xref: /linux/drivers/clocksource/sh_tmu.c (revision 52338415)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * SuperH Timer Support - TMU
4  *
5  *  Copyright (C) 2009 Magnus Damm
6  */
7 
8 #include <linux/clk.h>
9 #include <linux/clockchips.h>
10 #include <linux/clocksource.h>
11 #include <linux/delay.h>
12 #include <linux/err.h>
13 #include <linux/init.h>
14 #include <linux/interrupt.h>
15 #include <linux/io.h>
16 #include <linux/ioport.h>
17 #include <linux/irq.h>
18 #include <linux/module.h>
19 #include <linux/of.h>
20 #include <linux/platform_device.h>
21 #include <linux/pm_domain.h>
22 #include <linux/pm_runtime.h>
23 #include <linux/sh_timer.h>
24 #include <linux/slab.h>
25 #include <linux/spinlock.h>
26 
27 enum sh_tmu_model {
28 	SH_TMU,
29 	SH_TMU_SH3,
30 };
31 
32 struct sh_tmu_device;
33 
34 struct sh_tmu_channel {
35 	struct sh_tmu_device *tmu;
36 	unsigned int index;
37 
38 	void __iomem *base;
39 	int irq;
40 
41 	unsigned long periodic;
42 	struct clock_event_device ced;
43 	struct clocksource cs;
44 	bool cs_enabled;
45 	unsigned int enable_count;
46 };
47 
48 struct sh_tmu_device {
49 	struct platform_device *pdev;
50 
51 	void __iomem *mapbase;
52 	struct clk *clk;
53 	unsigned long rate;
54 
55 	enum sh_tmu_model model;
56 
57 	raw_spinlock_t lock; /* Protect the shared start/stop register */
58 
59 	struct sh_tmu_channel *channels;
60 	unsigned int num_channels;
61 
62 	bool has_clockevent;
63 	bool has_clocksource;
64 };
65 
66 #define TSTR -1 /* shared register */
67 #define TCOR  0 /* channel register */
68 #define TCNT 1 /* channel register */
69 #define TCR 2 /* channel register */
70 
71 #define TCR_UNF			(1 << 8)
72 #define TCR_UNIE		(1 << 5)
73 #define TCR_TPSC_CLK4		(0 << 0)
74 #define TCR_TPSC_CLK16		(1 << 0)
75 #define TCR_TPSC_CLK64		(2 << 0)
76 #define TCR_TPSC_CLK256		(3 << 0)
77 #define TCR_TPSC_CLK1024	(4 << 0)
78 #define TCR_TPSC_MASK		(7 << 0)
79 
80 static inline unsigned long sh_tmu_read(struct sh_tmu_channel *ch, int reg_nr)
81 {
82 	unsigned long offs;
83 
84 	if (reg_nr == TSTR) {
85 		switch (ch->tmu->model) {
86 		case SH_TMU_SH3:
87 			return ioread8(ch->tmu->mapbase + 2);
88 		case SH_TMU:
89 			return ioread8(ch->tmu->mapbase + 4);
90 		}
91 	}
92 
93 	offs = reg_nr << 2;
94 
95 	if (reg_nr == TCR)
96 		return ioread16(ch->base + offs);
97 	else
98 		return ioread32(ch->base + offs);
99 }
100 
101 static inline void sh_tmu_write(struct sh_tmu_channel *ch, int reg_nr,
102 				unsigned long value)
103 {
104 	unsigned long offs;
105 
106 	if (reg_nr == TSTR) {
107 		switch (ch->tmu->model) {
108 		case SH_TMU_SH3:
109 			return iowrite8(value, ch->tmu->mapbase + 2);
110 		case SH_TMU:
111 			return iowrite8(value, ch->tmu->mapbase + 4);
112 		}
113 	}
114 
115 	offs = reg_nr << 2;
116 
117 	if (reg_nr == TCR)
118 		iowrite16(value, ch->base + offs);
119 	else
120 		iowrite32(value, ch->base + offs);
121 }
122 
123 static void sh_tmu_start_stop_ch(struct sh_tmu_channel *ch, int start)
124 {
125 	unsigned long flags, value;
126 
127 	/* start stop register shared by multiple timer channels */
128 	raw_spin_lock_irqsave(&ch->tmu->lock, flags);
129 	value = sh_tmu_read(ch, TSTR);
130 
131 	if (start)
132 		value |= 1 << ch->index;
133 	else
134 		value &= ~(1 << ch->index);
135 
136 	sh_tmu_write(ch, TSTR, value);
137 	raw_spin_unlock_irqrestore(&ch->tmu->lock, flags);
138 }
139 
140 static int __sh_tmu_enable(struct sh_tmu_channel *ch)
141 {
142 	int ret;
143 
144 	/* enable clock */
145 	ret = clk_enable(ch->tmu->clk);
146 	if (ret) {
147 		dev_err(&ch->tmu->pdev->dev, "ch%u: cannot enable clock\n",
148 			ch->index);
149 		return ret;
150 	}
151 
152 	/* make sure channel is disabled */
153 	sh_tmu_start_stop_ch(ch, 0);
154 
155 	/* maximum timeout */
156 	sh_tmu_write(ch, TCOR, 0xffffffff);
157 	sh_tmu_write(ch, TCNT, 0xffffffff);
158 
159 	/* configure channel to parent clock / 4, irq off */
160 	sh_tmu_write(ch, TCR, TCR_TPSC_CLK4);
161 
162 	/* enable channel */
163 	sh_tmu_start_stop_ch(ch, 1);
164 
165 	return 0;
166 }
167 
168 static int sh_tmu_enable(struct sh_tmu_channel *ch)
169 {
170 	if (ch->enable_count++ > 0)
171 		return 0;
172 
173 	pm_runtime_get_sync(&ch->tmu->pdev->dev);
174 	dev_pm_syscore_device(&ch->tmu->pdev->dev, true);
175 
176 	return __sh_tmu_enable(ch);
177 }
178 
179 static void __sh_tmu_disable(struct sh_tmu_channel *ch)
180 {
181 	/* disable channel */
182 	sh_tmu_start_stop_ch(ch, 0);
183 
184 	/* disable interrupts in TMU block */
185 	sh_tmu_write(ch, TCR, TCR_TPSC_CLK4);
186 
187 	/* stop clock */
188 	clk_disable(ch->tmu->clk);
189 }
190 
191 static void sh_tmu_disable(struct sh_tmu_channel *ch)
192 {
193 	if (WARN_ON(ch->enable_count == 0))
194 		return;
195 
196 	if (--ch->enable_count > 0)
197 		return;
198 
199 	__sh_tmu_disable(ch);
200 
201 	dev_pm_syscore_device(&ch->tmu->pdev->dev, false);
202 	pm_runtime_put(&ch->tmu->pdev->dev);
203 }
204 
205 static void sh_tmu_set_next(struct sh_tmu_channel *ch, unsigned long delta,
206 			    int periodic)
207 {
208 	/* stop timer */
209 	sh_tmu_start_stop_ch(ch, 0);
210 
211 	/* acknowledge interrupt */
212 	sh_tmu_read(ch, TCR);
213 
214 	/* enable interrupt */
215 	sh_tmu_write(ch, TCR, TCR_UNIE | TCR_TPSC_CLK4);
216 
217 	/* reload delta value in case of periodic timer */
218 	if (periodic)
219 		sh_tmu_write(ch, TCOR, delta);
220 	else
221 		sh_tmu_write(ch, TCOR, 0xffffffff);
222 
223 	sh_tmu_write(ch, TCNT, delta);
224 
225 	/* start timer */
226 	sh_tmu_start_stop_ch(ch, 1);
227 }
228 
229 static irqreturn_t sh_tmu_interrupt(int irq, void *dev_id)
230 {
231 	struct sh_tmu_channel *ch = dev_id;
232 
233 	/* disable or acknowledge interrupt */
234 	if (clockevent_state_oneshot(&ch->ced))
235 		sh_tmu_write(ch, TCR, TCR_TPSC_CLK4);
236 	else
237 		sh_tmu_write(ch, TCR, TCR_UNIE | TCR_TPSC_CLK4);
238 
239 	/* notify clockevent layer */
240 	ch->ced.event_handler(&ch->ced);
241 	return IRQ_HANDLED;
242 }
243 
244 static struct sh_tmu_channel *cs_to_sh_tmu(struct clocksource *cs)
245 {
246 	return container_of(cs, struct sh_tmu_channel, cs);
247 }
248 
249 static u64 sh_tmu_clocksource_read(struct clocksource *cs)
250 {
251 	struct sh_tmu_channel *ch = cs_to_sh_tmu(cs);
252 
253 	return sh_tmu_read(ch, TCNT) ^ 0xffffffff;
254 }
255 
256 static int sh_tmu_clocksource_enable(struct clocksource *cs)
257 {
258 	struct sh_tmu_channel *ch = cs_to_sh_tmu(cs);
259 	int ret;
260 
261 	if (WARN_ON(ch->cs_enabled))
262 		return 0;
263 
264 	ret = sh_tmu_enable(ch);
265 	if (!ret)
266 		ch->cs_enabled = true;
267 
268 	return ret;
269 }
270 
271 static void sh_tmu_clocksource_disable(struct clocksource *cs)
272 {
273 	struct sh_tmu_channel *ch = cs_to_sh_tmu(cs);
274 
275 	if (WARN_ON(!ch->cs_enabled))
276 		return;
277 
278 	sh_tmu_disable(ch);
279 	ch->cs_enabled = false;
280 }
281 
282 static void sh_tmu_clocksource_suspend(struct clocksource *cs)
283 {
284 	struct sh_tmu_channel *ch = cs_to_sh_tmu(cs);
285 
286 	if (!ch->cs_enabled)
287 		return;
288 
289 	if (--ch->enable_count == 0) {
290 		__sh_tmu_disable(ch);
291 		pm_genpd_syscore_poweroff(&ch->tmu->pdev->dev);
292 	}
293 }
294 
295 static void sh_tmu_clocksource_resume(struct clocksource *cs)
296 {
297 	struct sh_tmu_channel *ch = cs_to_sh_tmu(cs);
298 
299 	if (!ch->cs_enabled)
300 		return;
301 
302 	if (ch->enable_count++ == 0) {
303 		pm_genpd_syscore_poweron(&ch->tmu->pdev->dev);
304 		__sh_tmu_enable(ch);
305 	}
306 }
307 
308 static int sh_tmu_register_clocksource(struct sh_tmu_channel *ch,
309 				       const char *name)
310 {
311 	struct clocksource *cs = &ch->cs;
312 
313 	cs->name = name;
314 	cs->rating = 200;
315 	cs->read = sh_tmu_clocksource_read;
316 	cs->enable = sh_tmu_clocksource_enable;
317 	cs->disable = sh_tmu_clocksource_disable;
318 	cs->suspend = sh_tmu_clocksource_suspend;
319 	cs->resume = sh_tmu_clocksource_resume;
320 	cs->mask = CLOCKSOURCE_MASK(32);
321 	cs->flags = CLOCK_SOURCE_IS_CONTINUOUS;
322 
323 	dev_info(&ch->tmu->pdev->dev, "ch%u: used as clock source\n",
324 		 ch->index);
325 
326 	clocksource_register_hz(cs, ch->tmu->rate);
327 	return 0;
328 }
329 
330 static struct sh_tmu_channel *ced_to_sh_tmu(struct clock_event_device *ced)
331 {
332 	return container_of(ced, struct sh_tmu_channel, ced);
333 }
334 
335 static void sh_tmu_clock_event_start(struct sh_tmu_channel *ch, int periodic)
336 {
337 	sh_tmu_enable(ch);
338 
339 	if (periodic) {
340 		ch->periodic = (ch->tmu->rate + HZ/2) / HZ;
341 		sh_tmu_set_next(ch, ch->periodic, 1);
342 	}
343 }
344 
345 static int sh_tmu_clock_event_shutdown(struct clock_event_device *ced)
346 {
347 	struct sh_tmu_channel *ch = ced_to_sh_tmu(ced);
348 
349 	if (clockevent_state_oneshot(ced) || clockevent_state_periodic(ced))
350 		sh_tmu_disable(ch);
351 	return 0;
352 }
353 
354 static int sh_tmu_clock_event_set_state(struct clock_event_device *ced,
355 					int periodic)
356 {
357 	struct sh_tmu_channel *ch = ced_to_sh_tmu(ced);
358 
359 	/* deal with old setting first */
360 	if (clockevent_state_oneshot(ced) || clockevent_state_periodic(ced))
361 		sh_tmu_disable(ch);
362 
363 	dev_info(&ch->tmu->pdev->dev, "ch%u: used for %s clock events\n",
364 		 ch->index, periodic ? "periodic" : "oneshot");
365 	sh_tmu_clock_event_start(ch, periodic);
366 	return 0;
367 }
368 
369 static int sh_tmu_clock_event_set_oneshot(struct clock_event_device *ced)
370 {
371 	return sh_tmu_clock_event_set_state(ced, 0);
372 }
373 
374 static int sh_tmu_clock_event_set_periodic(struct clock_event_device *ced)
375 {
376 	return sh_tmu_clock_event_set_state(ced, 1);
377 }
378 
379 static int sh_tmu_clock_event_next(unsigned long delta,
380 				   struct clock_event_device *ced)
381 {
382 	struct sh_tmu_channel *ch = ced_to_sh_tmu(ced);
383 
384 	BUG_ON(!clockevent_state_oneshot(ced));
385 
386 	/* program new delta value */
387 	sh_tmu_set_next(ch, delta, 0);
388 	return 0;
389 }
390 
391 static void sh_tmu_clock_event_suspend(struct clock_event_device *ced)
392 {
393 	pm_genpd_syscore_poweroff(&ced_to_sh_tmu(ced)->tmu->pdev->dev);
394 }
395 
396 static void sh_tmu_clock_event_resume(struct clock_event_device *ced)
397 {
398 	pm_genpd_syscore_poweron(&ced_to_sh_tmu(ced)->tmu->pdev->dev);
399 }
400 
401 static void sh_tmu_register_clockevent(struct sh_tmu_channel *ch,
402 				       const char *name)
403 {
404 	struct clock_event_device *ced = &ch->ced;
405 	int ret;
406 
407 	ced->name = name;
408 	ced->features = CLOCK_EVT_FEAT_PERIODIC;
409 	ced->features |= CLOCK_EVT_FEAT_ONESHOT;
410 	ced->rating = 200;
411 	ced->cpumask = cpu_possible_mask;
412 	ced->set_next_event = sh_tmu_clock_event_next;
413 	ced->set_state_shutdown = sh_tmu_clock_event_shutdown;
414 	ced->set_state_periodic = sh_tmu_clock_event_set_periodic;
415 	ced->set_state_oneshot = sh_tmu_clock_event_set_oneshot;
416 	ced->suspend = sh_tmu_clock_event_suspend;
417 	ced->resume = sh_tmu_clock_event_resume;
418 
419 	dev_info(&ch->tmu->pdev->dev, "ch%u: used for clock events\n",
420 		 ch->index);
421 
422 	clockevents_config_and_register(ced, ch->tmu->rate, 0x300, 0xffffffff);
423 
424 	ret = request_irq(ch->irq, sh_tmu_interrupt,
425 			  IRQF_TIMER | IRQF_IRQPOLL | IRQF_NOBALANCING,
426 			  dev_name(&ch->tmu->pdev->dev), ch);
427 	if (ret) {
428 		dev_err(&ch->tmu->pdev->dev, "ch%u: failed to request irq %d\n",
429 			ch->index, ch->irq);
430 		return;
431 	}
432 }
433 
434 static int sh_tmu_register(struct sh_tmu_channel *ch, const char *name,
435 			   bool clockevent, bool clocksource)
436 {
437 	if (clockevent) {
438 		ch->tmu->has_clockevent = true;
439 		sh_tmu_register_clockevent(ch, name);
440 	} else if (clocksource) {
441 		ch->tmu->has_clocksource = true;
442 		sh_tmu_register_clocksource(ch, name);
443 	}
444 
445 	return 0;
446 }
447 
448 static int sh_tmu_channel_setup(struct sh_tmu_channel *ch, unsigned int index,
449 				bool clockevent, bool clocksource,
450 				struct sh_tmu_device *tmu)
451 {
452 	/* Skip unused channels. */
453 	if (!clockevent && !clocksource)
454 		return 0;
455 
456 	ch->tmu = tmu;
457 	ch->index = index;
458 
459 	if (tmu->model == SH_TMU_SH3)
460 		ch->base = tmu->mapbase + 4 + ch->index * 12;
461 	else
462 		ch->base = tmu->mapbase + 8 + ch->index * 12;
463 
464 	ch->irq = platform_get_irq(tmu->pdev, index);
465 	if (ch->irq < 0)
466 		return ch->irq;
467 
468 	ch->cs_enabled = false;
469 	ch->enable_count = 0;
470 
471 	return sh_tmu_register(ch, dev_name(&tmu->pdev->dev),
472 			       clockevent, clocksource);
473 }
474 
475 static int sh_tmu_map_memory(struct sh_tmu_device *tmu)
476 {
477 	struct resource *res;
478 
479 	res = platform_get_resource(tmu->pdev, IORESOURCE_MEM, 0);
480 	if (!res) {
481 		dev_err(&tmu->pdev->dev, "failed to get I/O memory\n");
482 		return -ENXIO;
483 	}
484 
485 	tmu->mapbase = ioremap_nocache(res->start, resource_size(res));
486 	if (tmu->mapbase == NULL)
487 		return -ENXIO;
488 
489 	return 0;
490 }
491 
492 static int sh_tmu_parse_dt(struct sh_tmu_device *tmu)
493 {
494 	struct device_node *np = tmu->pdev->dev.of_node;
495 
496 	tmu->model = SH_TMU;
497 	tmu->num_channels = 3;
498 
499 	of_property_read_u32(np, "#renesas,channels", &tmu->num_channels);
500 
501 	if (tmu->num_channels != 2 && tmu->num_channels != 3) {
502 		dev_err(&tmu->pdev->dev, "invalid number of channels %u\n",
503 			tmu->num_channels);
504 		return -EINVAL;
505 	}
506 
507 	return 0;
508 }
509 
510 static int sh_tmu_setup(struct sh_tmu_device *tmu, struct platform_device *pdev)
511 {
512 	unsigned int i;
513 	int ret;
514 
515 	tmu->pdev = pdev;
516 
517 	raw_spin_lock_init(&tmu->lock);
518 
519 	if (IS_ENABLED(CONFIG_OF) && pdev->dev.of_node) {
520 		ret = sh_tmu_parse_dt(tmu);
521 		if (ret < 0)
522 			return ret;
523 	} else if (pdev->dev.platform_data) {
524 		const struct platform_device_id *id = pdev->id_entry;
525 		struct sh_timer_config *cfg = pdev->dev.platform_data;
526 
527 		tmu->model = id->driver_data;
528 		tmu->num_channels = hweight8(cfg->channels_mask);
529 	} else {
530 		dev_err(&tmu->pdev->dev, "missing platform data\n");
531 		return -ENXIO;
532 	}
533 
534 	/* Get hold of clock. */
535 	tmu->clk = clk_get(&tmu->pdev->dev, "fck");
536 	if (IS_ERR(tmu->clk)) {
537 		dev_err(&tmu->pdev->dev, "cannot get clock\n");
538 		return PTR_ERR(tmu->clk);
539 	}
540 
541 	ret = clk_prepare(tmu->clk);
542 	if (ret < 0)
543 		goto err_clk_put;
544 
545 	/* Determine clock rate. */
546 	ret = clk_enable(tmu->clk);
547 	if (ret < 0)
548 		goto err_clk_unprepare;
549 
550 	tmu->rate = clk_get_rate(tmu->clk) / 4;
551 	clk_disable(tmu->clk);
552 
553 	/* Map the memory resource. */
554 	ret = sh_tmu_map_memory(tmu);
555 	if (ret < 0) {
556 		dev_err(&tmu->pdev->dev, "failed to remap I/O memory\n");
557 		goto err_clk_unprepare;
558 	}
559 
560 	/* Allocate and setup the channels. */
561 	tmu->channels = kcalloc(tmu->num_channels, sizeof(*tmu->channels),
562 				GFP_KERNEL);
563 	if (tmu->channels == NULL) {
564 		ret = -ENOMEM;
565 		goto err_unmap;
566 	}
567 
568 	/*
569 	 * Use the first channel as a clock event device and the second channel
570 	 * as a clock source.
571 	 */
572 	for (i = 0; i < tmu->num_channels; ++i) {
573 		ret = sh_tmu_channel_setup(&tmu->channels[i], i,
574 					   i == 0, i == 1, tmu);
575 		if (ret < 0)
576 			goto err_unmap;
577 	}
578 
579 	platform_set_drvdata(pdev, tmu);
580 
581 	return 0;
582 
583 err_unmap:
584 	kfree(tmu->channels);
585 	iounmap(tmu->mapbase);
586 err_clk_unprepare:
587 	clk_unprepare(tmu->clk);
588 err_clk_put:
589 	clk_put(tmu->clk);
590 	return ret;
591 }
592 
593 static int sh_tmu_probe(struct platform_device *pdev)
594 {
595 	struct sh_tmu_device *tmu = platform_get_drvdata(pdev);
596 	int ret;
597 
598 	if (!is_early_platform_device(pdev)) {
599 		pm_runtime_set_active(&pdev->dev);
600 		pm_runtime_enable(&pdev->dev);
601 	}
602 
603 	if (tmu) {
604 		dev_info(&pdev->dev, "kept as earlytimer\n");
605 		goto out;
606 	}
607 
608 	tmu = kzalloc(sizeof(*tmu), GFP_KERNEL);
609 	if (tmu == NULL)
610 		return -ENOMEM;
611 
612 	ret = sh_tmu_setup(tmu, pdev);
613 	if (ret) {
614 		kfree(tmu);
615 		pm_runtime_idle(&pdev->dev);
616 		return ret;
617 	}
618 	if (is_early_platform_device(pdev))
619 		return 0;
620 
621  out:
622 	if (tmu->has_clockevent || tmu->has_clocksource)
623 		pm_runtime_irq_safe(&pdev->dev);
624 	else
625 		pm_runtime_idle(&pdev->dev);
626 
627 	return 0;
628 }
629 
630 static int sh_tmu_remove(struct platform_device *pdev)
631 {
632 	return -EBUSY; /* cannot unregister clockevent and clocksource */
633 }
634 
635 static const struct platform_device_id sh_tmu_id_table[] = {
636 	{ "sh-tmu", SH_TMU },
637 	{ "sh-tmu-sh3", SH_TMU_SH3 },
638 	{ }
639 };
640 MODULE_DEVICE_TABLE(platform, sh_tmu_id_table);
641 
642 static const struct of_device_id sh_tmu_of_table[] __maybe_unused = {
643 	{ .compatible = "renesas,tmu" },
644 	{ }
645 };
646 MODULE_DEVICE_TABLE(of, sh_tmu_of_table);
647 
648 static struct platform_driver sh_tmu_device_driver = {
649 	.probe		= sh_tmu_probe,
650 	.remove		= sh_tmu_remove,
651 	.driver		= {
652 		.name	= "sh_tmu",
653 		.of_match_table = of_match_ptr(sh_tmu_of_table),
654 	},
655 	.id_table	= sh_tmu_id_table,
656 };
657 
658 static int __init sh_tmu_init(void)
659 {
660 	return platform_driver_register(&sh_tmu_device_driver);
661 }
662 
663 static void __exit sh_tmu_exit(void)
664 {
665 	platform_driver_unregister(&sh_tmu_device_driver);
666 }
667 
668 early_platform_init("earlytimer", &sh_tmu_device_driver);
669 subsys_initcall(sh_tmu_init);
670 module_exit(sh_tmu_exit);
671 
672 MODULE_AUTHOR("Magnus Damm");
673 MODULE_DESCRIPTION("SuperH TMU Timer Driver");
674 MODULE_LICENSE("GPL v2");
675