xref: /linux/drivers/clocksource/dw_apb_timer.c (revision 45735326)
1 /*
2  * (C) Copyright 2009 Intel Corporation
3  * Author: Jacob Pan (jacob.jun.pan@intel.com)
4  *
5  * Shared with ARM platforms, Jamie Iles, Picochip 2011
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  *
11  * Support for the Synopsys DesignWare APB Timers.
12  */
13 #include <linux/dw_apb_timer.h>
14 #include <linux/delay.h>
15 #include <linux/kernel.h>
16 #include <linux/interrupt.h>
17 #include <linux/irq.h>
18 #include <linux/io.h>
19 #include <linux/slab.h>
20 
21 #define APBT_MIN_PERIOD			4
22 #define APBT_MIN_DELTA_USEC		200
23 
24 #define APBTMR_N_LOAD_COUNT		0x00
25 #define APBTMR_N_CURRENT_VALUE		0x04
26 #define APBTMR_N_CONTROL		0x08
27 #define APBTMR_N_EOI			0x0c
28 #define APBTMR_N_INT_STATUS		0x10
29 
30 #define APBTMRS_INT_STATUS		0xa0
31 #define APBTMRS_EOI			0xa4
32 #define APBTMRS_RAW_INT_STATUS		0xa8
33 #define APBTMRS_COMP_VERSION		0xac
34 
35 #define APBTMR_CONTROL_ENABLE		(1 << 0)
36 /* 1: periodic, 0:free running. */
37 #define APBTMR_CONTROL_MODE_PERIODIC	(1 << 1)
38 #define APBTMR_CONTROL_INT		(1 << 2)
39 
40 static inline struct dw_apb_clock_event_device *
41 ced_to_dw_apb_ced(struct clock_event_device *evt)
42 {
43 	return container_of(evt, struct dw_apb_clock_event_device, ced);
44 }
45 
46 static inline struct dw_apb_clocksource *
47 clocksource_to_dw_apb_clocksource(struct clocksource *cs)
48 {
49 	return container_of(cs, struct dw_apb_clocksource, cs);
50 }
51 
52 static inline u32 apbt_readl(struct dw_apb_timer *timer, unsigned long offs)
53 {
54 	return readl(timer->base + offs);
55 }
56 
57 static inline void apbt_writel(struct dw_apb_timer *timer, u32 val,
58 			unsigned long offs)
59 {
60 	writel(val, timer->base + offs);
61 }
62 
63 static inline u32 apbt_readl_relaxed(struct dw_apb_timer *timer, unsigned long offs)
64 {
65 	return readl_relaxed(timer->base + offs);
66 }
67 
68 static inline void apbt_writel_relaxed(struct dw_apb_timer *timer, u32 val,
69 			unsigned long offs)
70 {
71 	writel_relaxed(val, timer->base + offs);
72 }
73 
74 static void apbt_disable_int(struct dw_apb_timer *timer)
75 {
76 	u32 ctrl = apbt_readl(timer, APBTMR_N_CONTROL);
77 
78 	ctrl |= APBTMR_CONTROL_INT;
79 	apbt_writel(timer, ctrl, APBTMR_N_CONTROL);
80 }
81 
82 /**
83  * dw_apb_clockevent_pause() - stop the clock_event_device from running
84  *
85  * @dw_ced:	The APB clock to stop generating events.
86  */
87 void dw_apb_clockevent_pause(struct dw_apb_clock_event_device *dw_ced)
88 {
89 	disable_irq(dw_ced->timer.irq);
90 	apbt_disable_int(&dw_ced->timer);
91 }
92 
93 static void apbt_eoi(struct dw_apb_timer *timer)
94 {
95 	apbt_readl_relaxed(timer, APBTMR_N_EOI);
96 }
97 
98 static irqreturn_t dw_apb_clockevent_irq(int irq, void *data)
99 {
100 	struct clock_event_device *evt = data;
101 	struct dw_apb_clock_event_device *dw_ced = ced_to_dw_apb_ced(evt);
102 
103 	if (!evt->event_handler) {
104 		pr_info("Spurious APBT timer interrupt %d", irq);
105 		return IRQ_NONE;
106 	}
107 
108 	if (dw_ced->eoi)
109 		dw_ced->eoi(&dw_ced->timer);
110 
111 	evt->event_handler(evt);
112 	return IRQ_HANDLED;
113 }
114 
115 static void apbt_enable_int(struct dw_apb_timer *timer)
116 {
117 	u32 ctrl = apbt_readl(timer, APBTMR_N_CONTROL);
118 	/* clear pending intr */
119 	apbt_readl(timer, APBTMR_N_EOI);
120 	ctrl &= ~APBTMR_CONTROL_INT;
121 	apbt_writel(timer, ctrl, APBTMR_N_CONTROL);
122 }
123 
124 static int apbt_shutdown(struct clock_event_device *evt)
125 {
126 	struct dw_apb_clock_event_device *dw_ced = ced_to_dw_apb_ced(evt);
127 	u32 ctrl;
128 
129 	pr_debug("%s CPU %d state=shutdown\n", __func__,
130 		 cpumask_first(evt->cpumask));
131 
132 	ctrl = apbt_readl(&dw_ced->timer, APBTMR_N_CONTROL);
133 	ctrl &= ~APBTMR_CONTROL_ENABLE;
134 	apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
135 	return 0;
136 }
137 
138 static int apbt_set_oneshot(struct clock_event_device *evt)
139 {
140 	struct dw_apb_clock_event_device *dw_ced = ced_to_dw_apb_ced(evt);
141 	u32 ctrl;
142 
143 	pr_debug("%s CPU %d state=oneshot\n", __func__,
144 		 cpumask_first(evt->cpumask));
145 
146 	ctrl = apbt_readl(&dw_ced->timer, APBTMR_N_CONTROL);
147 	/*
148 	 * set free running mode, this mode will let timer reload max
149 	 * timeout which will give time (3min on 25MHz clock) to rearm
150 	 * the next event, therefore emulate the one-shot mode.
151 	 */
152 	ctrl &= ~APBTMR_CONTROL_ENABLE;
153 	ctrl &= ~APBTMR_CONTROL_MODE_PERIODIC;
154 
155 	apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
156 	/* write again to set free running mode */
157 	apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
158 
159 	/*
160 	 * DW APB p. 46, load counter with all 1s before starting free
161 	 * running mode.
162 	 */
163 	apbt_writel(&dw_ced->timer, ~0, APBTMR_N_LOAD_COUNT);
164 	ctrl &= ~APBTMR_CONTROL_INT;
165 	ctrl |= APBTMR_CONTROL_ENABLE;
166 	apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
167 	return 0;
168 }
169 
170 static int apbt_set_periodic(struct clock_event_device *evt)
171 {
172 	struct dw_apb_clock_event_device *dw_ced = ced_to_dw_apb_ced(evt);
173 	unsigned long period = DIV_ROUND_UP(dw_ced->timer.freq, HZ);
174 	u32 ctrl;
175 
176 	pr_debug("%s CPU %d state=periodic\n", __func__,
177 		 cpumask_first(evt->cpumask));
178 
179 	ctrl = apbt_readl(&dw_ced->timer, APBTMR_N_CONTROL);
180 	ctrl |= APBTMR_CONTROL_MODE_PERIODIC;
181 	apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
182 	/*
183 	 * DW APB p. 46, have to disable timer before load counter,
184 	 * may cause sync problem.
185 	 */
186 	ctrl &= ~APBTMR_CONTROL_ENABLE;
187 	apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
188 	udelay(1);
189 	pr_debug("Setting clock period %lu for HZ %d\n", period, HZ);
190 	apbt_writel(&dw_ced->timer, period, APBTMR_N_LOAD_COUNT);
191 	ctrl |= APBTMR_CONTROL_ENABLE;
192 	apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
193 	return 0;
194 }
195 
196 static int apbt_resume(struct clock_event_device *evt)
197 {
198 	struct dw_apb_clock_event_device *dw_ced = ced_to_dw_apb_ced(evt);
199 
200 	pr_debug("%s CPU %d state=resume\n", __func__,
201 		 cpumask_first(evt->cpumask));
202 
203 	apbt_enable_int(&dw_ced->timer);
204 	return 0;
205 }
206 
207 static int apbt_next_event(unsigned long delta,
208 			   struct clock_event_device *evt)
209 {
210 	u32 ctrl;
211 	struct dw_apb_clock_event_device *dw_ced = ced_to_dw_apb_ced(evt);
212 
213 	/* Disable timer */
214 	ctrl = apbt_readl_relaxed(&dw_ced->timer, APBTMR_N_CONTROL);
215 	ctrl &= ~APBTMR_CONTROL_ENABLE;
216 	apbt_writel_relaxed(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
217 	/* write new count */
218 	apbt_writel_relaxed(&dw_ced->timer, delta, APBTMR_N_LOAD_COUNT);
219 	ctrl |= APBTMR_CONTROL_ENABLE;
220 	apbt_writel_relaxed(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
221 
222 	return 0;
223 }
224 
225 /**
226  * dw_apb_clockevent_init() - use an APB timer as a clock_event_device
227  *
228  * @cpu:	The CPU the events will be targeted at.
229  * @name:	The name used for the timer and the IRQ for it.
230  * @rating:	The rating to give the timer.
231  * @base:	I/O base for the timer registers.
232  * @irq:	The interrupt number to use for the timer.
233  * @freq:	The frequency that the timer counts at.
234  *
235  * This creates a clock_event_device for using with the generic clock layer
236  * but does not start and register it.  This should be done with
237  * dw_apb_clockevent_register() as the next step.  If this is the first time
238  * it has been called for a timer then the IRQ will be requested, if not it
239  * just be enabled to allow CPU hotplug to avoid repeatedly requesting and
240  * releasing the IRQ.
241  */
242 struct dw_apb_clock_event_device *
243 dw_apb_clockevent_init(int cpu, const char *name, unsigned rating,
244 		       void __iomem *base, int irq, unsigned long freq)
245 {
246 	struct dw_apb_clock_event_device *dw_ced =
247 		kzalloc(sizeof(*dw_ced), GFP_KERNEL);
248 	int err;
249 
250 	if (!dw_ced)
251 		return NULL;
252 
253 	dw_ced->timer.base = base;
254 	dw_ced->timer.irq = irq;
255 	dw_ced->timer.freq = freq;
256 
257 	clockevents_calc_mult_shift(&dw_ced->ced, freq, APBT_MIN_PERIOD);
258 	dw_ced->ced.max_delta_ns = clockevent_delta2ns(0x7fffffff,
259 						       &dw_ced->ced);
260 	dw_ced->ced.min_delta_ns = clockevent_delta2ns(5000, &dw_ced->ced);
261 	dw_ced->ced.cpumask = cpumask_of(cpu);
262 	dw_ced->ced.features = CLOCK_EVT_FEAT_PERIODIC |
263 				CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_DYNIRQ;
264 	dw_ced->ced.set_state_shutdown = apbt_shutdown;
265 	dw_ced->ced.set_state_periodic = apbt_set_periodic;
266 	dw_ced->ced.set_state_oneshot = apbt_set_oneshot;
267 	dw_ced->ced.set_state_oneshot_stopped = apbt_shutdown;
268 	dw_ced->ced.tick_resume = apbt_resume;
269 	dw_ced->ced.set_next_event = apbt_next_event;
270 	dw_ced->ced.irq = dw_ced->timer.irq;
271 	dw_ced->ced.rating = rating;
272 	dw_ced->ced.name = name;
273 
274 	dw_ced->irqaction.name		= dw_ced->ced.name;
275 	dw_ced->irqaction.handler	= dw_apb_clockevent_irq;
276 	dw_ced->irqaction.dev_id	= &dw_ced->ced;
277 	dw_ced->irqaction.irq		= irq;
278 	dw_ced->irqaction.flags		= IRQF_TIMER | IRQF_IRQPOLL |
279 					  IRQF_NOBALANCING;
280 
281 	dw_ced->eoi = apbt_eoi;
282 	err = setup_irq(irq, &dw_ced->irqaction);
283 	if (err) {
284 		pr_err("failed to request timer irq\n");
285 		kfree(dw_ced);
286 		dw_ced = NULL;
287 	}
288 
289 	return dw_ced;
290 }
291 
292 /**
293  * dw_apb_clockevent_resume() - resume a clock that has been paused.
294  *
295  * @dw_ced:	The APB clock to resume.
296  */
297 void dw_apb_clockevent_resume(struct dw_apb_clock_event_device *dw_ced)
298 {
299 	enable_irq(dw_ced->timer.irq);
300 }
301 
302 /**
303  * dw_apb_clockevent_stop() - stop the clock_event_device and release the IRQ.
304  *
305  * @dw_ced:	The APB clock to stop generating the events.
306  */
307 void dw_apb_clockevent_stop(struct dw_apb_clock_event_device *dw_ced)
308 {
309 	free_irq(dw_ced->timer.irq, &dw_ced->ced);
310 }
311 
312 /**
313  * dw_apb_clockevent_register() - register the clock with the generic layer
314  *
315  * @dw_ced:	The APB clock to register as a clock_event_device.
316  */
317 void dw_apb_clockevent_register(struct dw_apb_clock_event_device *dw_ced)
318 {
319 	apbt_writel(&dw_ced->timer, 0, APBTMR_N_CONTROL);
320 	clockevents_register_device(&dw_ced->ced);
321 	apbt_enable_int(&dw_ced->timer);
322 }
323 
324 /**
325  * dw_apb_clocksource_start() - start the clocksource counting.
326  *
327  * @dw_cs:	The clocksource to start.
328  *
329  * This is used to start the clocksource before registration and can be used
330  * to enable calibration of timers.
331  */
332 void dw_apb_clocksource_start(struct dw_apb_clocksource *dw_cs)
333 {
334 	/*
335 	 * start count down from 0xffff_ffff. this is done by toggling the
336 	 * enable bit then load initial load count to ~0.
337 	 */
338 	u32 ctrl = apbt_readl(&dw_cs->timer, APBTMR_N_CONTROL);
339 
340 	ctrl &= ~APBTMR_CONTROL_ENABLE;
341 	apbt_writel(&dw_cs->timer, ctrl, APBTMR_N_CONTROL);
342 	apbt_writel(&dw_cs->timer, ~0, APBTMR_N_LOAD_COUNT);
343 	/* enable, mask interrupt */
344 	ctrl &= ~APBTMR_CONTROL_MODE_PERIODIC;
345 	ctrl |= (APBTMR_CONTROL_ENABLE | APBTMR_CONTROL_INT);
346 	apbt_writel(&dw_cs->timer, ctrl, APBTMR_N_CONTROL);
347 	/* read it once to get cached counter value initialized */
348 	dw_apb_clocksource_read(dw_cs);
349 }
350 
351 static cycle_t __apbt_read_clocksource(struct clocksource *cs)
352 {
353 	u32 current_count;
354 	struct dw_apb_clocksource *dw_cs =
355 		clocksource_to_dw_apb_clocksource(cs);
356 
357 	current_count = apbt_readl_relaxed(&dw_cs->timer,
358 					APBTMR_N_CURRENT_VALUE);
359 
360 	return (cycle_t)~current_count;
361 }
362 
363 static void apbt_restart_clocksource(struct clocksource *cs)
364 {
365 	struct dw_apb_clocksource *dw_cs =
366 		clocksource_to_dw_apb_clocksource(cs);
367 
368 	dw_apb_clocksource_start(dw_cs);
369 }
370 
371 /**
372  * dw_apb_clocksource_init() - use an APB timer as a clocksource.
373  *
374  * @rating:	The rating to give the clocksource.
375  * @name:	The name for the clocksource.
376  * @base:	The I/O base for the timer registers.
377  * @freq:	The frequency that the timer counts at.
378  *
379  * This creates a clocksource using an APB timer but does not yet register it
380  * with the clocksource system.  This should be done with
381  * dw_apb_clocksource_register() as the next step.
382  */
383 struct dw_apb_clocksource *
384 dw_apb_clocksource_init(unsigned rating, const char *name, void __iomem *base,
385 			unsigned long freq)
386 {
387 	struct dw_apb_clocksource *dw_cs = kzalloc(sizeof(*dw_cs), GFP_KERNEL);
388 
389 	if (!dw_cs)
390 		return NULL;
391 
392 	dw_cs->timer.base = base;
393 	dw_cs->timer.freq = freq;
394 	dw_cs->cs.name = name;
395 	dw_cs->cs.rating = rating;
396 	dw_cs->cs.read = __apbt_read_clocksource;
397 	dw_cs->cs.mask = CLOCKSOURCE_MASK(32);
398 	dw_cs->cs.flags = CLOCK_SOURCE_IS_CONTINUOUS;
399 	dw_cs->cs.resume = apbt_restart_clocksource;
400 
401 	return dw_cs;
402 }
403 
404 /**
405  * dw_apb_clocksource_register() - register the APB clocksource.
406  *
407  * @dw_cs:	The clocksource to register.
408  */
409 void dw_apb_clocksource_register(struct dw_apb_clocksource *dw_cs)
410 {
411 	clocksource_register_hz(&dw_cs->cs, dw_cs->timer.freq);
412 }
413 
414 /**
415  * dw_apb_clocksource_read() - read the current value of a clocksource.
416  *
417  * @dw_cs:	The clocksource to read.
418  */
419 cycle_t dw_apb_clocksource_read(struct dw_apb_clocksource *dw_cs)
420 {
421 	return (cycle_t)~apbt_readl(&dw_cs->timer, APBTMR_N_CURRENT_VALUE);
422 }
423