
401 		of_node_put(clkspec.np);
402 	} else if (name) {
403 		/*
404 		 * If the DT search above couldn't find the provider fallback to
405 		 * looking up via clkdev based clk_lookups.
406 		 */
407 		hw = clk_find_hw(dev_id, name);
408 	}
409 
410 	if (IS_ERR(hw))
411 		return ERR_CAST(hw);
412 
413 	return hw->core;
414 }
415 
416 static void clk_core_fill_parent_index(struct clk_core *core, u8 index)
417 {
418 	struct clk_parent_map *entry = &core->parents[index];
419 	struct clk_core *parent = ERR_PTR(-ENOENT);
420 
421 	if (entry->hw) {
422 		parent = entry->hw->core;
423 		/*
424 		 * We have a direct reference but it isn't registered yet?
425 		 * Orphan it and let clk_reparent() update the orphan status
426 		 * when the parent is registered.
427 		 */
428 		if (!parent)
429 			parent = ERR_PTR(-EPROBE_DEFER);
430 	} else {
431 		parent = clk_core_get(core, index);
432 		if (PTR_ERR(parent) == -ENOENT && entry->name)
433 			parent = clk_core_lookup(entry->name);
434 	}
435 
436 	/* Only cache it if it's not an error */
437 	if (!IS_ERR(parent))
438 		entry->core = parent;
439 }
440 
441 static struct clk_core *clk_core_get_parent_by_index(struct clk_core *core,
442 							 u8 index)
443 {
444 	if (!core || index >= core->num_parents || !core->parents)
445 		return NULL;
446 
447 	if (!core->parents[index].core)
448 		clk_core_fill_parent_index(core, index);
449 
450 	return core->parents[index].core;
451 }
452 
453 struct clk_hw *
454 clk_hw_get_parent_by_index(const struct clk_hw *hw, unsigned int index)
455 {
456 	struct clk_core *parent;
457 
458 	parent = clk_core_get_parent_by_index(hw->core, index);
459 
460 	return !parent ? NULL : parent->hw;
461 }
462 EXPORT_SYMBOL_GPL(clk_hw_get_parent_by_index);
463 
464 unsigned int __clk_get_enable_count(struct clk *clk)
465 {
466 	return !clk ? 0 : clk->core->enable_count;
467 }
468 
469 static unsigned long clk_core_get_rate_nolock(struct clk_core *core)
470 {
471 	if (!core)
472 		return 0;
473 
474 	if (!core->num_parents || core->parent)
475 		return core->rate;
476 
477 	/*
478 	 * Clk must have a parent because num_parents > 0 but the parent isn't
479 	 * known yet. Best to return 0 as the rate of this clk until we can
480 	 * properly recalc the rate based on the parent's rate.
481 	 */
482 	return 0;
483 }
484 
485 unsigned long clk_hw_get_rate(const struct clk_hw *hw)
486 {
487 	return clk_core_get_rate_nolock(hw->core);
488 }
489 EXPORT_SYMBOL_GPL(clk_hw_get_rate);
490 
491 static unsigned long __clk_get_accuracy(struct clk_core *core)
492 {
493 	if (!core)
494 		return 0;
495 
496 	return core->accuracy;
497 }
498 
499 unsigned long __clk_get_flags(struct clk *clk)
500 {
501 	return !clk ? 0 : clk->core->flags;
502 }
503 EXPORT_SYMBOL_GPL(__clk_get_flags);
504 
505 unsigned long clk_hw_get_flags(const struct clk_hw *hw)
506 {
507 	return hw->core->flags;
508 }
509 EXPORT_SYMBOL_GPL(clk_hw_get_flags);
510 
511 bool clk_hw_is_prepared(const struct clk_hw *hw)
512 {
513 	return clk_core_is_prepared(hw->core);
514 }
515 EXPORT_SYMBOL_GPL(clk_hw_is_prepared);
516 
517 bool clk_hw_rate_is_protected(const struct clk_hw *hw)
518 {
519 	return clk_core_rate_is_protected(hw->core);
520 }
521 EXPORT_SYMBOL_GPL(clk_hw_rate_is_protected);
522 
523 bool clk_hw_is_enabled(const struct clk_hw *hw)
524 {
525 	return clk_core_is_enabled(hw->core);
526 }
527 EXPORT_SYMBOL_GPL(clk_hw_is_enabled);
528 
529 bool __clk_is_enabled(struct clk *clk)
530 {
531 	if (!clk)
532 		return false;
533 
534 	return clk_core_is_enabled(clk->core);
535 }
536 EXPORT_SYMBOL_GPL(__clk_is_enabled);
537 
538 static bool mux_is_better_rate(unsigned long rate, unsigned long now,
539 			   unsigned long best, unsigned long flags)
540 {
541 	if (flags & CLK_MUX_ROUND_CLOSEST)
542 		return abs(now - rate) < abs(best - rate);
543 
544 	return now <= rate && now > best;
545 }
546 
547 int clk_mux_determine_rate_flags(struct clk_hw *hw,
548 				 struct clk_rate_request *req,
549 				 unsigned long flags)
550 {
551 	struct clk_core *core = hw->core, *parent, *best_parent = NULL;
552 	int i, num_parents, ret;
553 	unsigned long best = 0;
554 	struct clk_rate_request parent_req = *req;
555 
556 	/* if NO_REPARENT flag set, pass through to current parent */
557 	if (core->flags & CLK_SET_RATE_NO_REPARENT) {
558 		parent = core->parent;
559 		if (core->flags & CLK_SET_RATE_PARENT) {
560 			ret = __clk_determine_rate(parent ? parent->hw : NULL,
561 						   &parent_req);
562 			if (ret)
563 				return ret;
564 
565 			best = parent_req.rate;
566 		} else if (parent) {
567 			best = clk_core_get_rate_nolock(parent);
568 		} else {
569 			best = clk_core_get_rate_nolock(core);
570 		}
571 
572 		goto out;
573 	}
574 
575 	/* find the parent that can provide the fastest rate <= rate */
576 	num_parents = core->num_parents;
577 	for (i = 0; i < num_parents; i++) {
578 		parent = clk_core_get_parent_by_index(core, i);
579 		if (!parent)
580 			continue;
581 
582 		if (core->flags & CLK_SET_RATE_PARENT) {
583 			parent_req = *req;
584 			ret = __clk_determine_rate(parent->hw, &parent_req);
585 			if (ret)
586 				continue;
587 		} else {
588 			parent_req.rate = clk_core_get_rate_nolock(parent);
589 		}
590 
591 		if (mux_is_better_rate(req->rate, parent_req.rate,
592 				       best, flags)) {
593 			best_parent = parent;
594 			best = parent_req.rate;
595 		}
596 	}
597 
598 	if (!best_parent)
599 		return -EINVAL;
600 
601 out:
602 	if (best_parent)
603 		req->best_parent_hw = best_parent->hw;
604 	req->best_parent_rate = best;
605 	req->rate = best;
606 
607 	return 0;
608 }
609 EXPORT_SYMBOL_GPL(clk_mux_determine_rate_flags);
610 
611 struct clk *__clk_lookup(const char *name)
612 {
613 	struct clk_core *core = clk_core_lookup(name);
614 
615 	return !core ? NULL : core->hw->clk;
616 }
617 
618 static void clk_core_get_boundaries(struct clk_core *core,
619 				    unsigned long *min_rate,
620 				    unsigned long *max_rate)
621 {
622 	struct clk *clk_user;
623 
624 	lockdep_assert_held(&prepare_lock);
625 
626 	*min_rate = core->min_rate;
627 	*max_rate = core->max_rate;
628 
629 	hlist_for_each_entry(clk_user, &core->clks, clks_node)
630 		*min_rate = max(*min_rate, clk_user->min_rate);
631 
632 	hlist_for_each_entry(clk_user, &core->clks, clks_node)
633 		*max_rate = min(*max_rate, clk_user->max_rate);
634 }
635 
636 void clk_hw_set_rate_range(struct clk_hw *hw, unsigned long min_rate,
637 			   unsigned long max_rate)
638 {
639 	hw->core->min_rate = min_rate;
640 	hw->core->max_rate = max_rate;
641 }
642 EXPORT_SYMBOL_GPL(clk_hw_set_rate_range);
643 
644 /*
645  * __clk_mux_determine_rate - clk_ops::determine_rate implementation for a mux type clk
646  * @hw: mux type clk to determine rate on
647  * @req: rate request, also used to return preferred parent and frequencies
648  *
649  * Helper for finding best parent to provide a given frequency. This can be used
650  * directly as a determine_rate callback (e.g. for a mux), or from a more
651  * complex clock that may combine a mux with other operations.
652  *
653  * Returns: 0 on success, -EERROR value on error
654  */
655 int __clk_mux_determine_rate(struct clk_hw *hw,
656 			     struct clk_rate_request *req)
657 {
658 	return clk_mux_determine_rate_flags(hw, req, 0);
659 }
660 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate);
661 
662 int __clk_mux_determine_rate_closest(struct clk_hw *hw,
663 				     struct clk_rate_request *req)
664 {
665 	return clk_mux_determine_rate_flags(hw, req, CLK_MUX_ROUND_CLOSEST);
666 }
667 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate_closest);
668 
669 /***        clk api        ***/
670 
671 static void clk_core_rate_unprotect(struct clk_core *core)
672 {
673 	lockdep_assert_held(&prepare_lock);
674 
675 	if (!core)
676 		return;
677 
678 	if (WARN(core->protect_count == 0,
679 	    "%s already unprotected\n", core->name))
680 		return;
681 
682 	if (--core->protect_count > 0)
683 		return;
684 
685 	clk_core_rate_unprotect(core->parent);
686 }
687 
688 static int clk_core_rate_nuke_protect(struct clk_core *core)
689 {
690 	int ret;
691 
692 	lockdep_assert_held(&prepare_lock);
693 
694 	if (!core)
695 		return -EINVAL;
696 
697 	if (core->protect_count == 0)
698 		return 0;
699 
700 	ret = core->protect_count;
701 	core->protect_count = 1;
702 	clk_core_rate_unprotect(core);
703 
704 	return ret;
705 }
706 
707 /**
708  * clk_rate_exclusive_put - release exclusivity over clock rate control
709  * @clk: the clk over which the exclusivity is released
710  *
711  * clk_rate_exclusive_put() completes a critical section during which a clock
712  * consumer cannot tolerate any other consumer making any operation on the
713  * clock which could result in a rate change or rate glitch. Exclusive clocks
714  * cannot have their rate changed, either directly or indirectly due to changes
715  * further up the parent chain of clocks. As a result, clocks up parent chain
716  * also get under exclusive control of the calling consumer.
717  *
718  * If exlusivity is claimed more than once on clock, even by the same consumer,
719  * the rate effectively gets locked as exclusivity can't be preempted.
720  *
721  * Calls to clk_rate_exclusive_put() must be balanced with calls to
722  * clk_rate_exclusive_get(). Calls to this function may sleep, and do not return
723  * error status.
724  */
725 void clk_rate_exclusive_put(struct clk *clk)
726 {
727 	if (!clk)
728 		return;
729 
730 	clk_prepare_lock();
731 
732 	/*
733 	 * if there is something wrong with this consumer protect count, stop
734 	 * here before messing with the provider
735 	 */
736 	if (WARN_ON(clk->exclusive_count <= 0))
737 		goto out;
738 
739 	clk_core_rate_unprotect(clk->core);
740 	clk->exclusive_count--;
741 out:
742 	clk_prepare_unlock();
743 }
744 EXPORT_SYMBOL_GPL(clk_rate_exclusive_put);
745 
746 static void clk_core_rate_protect(struct clk_core *core)
747 {
748 	lockdep_assert_held(&prepare_lock);
749 
750 	if (!core)
751 		return;
752 
753 	if (core->protect_count == 0)
754 		clk_core_rate_protect(core->parent);
755 
756 	core->protect_count++;
757 }
758 
759 static void clk_core_rate_restore_protect(struct clk_core *core, int count)
760 {
761 	lockdep_assert_held(&prepare_lock);
762 
763 	if (!core)
764 		return;
765 
766 	if (count == 0)
767 		return;
768 
769 	clk_core_rate_protect(core);
770 	core->protect_count = count;
771 }
772 
773 /**
774  * clk_rate_exclusive_get - get exclusivity over the clk rate control
775  * @clk: the clk over which the exclusity of rate control is requested
776  *
777  * clk_rate_exlusive_get() begins a critical section during which a clock
778  * consumer cannot tolerate any other consumer making any operation on the
779  * clock which could result in a rate change or rate glitch. Exclusive clocks
780  * cannot have their rate changed, either directly or indirectly due to changes
781  * further up the parent chain of clocks. As a result, clocks up parent chain
782  * also get under exclusive control of the calling consumer.
783  *
784  * If exlusivity is claimed more than once on clock, even by the same consumer,
785  * the rate effectively gets locked as exclusivity can't be preempted.
786  *
787  * Calls to clk_rate_exclusive_get() should be balanced with calls to
788  * clk_rate_exclusive_put(). Calls to this function may sleep.
789  * Returns 0 on success, -EERROR otherwise
790  */
791 int clk_rate_exclusive_get(struct clk *clk)
792 {
793 	if (!clk)
794 		return 0;
795 
796 	clk_prepare_lock();
797 	clk_core_rate_protect(clk->core);
798 	clk->exclusive_count++;
799 	clk_prepare_unlock();
800 
801 	return 0;
802 }
803 EXPORT_SYMBOL_GPL(clk_rate_exclusive_get);
804 
805 static void clk_core_unprepare(struct clk_core *core)
806 {
807 	lockdep_assert_held(&prepare_lock);
808 
809 	if (!core)
810 		return;
811 
812 	if (WARN(core->prepare_count == 0,
813 	    "%s already unprepared\n", core->name))
814 		return;
815 
816 	if (WARN(core->prepare_count == 1 && core->flags & CLK_IS_CRITICAL,
817 	    "Unpreparing critical %s\n", core->name))
818 		return;
819 
820 	if (core->flags & CLK_SET_RATE_GATE)
821 		clk_core_rate_unprotect(core);
822 
823 	if (--core->prepare_count > 0)
824 		return;
825 
826 	WARN(core->enable_count > 0, "Unpreparing enabled %s\n", core->name);
827 
828 	trace_clk_unprepare(core);
829 
830 	if (core->ops->unprepare)
831 		core->ops->unprepare(core->hw);
832 
833 	clk_pm_runtime_put(core);
834 
835 	trace_clk_unprepare_complete(core);
836 	clk_core_unprepare(core->parent);
837 }
838 
839 static void clk_core_unprepare_lock(struct clk_core *core)
840 {
841 	clk_prepare_lock();
842 	clk_core_unprepare(core);
843 	clk_prepare_unlock();
844 }
845 
846 /**
847  * clk_unprepare - undo preparation of a clock source
848  * @clk: the clk being unprepared
849  *
850  * clk_unprepare may sleep, which differentiates it from clk_disable.  In a
851  * simple case, clk_unprepare can be used instead of clk_disable to gate a clk
852  * if the operation may sleep.  One example is a clk which is accessed over
853  * I2c.  In the complex case a clk gate operation may require a fast and a slow
854  * part.  It is this reason that clk_unprepare and clk_disable are not mutually
855  * exclusive.  In fact clk_disable must be called before clk_unprepare.
856  */
857 void clk_unprepare(struct clk *clk)
858 {
859 	if (IS_ERR_OR_NULL(clk))
860 		return;
861 
862 	clk_core_unprepare_lock(clk->core);
863 }
864 EXPORT_SYMBOL_GPL(clk_unprepare);
865 
866 static int clk_core_prepare(struct clk_core *core)
867 {
868 	int ret = 0;
869 
870 	lockdep_assert_held(&prepare_lock);
871 
872 	if (!core)
873 		return 0;
874 
875 	if (core->prepare_count == 0) {
876 		ret = clk_pm_runtime_get(core);
877 		if (ret)
878 			return ret;
879 
880 		ret = clk_core_prepare(core->parent);
881 		if (ret)
882 			goto runtime_put;
883 
884 		trace_clk_prepare(core);
885 
886 		if (core->ops->prepare)
887 			ret = core->ops->prepare(core->hw);
888 
889 		trace_clk_prepare_complete(core);
890 
891 		if (ret)
892 			goto unprepare;
893 	}
894 
895 	core->prepare_count++;
896 
897 	/*
898 	 * CLK_SET_RATE_GATE is a special case of clock protection
899 	 * Instead of a consumer claiming exclusive rate control, it is
900 	 * actually the provider which prevents any consumer from making any
901 	 * operation which could result in a rate change or rate glitch while
902 	 * the clock is prepared.
903 	 */
904 	if (core->flags & CLK_SET_RATE_GATE)
905 		clk_core_rate_protect(core);
906 
907 	return 0;
908 unprepare:
909 	clk_core_unprepare(core->parent);
910 runtime_put:
911 	clk_pm_runtime_put(core);
912 	return ret;
913 }
914 
915 static int clk_core_prepare_lock(struct clk_core *core)
916 {
917 	int ret;
918 
919 	clk_prepare_lock();
920 	ret = clk_core_prepare(core);
921 	clk_prepare_unlock();
922 
923 	return ret;
924 }
925 
926 /**
927  * clk_prepare - prepare a clock source
928  * @clk: the clk being prepared
929  *
930  * clk_prepare may sleep, which differentiates it from clk_enable.  In a simple
931  * case, clk_prepare can be used instead of clk_enable to ungate a clk if the
932  * operation may sleep.  One example is a clk which is accessed over I2c.  In
933  * the complex case a clk ungate operation may require a fast and a slow part.
934  * It is this reason that clk_prepare and clk_enable are not mutually
935  * exclusive.  In fact clk_prepare must be called before clk_enable.
936  * Returns 0 on success, -EERROR otherwise.
937  */
938 int clk_prepare(struct clk *clk)
939 {
940 	if (!clk)
941 		return 0;
942 
943 	return clk_core_prepare_lock(clk->core);
944 }
945 EXPORT_SYMBOL_GPL(clk_prepare);
946 
947 static void clk_core_disable(struct clk_core *core)
948 {
949 	lockdep_assert_held(&enable_lock);
950 
951 	if (!core)
952 		return;
953 
954 	if (WARN(core->enable_count == 0, "%s already disabled\n", core->name))
955 		return;
956 
957 	if (WARN(core->enable_count == 1 && core->flags & CLK_IS_CRITICAL,
958 	    "Disabling critical %s\n", core->name))
959 		return;
960 
961 	if (--core->enable_count > 0)
962 		return;
963 
964 	trace_clk_disable_rcuidle(core);
965 
966 	if (core->ops->disable)
967 		core->ops->disable(core->hw);
968 
969 	trace_clk_disable_complete_rcuidle(core);
970 
971 	clk_core_disable(core->parent);
972 }
973 
974 static void clk_core_disable_lock(struct clk_core *core)
975 {
976 	unsigned long flags;
977 
978 	flags = clk_enable_lock();
979 	clk_core_disable(core);
980 	clk_enable_unlock(flags);
981 }
982 
983 /**
984  * clk_disable - gate a clock
985  * @clk: the clk being gated
986  *
987  * clk_disable must not sleep, which differentiates it from clk_unprepare.  In
988  * a simple case, clk_disable can be used instead of clk_unprepare to gate a
989  * clk if the operation is fast and will never sleep.  One example is a
990  * SoC-internal clk which is controlled via simple register writes.  In the
991  * complex case a clk gate operation may require a fast and a slow part.  It is
992  * this reason that clk_unprepare and clk_disable are not mutually exclusive.
993  * In fact clk_disable must be called before clk_unprepare.
994  */
995 void clk_disable(struct clk *clk)
996 {
997 	if (IS_ERR_OR_NULL(clk))
998 		return;
999 
1000 	clk_core_disable_lock(clk->core);
1001 }
1002 EXPORT_SYMBOL_GPL(clk_disable);
1003 
1004 static int clk_core_enable(struct clk_core *core)
1005 {
1006 	int ret = 0;
1007 
1008 	lockdep_assert_held(&enable_lock);
1009 
1010 	if (!core)
1011 		return 0;
1012 
1013 	if (WARN(core->prepare_count == 0,
1014 	    "Enabling unprepared %s\n", core->name))
1015 		return -ESHUTDOWN;
1016 
1017 	if (core->enable_count == 0) {
1018 		ret = clk_core_enable(core->parent);
1019 
1020 		if (ret)
1021 			return ret;
1022 
1023 		trace_clk_enable_rcuidle(core);
1024 
1025 		if (core->ops->enable)
1026 			ret = core->ops->enable(core->hw);
1027 
1028 		trace_clk_enable_complete_rcuidle(core);
1029 
1030 		if (ret) {
1031 			clk_core_disable(core->parent);
1032 			return ret;
1033 		}
1034 	}
1035 
1036 	core->enable_count++;
1037 	return 0;
1038 }
1039 
1040 static int clk_core_enable_lock(struct clk_core *core)
1041 {
1042 	unsigned long flags;
1043 	int ret;
1044 
1045 	flags = clk_enable_lock();
1046 	ret = clk_core_enable(core);
1047 	clk_enable_unlock(flags);
1048 
1049 	return ret;
1050 }
1051 
1052 /**
1053  * clk_gate_restore_context - restore context for poweroff
1054  * @hw: the clk_hw pointer of clock whose state is to be restored
1055  *
1056  * The clock gate restore context function enables or disables
1057  * the gate clocks based on the enable_count. This is done in cases
1058  * where the clock context is lost and based on the enable_count
1059  * the clock either needs to be enabled/disabled. This
1060  * helps restore the state of gate clocks.
1061  */
1062 void clk_gate_restore_context(struct clk_hw *hw)
1063 {
1064 	struct clk_core *core = hw->core;
1065 
1066 	if (core->enable_count)
1067 		core->ops->enable(hw);
1068 	else
1069 		core->ops->disable(hw);
1070 }
1071 EXPORT_SYMBOL_GPL(clk_gate_restore_context);
1072 
1073 static int clk_core_save_context(struct clk_core *core)
1074 {
1075 	struct clk_core *child;
1076 	int ret = 0;
1077 
1078 	hlist_for_each_entry(child, &core->children, child_node) {
1079 		ret = clk_core_save_context(child);
1080 		if (ret < 0)
1081 			return ret;
1082 	}
1083 
1084 	if (core->ops && core->ops->save_context)
1085 		ret = core->ops->save_context(core->hw);
1086 
1087 	return ret;
1088 }
1089 
1090 static void clk_core_restore_context(struct clk_core *core)
1091 {
1092 	struct clk_core *child;
1093 
1094 	if (core->ops && core->ops->restore_context)
1095 		core->ops->restore_context(core->hw);
1096 
1097 	hlist_for_each_entry(child, &core->children, child_node)
1098 		clk_core_restore_context(child);
1099 }
1100 
1101 /**
1102  * clk_save_context - save clock context for poweroff
1103  *
1104  * Saves the context of the clock register for powerstates in which the
1105  * contents of the registers will be lost. Occurs deep within the suspend
1106  * code.  Returns 0 on success.
1107  */
1108 int clk_save_context(void)
1109 {
1110 	struct clk_core *clk;
1111 	int ret;
1112 
1113 	hlist_for_each_entry(clk, &clk_root_list, child_node) {
1114 		ret = clk_core_save_context(clk);
1115 		if (ret < 0)
1116 			return ret;
1117 	}
1118 
1119 	hlist_for_each_entry(clk, &clk_orphan_list, child_node) {
1120 		ret = clk_core_save_context(clk);
1121 		if (ret < 0)
1122 			return ret;
1123 	}
1124 
1125 	return 0;
1126 }
1127 EXPORT_SYMBOL_GPL(clk_save_context);
1128 
1129 /**
1130  * clk_restore_context - restore clock context after poweroff
1131  *
1132  * Restore the saved clock context upon resume.
1133  *
1134  */
1135 void clk_restore_context(void)
1136 {
1137 	struct clk_core *core;
1138 
1139 	hlist_for_each_entry(core, &clk_root_list, child_node)
1140 		clk_core_restore_context(core);
1141 
1142 	hlist_for_each_entry(core, &clk_orphan_list, child_node)
1143 		clk_core_restore_context(core);
1144 }
1145 EXPORT_SYMBOL_GPL(clk_restore_context);
1146 
1147 /**
1148  * clk_enable - ungate a clock
1149  * @clk: the clk being ungated
1150  *
1151  * clk_enable must not sleep, which differentiates it from clk_prepare.  In a
1152  * simple case, clk_enable can be used instead of clk_prepare to ungate a clk
1153  * if the operation will never sleep.  One example is a SoC-internal clk which
1154  * is controlled via simple register writes.  In the complex case a clk ungate
1155  * operation may require a fast and a slow part.  It is this reason that
1156  * clk_enable and clk_prepare are not mutually exclusive.  In fact clk_prepare
1157  * must be called before clk_enable.  Returns 0 on success, -EERROR
1158  * otherwise.
1159  */
1160 int clk_enable(struct clk *clk)
1161 {
1162 	if (!clk)
1163 		return 0;
1164 
1165 	return clk_core_enable_lock(clk->core);
1166 }
1167 EXPORT_SYMBOL_GPL(clk_enable);
1168 
1169 static int clk_core_prepare_enable(struct clk_core *core)
1170 {
1171 	int ret;
1172 
1173 	ret = clk_core_prepare_lock(core);
1174 	if (ret)
1175 		return ret;
1176 
1177 	ret = clk_core_enable_lock(core);
1178 	if (ret)
1179 		clk_core_unprepare_lock(core);
1180 
1181 	return ret;
1182 }
1183 
1184 static void clk_core_disable_unprepare(struct clk_core *core)
1185 {
1186 	clk_core_disable_lock(core);
1187 	clk_core_unprepare_lock(core);
1188 }
1189 
1190 static void __init clk_unprepare_unused_subtree(struct clk_core *core)
1191 {
1192 	struct clk_core *child;
1193 
1194 	lockdep_assert_held(&prepare_lock);
1195 
1196 	hlist_for_each_entry(child, &core->children, child_node)
1197 		clk_unprepare_unused_subtree(child);
1198 
1199 	if (core->prepare_count)
1200 		return;
1201 
1202 	if (core->flags & CLK_IGNORE_UNUSED)
1203 		return;
1204 
1205 	if (clk_pm_runtime_get(core))
1206 		return;
1207 
1208 	if (clk_core_is_prepared(core)) {
1209 		trace_clk_unprepare(core);
1210 		if (core->ops->unprepare_unused)
1211 			core->ops->unprepare_unused(core->hw);
1212 		else if (core->ops->unprepare)
1213 			core->ops->unprepare(core->hw);
1214 		trace_clk_unprepare_complete(core);
1215 	}
1216 
1217 	clk_pm_runtime_put(core);
1218 }
1219 
1220 static void __init clk_disable_unused_subtree(struct clk_core *core)
1221 {
1222 	struct clk_core *child;
1223 	unsigned long flags;
1224 
1225 	lockdep_assert_held(&prepare_lock);
1226 
1227 	hlist_for_each_entry(child, &core->children, child_node)
1228 		clk_disable_unused_subtree(child);
1229 
1230 	if (core->flags & CLK_OPS_PARENT_ENABLE)
1231 		clk_core_prepare_enable(core->parent);
1232 
1233 	if (clk_pm_runtime_get(core))
1234 		goto unprepare_out;
1235 
1236 	flags = clk_enable_lock();
1237 
1238 	if (core->enable_count)
1239 		goto unlock_out;
1240 
1241 	if (core->flags & CLK_IGNORE_UNUSED)
1242 		goto unlock_out;
1243 
1244 	/*
1245 	 * some gate clocks have special needs during the disable-unused
1246 	 * sequence.  call .disable_unused if available, otherwise fall
1247 	 * back to .disable
1248 	 */
1249 	if (clk_core_is_enabled(core)) {
1250 		trace_clk_disable(core);
1251 		if (core->ops->disable_unused)
1252 			core->ops->disable_unused(core->hw);
1253 		else if (core->ops->disable)
1254 			core->ops->disable(core->hw);
1255 		trace_clk_disable_complete(core);
1256 	}
1257 
1258 unlock_out:
1259 	clk_enable_unlock(flags);
1260 	clk_pm_runtime_put(core);
1261 unprepare_out:
1262 	if (core->flags & CLK_OPS_PARENT_ENABLE)
1263 		clk_core_disable_unprepare(core->parent);
1264 }
1265 
1266 static bool clk_ignore_unused __initdata;
1267 static int __init clk_ignore_unused_setup(char *__unused)
1268 {
1269 	clk_ignore_unused = true;
1270 	return 1;
1271 }
1272 __setup("clk_ignore_unused", clk_ignore_unused_setup);
1273 
1274 static int __init clk_disable_unused(void)
1275 {
1276 	struct clk_core *core;
1277 
1278 	if (clk_ignore_unused) {
1279 		pr_warn("clk: Not disabling unused clocks\n");
1280 		return 0;
1281 	}
1282 
1283 	clk_prepare_lock();
1284 
1285 	hlist_for_each_entry(core, &clk_root_list, child_node)
1286 		clk_disable_unused_subtree(core);
1287 
1288 	hlist_for_each_entry(core, &clk_orphan_list, child_node)
1289 		clk_disable_unused_subtree(core);
1290 
1291 	hlist_for_each_entry(core, &clk_root_list, child_node)
1292 		clk_unprepare_unused_subtree(core);
1293 
1294 	hlist_for_each_entry(core, &clk_orphan_list, child_node)
1295 		clk_unprepare_unused_subtree(core);
1296 
1297 	clk_prepare_unlock();
1298 
1299 	return 0;
1300 }
1301 late_initcall_sync(clk_disable_unused);
1302 
1303 static int clk_core_determine_round_nolock(struct clk_core *core,
1304 					   struct clk_rate_request *req)
1305 {
1306 	long rate;
1307 
1308 	lockdep_assert_held(&prepare_lock);
1309 
1310 	if (!core)
1311 		return 0;
1312 
1313 	/*
1314 	 * At this point, core protection will be disabled if
1315 	 * - if the provider is not protected at all
1316 	 * - if the calling consumer is the only one which has exclusivity
1317 	 *   over the provider
1318 	 */
1319 	if (clk_core_rate_is_protected(core)) {
1320 		req->rate = core->rate;
1321 	} else if (core->ops->determine_rate) {
1322 		return core->ops->determine_rate(core->hw, req);
1323 	} else if (core->ops->round_rate) {
1324 		rate = core->ops->round_rate(core->hw, req->rate,
1325 					     &req->best_parent_rate);
1326 		if (rate < 0)
1327 			return rate;
1328 
1329 		req->rate = rate;
1330 	} else {
1331 		return -EINVAL;
1332 	}
1333 
1334 	return 0;
1335 }
1336 
1337 static void clk_core_init_rate_req(struct clk_core * const core,
1338 				   struct clk_rate_request *req)
1339 {
1340 	struct clk_core *parent;
1341 
1342 	if (WARN_ON(!core || !req))
1343 		return;
1344 
1345 	parent = core->parent;
1346 	if (parent) {
1347 		req->best_parent_hw = parent->hw;
1348 		req->best_parent_rate = parent->rate;
1349 	} else {
1350 		req->best_parent_hw = NULL;
1351 		req->best_parent_rate = 0;
1352 	}
1353 }
1354 
1355 static bool clk_core_can_round(struct clk_core * const core)
1356 {
1357 	return core->ops->determine_rate || core->ops->round_rate;
1358 }
1359 
1360 static int clk_core_round_rate_nolock(struct clk_core *core,
1361 				      struct clk_rate_request *req)
1362 {
1363 	lockdep_assert_held(&prepare_lock);
1364 
1365 	if (!core) {
1366 		req->rate = 0;
1367 		return 0;
1368 	}
1369 
1370 	clk_core_init_rate_req(core, req);
1371 
1372 	if (clk_core_can_round(core))
1373 		return clk_core_determine_round_nolock(core, req);
1374 	else if (core->flags & CLK_SET_RATE_PARENT)
1375 		return clk_core_round_rate_nolock(core->parent, req);
1376 
1377 	req->rate = core->rate;
1378 	return 0;
1379 }
1380 
1381 /**
1382  * __clk_determine_rate - get the closest rate actually supported by a clock
1383  * @hw: determine the rate of this clock
1384  * @req: target rate request
1385  *
1386  * Useful for clk_ops such as .set_rate and .determine_rate.
1387  */
1388 int __clk_determine_rate(struct clk_hw *hw, struct clk_rate_request *req)
1389 {
1390 	if (!hw) {
1391 		req->rate = 0;
1392 		return 0;
1393 	}
1394 
1395 	return clk_core_round_rate_nolock(hw->core, req);
1396 }
1397 EXPORT_SYMBOL_GPL(__clk_determine_rate);
1398 
1399 unsigned long clk_hw_round_rate(struct clk_hw *hw, unsigned long rate)
1400 {
1401 	int ret;
1402 	struct clk_rate_request req;
1403 
1404 	clk_core_get_boundaries(hw->core, &req.min_rate, &req.max_rate);
1405 	req.rate = rate;
1406 
1407 	ret = clk_core_round_rate_nolock(hw->core, &req);
1408 	if (ret)
1409 		return 0;
1410 
1411 	return req.rate;
1412 }
1413 EXPORT_SYMBOL_GPL(clk_hw_round_rate);
1414 
1415 /**
1416  * clk_round_rate - round the given rate for a clk
1417  * @clk: the clk for which we are rounding a rate
1418  * @rate: the rate which is to be rounded
1419  *
1420  * Takes in a rate as input and rounds it to a rate that the clk can actually
1421  * use which is then returned.  If clk doesn't support round_rate operation
1422  * then the parent rate is returned.
1423  */
1424 long clk_round_rate(struct clk *clk, unsigned long rate)
1425 {
1426 	struct clk_rate_request req;
1427 	int ret;
1428 
1429 	if (!clk)
1430 		return 0;
1431 
1432 	clk_prepare_lock();
1433 
1434 	if (clk->exclusive_count)
1435 		clk_core_rate_unprotect(clk->core);
1436 
1437 	clk_core_get_boundaries(clk->core, &req.min_rate, &req.max_rate);
1438 	req.rate = rate;
1439 
1440 	ret = clk_core_round_rate_nolock(clk->core, &req);
1441 
1442 	if (clk->exclusive_count)
1443 		clk_core_rate_protect(clk->core);
1444 
1445 	clk_prepare_unlock();
1446 
1447 	if (ret)
1448 		return ret;
1449 
1450 	return req.rate;
1451 }
1452 EXPORT_SYMBOL_GPL(clk_round_rate);
1453 
1454 /**
1455  * __clk_notify - call clk notifier chain
1456  * @core: clk that is changing rate
1457  * @msg: clk notifier type (see include/linux/clk.h)
1458  * @old_rate: old clk rate
1459  * @new_rate: new clk rate
1460  *
1461  * Triggers a notifier call chain on the clk rate-change notification
1462  * for 'clk'.  Passes a pointer to the struct clk and the previous
1463  * and current rates to the notifier callback.  Intended to be called by
1464  * internal clock code only.  Returns NOTIFY_DONE from the last driver
1465  * called if all went well, or NOTIFY_STOP or NOTIFY_BAD immediately if
1466  * a driver returns that.
1467  */
1468 static int __clk_notify(struct clk_core *core, unsigned long msg,
1469 		unsigned long old_rate, unsigned long new_rate)
1470 {
1471 	struct clk_notifier *cn;
1472 	struct clk_notifier_data cnd;
1473 	int ret = NOTIFY_DONE;
1474 
1475 	cnd.old_rate = old_rate;
1476 	cnd.new_rate = new_rate;
1477 
1478 	list_for_each_entry(cn, &clk_notifier_list, node) {
1479 		if (cn->clk->core == core) {
1480 			cnd.clk = cn->clk;
1481 			ret = srcu_notifier_call_chain(&cn->notifier_head, msg,
1482 					&cnd);
1483 			if (ret & NOTIFY_STOP_MASK)
1484 				return ret;
1485 		}
1486 	}
1487 
1488 	return ret;
1489 }
1490 
1491 /**
1492  * __clk_recalc_accuracies
1493  * @core: first clk in the subtree
1494  *
1495  * Walks the subtree of clks starting with clk and recalculates accuracies as
1496  * it goes.  Note that if a clk does not implement the .recalc_accuracy
1497  * callback then it is assumed that the clock will take on the accuracy of its
1498  * parent.
1499  */
1500 static void __clk_recalc_accuracies(struct clk_core *core)
1501 {
1502 	unsigned long parent_accuracy = 0;
1503 	struct clk_core *child;
1504 
1505 	lockdep_assert_held(&prepare_lock);
1506 
1507 	if (core->parent)
1508 		parent_accuracy = core->parent->accuracy;
1509 
1510 	if (core->ops->recalc_accuracy)
1511 		core->accuracy = core->ops->recalc_accuracy(core->hw,
1512 							  parent_accuracy);
1513 	else
1514 		core->accuracy = parent_accuracy;
1515 
1516 	hlist_for_each_entry(child, &core->children, child_node)
1517 		__clk_recalc_accuracies(child);
1518 }
1519 
1520 static long clk_core_get_accuracy(struct clk_core *core)
1521 {
1522 	unsigned long accuracy;
1523 
1524 	clk_prepare_lock();
1525 	if (core && (core->flags & CLK_GET_ACCURACY_NOCACHE))
1526 		__clk_recalc_accuracies(core);
1527 
1528 	accuracy = __clk_get_accuracy(core);
1529 	clk_prepare_unlock();
1530 
1531 	return accuracy;
1532 }
1533 
1534 /**
1535  * clk_get_accuracy - return the accuracy of clk
1536  * @clk: the clk whose accuracy is being returned
1537  *
1538  * Simply returns the cached accuracy of the clk, unless
1539  * CLK_GET_ACCURACY_NOCACHE flag is set, which means a recalc_rate will be
1540  * issued.
1541  * If clk is NULL then returns 0.
1542  */
1543 long clk_get_accuracy(struct clk *clk)
1544 {
1545 	if (!clk)
1546 		return 0;
1547 
1548 	return clk_core_get_accuracy(clk->core);
1549 }
1550 EXPORT_SYMBOL_GPL(clk_get_accuracy);
1551 
1552 static unsigned long clk_recalc(struct clk_core *core,
1553 				unsigned long parent_rate)
1554 {
1555 	unsigned long rate = parent_rate;
1556 
1557 	if (core->ops->recalc_rate && !clk_pm_runtime_get(core)) {
1558 		rate = core->ops->recalc_rate(core->hw, parent_rate);
1559 		clk_pm_runtime_put(core);
1560 	}
1561 	return rate;
1562 }
1563 
1564 /**
1565  * __clk_recalc_rates
1566  * @core: first clk in the subtree
1567  * @msg: notification type (see include/linux/clk.h)
1568  *
1569  * Walks the subtree of clks starting with clk and recalculates rates as it
1570  * goes.  Note that if a clk does not implement the .recalc_rate callback then
1571  * it is assumed that the clock will take on the rate of its parent.
1572  *
1573  * clk_recalc_rates also propagates the POST_RATE_CHANGE notification,
1574  * if necessary.
1575  */
1576 static void __clk_recalc_rates(struct clk_core *core, unsigned long msg)
1577 {
1578 	unsigned long old_rate;
1579 	unsigned long parent_rate = 0;
1580 	struct clk_core *child;
1581 
1582 	lockdep_assert_held(&prepare_lock);
1583 
1584 	old_rate = core->rate;
1585 
1586 	if (core->parent)
1587 		parent_rate = core->parent->rate;
1588 
1589 	core->rate = clk_recalc(core, parent_rate);
1590 
1591 	/*
1592 	 * ignore NOTIFY_STOP and NOTIFY_BAD return values for POST_RATE_CHANGE
1593 	 * & ABORT_RATE_CHANGE notifiers
1594 	 */
1595 	if (core->notifier_count && msg)
1596 		__clk_notify(core, msg, old_rate, core->rate);
1597 
1598 	hlist_for_each_entry(child, &core->children, child_node)
1599 		__clk_recalc_rates(child, msg);
1600 }
1601 
1602 static unsigned long clk_core_get_rate(struct clk_core *core)
1603 {
1604 	unsigned long rate;
1605 
1606 	clk_prepare_lock();
1607 
1608 	if (core && (core->flags & CLK_GET_RATE_NOCACHE))
1609 		__clk_recalc_rates(core, 0);
1610 
1611 	rate = clk_core_get_rate_nolock(core);
1612 	clk_prepare_unlock();
1613 
1614 	return rate;
1615 }
1616 
1617 /**
1618  * clk_get_rate - return the rate of clk
1619  * @clk: the clk whose rate is being returned
1620  *
1621  * Simply returns the cached rate of the clk, unless CLK_GET_RATE_NOCACHE flag
1622  * is set, which means a recalc_rate will be issued.
1623  * If clk is NULL then returns 0.
1624  */
1625 unsigned long clk_get_rate(struct clk *clk)
1626 {
1627 	if (!clk)
1628 		return 0;
1629 
1630 	return clk_core_get_rate(clk->core);
1631 }
1632 EXPORT_SYMBOL_GPL(clk_get_rate);
1633 
1634 static int clk_fetch_parent_index(struct clk_core *core,
1635 				  struct clk_core *parent)
1636 {
1637 	int i;
1638 
1639 	if (!parent)
1640 		return -EINVAL;
1641 
1642 	for (i = 0; i < core->num_parents; i++) {
1643 		/* Found it first try! */
1644 		if (core->parents[i].core == parent)
1645 			return i;
1646 
1647 		/* Something else is here, so keep looking */
1648 		if (core->parents[i].core)
1649 			continue;
1650 
1651 		/* Maybe core hasn't been cached but the hw is all we know? */
1652 		if (core->parents[i].hw) {
1653 			if (core->parents[i].hw == parent->hw)
1654 				break;
1655 
1656 			/* Didn't match, but we're expecting a clk_hw */
1657 			continue;
1658 		}
1659 
1660 		/* Maybe it hasn't been cached (clk_set_parent() path) */
1661 		if (parent == clk_core_get(core, i))
1662 			break;
1663 
1664 		/* Fallback to comparing globally unique names */
1665 		if (core->parents[i].name &&
1666 		    !strcmp(parent->name, core->parents[i].name))
1667 			break;
1668 	}
1669 
1670 	if (i == core->num_parents)
1671 		return -EINVAL;
1672 
1673 	core->parents[i].core = parent;
1674 	return i;
1675 }
1676 
1677 /**
1678  * clk_hw_get_parent_index - return the index of the parent clock
1679  * @hw: clk_hw associated with the clk being consumed
1680  *
1681  * Fetches and returns the index of parent clock. Returns -EINVAL if the given
1682  * clock does not have a current parent.
1683  */
1684 int clk_hw_get_parent_index(struct clk_hw *hw)
1685 {
1686 	struct clk_hw *parent = clk_hw_get_parent(hw);
1687 
1688 	if (WARN_ON(parent == NULL))
1689 		return -EINVAL;
1690 
1691 	return clk_fetch_parent_index(hw->core, parent->core);
1692 }
1693 EXPORT_SYMBOL_GPL(clk_hw_get_parent_index);
1694 
1695 /*
1696  * Update the orphan status of @core and all its children.
1697  */
1698 static void clk_core_update_orphan_status(struct clk_core *core, bool is_orphan)
1699 {
1700 	struct clk_core *child;
1701 
1702 	core->orphan = is_orphan;
1703 
1704 	hlist_for_each_entry(child, &core->children, child_node)
1705 		clk_core_update_orphan_status(child, is_orphan);
1706 }
1707 
1708 static void clk_reparent(struct clk_core *core, struct clk_core *new_parent)
1709 {
1710 	bool was_orphan = core->orphan;
1711 
1712 	hlist_del(&core->child_node);
1713 
1714 	if (new_parent) {
1715 		bool becomes_orphan = new_parent->orphan;
1716 
1717 		/* avoid duplicate POST_RATE_CHANGE notifications */
1718 		if (new_parent->new_child == core)
1719 			new_parent->new_child = NULL;
1720 
1721 		hlist_add_head(&core->child_node, &new_parent->children);
1722 
1723 		if (was_orphan != becomes_orphan)
1724 			clk_core_update_orphan_status(core, becomes_orphan);
1725 	} else {
1726 		hlist_add_head(&core->child_node, &clk_orphan_list);
1727 		if (!was_orphan)
1728 			clk_core_update_orphan_status(core, true);
1729 	}
1730 
1731 	core->parent = new_parent;
1732 }
1733 
1734 static struct clk_core *__clk_set_parent_before(struct clk_core *core,
1735 					   struct clk_core *parent)
1736 {
1737 	unsigned long flags;
1738 	struct clk_core *old_parent = core->parent;
1739 
1740 	/*
1741 	 * 1. enable parents for CLK_OPS_PARENT_ENABLE clock
1742 	 *
1743 	 * 2. Migrate prepare state between parents and prevent race with
1744 	 * clk_enable().
1745 	 *
1746 	 * If the clock is not prepared, then a race with
1747 	 * clk_enable/disable() is impossible since we already have the
1748 	 * prepare lock (future calls to clk_enable() need to be preceded by
1749 	 * a clk_prepare()).
1750 	 *
1751 	 * If the clock is prepared, migrate the prepared state to the new
1752 	 * parent and also protect against a race with clk_enable() by
1753 	 * forcing the clock and the new parent on.  This ensures that all
1754 	 * future calls to clk_enable() are practically NOPs with respect to
1755 	 * hardware and software states.
1756 	 *
1757 	 * See also: Comment for clk_set_parent() below.
1758 	 */
1759 
1760 	/* enable old_parent & parent if CLK_OPS_PARENT_ENABLE is set */
1761 	if (core->flags & CLK_OPS_PARENT_ENABLE) {
1762 		clk_core_prepare_enable(old_parent);
1763 		clk_core_prepare_enable(parent);
1764 	}
1765 
1766 	/* migrate prepare count if > 0 */
1767 	if (core->prepare_count) {
1768 		clk_core_prepare_enable(parent);
1769 		clk_core_enable_lock(core);
1770 	}
1771 
1772 	/* update the clk tree topology */
1773 	flags = clk_enable_lock();
1774 	clk_reparent(core, parent);
1775 	clk_enable_unlock(flags);
1776 
1777 	return old_parent;
1778 }
1779 
1780 static void __clk_set_parent_after(struct clk_core *core,
1781 				   struct clk_core *parent,
1782 				   struct clk_core *old_parent)
1783 {
1784 	/*
1785 	 * Finish the migration of prepare state and undo the changes done
1786 	 * for preventing a race with clk_enable().
1787 	 */
1788 	if (core->prepare_count) {
1789 		clk_core_disable_lock(core);
1790 		clk_core_disable_unprepare(old_parent);
1791 	}
1792 
1793 	/* re-balance ref counting if CLK_OPS_PARENT_ENABLE is set */
1794 	if (core->flags & CLK_OPS_PARENT_ENABLE) {
1795 		clk_core_disable_unprepare(parent);
1796 		clk_core_disable_unprepare(old_parent);
1797 	}
1798 }
1799 
1800 static int __clk_set_parent(struct clk_core *core, struct clk_core *parent,
1801 			    u8 p_index)
1802 {
1803 	unsigned long flags;
1804 	int ret = 0;
1805 	struct clk_core *old_parent;
1806 
1807 	old_parent = __clk_set_parent_before(core, parent);
1808 
1809 	trace_clk_set_parent(core, parent);
1810 
1811 	/* change clock input source */
1812 	if (parent && core->ops->set_parent)
1813 		ret = core->ops->set_parent(core->hw, p_index);
1814 
1815 	trace_clk_set_parent_complete(core, parent);
1816 
1817 	if (ret) {
1818 		flags = clk_enable_lock();
1819 		clk_reparent(core, old_parent);
1820 		clk_enable_unlock(flags);
1821 		__clk_set_parent_after(core, old_parent, parent);
1822 
1823 		return ret;
1824 	}
1825 
1826 	__clk_set_parent_after(core, parent, old_parent);
1827 
1828 	return 0;
1829 }
1830 
1831 /**
1832  * __clk_speculate_rates
1833  * @core: first clk in the subtree
1834  * @parent_rate: the "future" rate of clk's parent
1835  *
1836  * Walks the subtree of clks starting with clk, speculating rates as it
1837  * goes and firing off PRE_RATE_CHANGE notifications as necessary.
1838  *
1839  * Unlike clk_recalc_rates, clk_speculate_rates exists only for sending
1840  * pre-rate change notifications and returns early if no clks in the
1841  * subtree have subscribed to the notifications.  Note that if a clk does not
1842  * implement the .recalc_rate callback then it is assumed that the clock will
1843  * take on the rate of its parent.
1844  */
1845 static int __clk_speculate_rates(struct clk_core *core,
1846 				 unsigned long parent_rate)
1847 {
1848 	struct clk_core *child;
1849 	unsigned long new_rate;
1850 	int ret = NOTIFY_DONE;
1851 
1852 	lockdep_assert_held(&prepare_lock);
1853 
1854 	new_rate = clk_recalc(core, parent_rate);
1855 
1856 	/* abort rate change if a driver returns NOTIFY_BAD or NOTIFY_STOP */
1857 	if (core->notifier_count)
1858 		ret = __clk_notify(core, PRE_RATE_CHANGE, core->rate, new_rate);
1859 
1860 	if (ret & NOTIFY_STOP_MASK) {
1861 		pr_debug("%s: clk notifier callback for clock %s aborted with error %d\n",
1862 				__func__, core->name, ret);
1863 		goto out;
1864 	}
1865 
1866 	hlist_for_each_entry(child, &core->children, child_node) {
1867 		ret = __clk_speculate_rates(child, new_rate);
1868 		if (ret & NOTIFY_STOP_MASK)
1869 			break;
1870 	}
1871 
1872 out:
1873 	return ret;
1874 }
1875 
1876 static void clk_calc_subtree(struct clk_core *core, unsigned long new_rate,
1877 			     struct clk_core *new_parent, u8 p_index)
1878 {
1879 	struct clk_core *child;
1880 
1881 	core->new_rate = new_rate;
1882 	core->new_parent = new_parent;
1883 	core->new_parent_index = p_index;
1884 	/* include clk in new parent's PRE_RATE_CHANGE notifications */
1885 	core->new_child = NULL;
1886 	if (new_parent && new_parent != core->parent)
1887 		new_parent->new_child = core;
1888 
1889 	hlist_for_each_entry(child, &core->children, child_node) {
1890 		child->new_rate = clk_recalc(child, new_rate);
1891 		clk_calc_subtree(child, child->new_rate, NULL, 0);
1892 	}
1893 }
1894 
1895 /*
1896  * calculate the new rates returning the topmost clock that has to be
1897  * changed.
1898  */
1899 static struct clk_core *clk_calc_new_rates(struct clk_core *core,
1900 					   unsigned long rate)
1901 {
1902 	struct clk_core *top = core;
1903 	struct clk_core *old_parent, *parent;
1904 	unsigned long best_parent_rate = 0;
1905 	unsigned long new_rate;
1906 	unsigned long min_rate;
1907 	unsigned long max_rate;
1908 	int p_index = 0;
1909 	long ret;
1910 
1911 	/* sanity */
1912 	if (IS_ERR_OR_NULL(core))
1913 		return NULL;
1914 
1915 	/* save parent rate, if it exists */
1916 	parent = old_parent = core->parent;
1917 	if (parent)
1918 		best_parent_rate = parent->rate;
1919 
1920 	clk_core_get_boundaries(core, &min_rate, &max_rate);
1921 
1922 	/* find the closest rate and parent clk/rate */
1923 	if (clk_core_can_round(core)) {
1924 		struct clk_rate_request req;
1925 
1926 		req.rate = rate;
1927 		req.min_rate = min_rate;
1928 		req.max_rate = max_rate;
1929 
1930 		clk_core_init_rate_req(core, &req);
1931 
1932 		ret = clk_core_determine_round_nolock(core, &req);
1933 		if (ret < 0)
1934 			return NULL;
1935 
1936 		best_parent_rate = req.best_parent_rate;
1937 		new_rate = req.rate;
1938 		parent = req.best_parent_hw ? req.best_parent_hw->core : NULL;
1939 
1940 		if (new_rate < min_rate || new_rate > max_rate)
1941 			return NULL;
1942 	} else if (!parent || !(core->flags & CLK_SET_RATE_PARENT)) {
1943 		/* pass-through clock without adjustable parent */
1944 		core->new_rate = core->rate;
1945 		return NULL;
1946 	} else {
1947 		/* pass-through clock with adjustable parent */
1948 		top = clk_calc_new_rates(parent, rate);
1949 		new_rate = parent->new_rate;
1950 		goto out;
1951 	}
1952 
1953 	/* some clocks must be gated to change parent */
1954 	if (parent != old_parent &&
1955 	    (core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) {
1956 		pr_debug("%s: %s not gated but wants to reparent\n",
1957 			 __func__, core->name);
1958 		return NULL;
1959 	}
1960 
1961 	/* try finding the new parent index */
1962 	if (parent && core->num_parents > 1) {
1963 		p_index = clk_fetch_parent_index(core, parent);
1964 		if (p_index < 0) {
1965 			pr_debug("%s: clk %s can not be parent of clk %s\n",
1966 				 __func__, parent->name, core->name);
1967 			return NULL;
1968 		}
1969 	}
1970 
1971 	if ((core->flags & CLK_SET_RATE_PARENT) && parent &&
1972 	    best_parent_rate != parent->rate)
1973 		top = clk_calc_new_rates(parent, best_parent_rate);
1974 
1975 out:
1976 	clk_calc_subtree(core, new_rate, parent, p_index);
1977 
1978 	return top;
1979 }
1980 
1981 /*
1982  * Notify about rate changes in a subtree. Always walk down the whole tree
1983  * so that in case of an error we can walk down the whole tree again and
1984  * abort the change.
1985  */
1986 static struct clk_core *clk_propagate_rate_change(struct clk_core *core,
1987 						  unsigned long event)
1988 {
1989 	struct clk_core *child, *tmp_clk, *fail_clk = NULL;
1990 	int ret = NOTIFY_DONE;
1991 
1992 	if (core->rate == core->new_rate)
1993 		return NULL;
1994 
1995 	if (core->notifier_count) {
1996 		ret = __clk_notify(core, event, core->rate, core->new_rate);
1997 		if (ret & NOTIFY_STOP_MASK)
1998 			fail_clk = core;
1999 	}
2000 
2001 	hlist_for_each_entry(child, &core->children, child_node) {
2002 		/* Skip children who will be reparented to another clock */
2003 		if (child->new_parent && child->new_parent != core)
2004 			continue;
2005 		tmp_clk = clk_propagate_rate_change(child, event);
2006 		if (tmp_clk)
2007 			fail_clk = tmp_clk;
2008 	}
2009 
2010 	/* handle the new child who might not be in core->children yet */
2011 	if (core->new_child) {
2012 		tmp_clk = clk_propagate_rate_change(core->new_child, event);
2013 		if (tmp_clk)
2014 			fail_clk = tmp_clk;
2015 	}
2016 
2017 	return fail_clk;
2018 }
2019 
2020 /*
2021  * walk down a subtree and set the new rates notifying the rate
2022  * change on the way
2023  */
2024 static void clk_change_rate(struct clk_core *core)
2025 {
2026 	struct clk_core *child;
2027 	struct hlist_node *tmp;
2028 	unsigned long old_rate;
2029 	unsigned long best_parent_rate = 0;
2030 	bool skip_set_rate = false;
2031 	struct clk_core *old_parent;
2032 	struct clk_core *parent = NULL;
2033 
2034 	old_rate = core->rate;
2035 
2036 	if (core->new_parent) {
2037 		parent = core->new_parent;
2038 		best_parent_rate = core->new_parent->rate;
2039 	} else if (core->parent) {
2040 		parent = core->parent;
2041 		best_parent_rate = core->parent->rate;
2042 	}
2043 
2044 	if (clk_pm_runtime_get(core))
2045 		return;
2046 
2047 	if (core->flags & CLK_SET_RATE_UNGATE) {
2048 		unsigned long flags;
2049 
2050 		clk_core_prepare(core);
2051 		flags = clk_enable_lock();
2052 		clk_core_enable(core);
2053 		clk_enable_unlock(flags);
2054 	}
2055 
2056 	if (core->new_parent && core->new_parent != core->parent) {
2057 		old_parent = __clk_set_parent_before(core, core->new_parent);
2058 		trace_clk_set_parent(core, core->new_parent);
2059 
2060 		if (core->ops->set_rate_and_parent) {
2061 			skip_set_rate = true;
2062 			core->ops->set_rate_and_parent(core->hw, core->new_rate,
2063 					best_parent_rate,
2064 					core->new_parent_index);
2065 		} else if (core->ops->set_parent) {
2066 			core->ops->set_parent(core->hw, core->new_parent_index);
2067 		}
2068 
2069 		trace_clk_set_parent_complete(core, core->new_parent);
2070 		__clk_set_parent_after(core, core->new_parent, old_parent);
2071 	}
2072 
2073 	if (core->flags & CLK_OPS_PARENT_ENABLE)
2074 		clk_core_prepare_enable(parent);
2075 
2076 	trace_clk_set_rate(core, core->new_rate);
2077 
2078 	if (!skip_set_rate && core->ops->set_rate)
2079 		core->ops->set_rate(core->hw, core->new_rate, best_parent_rate);
2080 
2081 	trace_clk_set_rate_complete(core, core->new_rate);
2082 
2083 	core->rate = clk_recalc(core, best_parent_rate);
2084 
2085 	if (core->flags & CLK_SET_RATE_UNGATE) {
2086 		unsigned long flags;
2087 
2088 		flags = clk_enable_lock();
2089 		clk_core_disable(core);
2090 		clk_enable_unlock(flags);
2091 		clk_core_unprepare(core);
2092 	}
2093 
2094 	if (core->flags & CLK_OPS_PARENT_ENABLE)
2095 		clk_core_disable_unprepare(parent);
2096 
2097 	if (core->notifier_count && old_rate != core->rate)
2098 		__clk_notify(core, POST_RATE_CHANGE, old_rate, core->rate);
2099 
2100 	if (core->flags & CLK_RECALC_NEW_RATES)
2101 		(void)clk_calc_new_rates(core, core->new_rate);
2102 
2103 	/*
2104 	 * Use safe iteration, as change_rate can actually swap parents
2105 	 * for certain clock types.
2106 	 */
2107 	hlist_for_each_entry_safe(child, tmp, &core->children, child_node) {
2108 		/* Skip children who will be reparented to another clock */
2109 		if (child->new_parent && child->new_parent != core)
2110 			continue;
2111 		clk_change_rate(child);
2112 	}
2113 
2114 	/* handle the new child who might not be in core->children yet */
2115 	if (core->new_child)
2116 		clk_change_rate(core->new_child);
2117 
2118 	clk_pm_runtime_put(core);
2119 }
2120 
2121 static unsigned long clk_core_req_round_rate_nolock(struct clk_core *core,
2122 						     unsigned long req_rate)
2123 {
2124 	int ret, cnt;
2125 	struct clk_rate_request req;
2126 
2127 	lockdep_assert_held(&prepare_lock);
2128 
2129 	if (!core)
2130 		return 0;
2131 
2132 	/* simulate what the rate would be if it could be freely set */
2133 	cnt = clk_core_rate_nuke_protect(core);
2134 	if (cnt < 0)
2135 		return cnt;
2136 
2137 	clk_core_get_boundaries(core, &req.min_rate, &req.max_rate);
2138 	req.rate = req_rate;
2139 
2140 	ret = clk_core_round_rate_nolock(core, &req);
2141 
2142 	/* restore the protection */
2143 	clk_core_rate_restore_protect(core, cnt);
2144 
2145 	return ret ? 0 : req.rate;
2146 }
2147 
2148 static int clk_core_set_rate_nolock(struct clk_core *core,
2149 				    unsigned long req_rate)
2150 {
2151 	struct clk_core *top, *fail_clk;
2152 	unsigned long rate;
2153 	int ret = 0;
2154 
2155 	if (!core)
2156 		return 0;
2157 
2158 	rate = clk_core_req_round_rate_nolock(core, req_rate);
2159 
2160 	/* bail early if nothing to do */
2161 	if (rate == clk_core_get_rate_nolock(core))
2162 		return 0;
2163 
2164 	/* fail on a direct rate set of a protected provider */
2165 	if (clk_core_rate_is_protected(core))
2166 		return -EBUSY;
2167 
2168 	/* calculate new rates and get the topmost changed clock */
2169 	top = clk_calc_new_rates(core, req_rate);
2170 	if (!top)
2171 		return -EINVAL;
2172 
2173 	ret = clk_pm_runtime_get(core);
2174 	if (ret)
2175 		return ret;
2176 
2177 	/* notify that we are about to change rates */
2178 	fail_clk = clk_propagate_rate_change(top, PRE_RATE_CHANGE);
2179 	if (fail_clk) {
2180 		pr_debug("%s: failed to set %s rate\n", __func__,
2181 				fail_clk->name);
2182 		clk_propagate_rate_change(top, ABORT_RATE_CHANGE);
2183 		ret = -EBUSY;
2184 		goto err;
2185 	}
2186 
2187 	/* change the rates */
2188 	clk_change_rate(top);
2189 
2190 	core->req_rate = req_rate;
2191 err:
2192 	clk_pm_runtime_put(core);
2193 
2194 	return ret;
2195 }
2196 
2197 /**
2198  * clk_set_rate - specify a new rate for clk
2199  * @clk: the clk whose rate is being changed
2200  * @rate: the new rate for clk
2201  *
2202  * In the simplest case clk_set_rate will only adjust the rate of clk.
2203  *
2204  * Setting the CLK_SET_RATE_PARENT flag allows the rate change operation to
2205  * propagate up to clk's parent; whether or not this happens depends on the
2206  * outcome of clk's .round_rate implementation.  If *parent_rate is unchanged
2207  * after calling .round_rate then upstream parent propagation is ignored.  If
2208  * *parent_rate comes back with a new rate for clk's parent then we propagate
2209  * up to clk's parent and set its rate.  Upward propagation will continue
2210  * until either a clk does not support the CLK_SET_RATE_PARENT flag or
2211  * .round_rate stops requesting changes to clk's parent_rate.
2212  *
2213  * Rate changes are accomplished via tree traversal that also recalculates the
2214  * rates for the clocks and fires off POST_RATE_CHANGE notifiers.
2215  *
2216  * Returns 0 on success, -EERROR otherwise.
2217  */
2218 int clk_set_rate(struct clk *clk, unsigned long rate)
2219 {
2220 	int ret;
2221 
2222 	if (!clk)
2223 		return 0;
2224 
2225 	/* prevent racing with updates to the clock topology */
2226 	clk_prepare_lock();
2227 
2228 	if (clk->exclusive_count)
2229 		clk_core_rate_unprotect(clk->core);
2230 
2231 	ret = clk_core_set_rate_nolock(clk->core, rate);
2232 
2233 	if (clk->exclusive_count)
2234 		clk_core_rate_protect(clk->core);
2235 
2236 	clk_prepare_unlock();
2237 
2238 	return ret;
2239 }
2240 EXPORT_SYMBOL_GPL(clk_set_rate);
2241 
2242 /**
2243  * clk_set_rate_exclusive - specify a new rate and get exclusive control
2244  * @clk: the clk whose rate is being changed
2245  * @rate: the new rate for clk
2246  *
2247  * This is a combination of clk_set_rate() and clk_rate_exclusive_get()
2248  * within a critical section
2249  *
2250  * This can be used initially to ensure that at least 1 consumer is
2251  * satisfied when several consumers are competing for exclusivity over the
2252  * same clock provider.
2253  *
2254  * The exclusivity is not applied if setting the rate failed.
2255  *
2256  * Calls to clk_rate_exclusive_get() should be balanced with calls to
2257  * clk_rate_exclusive_put().
2258  *
2259  * Returns 0 on success, -EERROR otherwise.
2260  */
2261 int clk_set_rate_exclusive(struct clk *clk, unsigned long rate)
2262 {
2263 	int ret;
2264 
2265 	if (!clk)
2266 		return 0;
2267 
2268 	/* prevent racing with updates to the clock topology */
2269 	clk_prepare_lock();
2270 
2271 	/*
2272 	 * The temporary protection removal is not here, on purpose
2273 	 * This function is meant to be used instead of clk_rate_protect,
2274 	 * so before the consumer code path protect the clock provider
2275 	 */
2276 
2277 	ret = clk_core_set_rate_nolock(clk->core, rate);
2278 	if (!ret) {
2279 		clk_core_rate_protect(clk->core);
2280 		clk->exclusive_count++;
2281 	}
2282 
2283 	clk_prepare_unlock();
2284 
2285 	return ret;
2286 }
2287 EXPORT_SYMBOL_GPL(clk_set_rate_exclusive);
2288 
2289 /**
2290  * clk_set_rate_range - set a rate range for a clock source
2291  * @clk: clock source
2292  * @min: desired minimum clock rate in Hz, inclusive
2293  * @max: desired maximum clock rate in Hz, inclusive
2294  *
2295  * Returns success (0) or negative errno.
2296  */
2297 int clk_set_rate_range(struct clk *clk, unsigned long min, unsigned long max)
2298 {
2299 	int ret = 0;
2300 	unsigned long old_min, old_max, rate;
2301 
2302 	if (!clk)
2303 		return 0;
2304 
2305 	if (min > max) {
2306 		pr_err("%s: clk %s dev %s con %s: invalid range [%lu, %lu]\n",
2307 		       __func__, clk->core->name, clk->dev_id, clk->con_id,
2308 		       min, max);
2309 		return -EINVAL;
2310 	}
2311 
2312 	clk_prepare_lock();
2313 
2314 	if (clk->exclusive_count)
2315 		clk_core_rate_unprotect(clk->core);
2316 
2317 	/* Save the current values in case we need to rollback the change */
2318 	old_min = clk->min_rate;
2319 	old_max = clk->max_rate;
2320 	clk->min_rate = min;
2321 	clk->max_rate = max;
2322 
2323 	rate = clk_core_get_rate_nolock(clk->core);
2324 	if (rate < min || rate > max) {
2325 		/*
2326 		 * FIXME:
2327 		 * We are in bit of trouble here, current rate is outside the
2328 		 * the requested range. We are going try to request appropriate
2329 		 * range boundary but there is a catch. It may fail for the
2330 		 * usual reason (clock broken, clock protected, etc) but also
2331 		 * because:
2332 		 * - round_rate() was not favorable and fell on the wrong
2333 		 *   side of the boundary
2334 		 * - the determine_rate() callback does not really check for
2335 		 *   this corner case when determining the rate
2336 		 */
2337 
2338 		if (rate < min)
2339 			rate = min;
2340 		else
2341 			rate = max;
2342 
2343 		ret = clk_core_set_rate_nolock(clk->core, rate);
2344 		if (ret) {
2345 			/* rollback the changes */
2346 			clk->min_rate = old_min;
2347 			clk->max_rate = old_max;
2348 		}
2349 	}
2350 
2351 	if (clk->exclusive_count)
2352 		clk_core_rate_protect(clk->core);
2353 
2354 	clk_prepare_unlock();
2355 
2356 	return ret;
2357 }
2358 EXPORT_SYMBOL_GPL(clk_set_rate_range);
2359 
2360 /**
2361  * clk_set_min_rate - set a minimum clock rate for a clock source
2362  * @clk: clock source
2363  * @rate: desired minimum clock rate in Hz, inclusive
2364  *
2365  * Returns success (0) or negative errno.
2366  */
2367 int clk_set_min_rate(struct clk *clk, unsigned long rate)
2368 {
2369 	if (!clk)
2370 		return 0;
2371 
2372 	return clk_set_rate_range(clk, rate, clk->max_rate);
2373 }
2374 EXPORT_SYMBOL_GPL(clk_set_min_rate);
2375 
2376 /**
2377  * clk_set_max_rate - set a maximum clock rate for a clock source
2378  * @clk: clock source
2379  * @rate: desired maximum clock rate in Hz, inclusive
2380  *
2381  * Returns success (0) or negative errno.
2382  */
2383 int clk_set_max_rate(struct clk *clk, unsigned long rate)
2384 {
2385 	if (!clk)
2386 		return 0;
2387 
2388 	return clk_set_rate_range(clk, clk->min_rate, rate);
2389 }
2390 EXPORT_SYMBOL_GPL(clk_set_max_rate);
2391 
2392 /**
2393  * clk_get_parent - return the parent of a clk
2394  * @clk: the clk whose parent gets returned
2395  *
2396  * Simply returns clk->parent.  Returns NULL if clk is NULL.
2397  */
2398 struct clk *clk_get_parent(struct clk *clk)
2399 {
2400 	struct clk *parent;
2401 
2402 	if (!clk)
2403 		return NULL;
2404 
2405 	clk_prepare_lock();
2406 	/* TODO: Create a per-user clk and change callers to call clk_put */
2407 	parent = !clk->core->parent ? NULL : clk->core->parent->hw->clk;
2408 	clk_prepare_unlock();
2409 
2410 	return parent;
2411 }
2412 EXPORT_SYMBOL_GPL(clk_get_parent);
2413 
2414 static struct clk_core *__clk_init_parent(struct clk_core *core)
2415 {
2416 	u8 index = 0;
2417 
2418 	if (core->num_parents > 1 && core->ops->get_parent)
2419 		index = core->ops->get_parent(core->hw);
2420 
2421 	return clk_core_get_parent_by_index(core, index);
2422 }
2423 
2424 static void clk_core_reparent(struct clk_core *core,
2425 				  struct clk_core *new_parent)
2426 {
2427 	clk_reparent(core, new_parent);
2428 	__clk_recalc_accuracies(core);
2429 	__clk_recalc_rates(core, POST_RATE_CHANGE);
2430 }
2431 
2432 void clk_hw_reparent(struct clk_hw *hw, struct clk_hw *new_parent)
2433 {
2434 	if (!hw)
2435 		return;
2436 
2437 	clk_core_reparent(hw->core, !new_parent ? NULL : new_parent->core);
2438 }
2439 
2440 /**
2441  * clk_has_parent - check if a clock is a possible parent for another
2442  * @clk: clock source
2443  * @parent: parent clock source
2444  *
2445  * This function can be used in drivers that need to check that a clock can be
2446  * the parent of another without actually changing the parent.
2447  *
2448  * Returns true if @parent is a possible parent for @clk, false otherwise.
2449  */
2450 bool clk_has_parent(struct clk *clk, struct clk *parent)
2451 {
2452 	struct clk_core *core, *parent_core;
2453 	int i;
2454 
2455 	/* NULL clocks should be nops, so return success if either is NULL. */
2456 	if (!clk || !parent)
2457 		return true;
2458 
2459 	core = clk->core;
2460 	parent_core = parent->core;
2461 
2462 	/* Optimize for the case where the parent is already the parent. */
2463 	if (core->parent == parent_core)
2464 		return true;
2465 
2466 	for (i = 0; i < core->num_parents; i++)
2467 		if (!strcmp(core->parents[i].name, parent_core->name))
2468 			return true;
2469 
2470 	return false;
2471 }
2472 EXPORT_SYMBOL_GPL(clk_has_parent);
2473 
2474 static int clk_core_set_parent_nolock(struct clk_core *core,
2475 				      struct clk_core *parent)
2476 {
2477 	int ret = 0;
2478 	int p_index = 0;
2479 	unsigned long p_rate = 0;
2480 
2481 	lockdep_assert_held(&prepare_lock);
2482 
2483 	if (!core)
2484 		return 0;
2485 
2486 	if (core->parent == parent)
2487 		return 0;
2488 
2489 	/* verify ops for multi-parent clks */
2490 	if (core->num_parents > 1 && !core->ops->set_parent)
2491 		return -EPERM;
2492 
2493 	/* check that we are allowed to re-parent if the clock is in use */
2494 	if ((core->flags & CLK_SET_PARENT_GATE) && core->prepare_count)
2495 		return -EBUSY;
2496 
2497 	if (clk_core_rate_is_protected(core))
2498 		return -EBUSY;
2499 
2500 	/* try finding the new parent index */
2501 	if (parent) {
2502 		p_index = clk_fetch_parent_index(core, parent);
2503 		if (p_index < 0) {
2504 			pr_debug("%s: clk %s can not be parent of clk %s\n",
2505 					__func__, parent->name, core->name);
2506 			return p_index;
2507 		}
2508 		p_rate = parent->rate;
2509 	}
2510 
2511 	ret = clk_pm_runtime_get(core);
2512 	if (ret)
2513 		return ret;
2514 
2515 	/* propagate PRE_RATE_CHANGE notifications */
2516 	ret = __clk_speculate_rates(core, p_rate);
2517 
2518 	/* abort if a driver objects */
2519 	if (ret & NOTIFY_STOP_MASK)
2520 		goto runtime_put;
2521 
2522 	/* do the re-parent */
2523 	ret = __clk_set_parent(core, parent, p_index);
2524 
2525 	/* propagate rate an accuracy recalculation accordingly */
2526 	if (ret) {
2527 		__clk_recalc_rates(core, ABORT_RATE_CHANGE);
2528 	} else {
2529 		__clk_recalc_rates(core, POST_RATE_CHANGE);
2530 		__clk_recalc_accuracies(core);
2531 	}
2532 
2533 runtime_put:
2534 	clk_pm_runtime_put(core);
2535 
2536 	return ret;
2537 }
2538 
2539 int clk_hw_set_parent(struct clk_hw *hw, struct clk_hw *parent)
2540 {
2541 	return clk_core_set_parent_nolock(hw->core, parent->core);
2542 }
2543 EXPORT_SYMBOL_GPL(clk_hw_set_parent);
2544 
2545 /**
2546  * clk_set_parent - switch the parent of a mux clk
2547  * @clk: the mux clk whose input we are switching
2548  * @parent: the new input to clk
2549  *
2550  * Re-parent clk to use parent as its new input source.  If clk is in
2551  * prepared state, the clk will get enabled for the duration of this call. If
2552  * that's not acceptable for a specific clk (Eg: the consumer can't handle
2553  * that, the reparenting is glitchy in hardware, etc), use the
2554  * CLK_SET_PARENT_GATE flag to allow reparenting only when clk is unprepared.
2555  *
2556  * After successfully changing clk's parent clk_set_parent will update the
2557  * clk topology, sysfs topology and propagate rate recalculation via
2558  * __clk_recalc_rates.
2559  *
2560  * Returns 0 on success, -EERROR otherwise.
2561  */
2562 int clk_set_parent(struct clk *clk, struct clk *parent)
2563 {
2564 	int ret;
2565 
2566 	if (!clk)
2567 		return 0;
2568 
2569 	clk_prepare_lock();
2570 
2571 	if (clk->exclusive_count)
2572 		clk_core_rate_unprotect(clk->core);
2573 
2574 	ret = clk_core_set_parent_nolock(clk->core,
2575 					 parent ? parent->core : NULL);
2576 
2577 	if (clk->exclusive_count)
2578 		clk_core_rate_protect(clk->core);
2579 
2580 	clk_prepare_unlock();
2581 
2582 	return ret;
2583 }
2584 EXPORT_SYMBOL_GPL(clk_set_parent);
2585 
2586 static int clk_core_set_phase_nolock(struct clk_core *core, int degrees)
2587 {
2588 	int ret = -EINVAL;
2589 
2590 	lockdep_assert_held(&prepare_lock);
2591 
2592 	if (!core)
2593 		return 0;
2594 
2595 	if (clk_core_rate_is_protected(core))
2596 		return -EBUSY;
2597 
2598 	trace_clk_set_phase(core, degrees);
2599 
2600 	if (core->ops->set_phase) {
2601 		ret = core->ops->set_phase(core->hw, degrees);
2602 		if (!ret)
2603 			core->phase = degrees;
2604 	}
2605 
2606 	trace_clk_set_phase_complete(core, degrees);
2607 
2608 	return ret;
2609 }
2610 
2611 /**
2612  * clk_set_phase - adjust the phase shift of a clock signal
2613  * @clk: clock signal source
2614  * @degrees: number of degrees the signal is shifted
2615  *
2616  * Shifts the phase of a clock signal by the specified
2617  * degrees. Returns 0 on success, -EERROR otherwise.
2618  *
2619  * This function makes no distinction about the input or reference
2620  * signal that we adjust the clock signal phase against. For example
2621  * phase locked-loop clock signal generators we may shift phase with
2622  * respect to feedback clock signal input, but for other cases the
2623  * clock phase may be shifted with respect to some other, unspecified
2624  * signal.
2625  *
2626  * Additionally the concept of phase shift does not propagate through
2627  * the clock tree hierarchy, which sets it apart from clock rates and
2628  * clock accuracy. A parent clock phase attribute does not have an
2629  * impact on the phase attribute of a child clock.
2630  */
2631 int clk_set_phase(struct clk *clk, int degrees)
2632 {
2633 	int ret;
2634 
2635 	if (!clk)
2636 		return 0;
2637 
2638 	/* sanity check degrees */
2639 	degrees %= 360;
2640 	if (degrees < 0)
2641 		degrees += 360;
2642 
2643 	clk_prepare_lock();
2644 
2645 	if (clk->exclusive_count)
2646 		clk_core_rate_unprotect(clk->core);
2647 
2648 	ret = clk_core_set_phase_nolock(clk->core, degrees);
2649 
2650 	if (clk->exclusive_count)
2651 		clk_core_rate_protect(clk->core);
2652 
2653 	clk_prepare_unlock();
2654 
2655 	return ret;
2656 }
2657 EXPORT_SYMBOL_GPL(clk_set_phase);
2658 
2659 static int clk_core_get_phase(struct clk_core *core)
2660 {
2661 	int ret;
2662 
2663 	clk_prepare_lock();
2664 	/* Always try to update cached phase if possible */
2665 	if (core->ops->get_phase)
2666 		core->phase = core->ops->get_phase(core->hw);
2667 	ret = core->phase;
2668 	clk_prepare_unlock();
2669 
2670 	return ret;
2671 }
2672 
2673 /**
2674  * clk_get_phase - return the phase shift of a clock signal
2675  * @clk: clock signal source
2676  *
2677  * Returns the phase shift of a clock node in degrees, otherwise returns
2678  * -EERROR.
2679  */
2680 int clk_get_phase(struct clk *clk)
2681 {
2682 	if (!clk)
2683 		return 0;
2684 
2685 	return clk_core_get_phase(clk->core);
2686 }
2687 EXPORT_SYMBOL_GPL(clk_get_phase);
2688 
2689 static void clk_core_reset_duty_cycle_nolock(struct clk_core *core)
2690 {
2691 	/* Assume a default value of 50% */
2692 	core->duty.num = 1;
2693 	core->duty.den = 2;
2694 }
2695 
2696 static int clk_core_update_duty_cycle_parent_nolock(struct clk_core *core);
2697 
2698 static int clk_core_update_duty_cycle_nolock(struct clk_core *core)
2699 {
2700 	struct clk_duty *duty = &core->duty;
2701 	int ret = 0;
2702 
2703 	if (!core->ops->get_duty_cycle)
2704 		return clk_core_update_duty_cycle_parent_nolock(core);
2705 
2706 	ret = core->ops->get_duty_cycle(core->hw, duty);
2707 	if (ret)
2708 		goto reset;
2709 
2710 	/* Don't trust the clock provider too much */
2711 	if (duty->den == 0 || duty->num > duty->den) {
2712 		ret = -EINVAL;
2713 		goto reset;
2714 	}
2715 
2716 	return 0;
2717 
2718 reset:
2719 	clk_core_reset_duty_cycle_nolock(core);
2720 	return ret;
2721 }
2722 
2723 static int clk_core_update_duty_cycle_parent_nolock(struct clk_core *core)
2724 {
2725 	int ret = 0;
2726 
2727 	if (core->parent &&
2728 	    core->flags & CLK_DUTY_CYCLE_PARENT) {
2729 		ret = clk_core_update_duty_cycle_nolock(core->parent);
2730 		memcpy(&core->duty, &core->parent->duty, sizeof(core->duty));
2731 	} else {
2732 		clk_core_reset_duty_cycle_nolock(core);
2733 	}
2734 
2735 	return ret;
2736 }
2737 
2738 static int clk_core_set_duty_cycle_parent_nolock(struct clk_core *core,
2739 						 struct clk_duty *duty);
2740 
2741 static int clk_core_set_duty_cycle_nolock(struct clk_core *core,
2742 					  struct clk_duty *duty)
2743 {
2744 	int ret;
2745 
2746 	lockdep_assert_held(&prepare_lock);
2747 
2748 	if (clk_core_rate_is_protected(core))
2749 		return -EBUSY;
2750 
2751 	trace_clk_set_duty_cycle(core, duty);
2752 
2753 	if (!core->ops->set_duty_cycle)
2754 		return clk_core_set_duty_cycle_parent_nolock(core, duty);
2755 
2756 	ret = core->ops->set_duty_cycle(core->hw, duty);
2757 	if (!ret)
2758 		memcpy(&core->duty, duty, sizeof(*duty));
2759 
2760 	trace_clk_set_duty_cycle_complete(core, duty);
2761 
2762 	return ret;
2763 }
2764 
2765 static int clk_core_set_duty_cycle_parent_nolock(struct clk_core *core,
2766 						 struct clk_duty *duty)
2767 {
2768 	int ret = 0;
2769 
2770 	if (core->parent &&
2771 	    core->flags & (CLK_DUTY_CYCLE_PARENT | CLK_SET_RATE_PARENT)) {
2772 		ret = clk_core_set_duty_cycle_nolock(core->parent, duty);
2773 		memcpy(&core->duty, &core->parent->duty, sizeof(core->duty));
2774 	}
2775 
2776 	return ret;
2777 }
2778 
2779 /**
2780  * clk_set_duty_cycle - adjust the duty cycle ratio of a clock signal
2781  * @clk: clock signal source
2782  * @num: numerator of the duty cycle ratio to be applied
2783  * @den: denominator of the duty cycle ratio to be applied
2784  *
2785  * Apply the duty cycle ratio if the ratio is valid and the clock can
2786  * perform this operation
2787  *
2788  * Returns (0) on success, a negative errno otherwise.
2789  */
2790 int clk_set_duty_cycle(struct clk *clk, unsigned int num, unsigned int den)
2791 {
2792 	int ret;
2793 	struct clk_duty duty;
2794 
2795 	if (!clk)
2796 		return 0;
2797 
2798 	/* sanity check the ratio */
2799 	if (den == 0 || num > den)
2800 		return -EINVAL;
2801 
2802 	duty.num = num;
2803 	duty.den = den;
2804 
2805 	clk_prepare_lock();
2806 
2807 	if (clk->exclusive_count)
2808 		clk_core_rate_unprotect(clk->core);
2809 
2810 	ret = clk_core_set_duty_cycle_nolock(clk->core, &duty);
2811 
2812 	if (clk->exclusive_count)
2813 		clk_core_rate_protect(clk->core);
2814 
2815 	clk_prepare_unlock();
2816 
2817 	return ret;
2818 }
2819 EXPORT_SYMBOL_GPL(clk_set_duty_cycle);
2820 
2821 static int clk_core_get_scaled_duty_cycle(struct clk_core *core,
2822 					  unsigned int scale)
2823 {
2824 	struct clk_duty *duty = &core->duty;
2825 	int ret;
2826 
2827 	clk_prepare_lock();
2828 
2829 	ret = clk_core_update_duty_cycle_nolock(core);
2830 	if (!ret)
2831 		ret = mult_frac(scale, duty->num, duty->den);
2832 
2833 	clk_prepare_unlock();
2834 
2835 	return ret;
2836 }
2837 
2838 /**
2839  * clk_get_scaled_duty_cycle - return the duty cycle ratio of a clock signal
2840  * @clk: clock signal source
2841  * @scale: scaling factor to be applied to represent the ratio as an integer
2842  *
2843  * Returns the duty cycle ratio of a clock node multiplied by the provided
2844  * scaling factor, or negative errno on error.
2845  */
2846 int clk_get_scaled_duty_cycle(struct clk *clk, unsigned int scale)
2847 {
2848 	if (!clk)
2849 		return 0;
2850 
2851 	return clk_core_get_scaled_duty_cycle(clk->core, scale);
2852 }
2853 EXPORT_SYMBOL_GPL(clk_get_scaled_duty_cycle);
2854 
2855 /**
2856  * clk_is_match - check if two clk's point to the same hardware clock
2857  * @p: clk compared against q
2858  * @q: clk compared against p
2859  *
2860  * Returns true if the two struct clk pointers both point to the same hardware
2861  * clock node. Put differently, returns true if struct clk *p and struct clk *q
2862  * share the same struct clk_core object.
2863  *
2864  * Returns false otherwise. Note that two NULL clks are treated as matching.
2865  */
2866 bool clk_is_match(const struct clk *p, const struct clk *q)
2867 {
2868 	/* trivial case: identical struct clk's or both NULL */
2869 	if (p == q)
2870 		return true;
2871 
2872 	/* true if clk->core pointers match. Avoid dereferencing garbage */
2873 	if (!IS_ERR_OR_NULL(p) && !IS_ERR_OR_NULL(q))
2874 		if (p->core == q->core)
2875 			return true;
2876 
2877 	return false;
2878 }
2879 EXPORT_SYMBOL_GPL(clk_is_match);
2880 
2881 /***        debugfs support        ***/
2882 
2883 #ifdef CONFIG_DEBUG_FS
2884 #include <linux/debugfs.h>
2885 
2886 static struct dentry *rootdir;
2887 static int inited = 0;
2888 static DEFINE_MUTEX(clk_debug_lock);
2889 static HLIST_HEAD(clk_debug_list);
2890 
2891 static struct hlist_head *orphan_list[] = {
2892 	&clk_orphan_list,
2893 	NULL,
2894 };
2895 
2896 static void clk_summary_show_one(struct seq_file *s, struct clk_core *c,
2897 				 int level)
2898 {
2899 	seq_printf(s, "%*s%-*s %7d %8d %8d %11lu %10lu %5d %6d\n",
2900 		   level * 3 + 1, "",
2901 		   30 - level * 3, c->name,
2902 		   c->enable_count, c->prepare_count, c->protect_count,
2903 		   clk_core_get_rate(c), clk_core_get_accuracy(c),
2904 		   clk_core_get_phase(c),
2905 		   clk_core_get_scaled_duty_cycle(c, 100000));
2906 }
2907 
2908 static void clk_summary_show_subtree(struct seq_file *s, struct clk_core *c,
2909 				     int level)
2910 {
2911 	struct clk_core *child;
2912 
2913 	clk_summary_show_one(s, c, level);
2914 
2915 	hlist_for_each_entry(child, &c->children, child_node)
2916 		clk_summary_show_subtree(s, child, level + 1);
2917 }
2918 
2919 static int clk_summary_show(struct seq_file *s, void *data)
2920 {
2921 	struct clk_core *c;
2922 	struct hlist_head **lists = (struct hlist_head **)s->private;
2923 
2924 	seq_puts(s, "                                 enable  prepare  protect                                duty\n");
2925 	seq_puts(s, "   clock                          count    count    count        rate   accuracy phase  cycle\n");
2926 	seq_puts(s, "---------------------------------------------------------------------------------------------\n");
2927 
2928 	clk_prepare_lock();
2929 
2930 	for (; *lists; lists++)
2931 		hlist_for_each_entry(c, *lists, child_node)
2932 			clk_summary_show_subtree(s, c, 0);
2933 
2934 	clk_prepare_unlock();
2935 
2936 	return 0;
2937 }
2938 DEFINE_SHOW_ATTRIBUTE(clk_summary);
2939 
2940 static void clk_dump_one(struct seq_file *s, struct clk_core *c, int level)
2941 {
2942 	unsigned long min_rate, max_rate;
2943 
2944 	clk_core_get_boundaries(c, &min_rate, &max_rate);
2945 
2946 	/* This should be JSON format, i.e. elements separated with a comma */
2947 	seq_printf(s, "\"%s\": { ", c->name);
2948 	seq_printf(s, "\"enable_count\": %d,", c->enable_count);
2949 	seq_printf(s, "\"prepare_count\": %d,", c->prepare_count);
2950 	seq_printf(s, "\"protect_count\": %d,", c->protect_count);
2951 	seq_printf(s, "\"rate\": %lu,", clk_core_get_rate(c));
2952 	seq_printf(s, "\"min_rate\": %lu,", min_rate);
2953 	seq_printf(s, "\"max_rate\": %lu,", max_rate);
2954 	seq_printf(s, "\"accuracy\": %lu,", clk_core_get_accuracy(c));
2955 	seq_printf(s, "\"phase\": %d,", clk_core_get_phase(c));
2956 	seq_printf(s, "\"duty_cycle\": %u",
2957 		   clk_core_get_scaled_duty_cycle(c, 100000));
2958 }
2959 
2960 static void clk_dump_subtree(struct seq_file *s, struct clk_core *c, int level)
2961 {
2962 	struct clk_core *child;
2963 
2964 	clk_dump_one(s, c, level);
2965 
2966 	hlist_for_each_entry(child, &c->children, child_node) {
2967 		seq_putc(s, ',');
2968 		clk_dump_subtree(s, child, level + 1);
2969 	}
2970 
2971 	seq_putc(s, '}');
2972 }
2973 
2974 static int clk_dump_show(struct seq_file *s, void *data)
2975 {
2976 	struct clk_core *c;
2977 	bool first_node = true;
2978 	struct hlist_head **lists = (struct hlist_head **)s->private;
2979 
2980 	seq_putc(s, '{');
2981 	clk_prepare_lock();
2982 
2983 	for (; *lists; lists++) {
2984 		hlist_for_each_entry(c, *lists, child_node) {
2985 			if (!first_node)
2986 				seq_putc(s, ',');
2987 			first_node = false;
2988 			clk_dump_subtree(s, c, 0);
2989 		}
2990 	}
2991 
2992 	clk_prepare_unlock();
2993 
2994 	seq_puts(s, "}\n");
2995 	return 0;
2996 }
2997 DEFINE_SHOW_ATTRIBUTE(clk_dump);
2998 
2999 #undef CLOCK_ALLOW_WRITE_DEBUGFS
3000 #ifdef CLOCK_ALLOW_WRITE_DEBUGFS
3001 /*
3002  * This can be dangerous, therefore don't provide any real compile time
3003  * configuration option for this feature.
3004  * People who want to use this will need to modify the source code directly.
3005  */
3006 static int clk_rate_set(void *data, u64 val)
3007 {
3008 	struct clk_core *core = data;
3009 	int ret;
3010 
3011 	clk_prepare_lock();
3012 	ret = clk_core_set_rate_nolock(core, val);
3013 	clk_prepare_unlock();
3014 
3015 	return ret;
3016 }
3017 
3018 #define clk_rate_mode	0644
3019 #else
3020 #define clk_rate_set	NULL
3021 #define clk_rate_mode	0444
3022 #endif
3023 
3024 static int clk_rate_get(void *data, u64 *val)
3025 {
3026 	struct clk_core *core = data;
3027 
3028 	*val = core->rate;
3029 	return 0;
3030 }
3031 
3032 DEFINE_DEBUGFS_ATTRIBUTE(clk_rate_fops, clk_rate_get, clk_rate_set, "%llu\n");
3033 
3034 static const struct {
3035 	unsigned long flag;
3036 	const char *name;
3037 } clk_flags[] = {
3038 #define ENTRY(f) { f, #f }
3039 	ENTRY(CLK_SET_RATE_GATE),
3040 	ENTRY(CLK_SET_PARENT_GATE),
3041 	ENTRY(CLK_SET_RATE_PARENT),
3042 	ENTRY(CLK_IGNORE_UNUSED),
3043 	ENTRY(CLK_GET_RATE_NOCACHE),
3044 	ENTRY(CLK_SET_RATE_NO_REPARENT),
3045 	ENTRY(CLK_GET_ACCURACY_NOCACHE),
3046 	ENTRY(CLK_RECALC_NEW_RATES),
3047 	ENTRY(CLK_SET_RATE_UNGATE),
3048 	ENTRY(CLK_IS_CRITICAL),
3049 	ENTRY(CLK_OPS_PARENT_ENABLE),
3050 	ENTRY(CLK_DUTY_CYCLE_PARENT),
3051 #undef ENTRY
3052 };
3053 
3054 static int clk_flags_show(struct seq_file *s, void *data)
3055 {
3056 	struct clk_core *core = s->private;
3057 	unsigned long flags = core->flags;
3058 	unsigned int i;
3059 
3060 	for (i = 0; flags && i < ARRAY_SIZE(clk_flags); i++) {
3061 		if (flags & clk_flags[i].flag) {
3062 			seq_printf(s, "%s\n", clk_flags[i].name);
3063 			flags &= ~clk_flags[i].flag;
3064 		}
3065 	}
3066 	if (flags) {
3067 		/* Unknown flags */
3068 		seq_printf(s, "0x%lx\n", flags);
3069 	}
3070 
3071 	return 0;
3072 }
3073 DEFINE_SHOW_ATTRIBUTE(clk_flags);
3074 
3075 static void possible_parent_show(struct seq_file *s, struct clk_core *core,
3076 				 unsigned int i, char terminator)
3077 {
3078 	struct clk_core *parent;
3079 
3080 	/*
3081 	 * Go through the following options to fetch a parent's name.
3082 	 *
3083 	 * 1. Fetch the registered parent clock and use its name
3084 	 * 2. Use the global (fallback) name if specified
3085 	 * 3. Use the local fw_name if provided
3086 	 * 4. Fetch parent clock's clock-output-name if DT index was set
3087 	 *
3088 	 * This may still fail in some cases, such as when the parent is
3089 	 * specified directly via a struct clk_hw pointer, but it isn't
3090 	 * registered (yet).
3091 	 */
3092 	parent = clk_core_get_parent_by_index(core, i);
3093 	if (parent)
3094 		seq_puts(s, parent->name);
3095 	else if (core->parents[i].name)
3096 		seq_puts(s, core->parents[i].name);
3097 	else if (core->parents[i].fw_name)
3098 		seq_printf(s, "<%s>(fw)", core->parents[i].fw_name);
3099 	else if (core->parents[i].index >= 0)
3100 		seq_puts(s,
3101 			 of_clk_get_parent_name(core->of_node,
3102 						core->parents[i].index));
3103 	else
3104 		seq_puts(s, "(missing)");
3105 
3106 	seq_putc(s, terminator);
3107 }
3108 
3109 static int possible_parents_show(struct seq_file *s, void *data)
3110 {
3111 	struct clk_core *core = s->private;
3112 	int i;
3113 
3114 	for (i = 0; i < core->num_parents - 1; i++)
3115 		possible_parent_show(s, core, i, ' ');
3116 
3117 	possible_parent_show(s, core, i, '\n');
3118 
3119 	return 0;
3120 }
3121 DEFINE_SHOW_ATTRIBUTE(possible_parents);
3122 
3123 static int current_parent_show(struct seq_file *s, void *data)
3124 {
3125 	struct clk_core *core = s->private;
3126 
3127 	if (core->parent)
3128 		seq_printf(s, "%s\n", core->parent->name);
3129 
3130 	return 0;
3131 }
3132 DEFINE_SHOW_ATTRIBUTE(current_parent);
3133 
3134 static int clk_duty_cycle_show(struct seq_file *s, void *data)
3135 {
3136 	struct clk_core *core = s->private;
3137 	struct clk_duty *duty = &core->duty;
3138 
3139 	seq_printf(s, "%u/%u\n", duty->num, duty->den);
3140 
3141 	return 0;
3142 }
3143 DEFINE_SHOW_ATTRIBUTE(clk_duty_cycle);
3144 
3145 static int clk_min_rate_show(struct seq_file *s, void *data)
3146 {
3147 	struct clk_core *core = s->private;
3148 	unsigned long min_rate, max_rate;
3149 
3150 	clk_prepare_lock();
3151 	clk_core_get_boundaries(core, &min_rate, &max_rate);
3152 	clk_prepare_unlock();
3153 	seq_printf(s, "%lu\n", min_rate);
3154 
3155 	return 0;
3156 }
3157 DEFINE_SHOW_ATTRIBUTE(clk_min_rate);
3158 
3159 static int clk_max_rate_show(struct seq_file *s, void *data)
3160 {
3161 	struct clk_core *core = s->private;
3162 	unsigned long min_rate, max_rate;
3163 
3164 	clk_prepare_lock();
3165 	clk_core_get_boundaries(core, &min_rate, &max_rate);
3166 	clk_prepare_unlock();
3167 	seq_printf(s, "%lu\n", max_rate);
3168 
3169 	return 0;
3170 }
3171 DEFINE_SHOW_ATTRIBUTE(clk_max_rate);
3172 
3173 static void clk_debug_create_one(struct clk_core *core, struct dentry *pdentry)
3174 {
3175 	struct dentry *root;
3176 
3177 	if (!core || !pdentry)
3178 		return;
3179 
3180 	root = debugfs_create_dir(core->name, pdentry);
3181 	core->dentry = root;
3182 
3183 	debugfs_create_file("clk_rate", clk_rate_mode, root, core,
3184 			    &clk_rate_fops);
3185 	debugfs_create_file("clk_min_rate", 0444, root, core, &clk_min_rate_fops);
3186 	debugfs_create_file("clk_max_rate", 0444, root, core, &clk_max_rate_fops);
3187 	debugfs_create_ulong("clk_accuracy", 0444, root, &core->accuracy);
3188 	debugfs_create_u32("clk_phase", 0444, root, &core->phase);
3189 	debugfs_create_file("clk_flags", 0444, root, core, &clk_flags_fops);
3190 	debugfs_create_u32("clk_prepare_count", 0444, root, &core->prepare_count);
3191 	debugfs_create_u32("clk_enable_count", 0444, root, &core->enable_count);
3192 	debugfs_create_u32("clk_protect_count", 0444, root, &core->protect_count);
3193 	debugfs_create_u32("clk_notifier_count", 0444, root, &core->notifier_count);
3194 	debugfs_create_file("clk_duty_cycle", 0444, root, core,
3195 			    &clk_duty_cycle_fops);
3196 
3197 	if (core->num_parents > 0)
3198 		debugfs_create_file("clk_parent", 0444, root, core,
3199 				    &current_parent_fops);
3200 
3201 	if (core->num_parents > 1)
3202 		debugfs_create_file("clk_possible_parents", 0444, root, core,
3203 				    &possible_parents_fops);
3204 
3205 	if (core->ops->debug_init)
3206 		core->ops->debug_init(core->hw, core->dentry);
3207 }
3208 
3209 /**
3210  * clk_debug_register - add a clk node to the debugfs clk directory
3211  * @core: the clk being added to the debugfs clk directory
3212  *
3213  * Dynamically adds a clk to the debugfs clk directory if debugfs has been
3214  * initialized.  Otherwise it bails out early since the debugfs clk directory
3215  * will be created lazily by clk_debug_init as part of a late_initcall.
3216  */
3217 static void clk_debug_register(struct clk_core *core)
3218 {
3219 	mutex_lock(&clk_debug_lock);
3220 	hlist_add_head(&core->debug_node, &clk_debug_list);
3221 	if (inited)
3222 		clk_debug_create_one(core, rootdir);
3223 	mutex_unlock(&clk_debug_lock);
3224 }
3225 
3226  /**
3227  * clk_debug_unregister - remove a clk node from the debugfs clk directory
3228  * @core: the clk being removed from the debugfs clk directory
3229  *
3230  * Dynamically removes a clk and all its child nodes from the
3231  * debugfs clk directory if clk->dentry points to debugfs created by
3232  * clk_debug_register in __clk_core_init.
3233  */
3234 static void clk_debug_unregister(struct clk_core *core)
3235 {
3236 	mutex_lock(&clk_debug_lock);
3237 	hlist_del_init(&core->debug_node);
3238 	debugfs_remove_recursive(core->dentry);
3239 	core->dentry = NULL;
3240 	mutex_unlock(&clk_debug_lock);
3241 }
3242 
3243 /**
3244  * clk_debug_init - lazily populate the debugfs clk directory
3245  *
3246  * clks are often initialized very early during boot before memory can be
3247  * dynamically allocated and well before debugfs is setup. This function
3248  * populates the debugfs clk directory once at boot-time when we know that
3249  * debugfs is setup. It should only be called once at boot-time, all other clks
3250  * added dynamically will be done so with clk_debug_register.
3251  */
3252 static int __init clk_debug_init(void)
3253 {
3254 	struct clk_core *core;
3255 
3256 	rootdir = debugfs_create_dir("clk", NULL);
3257 
3258 	debugfs_create_file("clk_summary", 0444, rootdir, &all_lists,
3259 			    &clk_summary_fops);
3260 	debugfs_create_file("clk_dump", 0444, rootdir, &all_lists,
3261 			    &clk_dump_fops);
3262 	debugfs_create_file("clk_orphan_summary", 0444, rootdir, &orphan_list,
3263 			    &clk_summary_fops);
3264 	debugfs_create_file("clk_orphan_dump", 0444, rootdir, &orphan_list,
3265 			    &clk_dump_fops);
3266 
3267 	mutex_lock(&clk_debug_lock);
3268 	hlist_for_each_entry(core, &clk_debug_list, debug_node)
3269 		clk_debug_create_one(core, rootdir);
3270 
3271 	inited = 1;
3272 	mutex_unlock(&clk_debug_lock);
3273 
3274 	return 0;
3275 }
3276 late_initcall(clk_debug_init);
3277 #else
3278 static inline void clk_debug_register(struct clk_core *core) { }
3279 static inline void clk_debug_reparent(struct clk_core *core,
3280 				      struct clk_core *new_parent)
3281 {
3282 }
3283 static inline void clk_debug_unregister(struct clk_core *core)
3284 {
3285 }
3286 #endif
3287 
3288 static void clk_core_reparent_orphans_nolock(void)
3289 {
3290 	struct clk_core *orphan;
3291 	struct hlist_node *tmp2;
3292 
3293 	/*
3294 	 * walk the list of orphan clocks and reparent any that newly finds a
3295 	 * parent.
3296 	 */
3297 	hlist_for_each_entry_safe(orphan, tmp2, &clk_orphan_list, child_node) {
3298 		struct clk_core *parent = __clk_init_parent(orphan);
3299 
3300 		/*
3301 		 * We need to use __clk_set_parent_before() and _after() to
3302 		 * to properly migrate any prepare/enable count of the orphan
3303 		 * clock. This is important for CLK_IS_CRITICAL clocks, which
3304 		 * are enabled during init but might not have a parent yet.
3305 		 */
3306 		if (parent) {
3307 			/* update the clk tree topology */
3308 			__clk_set_parent_before(orphan, parent);
3309 			__clk_set_parent_after(orphan, parent, NULL);
3310 			__clk_recalc_accuracies(orphan);
3311 			__clk_recalc_rates(orphan, 0);
3312 		}
3313 	}
3314 }
3315 
3316 /**
3317  * __clk_core_init - initialize the data structures in a struct clk_core
3318  * @core:	clk_core being initialized
3319  *
3320  * Initializes the lists in struct clk_core, queries the hardware for the
3321  * parent and rate and sets them both.
3322  */
3323 static int __clk_core_init(struct clk_core *core)
3324 {
3325 	int ret;
3326 	unsigned long rate;
3327 
3328 	if (!core)
3329 		return -EINVAL;
3330 
3331 	clk_prepare_lock();
3332 
3333 	ret = clk_pm_runtime_get(core);
3334 	if (ret)
3335 		goto unlock;
3336 
3337 	/* check to see if a clock with this name is already registered */
3338 	if (clk_core_lookup(core->name)) {
3339 		pr_debug("%s: clk %s already initialized\n",
3340 				__func__, core->name);
3341 		ret = -EEXIST;
3342 		goto out;
3343 	}
3344 
3345 	/* check that clk_ops are sane.  See Documentation/driver-api/clk.rst */
3346 	if (core->ops->set_rate &&
3347 	    !((core->ops->round_rate || core->ops->determine_rate) &&
3348 	      core->ops->recalc_rate)) {
3349 		pr_err("%s: %s must implement .round_rate or .determine_rate in addition to .recalc_rate\n",
3350 		       __func__, core->name);
3351 		ret = -EINVAL;
3352 		goto out;
3353 	}
3354 
3355 	if (core->ops->set_parent && !core->ops->get_parent) {
3356 		pr_err("%s: %s must implement .get_parent & .set_parent\n",
3357 		       __func__, core->name);
3358 		ret = -EINVAL;
3359 		goto out;
3360 	}
3361 
3362 	if (core->num_parents > 1 && !core->ops->get_parent) {
3363 		pr_err("%s: %s must implement .get_parent as it has multi parents\n",
3364 		       __func__, core->name);
3365 		ret = -EINVAL;
3366 		goto out;
3367 	}
3368 
3369 	if (core->ops->set_rate_and_parent &&
3370 			!(core->ops->set_parent && core->ops->set_rate)) {
3371 		pr_err("%s: %s must implement .set_parent & .set_rate\n",
3372 				__func__, core->name);
3373 		ret = -EINVAL;
3374 		goto out;
3375 	}
3376 
3377 	/*
3378 	 * optional platform-specific magic
3379 	 *
3380 	 * The .init callback is not used by any of the basic clock types, but
3381 	 * exists for weird hardware that must perform initialization magic for
3382 	 * CCF to get an accurate view of clock for any other callbacks. It may
3383 	 * also be used needs to perform dynamic allocations. Such allocation
3384 	 * must be freed in the terminate() callback.
3385 	 * This callback shall not be used to initialize the parameters state,
3386 	 * such as rate, parent, etc ...
3387 	 *
3388 	 * If it exist, this callback should called before any other callback of
3389 	 * the clock
3390 	 */
3391 	if (core->ops->init) {
3392 		ret = core->ops->init(core->hw);
3393 		if (ret)
3394 			goto out;
3395 	}
3396 
3397 	core->parent = __clk_init_parent(core);
3398 
3399 	/*
3400 	 * Populate core->parent if parent has already been clk_core_init'd. If
3401 	 * parent has not yet been clk_core_init'd then place clk in the orphan
3402 	 * list.  If clk doesn't have any parents then place it in the root
3403 	 * clk list.
3404 	 *
3405 	 * Every time a new clk is clk_init'd then we walk the list of orphan
3406 	 * clocks and re-parent any that are children of the clock currently
3407 	 * being clk_init'd.
3408 	 */
3409 	if (core->parent) {
3410 		hlist_add_head(&core->child_node,
3411 				&core->parent->children);
3412 		core->orphan = core->parent->orphan;
3413 	} else if (!core->num_parents) {
3414 		hlist_add_head(&core->child_node, &clk_root_list);
3415 		core->orphan = false;
3416 	} else {
3417 		hlist_add_head(&core->child_node, &clk_orphan_list);
3418 		core->orphan = true;
3419 	}
3420 
3421 	/*
3422 	 * Set clk's accuracy.  The preferred method is to use
3423 	 * .recalc_accuracy. For simple clocks and lazy developers the default
3424 	 * fallback is to use the parent's accuracy.  If a clock doesn't have a
3425 	 * parent (or is orphaned) then accuracy is set to zero (perfect
3426 	 * clock).
3427 	 */
3428 	if (core->ops->recalc_accuracy)
3429 		core->accuracy = core->ops->recalc_accuracy(core->hw,
3430 					__clk_get_accuracy(core->parent));
3431 	else if (core->parent)
3432 		core->accuracy = core->parent->accuracy;
3433 	else
3434 		core->accuracy = 0;
3435 
3436 	/*
3437 	 * Set clk's phase.
3438 	 * Since a phase is by definition relative to its parent, just
3439 	 * query the current clock phase, or just assume it's in phase.
3440 	 */
3441 	if (core->ops->get_phase)
3442 		core->phase = core->ops->get_phase(core->hw);
3443 	else
3444 		core->phase = 0;
3445 
3446 	/*
3447 	 * Set clk's duty cycle.
3448 	 */
3449 	clk_core_update_duty_cycle_nolock(core);
3450 
3451 	/*
3452 	 * Set clk's rate.  The preferred method is to use .recalc_rate.  For
3453 	 * simple clocks and lazy developers the default fallback is to use the
3454 	 * parent's rate.  If a clock doesn't have a parent (or is orphaned)
3455 	 * then rate is set to zero.
3456 	 */
3457 	if (core->ops->recalc_rate)
3458 		rate = core->ops->recalc_rate(core->hw,
3459 				clk_core_get_rate_nolock(core->parent));
3460 	else if (core->parent)
3461 		rate = core->parent->rate;
3462 	else
3463 		rate = 0;
3464 	core->rate = core->req_rate = rate;
3465 
3466 	/*
3467 	 * Enable CLK_IS_CRITICAL clocks so newly added critical clocks
3468 	 * don't get accidentally disabled when walking the orphan tree and
3469 	 * reparenting clocks
3470 	 */
3471 	if (core->flags & CLK_IS_CRITICAL) {
3472 		unsigned long flags;
3473 
3474 		ret = clk_core_prepare(core);
3475 		if (ret) {
3476 			pr_warn("%s: critical clk '%s' failed to prepare\n",
3477 			       __func__, core->name);
3478 			goto out;
3479 		}
3480 
3481 		flags = clk_enable_lock();
3482 		ret = clk_core_enable(core);
3483 		clk_enable_unlock(flags);
3484 		if (ret) {
3485 			pr_warn("%s: critical clk '%s' failed to enable\n",
3486 			       __func__, core->name);
3487 			clk_core_unprepare(core);
3488 			goto out;
3489 		}
3490 	}
3491 
3492 	clk_core_reparent_orphans_nolock();
3493 
3494 
3495 	kref_init(&core->ref);
3496 out:
3497 	clk_pm_runtime_put(core);
3498 unlock:
3499 	clk_prepare_unlock();
3500 
3501 	if (!ret)
3502 		clk_debug_register(core);
3503 
3504 	return ret;
3505 }
3506 
3507 /**
3508  * clk_core_link_consumer - Add a clk consumer to the list of consumers in a clk_core
3509  * @core: clk to add consumer to
3510  * @clk: consumer to link to a clk
3511  */
3512 static void clk_core_link_consumer(struct clk_core *core, struct clk *clk)
3513 {
3514 	clk_prepare_lock();
3515 	hlist_add_head(&clk->clks_node, &core->clks);
3516 	clk_prepare_unlock();
3517 }
3518 
3519 /**
3520  * clk_core_unlink_consumer - Remove a clk consumer from the list of consumers in a clk_core
3521  * @clk: consumer to unlink
3522  */
3523 static void clk_core_unlink_consumer(struct clk *clk)
3524 {
3525 	lockdep_assert_held(&prepare_lock);
3526 	hlist_del(&clk->clks_node);
3527 }
3528 
3529 /**
3530  * alloc_clk - Allocate a clk consumer, but leave it unlinked to the clk_core
3531  * @core: clk to allocate a consumer for
3532  * @dev_id: string describing device name
3533  * @con_id: connection ID string on device
3534  *
3535  * Returns: clk consumer left unlinked from the consumer list
3536  */
3537 static struct clk *alloc_clk(struct clk_core *core, const char *dev_id,
3538 			     const char *con_id)
3539 {
3540 	struct clk *clk;
3541 
3542 	clk = kzalloc(sizeof(*clk), GFP_KERNEL);
3543 	if (!clk)
3544 		return ERR_PTR(-ENOMEM);
3545 
3546 	clk->core = core;
3547 	clk->dev_id = dev_id;
3548 	clk->con_id = kstrdup_const(con_id, GFP_KERNEL);
3549 	clk->max_rate = ULONG_MAX;
3550 
3551 	return clk;
3552 }
3553 
3554 /**
3555  * free_clk - Free a clk consumer
3556  * @clk: clk consumer to free
3557  *
3558  * Note, this assumes the clk has been unlinked from the clk_core consumer
3559  * list.
3560  */
3561 static void free_clk(struct clk *clk)
3562 {
3563 	kfree_const(clk->con_id);
3564 	kfree(clk);
3565 }
3566 
3567 /**
3568  * clk_hw_create_clk: Allocate and link a clk consumer to a clk_core given
3569  * a clk_hw
3570  * @dev: clk consumer device
3571  * @hw: clk_hw associated with the clk being consumed
3572  * @dev_id: string describing device name
3573  * @con_id: connection ID string on device
3574  *
3575  * This is the main function used to create a clk pointer for use by clk
3576  * consumers. It connects a consumer to the clk_core and clk_hw structures
3577  * used by the framework and clk provider respectively.
3578  */
3579 struct clk *clk_hw_create_clk(struct device *dev, struct clk_hw *hw,
3580 			      const char *dev_id, const char *con_id)
3581 {
3582 	struct clk *clk;
3583 	struct clk_core *core;
3584 
3585 	/* This is to allow this function to be chained to others */
3586 	if (IS_ERR_OR_NULL(hw))
3587 		return ERR_CAST(hw);
3588 
3589 	core = hw->core;
3590 	clk = alloc_clk(core, dev_id, con_id);
3591 	if (IS_ERR(clk))
3592 		return clk;
3593 	clk->dev = dev;
3594 
3595 	if (!try_module_get(core->owner)) {
3596 		free_clk(clk);
3597 		return ERR_PTR(-ENOENT);
3598 	}
3599 
3600 	kref_get(&core->ref);
3601 	clk_core_link_consumer(core, clk);
3602 
3603 	return clk;
3604 }
3605 
3606 static int clk_cpy_name(const char **dst_p, const char *src, bool must_exist)
3607 {
3608 	const char *dst;
3609 
3610 	if (!src) {
3611 		if (must_exist)
3612 			return -EINVAL;
3613 		return 0;
3614 	}
3615 
3616 	*dst_p = dst = kstrdup_const(src, GFP_KERNEL);
3617 	if (!dst)
3618 		return -ENOMEM;
3619 
3620 	return 0;
3621 }
3622 
3623 static int clk_core_populate_parent_map(struct clk_core *core,
3624 					const struct clk_init_data *init)
3625 {
3626 	u8 num_parents = init->num_parents;
3627 	const char * const *parent_names = init->parent_names;
3628 	const struct clk_hw **parent_hws = init->parent_hws;
3629 	const struct clk_parent_data *parent_data = init->parent_data;
3630 	int i, ret = 0;
3631 	struct clk_parent_map *parents, *parent;
3632 
3633 	if (!num_parents)
3634 		return 0;
3635 
3636 	/*
3637 	 * Avoid unnecessary string look-ups of clk_core's possible parents by
3638 	 * having a cache of names/clk_hw pointers to clk_core pointers.
3639 	 */
3640 	parents = kcalloc(num_parents, sizeof(*parents), GFP_KERNEL);
3641 	core->parents = parents;
3642 	if (!parents)
3643 		return -ENOMEM;
3644 
3645 	/* Copy everything over because it might be __initdata */
3646 	for (i = 0, parent = parents; i < num_parents; i++, parent++) {
3647 		parent->index = -1;
3648 		if (parent_names) {
3649 			/* throw a WARN if any entries are NULL */
3650 			WARN(!parent_names[i],
3651 				"%s: invalid NULL in %s's .parent_names\n",
3652 				__func__, core->name);
3653 			ret = clk_cpy_name(&parent->name, parent_names[i],
3654 					   true);
3655 		} else if (parent_data) {
3656 			parent->hw = parent_data[i].hw;
3657 			parent->index = parent_data[i].index;
3658 			ret = clk_cpy_name(&parent->fw_name,
3659 					   parent_data[i].fw_name, false);
3660 			if (!ret)
3661 				ret = clk_cpy_name(&parent->name,
3662 						   parent_data[i].name,
3663 						   false);
3664 		} else if (parent_hws) {
3665 			parent->hw = parent_hws[i];
3666 		} else {
3667 			ret = -EINVAL;
3668 			WARN(1, "Must specify parents if num_parents > 0\n");
3669 		}
3670 
3671 		if (ret) {
3672 			do {
3673 				kfree_const(parents[i].name);
3674 				kfree_const(parents[i].fw_name);
3675 			} while (--i >= 0);
3676 			kfree(parents);
3677 
3678 			return ret;
3679 		}
3680 	}
3681 
3682 	return 0;
3683 }
3684 
3685 static void clk_core_free_parent_map(struct clk_core *core)
3686 {
3687 	int i = core->num_parents;
3688 
3689 	if (!core->num_parents)
3690 		return;
3691 
3692 	while (--i >= 0) {
3693 		kfree_const(core->parents[i].name);
3694 		kfree_const(core->parents[i].fw_name);
3695 	}
3696 
3697 	kfree(core->parents);
3698 }
3699 
3700 static struct clk *
3701 __clk_register(struct device *dev, struct device_node *np, struct clk_hw *hw)
3702 {
3703 	int ret;
3704 	struct clk_core *core;
3705 	const struct clk_init_data *init = hw->init;
3706 
3707 	/*
3708 	 * The init data is not supposed to be used outside of registration path.
3709 	 * Set it to NULL so that provider drivers can't use it either and so that
3710 	 * we catch use of hw->init early on in the core.
3711 	 */
3712 	hw->init = NULL;
3713 
3714 	core = kzalloc(sizeof(*core), GFP_KERNEL);
3715 	if (!core) {
3716 		ret = -ENOMEM;
3717 		goto fail_out;
3718 	}
3719 
3720 	core->name = kstrdup_const(init->name, GFP_KERNEL);
3721 	if (!core->name) {
3722 		ret = -ENOMEM;
3723 		goto fail_name;
3724 	}
3725 
3726 	if (WARN_ON(!init->ops)) {
3727 		ret = -EINVAL;
3728 		goto fail_ops;
3729 	}
3730 	core->ops = init->ops;
3731 
3732 	if (dev && pm_runtime_enabled(dev))
3733 		core->rpm_enabled = true;
3734 	core->dev = dev;
3735 	core->of_node = np;
3736 	if (dev && dev->driver)
3737 		core->owner = dev->driver->owner;
3738 	core->hw = hw;
3739 	core->flags = init->flags;
3740 	core->num_parents = init->num_parents;
3741 	core->min_rate = 0;
3742 	core->max_rate = ULONG_MAX;
3743 	hw->core = core;
3744 
3745 	ret = clk_core_populate_parent_map(core, init);
3746 	if (ret)
3747 		goto fail_parents;
3748 
3749 	INIT_HLIST_HEAD(&core->clks);
3750 
3751 	/*
3752 	 * Don't call clk_hw_create_clk() here because that would pin the
3753 	 * provider module to itself and prevent it from ever being removed.
3754 	 */
3755 	hw->clk = alloc_clk(core, NULL, NULL);
3756 	if (IS_ERR(hw->clk)) {
3757 		ret = PTR_ERR(hw->clk);
3758 		goto fail_create_clk;
3759 	}
3760 
3761 	clk_core_link_consumer(hw->core, hw->clk);
3762 
3763 	ret = __clk_core_init(core);
3764 	if (!ret)
3765 		return hw->clk;
3766 
3767 	clk_prepare_lock();
3768 	clk_core_unlink_consumer(hw->clk);
3769 	clk_prepare_unlock();
3770 
3771 	free_clk(hw->clk);
3772 	hw->clk = NULL;
3773 
3774 fail_create_clk:
3775 	clk_core_free_parent_map(core);
3776 fail_parents:
3777 fail_ops:
3778 	kfree_const(core->name);
3779 fail_name:
3780 	kfree(core);
3781 fail_out:
3782 	return ERR_PTR(ret);
3783 }
3784 
3785 /**
3786  * dev_or_parent_of_node() - Get device node of @dev or @dev's parent
3787  * @dev: Device to get device node of
3788  *
3789  * Return: device node pointer of @dev, or the device node pointer of
3790  * @dev->parent if dev doesn't have a device node, or NULL if neither
3791  * @dev or @dev->parent have a device node.
3792  */
3793 static struct device_node *dev_or_parent_of_node(struct device *dev)
3794 {
3795 	struct device_node *np;
3796 
3797 	if (!dev)
3798 		return NULL;
3799 
3800 	np = dev_of_node(dev);
3801 	if (!np)
3802 		np = dev_of_node(dev->parent);
3803 
3804 	return np;
3805 }
3806 
3807 /**
3808  * clk_register - allocate a new clock, register it and return an opaque cookie
3809  * @dev: device that is registering this clock
3810  * @hw: link to hardware-specific clock data
3811  *
3812  * clk_register is the *deprecated* interface for populating the clock tree with
3813  * new clock nodes. Use clk_hw_register() instead.
3814  *
3815  * Returns: a pointer to the newly allocated struct clk which
3816  * cannot be dereferenced by driver code but may be used in conjunction with the
3817  * rest of the clock API.  In the event of an error clk_register will return an
3818  * error code; drivers must test for an error code after calling clk_register.
3819  */
3820 struct clk *clk_register(struct device *dev, struct clk_hw *hw)
3821 {
3822 	return __clk_register(dev, dev_or_parent_of_node(dev), hw);
3823 }
3824 EXPORT_SYMBOL_GPL(clk_register);
3825 
3826 /**
3827  * clk_hw_register - register a clk_hw and return an error code
3828  * @dev: device that is registering this clock
3829  * @hw: link to hardware-specific clock data
3830  *
3831  * clk_hw_register is the primary interface for populating the clock tree with
3832  * new clock nodes. It returns an integer equal to zero indicating success or
3833  * less than zero indicating failure. Drivers must test for an error code after
3834  * calling clk_hw_register().
3835  */
3836 int clk_hw_register(struct device *dev, struct clk_hw *hw)
3837 {
3838 	return PTR_ERR_OR_ZERO(__clk_register(dev, dev_or_parent_of_node(dev),
3839 			       hw));
3840 }
3841 EXPORT_SYMBOL_GPL(clk_hw_register);
3842 
3843 /*
3844  * of_clk_hw_register - register a clk_hw and return an error code
3845  * @node: device_node of device that is registering this clock
3846  * @hw: link to hardware-specific clock data
3847  *
3848  * of_clk_hw_register() is the primary interface for populating the clock tree
3849  * with new clock nodes when a struct device is not available, but a struct
3850  * device_node is. It returns an integer equal to zero indicating success or
3851  * less than zero indicating failure. Drivers must test for an error code after
3852  * calling of_clk_hw_register().
3853  */
3854 int of_clk_hw_register(struct device_node *node, struct clk_hw *hw)
3855 {
3856 	return PTR_ERR_OR_ZERO(__clk_register(NULL, node, hw));
3857 }
3858 EXPORT_SYMBOL_GPL(of_clk_hw_register);
3859 
3860 /* Free memory allocated for a clock. */
3861 static void __clk_release(struct kref *ref)
3862 {
3863 	struct clk_core *core = container_of(ref, struct clk_core, ref);
3864 
3865 	lockdep_assert_held(&prepare_lock);
3866 
3867 	clk_core_free_parent_map(core);
3868 	kfree_const(core->name);
3869 	kfree(core);
3870 }
3871 
3872 /*
3873  * Empty clk_ops for unregistered clocks. These are used temporarily
3874  * after clk_unregister() was called on a clock and until last clock
3875  * consumer calls clk_put() and the struct clk object is freed.
3876  */
3877 static int clk_nodrv_prepare_enable(struct clk_hw *hw)
3878 {
3879 	return -ENXIO;
3880 }
3881 
3882 static void clk_nodrv_disable_unprepare(struct clk_hw *hw)
3883 {
3884 	WARN_ON_ONCE(1);
3885 }
3886 
3887 static int clk_nodrv_set_rate(struct clk_hw *hw, unsigned long rate,
3888 					unsigned long parent_rate)
3889 {
3890 	return -ENXIO;
3891 }
3892 
3893 static int clk_nodrv_set_parent(struct clk_hw *hw, u8 index)
3894 {
3895 	return -ENXIO;
3896 }
3897 
3898 static const struct clk_ops clk_nodrv_ops = {
3899 	.enable		= clk_nodrv_prepare_enable,
3900 	.disable	= clk_nodrv_disable_unprepare,
3901 	.prepare	= clk_nodrv_prepare_enable,
3902 	.unprepare	= clk_nodrv_disable_unprepare,
3903 	.set_rate	= clk_nodrv_set_rate,
3904 	.set_parent	= clk_nodrv_set_parent,
3905 };
3906 
3907 static void clk_core_evict_parent_cache_subtree(struct clk_core *root,
3908 						struct clk_core *target)
3909 {
3910 	int i;
3911 	struct clk_core *child;
3912 
3913 	for (i = 0; i < root->num_parents; i++)
3914 		if (root->parents[i].core == target)
3915 			root->parents[i].core = NULL;
3916 
3917 	hlist_for_each_entry(child, &root->children, child_node)
3918 		clk_core_evict_parent_cache_subtree(child, target);
3919 }
3920 
3921 /* Remove this clk from all parent caches */
3922 static void clk_core_evict_parent_cache(struct clk_core *core)
3923 {
3924 	struct hlist_head **lists;
3925 	struct clk_core *root;
3926 
3927 	lockdep_assert_held(&prepare_lock);
3928 
3929 	for (lists = all_lists; *lists; lists++)
3930 		hlist_for_each_entry(root, *lists, child_node)
3931 			clk_core_evict_parent_cache_subtree(root, core);
3932 
3933 }
3934 
3935 /**
3936  * clk_unregister - unregister a currently registered clock
3937  * @clk: clock to unregister
3938  */
3939 void clk_unregister(struct clk *clk)
3940 {
3941 	unsigned long flags;
3942 	const struct clk_ops *ops;
3943 
3944 	if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
3945 		return;
3946 
3947 	clk_debug_unregister(clk->core);
3948 
3949 	clk_prepare_lock();
3950 
3951 	ops = clk->core->ops;
3952 	if (ops == &clk_nodrv_ops) {
3953 		pr_err("%s: unregistered clock: %s\n", __func__,
3954 		       clk->core->name);
3955 		goto unlock;
3956 	}
3957 	/*
3958 	 * Assign empty clock ops for consumers that might still hold
3959 	 * a reference to this clock.
3960 	 */
3961 	flags = clk_enable_lock();
3962 	clk->core->ops = &clk_nodrv_ops;
3963 	clk_enable_unlock(flags);
3964 
3965 	if (ops->terminate)
3966 		ops->terminate(clk->core->hw);
3967 
3968 	if (!hlist_empty(&clk->core->children)) {
3969 		struct clk_core *child;
3970 		struct hlist_node *t;
3971 
3972 		/* Reparent all children to the orphan list. */
3973 		hlist_for_each_entry_safe(child, t, &clk->core->children,
3974 					  child_node)
3975 			clk_core_set_parent_nolock(child, NULL);
3976 	}
3977 
3978 	clk_core_evict_parent_cache(clk->core);
3979 
3980 	hlist_del_init(&clk->core->child_node);
3981 
3982 	if (clk->core->prepare_count)
3983 		pr_warn("%s: unregistering prepared clock: %s\n",
3984 					__func__, clk->core->name);
3985 
3986 	if (clk->core->protect_count)
3987 		pr_warn("%s: unregistering protected clock: %s\n",
3988 					__func__, clk->core->name);
3989 
3990 	kref_put(&clk->core->ref, __clk_release);
3991 	free_clk(clk);
3992 unlock:
3993 	clk_prepare_unlock();
3994 }
3995 EXPORT_SYMBOL_GPL(clk_unregister);
3996 
3997 /**
3998  * clk_hw_unregister - unregister a currently registered clk_hw
3999  * @hw: hardware-specific clock data to unregister
4000  */
4001 void clk_hw_unregister(struct clk_hw *hw)
4002 {
4003 	clk_unregister(hw->clk);
4004 }
4005 EXPORT_SYMBOL_GPL(clk_hw_unregister);
4006 
4007 static void devm_clk_release(struct device *dev, void *res)
4008 {
4009 	clk_unregister(*(struct clk **)res);
4010 }
4011 
4012 static void devm_clk_hw_release(struct device *dev, void *res)
4013 {
4014 	clk_hw_unregister(*(struct clk_hw **)res);
4015 }
4016 
4017 /**
4018  * devm_clk_register - resource managed clk_register()
4019  * @dev: device that is registering this clock
4020  * @hw: link to hardware-specific clock data
4021  *
4022  * Managed clk_register(). This function is *deprecated*, use devm_clk_hw_register() instead.
4023  *
4024  * Clocks returned from this function are automatically clk_unregister()ed on
4025  * driver detach. See clk_register() for more information.
4026  */
4027 struct clk *devm_clk_register(struct device *dev, struct clk_hw *hw)
4028 {
4029 	struct clk *clk;
4030 	struct clk **clkp;
4031 
4032 	clkp = devres_alloc(devm_clk_release, sizeof(*clkp), GFP_KERNEL);
4033 	if (!clkp)
4034 		return ERR_PTR(-ENOMEM);
4035 
4036 	clk = clk_register(dev, hw);
4037 	if (!IS_ERR(clk)) {
4038 		*clkp = clk;
4039 		devres_add(dev, clkp);
4040 	} else {
4041 		devres_free(clkp);
4042 	}
4043 
4044 	return clk;
4045 }
4046 EXPORT_SYMBOL_GPL(devm_clk_register);
4047 
4048 /**
4049  * devm_clk_hw_register - resource managed clk_hw_register()
4050  * @dev: device that is registering this clock
4051  * @hw: link to hardware-specific clock data
4052  *
4053  * Managed clk_hw_register(). Clocks registered by this function are
4054  * automatically clk_hw_unregister()ed on driver detach. See clk_hw_register()
4055  * for more information.
4056  */
4057 int devm_clk_hw_register(struct device *dev, struct clk_hw *hw)
4058 {
4059 	struct clk_hw **hwp;
4060 	int ret;
4061 
4062 	hwp = devres_alloc(devm_clk_hw_release, sizeof(*hwp), GFP_KERNEL);
4063 	if (!hwp)
4064 		return -ENOMEM;
4065 
4066 	ret = clk_hw_register(dev, hw);
4067 	if (!ret) {
4068 		*hwp = hw;
4069 		devres_add(dev, hwp);
4070 	} else {
4071 		devres_free(hwp);
4072 	}
4073 
4074 	return ret;
4075 }
4076 EXPORT_SYMBOL_GPL(devm_clk_hw_register);
4077 
4078 static int devm_clk_match(struct device *dev, void *res, void *data)
4079 {
4080 	struct clk *c = res;
4081 	if (WARN_ON(!c))
4082 		return 0;
4083 	return c == data;
4084 }
4085 
4086 static int devm_clk_hw_match(struct device *dev, void *res, void *data)
4087 {
4088 	struct clk_hw *hw = res;
4089 
4090 	if (WARN_ON(!hw))
4091 		return 0;
4092 	return hw == data;
4093 }
4094 
4095 /**
4096  * devm_clk_unregister - resource managed clk_unregister()
4097  * @clk: clock to unregister
4098  *
4099  * Deallocate a clock allocated with devm_clk_register(). Normally
4100  * this function will not need to be called and the resource management
4101  * code will ensure that the resource is freed.
4102  */
4103 void devm_clk_unregister(struct device *dev, struct clk *clk)
4104 {
4105 	WARN_ON(devres_release(dev, devm_clk_release, devm_clk_match, clk));
4106 }
4107 EXPORT_SYMBOL_GPL(devm_clk_unregister);
4108 
4109 /**
4110  * devm_clk_hw_unregister - resource managed clk_hw_unregister()
4111  * @dev: device that is unregistering the hardware-specific clock data
4112  * @hw: link to hardware-specific clock data
4113  *
4114  * Unregister a clk_hw registered with devm_clk_hw_register(). Normally
4115  * this function will not need to be called and the resource management
4116  * code will ensure that the resource is freed.
4117  */
4118 void devm_clk_hw_unregister(struct device *dev, struct clk_hw *hw)
4119 {
4120 	WARN_ON(devres_release(dev, devm_clk_hw_release, devm_clk_hw_match,
4121 				hw));
4122 }
4123 EXPORT_SYMBOL_GPL(devm_clk_hw_unregister);
4124 
4125 /*
4126  * clkdev helpers
4127  */
4128 
4129 void __clk_put(struct clk *clk)
4130 {
4131 	struct module *owner;
4132 
4133 	if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
4134 		return;
4135 
4136 	clk_prepare_lock();
4137 
4138 	/*
4139 	 * Before calling clk_put, all calls to clk_rate_exclusive_get() from a
4140 	 * given user should be balanced with calls to clk_rate_exclusive_put()
4141 	 * and by that same consumer
4142 	 */
4143 	if (WARN_ON(clk->exclusive_count)) {
4144 		/* We voiced our concern, let's sanitize the situation */
4145 		clk->core->protect_count -= (clk->exclusive_count - 1);
4146 		clk_core_rate_unprotect(clk->core);
4147 		clk->exclusive_count = 0;
4148 	}
4149 
4150 	hlist_del(&clk->clks_node);
4151 	if (clk->min_rate > clk->core->req_rate ||
4152 	    clk->max_rate < clk->core->req_rate)
4153 		clk_core_set_rate_nolock(clk->core, clk->core->req_rate);
4154 
4155 	owner = clk->core->owner;
4156 	kref_put(&clk->core->ref, __clk_release);
4157 
4158 	clk_prepare_unlock();
4159 
4160 	module_put(owner);
4161 
4162 	free_clk(clk);
4163 }
4164 
4165 /***        clk rate change notifiers        ***/
4166 
4167 /**
4168  * clk_notifier_register - add a clk rate change notifier
4169  * @clk: struct clk * to watch
4170  * @nb: struct notifier_block * with callback info
4171  *
4172  * Request notification when clk's rate changes.  This uses an SRCU
4173  * notifier because we want it to block and notifier unregistrations are
4174  * uncommon.  The callbacks associated with the notifier must not
4175  * re-enter into the clk framework by calling any top-level clk APIs;
4176  * this will cause a nested prepare_lock mutex.
4177  *
4178  * In all notification cases (pre, post and abort rate change) the original
4179  * clock rate is passed to the callback via struct clk_notifier_data.old_rate
4180  * and the new frequency is passed via struct clk_notifier_data.new_rate.
4181  *
4182  * clk_notifier_register() must be called from non-atomic context.
4183  * Returns -EINVAL if called with null arguments, -ENOMEM upon
4184  * allocation failure; otherwise, passes along the return value of
4185  * srcu_notifier_chain_register().
4186  */
4187 int clk_notifier_register(struct clk *clk, struct notifier_block *nb)
4188 {
4189 	struct clk_notifier *cn;
4190 	int ret = -ENOMEM;
4191 
4192 	if (!clk || !nb)
4193 		return -EINVAL;
4194 
4195 	clk_prepare_lock();
4196 
4197 	/* search the list of notifiers for this clk */
4198 	list_for_each_entry(cn, &clk_notifier_list, node)
4199 		if (cn->clk == clk)
4200 			break;
4201 
4202 	/* if clk wasn't in the notifier list, allocate new clk_notifier */
4203 	if (cn->clk != clk) {
4204 		cn = kzalloc(sizeof(*cn), GFP_KERNEL);
4205 		if (!cn)
4206 			goto out;
4207 
4208 		cn->clk = clk;
4209 		srcu_init_notifier_head(&cn->notifier_head);
4210 
4211 		list_add(&cn->node, &clk_notifier_list);
4212 	}
4213 
4214 	ret = srcu_notifier_chain_register(&cn->notifier_head, nb);
4215 
4216 	clk->core->notifier_count++;
4217 
4218 out:
4219 	clk_prepare_unlock();
4220 
4221 	return ret;
4222 }
4223 EXPORT_SYMBOL_GPL(clk_notifier_register);
4224 
4225 /**
4226  * clk_notifier_unregister - remove a clk rate change notifier
4227  * @clk: struct clk *
4228  * @nb: struct notifier_block * with callback info
4229  *
4230  * Request no further notification for changes to 'clk' and frees memory
4231  * allocated in clk_notifier_register.
4232  *
4233  * Returns -EINVAL if called with null arguments; otherwise, passes
4234  * along the return value of srcu_notifier_chain_unregister().
4235  */
4236 int clk_notifier_unregister(struct clk *clk, struct notifier_block *nb)
4237 {
4238 	struct clk_notifier *cn = NULL;
4239 	int ret = -EINVAL;
4240 
4241 	if (!clk || !nb)
4242 		return -EINVAL;
4243 
4244 	clk_prepare_lock();
4245 
4246 	list_for_each_entry(cn, &clk_notifier_list, node)
4247 		if (cn->clk == clk)
4248 			break;
4249 
4250 	if (cn->clk == clk) {
4251 		ret = srcu_notifier_chain_unregister(&cn->notifier_head, nb);
4252 
4253 		clk->core->notifier_count--;
4254 
4255 		/* XXX the notifier code should handle this better */
4256 		if (!cn->notifier_head.head) {
4257 			srcu_cleanup_notifier_head(&cn->notifier_head);
4258 			list_del(&cn->node);
4259 			kfree(cn);
4260 		}
4261 
4262 	} else {
4263 		ret = -ENOENT;
4264 	}
4265 
4266 	clk_prepare_unlock();
4267 
4268 	return ret;
4269 }
4270 EXPORT_SYMBOL_GPL(clk_notifier_unregister);
4271 
4272 #ifdef CONFIG_OF
4273 static void clk_core_reparent_orphans(void)
4274 {
4275 	clk_prepare_lock();
4276 	clk_core_reparent_orphans_nolock();
4277 	clk_prepare_unlock();
4278 }
4279 
4280 /**
4281  * struct of_clk_provider - Clock provider registration structure
4282  * @link: Entry in global list of clock providers
4283  * @node: Pointer to device tree node of clock provider
4284  * @get: Get clock callback.  Returns NULL or a struct clk for the
4285  *       given clock specifier
4286  * @data: context pointer to be passed into @get callback
4287  */
4288 struct of_clk_provider {
4289 	struct list_head link;
4290 
4291 	struct device_node *node;
4292 	struct clk *(*get)(struct of_phandle_args *clkspec, void *data);
4293 	struct clk_hw *(*get_hw)(struct of_phandle_args *clkspec, void *data);
4294 	void *data;
4295 };
4296 
4297 extern struct of_device_id __clk_of_table;
4298 static const struct of_device_id __clk_of_table_sentinel
4299 	__used __section(__clk_of_table_end);
4300 
4301 static LIST_HEAD(of_clk_providers);
4302 static DEFINE_MUTEX(of_clk_mutex);
4303 
4304 struct clk *of_clk_src_simple_get(struct of_phandle_args *clkspec,
4305 				     void *data)
4306 {
4307 	return data;
4308 }
4309 EXPORT_SYMBOL_GPL(of_clk_src_simple_get);
4310 
4311 struct clk_hw *of_clk_hw_simple_get(struct of_phandle_args *clkspec, void *data)
4312 {
4313 	return data;
4314 }
4315 EXPORT_SYMBOL_GPL(of_clk_hw_simple_get);
4316 
4317 struct clk *of_clk_src_onecell_get(struct of_phandle_args *clkspec, void *data)
4318 {
4319 	struct clk_onecell_data *clk_data = data;
4320 	unsigned int idx = clkspec->args[0];
4321 
4322 	if (idx >= clk_data->clk_num) {
4323 		pr_err("%s: invalid clock index %u\n", __func__, idx);
4324 		return ERR_PTR(-EINVAL);
4325 	}
4326 
4327 	return clk_data->clks[idx];
4328 }
4329 EXPORT_SYMBOL_GPL(of_clk_src_onecell_get);
4330 
4331 struct clk_hw *
4332 of_clk_hw_onecell_get(struct of_phandle_args *clkspec, void *data)
4333 {
4334 	struct clk_hw_onecell_data *hw_data = data;
4335 	unsigned int idx = clkspec->args[0];
4336 
4337 	if (idx >= hw_data->num) {
4338 		pr_err("%s: invalid index %u\n", __func__, idx);
4339 		return ERR_PTR(-EINVAL);
4340 	}
4341 
4342 	return hw_data->hws[idx];
4343 }
4344 EXPORT_SYMBOL_GPL(of_clk_hw_onecell_get);
4345 
4346 /**
4347  * of_clk_add_provider() - Register a clock provider for a node
4348  * @np: Device node pointer associated with clock provider
4349  * @clk_src_get: callback for decoding clock
4350  * @data: context pointer for @clk_src_get callback.
4351  *
4352  * This function is *deprecated*. Use of_clk_add_hw_provider() instead.
4353  */
4354 int of_clk_add_provider(struct device_node *np,
4355 			struct clk *(*clk_src_get)(struct of_phandle_args *clkspec,
4356 						   void *data),
4357 			void *data)
4358 {
4359 	struct of_clk_provider *cp;
4360 	int ret;
4361 
4362 	cp = kzalloc(sizeof(*cp), GFP_KERNEL);
4363 	if (!cp)
4364 		return -ENOMEM;
4365 
4366 	cp->node = of_node_get(np);
4367 	cp->data = data;
4368 	cp->get = clk_src_get;
4369 
4370 	mutex_lock(&of_clk_mutex);
4371 	list_add(&cp->link, &of_clk_providers);
4372 	mutex_unlock(&of_clk_mutex);
4373 	pr_debug("Added clock from %pOF\n", np);
4374 
4375 	clk_core_reparent_orphans();
4376 
4377 	ret = of_clk_set_defaults(np, true);
4378 	if (ret < 0)
4379 		of_clk_del_provider(np);
4380 
4381 	return ret;
4382 }
4383 EXPORT_SYMBOL_GPL(of_clk_add_provider);
4384 
4385 /**
4386  * of_clk_add_hw_provider() - Register a clock provider for a node
4387  * @np: Device node pointer associated with clock provider
4388  * @get: callback for decoding clk_hw
4389  * @data: context pointer for @get callback.
4390  */
4391 int of_clk_add_hw_provider(struct device_node *np,
4392 			   struct clk_hw *(*get)(struct of_phandle_args *clkspec,
4393 						 void *data),
4394 			   void *data)
4395 {
4396 	struct of_clk_provider *cp;
4397 	int ret;
4398 
4399 	cp = kzalloc(sizeof(*cp), GFP_KERNEL);
4400 	if (!cp)
4401 		return -ENOMEM;
4402 
4403 	cp->node = of_node_get(np);
4404 	cp->data = data;
4405 	cp->get_hw = get;
4406 
4407 	mutex_lock(&of_clk_mutex);
4408 	list_add(&cp->link, &of_clk_providers);
4409 	mutex_unlock(&of_clk_mutex);
4410 	pr_debug("Added clk_hw provider from %pOF\n", np);
4411 
4412 	clk_core_reparent_orphans();
4413 
4414 	ret = of_clk_set_defaults(np, true);
4415 	if (ret < 0)
4416 		of_clk_del_provider(np);
4417 
4418 	return ret;
4419 }
4420 EXPORT_SYMBOL_GPL(of_clk_add_hw_provider);
4421 
4422 static void devm_of_clk_release_provider(struct device *dev, void *res)
4423 {
4424 	of_clk_del_provider(*(struct device_node **)res);
4425 }
4426 
4427 /*
4428  * We allow a child device to use its parent device as the clock provider node
4429  * for cases like MFD sub-devices where the child device driver wants to use
4430  * devm_*() APIs but not list the device in DT as a sub-node.
4431  */
4432 static struct device_node *get_clk_provider_node(struct device *dev)
4433 {
4434 	struct device_node *np, *parent_np;
4435 
4436 	np = dev->of_node;
4437 	parent_np = dev->parent ? dev->parent->of_node : NULL;
4438 
4439 	if (!of_find_property(np, "#clock-cells", NULL))
4440 		if (of_find_property(parent_np, "#clock-cells", NULL))
4441 			np = parent_np;
4442 
4443 	return np;
4444 }
4445 
4446 /**
4447  * devm_of_clk_add_hw_provider() - Managed clk provider node registration
4448  * @dev: Device acting as the clock provider (used for DT node and lifetime)
4449  * @get: callback for decoding clk_hw
4450  * @data: context pointer for @get callback
4451  *
4452  * Registers clock provider for given device's node. If the device has no DT
4453  * node or if the device node lacks of clock provider information (#clock-cells)
4454  * then the parent device's node is scanned for this information. If parent node
4455  * has the #clock-cells then it is used in registration. Provider is
4456  * automatically released at device exit.
4457  *
4458  * Return: 0 on success or an errno on failure.
4459  */
4460 int devm_of_clk_add_hw_provider(struct device *dev,
4461 			struct clk_hw *(*get)(struct of_phandle_args *clkspec,
4462 					      void *data),
4463 			void *data)
4464 {
4465 	struct device_node **ptr, *np;
4466 	int ret;
4467 
4468 	ptr = devres_alloc(devm_of_clk_release_provider, sizeof(*ptr),
4469 			   GFP_KERNEL);
4470 	if (!ptr)
4471 		return -ENOMEM;
4472 
4473 	np = get_clk_provider_node(dev);
4474 	ret = of_clk_add_hw_provider(np, get, data);
4475 	if (!ret) {
4476 		*ptr = np;
4477 		devres_add(dev, ptr);
4478 	} else {
4479 		devres_free(ptr);
4480 	}
4481 
4482 	return ret;
4483 }
4484 EXPORT_SYMBOL_GPL(devm_of_clk_add_hw_provider);
4485 
4486 /**
4487  * of_clk_del_provider() - Remove a previously registered clock provider
4488  * @np: Device node pointer associated with clock provider
4489  */
4490 void of_clk_del_provider(struct device_node *np)
4491 {
4492 	struct of_clk_provider *cp;
4493 
4494 	mutex_lock(&of_clk_mutex);
4495 	list_for_each_entry(cp, &of_clk_providers, link) {
4496 		if (cp->node == np) {
4497 			list_del(&cp->link);
4498 			of_node_put(cp->node);
4499 			kfree(cp);
4500 			break;
4501 		}
4502 	}
4503 	mutex_unlock(&of_clk_mutex);
4504 }
4505 EXPORT_SYMBOL_GPL(of_clk_del_provider);
4506 
4507 static int devm_clk_provider_match(struct device *dev, void *res, void *data)
4508 {
4509 	struct device_node **np = res;
4510 
4511 	if (WARN_ON(!np || !*np))
4512 		return 0;
4513 
4514 	return *np == data;
4515 }
4516 
4517 /**
4518  * devm_of_clk_del_provider() - Remove clock provider registered using devm
4519  * @dev: Device to whose lifetime the clock provider was bound
4520  */
4521 void devm_of_clk_del_provider(struct device *dev)
4522 {
4523 	int ret;
4524 	struct device_node *np = get_clk_provider_node(dev);
4525 
4526 	ret = devres_release(dev, devm_of_clk_release_provider,
4527 			     devm_clk_provider_match, np);
4528 
4529 	WARN_ON(ret);
4530 }
4531 EXPORT_SYMBOL(devm_of_clk_del_provider);
4532 
4533 /**
4534  * of_parse_clkspec() - Parse a DT clock specifier for a given device node
4535  * @np: device node to parse clock specifier from
4536  * @index: index of phandle to parse clock out of. If index < 0, @name is used
4537  * @name: clock name to find and parse. If name is NULL, the index is used
4538  * @out_args: Result of parsing the clock specifier
4539  *
4540  * Parses a device node's "clocks" and "clock-names" properties to find the
4541  * phandle and cells for the index or name that is desired. The resulting clock
4542  * specifier is placed into @out_args, or an errno is returned when there's a
4543  * parsing error. The @index argument is ignored if @name is non-NULL.
4544  *
4545  * Example:
4546  *
4547  * phandle1: clock-controller@1 {
4548  *	#clock-cells = <2>;
4549  * }
4550  *
4551  * phandle2: clock-controller@2 {
4552  *	#clock-cells = <1>;
4553  * }
4554  *
4555  * clock-consumer@3 {
4556  *	clocks = <&phandle1 1 2 &phandle2 3>;
4557  *	clock-names = "name1", "name2";
4558  * }
4559  *
4560  * To get a device_node for `clock-controller@2' node you may call this
4561  * function a few different ways:
4562  *
4563  *   of_parse_clkspec(clock-consumer@3, -1, "name2", &args);
4564  *   of_parse_clkspec(clock-consumer@3, 1, NULL, &args);
4565  *   of_parse_clkspec(clock-consumer@3, 1, "name2", &args);
4566  *
4567  * Return: 0 upon successfully parsing the clock specifier. Otherwise, -ENOENT
4568  * if @name is NULL or -EINVAL if @name is non-NULL and it can't be found in
4569  * the "clock-names" property of @np.
4570  */
4571 static int of_parse_clkspec(const struct device_node *np, int index,
4572 			    const char *name, struct of_phandle_args *out_args)
4573 {
4574 	int ret = -ENOENT;
4575 
4576 	/* Walk up the tree of devices looking for a clock property that matches */
4577 	while (np) {
4578 		/*
4579 		 * For named clocks, first look up the name in the
4580 		 * "clock-names" property.  If it cannot be found, then index
4581 		 * will be an error code and of_parse_phandle_with_args() will
4582 		 * return -EINVAL.
4583 		 */
4584 		if (name)
4585 			index = of_property_match_string(np, "clock-names", name);
4586 		ret = of_parse_phandle_with_args(np, "clocks", "#clock-cells",
4587 						 index, out_args);
4588 		if (!ret)
4589 			break;
4590 		if (name && index >= 0)
4591 			break;
4592 
4593 		/*
4594 		 * No matching clock found on this node.  If the parent node
4595 		 * has a "clock-ranges" property, then we can try one of its
4596 		 * clocks.
4597 		 */
4598 		np = np->parent;
4599 		if (np && !of_get_property(np, "clock-ranges", NULL))
4600 			break;
4601 		index = 0;
4602 	}
4603 
4604 	return ret;
4605 }
4606 
4607 static struct clk_hw *
4608 __of_clk_get_hw_from_provider(struct of_clk_provider *provider,
4609 			      struct of_phandle_args *clkspec)
4610 {
4611 	struct clk *clk;
4612 
4613 	if (provider->get_hw)
4614 		return provider->get_hw(clkspec, provider->data);
4615 
4616 	clk = provider->get(clkspec, provider->data);
4617 	if (IS_ERR(clk))
4618 		return ERR_CAST(clk);
4619 	return __clk_get_hw(clk);
4620 }
4621 
4622 static struct clk_hw *
4623 of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec)
4624 {
4625 	struct of_clk_provider *provider;
4626 	struct clk_hw *hw = ERR_PTR(-EPROBE_DEFER);
4627 
4628 	if (!clkspec)
4629 		return ERR_PTR(-EINVAL);
4630 
4631 	mutex_lock(&of_clk_mutex);
4632 	list_for_each_entry(provider, &of_clk_providers, link) {
4633 		if (provider->node == clkspec->np) {
4634 			hw = __of_clk_get_hw_from_provider(provider, clkspec);
4635 			if (!IS_ERR(hw))
4636 				break;
4637 		}
4638 	}
4639 	mutex_unlock(&of_clk_mutex);
4640 
4641 	return hw;
4642 }
4643 
4644 /**
4645  * of_clk_get_from_provider() - Lookup a clock from a clock provider
4646  * @clkspec: pointer to a clock specifier data structure
4647  *
4648  * This function looks up a struct clk from the registered list of clock
4649  * providers, an input is a clock specifier data structure as returned
4650  * from the of_parse_phandle_with_args() function call.
4651  */
4652 struct clk *of_clk_get_from_provider(struct of_phandle_args *clkspec)
4653 {
4654 	struct clk_hw *hw = of_clk_get_hw_from_clkspec(clkspec);
4655 
4656 	return clk_hw_create_clk(NULL, hw, NULL, __func__);
4657 }
4658 EXPORT_SYMBOL_GPL(of_clk_get_from_provider);
4659 
4660 struct clk_hw *of_clk_get_hw(struct device_node *np, int index,
4661 			     const char *con_id)
4662 {
4663 	int ret;
4664 	struct clk_hw *hw;
4665 	struct of_phandle_args clkspec;
4666 
4667 	ret = of_parse_clkspec(np, index, con_id, &clkspec);
4668 	if (ret)
4669 		return ERR_PTR(ret);
4670 
4671 	hw = of_clk_get_hw_from_clkspec(&clkspec);
4672 	of_node_put(clkspec.np);
4673 
4674 	return hw;
4675 }
4676 
4677 static struct clk *__of_clk_get(struct device_node *np,
4678 				int index, const char *dev_id,
4679 				const char *con_id)
4680 {
4681 	struct clk_hw *hw = of_clk_get_hw(np, index, con_id);
4682 
4683 	return clk_hw_create_clk(NULL, hw, dev_id, con_id);
4684 }
4685 
4686 struct clk *of_clk_get(struct device_node *np, int index)
4687 {
4688 	return __of_clk_get(np, index, np->full_name, NULL);
4689 }
4690 EXPORT_SYMBOL(of_clk_get);
4691 
4692 /**
4693  * of_clk_get_by_name() - Parse and lookup a clock referenced by a device node
4694  * @np: pointer to clock consumer node
4695  * @name: name of consumer's clock input, or NULL for the first clock reference
4696  *
4697  * This function parses the clocks and clock-names properties,
4698  * and uses them to look up the struct clk from the registered list of clock
4699  * providers.
4700  */
4701 struct clk *of_clk_get_by_name(struct device_node *np, const char *name)
4702 {
4703 	if (!np)
4704 		return ERR_PTR(-ENOENT);
4705 
4706 	return __of_clk_get(np, 0, np->full_name, name);
4707 }
4708 EXPORT_SYMBOL(of_clk_get_by_name);
4709 
4710 /**
4711  * of_clk_get_parent_count() - Count the number of clocks a device node has
4712  * @np: device node to count
4713  *
4714  * Returns: The number of clocks that are possible parents of this node
4715  */
4716 unsigned int of_clk_get_parent_count(struct device_node *np)
4717 {
4718 	int count;
4719 
4720 	count = of_count_phandle_with_args(np, "clocks", "#clock-cells");
4721 	if (count < 0)
4722 		return 0;
4723 
4724 	return count;
4725 }
4726 EXPORT_SYMBOL_GPL(of_clk_get_parent_count);
4727 
4728 const char *of_clk_get_parent_name(struct device_node *np, int index)
4729 {
4730 	struct of_phandle_args clkspec;
4731 	struct property *prop;
4732 	const char *clk_name;
4733 	const __be32 *vp;
4734 	u32 pv;
4735 	int rc;
4736 	int count;
4737 	struct clk *clk;
4738 
4739 	rc = of_parse_phandle_with_args(np, "clocks", "#clock-cells", index,
4740 					&clkspec);
4741 	if (rc)
4742 		return NULL;
4743 
4744 	index = clkspec.args_count ? clkspec.args[0] : 0;
4745 	count = 0;
4746 
4747 	/* if there is an indices property, use it to transfer the index
4748 	 * specified into an array offset for the clock-output-names property.
4749 	 */
4750 	of_property_for_each_u32(clkspec.np, "clock-indices", prop, vp, pv) {
4751 		if (index == pv) {
4752 			index = count;
4753 			break;
4754 		}
4755 		count++;
4756 	}
4757 	/* We went off the end of 'clock-indices' without finding it */
4758 	if (prop && !vp)
4759 		return NULL;
4760 
4761 	if (of_property_read_string_index(clkspec.np, "clock-output-names",
4762 					  index,
4763 					  &clk_name) < 0) {
4764 		/*
4765 		 * Best effort to get the name if the clock has been
4766 		 * registered with the framework. If the clock isn't
4767 		 * registered, we return the node name as the name of
4768 		 * the clock as long as #clock-cells = 0.
4769 		 */
4770 		clk = of_clk_get_from_provider(&clkspec);
4771 		if (IS_ERR(clk)) {
4772 			if (clkspec.args_count == 0)
4773 				clk_name = clkspec.np->name;
4774 			else
4775 				clk_name = NULL;
4776 		} else {
4777 			clk_name = __clk_get_name(clk);
4778 			clk_put(clk);
4779 		}
4780 	}
4781 
4782 
4783 	of_node_put(clkspec.np);
4784 	return clk_name;
4785 }
4786 EXPORT_SYMBOL_GPL(of_clk_get_parent_name);
4787 
4788 /**
4789  * of_clk_parent_fill() - Fill @parents with names of @np's parents and return
4790  * number of parents
4791  * @np: Device node pointer associated with clock provider
4792  * @parents: pointer to char array that hold the parents' names
4793  * @size: size of the @parents array
4794  *
4795  * Return: number of parents for the clock node.
4796  */
4797 int of_clk_parent_fill(struct device_node *np, const char **parents,
4798 		       unsigned int size)
4799 {
4800 	unsigned int i = 0;
4801 
4802 	while (i < size && (parents[i] = of_clk_get_parent_name(np, i)) != NULL)
4803 		i++;
4804 
4805 	return i;
4806 }
4807 EXPORT_SYMBOL_GPL(of_clk_parent_fill);
4808 
4809 struct clock_provider {
4810 	void (*clk_init_cb)(struct device_node *);
4811 	struct device_node *np;
4812 	struct list_head node;
4813 };
4814 
4815 /*
4816  * This function looks for a parent clock. If there is one, then it
4817  * checks that the provider for this parent clock was initialized, in
4818  * this case the parent clock will be ready.
4819  */
4820 static int parent_ready(struct device_node *np)
4821 {
4822 	int i = 0;
4823 
4824 	while (true) {
4825 		struct clk *clk = of_clk_get(np, i);
4826 
4827 		/* this parent is ready we can check the next one */
4828 		if (!IS_ERR(clk)) {
4829 			clk_put(clk);
4830 			i++;
4831 			continue;
4832 		}
4833 
4834 		/* at least one parent is not ready, we exit now */
4835 		if (PTR_ERR(clk) == -EPROBE_DEFER)
4836 			return 0;
4837 
4838 		/*
4839 		 * Here we make assumption that the device tree is
4840 		 * written correctly. So an error means that there is
4841 		 * no more parent. As we didn't exit yet, then the
4842 		 * previous parent are ready. If there is no clock
4843 		 * parent, no need to wait for them, then we can
4844 		 * consider their absence as being ready
4845 		 */
4846 		return 1;
4847 	}
4848 }
4849 
4850 /**
4851  * of_clk_detect_critical() - set CLK_IS_CRITICAL flag from Device Tree
4852  * @np: Device node pointer associated with clock provider
4853  * @index: clock index
4854  * @flags: pointer to top-level framework flags
4855  *
4856  * Detects if the clock-critical property exists and, if so, sets the
4857  * corresponding CLK_IS_CRITICAL flag.
4858  *
4859  * Do not use this function. It exists only for legacy Device Tree
4860  * bindings, such as the one-clock-per-node style that are outdated.
4861  * Those bindings typically put all clock data into .dts and the Linux
4862  * driver has no clock data, thus making it impossible to set this flag
4863  * correctly from the driver. Only those drivers may call
4864  * of_clk_detect_critical from their setup functions.
4865  *
4866  * Return: error code or zero on success
4867  */
4868 int of_clk_detect_critical(struct device_node *np,
4869 					  int index, unsigned long *flags)
4870 {
4871 	struct property *prop;
4872 	const __be32 *cur;
4873 	uint32_t idx;
4874 
4875 	if (!np || !flags)
4876 		return -EINVAL;
4877 
4878 	of_property_for_each_u32(np, "clock-critical", prop, cur, idx)
4879 		if (index == idx)
4880 			*flags |= CLK_IS_CRITICAL;
4881 
4882 	return 0;
4883 }
4884 
4885 /**
4886  * of_clk_init() - Scan and init clock providers from the DT
4887  * @matches: array of compatible values and init functions for providers.
4888  *
4889  * This function scans the device tree for matching clock providers
4890  * and calls their initialization functions. It also does it by trying
4891  * to follow the dependencies.
4892  */
4893 void __init of_clk_init(const struct of_device_id *matches)
4894 {
4895 	const struct of_device_id *match;
4896 	struct device_node *np;
4897 	struct clock_provider *clk_provider, *next;
4898 	bool is_init_done;
4899 	bool force = false;
4900 	LIST_HEAD(clk_provider_list);
4901 
4902 	if (!matches)
4903 		matches = &__clk_of_table;
4904 
4905 	/* First prepare the list of the clocks providers */
4906 	for_each_matching_node_and_match(np, matches, &match) {
4907 		struct clock_provider *parent;
4908 
4909 		if (!of_device_is_available(np))
4910 			continue;
4911 
4912 		parent = kzalloc(sizeof(*parent), GFP_KERNEL);
4913 		if (!parent) {
4914 			list_for_each_entry_safe(clk_provider, next,
4915 						 &clk_provider_list, node) {
4916 				list_del(&clk_provider->node);
4917 				of_node_put(clk_provider->np);
4918 				kfree(clk_provider);
4919 			}
4920 			of_node_put(np);
4921 			return;
4922 		}
4923 
4924 		parent->clk_init_cb = match->data;
4925 		parent->np = of_node_get(np);
4926 		list_add_tail(&parent->node, &clk_provider_list);
4927 	}
4928 
4929 	while (!list_empty(&clk_provider_list)) {
4930 		is_init_done = false;
4931 		list_for_each_entry_safe(clk_provider, next,
4932 					&clk_provider_list, node) {
4933 			if (force || parent_ready(clk_provider->np)) {
4934 
4935 				/* Don't populate platform devices */
4936 				of_node_set_flag(clk_provider->np,
4937 						 OF_POPULATED);
4938 
4939 				clk_provider->clk_init_cb(clk_provider->np);
4940 				of_clk_set_defaults(clk_provider->np, true);
4941 
4942 				list_del(&clk_provider->node);
4943 				of_node_put(clk_provider->np);
4944 				kfree(clk_provider);
4945 				is_init_done = true;
4946 			}
4947 		}
4948 
4949 		/*
4950 		 * We didn't manage to initialize any of the
4951 		 * remaining providers during the last loop, so now we
4952 		 * initialize all the remaining ones unconditionally
4953 		 * in case the clock parent was not mandatory
4954 		 */
4955 		if (!is_init_done)
4956 			force = true;
4957 	}
4958 }
4959 #endif
4960