xref: /linux/drivers/comedi/drivers/s626.c (revision 0be3ff0c)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * comedi/drivers/s626.c
4  * Sensoray s626 Comedi driver
5  *
6  * COMEDI - Linux Control and Measurement Device Interface
7  * Copyright (C) 2000 David A. Schleef <ds@schleef.org>
8  *
9  * Based on Sensoray Model 626 Linux driver Version 0.2
10  * Copyright (C) 2002-2004 Sensoray Co., Inc.
11  */
12 
13 /*
14  * Driver: s626
15  * Description: Sensoray 626 driver
16  * Devices: [Sensoray] 626 (s626)
17  * Authors: Gianluca Palli <gpalli@deis.unibo.it>,
18  * Updated: Fri, 15 Feb 2008 10:28:42 +0000
19  * Status: experimental
20 
21  * Configuration options: not applicable, uses PCI auto config
22 
23  * INSN_CONFIG instructions:
24  *   analog input:
25  *    none
26  *
27  *   analog output:
28  *    none
29  *
30  *   digital channel:
31  *    s626 has 3 dio subdevices (2,3 and 4) each with 16 i/o channels
32  *    supported configuration options:
33  *    INSN_CONFIG_DIO_QUERY
34  *    COMEDI_INPUT
35  *    COMEDI_OUTPUT
36  *
37  *   encoder:
38  *    Every channel must be configured before reading.
39  *
40  *   Example code
41  *
42  *    insn.insn=INSN_CONFIG;   //configuration instruction
43  *    insn.n=1;                //number of operation (must be 1)
44  *    insn.data=&initialvalue; //initial value loaded into encoder
45  *                             //during configuration
46  *    insn.subdev=5;           //encoder subdevice
47  *    insn.chanspec=CR_PACK(encoder_channel,0,AREF_OTHER); //encoder_channel
48  *                                                         //to configure
49  *
50  *    comedi_do_insn(cf,&insn); //executing configuration
51  */
52 
53 #include <linux/module.h>
54 #include <linux/delay.h>
55 #include <linux/interrupt.h>
56 #include <linux/kernel.h>
57 #include <linux/types.h>
58 #include <linux/comedi/comedi_pci.h>
59 
60 #include "s626.h"
61 
62 struct s626_buffer_dma {
63 	dma_addr_t physical_base;
64 	void *logical_base;
65 };
66 
67 /**
68  * struct s626_private - Working data for s626 driver.
69  * @ai_cmd_running: non-zero if ai_cmd is running.
70  * @ai_sample_timer: time between samples in units of the timer.
71  * @ai_convert_count: conversion counter.
72  * @ai_convert_timer: time between conversion in units of the timer.
73  * @counter_int_enabs: counter interrupt enable mask for MISC2 register.
74  * @adc_items: number of items in ADC poll list.
75  * @rps_buf: DMA buffer used to hold ADC (RPS1) program.
76  * @ana_buf:  DMA buffer used to receive ADC data and hold DAC data.
77  * @dac_wbuf: pointer to logical adrs of DMA buffer used to hold DAC data.
78  * @dacpol: image of DAC polarity register.
79  * @trim_setpoint: images of TrimDAC setpoints.
80  * @i2c_adrs: I2C device address for onboard EEPROM (board rev dependent)
81  */
82 struct s626_private {
83 	u8 ai_cmd_running;
84 	unsigned int ai_sample_timer;
85 	int ai_convert_count;
86 	unsigned int ai_convert_timer;
87 	u16 counter_int_enabs;
88 	u8 adc_items;
89 	struct s626_buffer_dma rps_buf;
90 	struct s626_buffer_dma ana_buf;
91 	u32 *dac_wbuf;
92 	u16 dacpol;
93 	u8 trim_setpoint[12];
94 	u32 i2c_adrs;
95 };
96 
97 /* Counter overflow/index event flag masks for RDMISC2. */
98 #define S626_INDXMASK(C) (1 << (((C) > 2) ? ((C) * 2 - 1) : ((C) * 2 +  4)))
99 #define S626_OVERMASK(C) (1 << (((C) > 2) ? ((C) * 2 + 5) : ((C) * 2 + 10)))
100 
101 /*
102  * Enable/disable a function or test status bit(s) that are accessed
103  * through Main Control Registers 1 or 2.
104  */
105 static void s626_mc_enable(struct comedi_device *dev,
106 			   unsigned int cmd, unsigned int reg)
107 {
108 	unsigned int val = (cmd << 16) | cmd;
109 
110 	writel(val, dev->mmio + reg);
111 }
112 
113 static void s626_mc_disable(struct comedi_device *dev,
114 			    unsigned int cmd, unsigned int reg)
115 {
116 	writel(cmd << 16, dev->mmio + reg);
117 }
118 
119 static bool s626_mc_test(struct comedi_device *dev,
120 			 unsigned int cmd, unsigned int reg)
121 {
122 	unsigned int val;
123 
124 	val = readl(dev->mmio + reg);
125 
126 	return (val & cmd) ? true : false;
127 }
128 
129 #define S626_BUGFIX_STREG(REGADRS)   ((REGADRS) - 4)
130 
131 /* Write a time slot control record to TSL2. */
132 #define S626_VECTPORT(VECTNUM)		(S626_P_TSL2 + ((VECTNUM) << 2))
133 
134 static const struct comedi_lrange s626_range_table = {
135 	2, {
136 		BIP_RANGE(5),
137 		BIP_RANGE(10)
138 	}
139 };
140 
141 /*
142  * Execute a DEBI transfer.  This must be called from within a critical section.
143  */
144 static void s626_debi_transfer(struct comedi_device *dev)
145 {
146 	static const int timeout = 10000;
147 	int i;
148 
149 	/* Initiate upload of shadow RAM to DEBI control register */
150 	s626_mc_enable(dev, S626_MC2_UPLD_DEBI, S626_P_MC2);
151 
152 	/*
153 	 * Wait for completion of upload from shadow RAM to
154 	 * DEBI control register.
155 	 */
156 	for (i = 0; i < timeout; i++) {
157 		if (s626_mc_test(dev, S626_MC2_UPLD_DEBI, S626_P_MC2))
158 			break;
159 		udelay(1);
160 	}
161 	if (i == timeout)
162 		dev_err(dev->class_dev,
163 			"Timeout while uploading to DEBI control register\n");
164 
165 	/* Wait until DEBI transfer is done */
166 	for (i = 0; i < timeout; i++) {
167 		if (!(readl(dev->mmio + S626_P_PSR) & S626_PSR_DEBI_S))
168 			break;
169 		udelay(1);
170 	}
171 	if (i == timeout)
172 		dev_err(dev->class_dev, "DEBI transfer timeout\n");
173 }
174 
175 /*
176  * Read a value from a gate array register.
177  */
178 static u16 s626_debi_read(struct comedi_device *dev, u16 addr)
179 {
180 	/* Set up DEBI control register value in shadow RAM */
181 	writel(S626_DEBI_CMD_RDWORD | addr, dev->mmio + S626_P_DEBICMD);
182 
183 	/*  Execute the DEBI transfer. */
184 	s626_debi_transfer(dev);
185 
186 	return readl(dev->mmio + S626_P_DEBIAD);
187 }
188 
189 /*
190  * Write a value to a gate array register.
191  */
192 static void s626_debi_write(struct comedi_device *dev, u16 addr,
193 			    u16 wdata)
194 {
195 	/* Set up DEBI control register value in shadow RAM */
196 	writel(S626_DEBI_CMD_WRWORD | addr, dev->mmio + S626_P_DEBICMD);
197 	writel(wdata, dev->mmio + S626_P_DEBIAD);
198 
199 	/*  Execute the DEBI transfer. */
200 	s626_debi_transfer(dev);
201 }
202 
203 /*
204  * Replace the specified bits in a gate array register.  Imports: mask
205  * specifies bits that are to be preserved, wdata is new value to be
206  * or'd with the masked original.
207  */
208 static void s626_debi_replace(struct comedi_device *dev, unsigned int addr,
209 			      unsigned int mask, unsigned int wdata)
210 {
211 	unsigned int val;
212 
213 	addr &= 0xffff;
214 	writel(S626_DEBI_CMD_RDWORD | addr, dev->mmio + S626_P_DEBICMD);
215 	s626_debi_transfer(dev);
216 
217 	writel(S626_DEBI_CMD_WRWORD | addr, dev->mmio + S626_P_DEBICMD);
218 	val = readl(dev->mmio + S626_P_DEBIAD);
219 	val &= mask;
220 	val |= wdata;
221 	writel(val & 0xffff, dev->mmio + S626_P_DEBIAD);
222 	s626_debi_transfer(dev);
223 }
224 
225 /* **************  EEPROM ACCESS FUNCTIONS  ************** */
226 
227 static int s626_i2c_handshake_eoc(struct comedi_device *dev,
228 				  struct comedi_subdevice *s,
229 				  struct comedi_insn *insn,
230 				  unsigned long context)
231 {
232 	bool status;
233 
234 	status = s626_mc_test(dev, S626_MC2_UPLD_IIC, S626_P_MC2);
235 	if (status)
236 		return 0;
237 	return -EBUSY;
238 }
239 
240 static int s626_i2c_handshake(struct comedi_device *dev, u32 val)
241 {
242 	unsigned int ctrl;
243 	int ret;
244 
245 	/* Write I2C command to I2C Transfer Control shadow register */
246 	writel(val, dev->mmio + S626_P_I2CCTRL);
247 
248 	/*
249 	 * Upload I2C shadow registers into working registers and
250 	 * wait for upload confirmation.
251 	 */
252 	s626_mc_enable(dev, S626_MC2_UPLD_IIC, S626_P_MC2);
253 	ret = comedi_timeout(dev, NULL, NULL, s626_i2c_handshake_eoc, 0);
254 	if (ret)
255 		return ret;
256 
257 	/* Wait until I2C bus transfer is finished or an error occurs */
258 	do {
259 		ctrl = readl(dev->mmio + S626_P_I2CCTRL);
260 	} while ((ctrl & (S626_I2C_BUSY | S626_I2C_ERR)) == S626_I2C_BUSY);
261 
262 	/* Return non-zero if I2C error occurred */
263 	return ctrl & S626_I2C_ERR;
264 }
265 
266 /* Read u8 from EEPROM. */
267 static u8 s626_i2c_read(struct comedi_device *dev, u8 addr)
268 {
269 	struct s626_private *devpriv = dev->private;
270 
271 	/*
272 	 * Send EEPROM target address:
273 	 *  Byte2 = I2C command: write to I2C EEPROM device.
274 	 *  Byte1 = EEPROM internal target address.
275 	 *  Byte0 = Not sent.
276 	 */
277 	if (s626_i2c_handshake(dev, S626_I2C_B2(S626_I2C_ATTRSTART,
278 						devpriv->i2c_adrs) |
279 				    S626_I2C_B1(S626_I2C_ATTRSTOP, addr) |
280 				    S626_I2C_B0(S626_I2C_ATTRNOP, 0)))
281 		/* Abort function and declare error if handshake failed. */
282 		return 0;
283 
284 	/*
285 	 * Execute EEPROM read:
286 	 *  Byte2 = I2C command: read from I2C EEPROM device.
287 	 *  Byte1 receives uint8_t from EEPROM.
288 	 *  Byte0 = Not sent.
289 	 */
290 	if (s626_i2c_handshake(dev, S626_I2C_B2(S626_I2C_ATTRSTART,
291 						(devpriv->i2c_adrs | 1)) |
292 				    S626_I2C_B1(S626_I2C_ATTRSTOP, 0) |
293 				    S626_I2C_B0(S626_I2C_ATTRNOP, 0)))
294 		/* Abort function and declare error if handshake failed. */
295 		return 0;
296 
297 	return (readl(dev->mmio + S626_P_I2CCTRL) >> 16) & 0xff;
298 }
299 
300 /* ***********  DAC FUNCTIONS *********** */
301 
302 /* TrimDac LogicalChan-to-PhysicalChan mapping table. */
303 static const u8 s626_trimchan[] = { 10, 9, 8, 3, 2, 7, 6, 1, 0, 5, 4 };
304 
305 /* TrimDac LogicalChan-to-EepromAdrs mapping table. */
306 static const u8 s626_trimadrs[] = {
307 	0x40, 0x41, 0x42, 0x50, 0x51, 0x52, 0x53, 0x60, 0x61, 0x62, 0x63
308 };
309 
310 enum {
311 	s626_send_dac_wait_not_mc1_a2out,
312 	s626_send_dac_wait_ssr_af2_out,
313 	s626_send_dac_wait_fb_buffer2_msb_00,
314 	s626_send_dac_wait_fb_buffer2_msb_ff
315 };
316 
317 static int s626_send_dac_eoc(struct comedi_device *dev,
318 			     struct comedi_subdevice *s,
319 			     struct comedi_insn *insn,
320 			     unsigned long context)
321 {
322 	unsigned int status;
323 
324 	switch (context) {
325 	case s626_send_dac_wait_not_mc1_a2out:
326 		status = readl(dev->mmio + S626_P_MC1);
327 		if (!(status & S626_MC1_A2OUT))
328 			return 0;
329 		break;
330 	case s626_send_dac_wait_ssr_af2_out:
331 		status = readl(dev->mmio + S626_P_SSR);
332 		if (status & S626_SSR_AF2_OUT)
333 			return 0;
334 		break;
335 	case s626_send_dac_wait_fb_buffer2_msb_00:
336 		status = readl(dev->mmio + S626_P_FB_BUFFER2);
337 		if (!(status & 0xff000000))
338 			return 0;
339 		break;
340 	case s626_send_dac_wait_fb_buffer2_msb_ff:
341 		status = readl(dev->mmio + S626_P_FB_BUFFER2);
342 		if (status & 0xff000000)
343 			return 0;
344 		break;
345 	default:
346 		return -EINVAL;
347 	}
348 	return -EBUSY;
349 }
350 
351 /*
352  * Private helper function: Transmit serial data to DAC via Audio
353  * channel 2.  Assumes: (1) TSL2 slot records initialized, and (2)
354  * dacpol contains valid target image.
355  */
356 static int s626_send_dac(struct comedi_device *dev, u32 val)
357 {
358 	struct s626_private *devpriv = dev->private;
359 	int ret;
360 
361 	/* START THE SERIAL CLOCK RUNNING ------------- */
362 
363 	/*
364 	 * Assert DAC polarity control and enable gating of DAC serial clock
365 	 * and audio bit stream signals.  At this point in time we must be
366 	 * assured of being in time slot 0.  If we are not in slot 0, the
367 	 * serial clock and audio stream signals will be disabled; this is
368 	 * because the following s626_debi_write statement (which enables
369 	 * signals to be passed through the gate array) would execute before
370 	 * the trailing edge of WS1/WS3 (which turns off the signals), thus
371 	 * causing the signals to be inactive during the DAC write.
372 	 */
373 	s626_debi_write(dev, S626_LP_DACPOL, devpriv->dacpol);
374 
375 	/* TRANSFER OUTPUT DWORD VALUE INTO A2'S OUTPUT FIFO ---------------- */
376 
377 	/* Copy DAC setpoint value to DAC's output DMA buffer. */
378 	/* writel(val, dev->mmio + (uint32_t)devpriv->dac_wbuf); */
379 	*devpriv->dac_wbuf = val;
380 
381 	/*
382 	 * Enable the output DMA transfer. This will cause the DMAC to copy
383 	 * the DAC's data value to A2's output FIFO. The DMA transfer will
384 	 * then immediately terminate because the protection address is
385 	 * reached upon transfer of the first DWORD value.
386 	 */
387 	s626_mc_enable(dev, S626_MC1_A2OUT, S626_P_MC1);
388 
389 	/* While the DMA transfer is executing ... */
390 
391 	/*
392 	 * Reset Audio2 output FIFO's underflow flag (along with any
393 	 * other FIFO underflow/overflow flags). When set, this flag
394 	 * will indicate that we have emerged from slot 0.
395 	 */
396 	writel(S626_ISR_AFOU, dev->mmio + S626_P_ISR);
397 
398 	/*
399 	 * Wait for the DMA transfer to finish so that there will be data
400 	 * available in the FIFO when time slot 1 tries to transfer a DWORD
401 	 * from the FIFO to the output buffer register.  We test for DMA
402 	 * Done by polling the DMAC enable flag; this flag is automatically
403 	 * cleared when the transfer has finished.
404 	 */
405 	ret = comedi_timeout(dev, NULL, NULL, s626_send_dac_eoc,
406 			     s626_send_dac_wait_not_mc1_a2out);
407 	if (ret) {
408 		dev_err(dev->class_dev, "DMA transfer timeout\n");
409 		return ret;
410 	}
411 
412 	/* START THE OUTPUT STREAM TO THE TARGET DAC -------------------- */
413 
414 	/*
415 	 * FIFO data is now available, so we enable execution of time slots
416 	 * 1 and higher by clearing the EOS flag in slot 0.  Note that SD3
417 	 * will be shifted in and stored in FB_BUFFER2 for end-of-slot-list
418 	 * detection.
419 	 */
420 	writel(S626_XSD2 | S626_RSD3 | S626_SIB_A2,
421 	       dev->mmio + S626_VECTPORT(0));
422 
423 	/*
424 	 * Wait for slot 1 to execute to ensure that the Packet will be
425 	 * transmitted.  This is detected by polling the Audio2 output FIFO
426 	 * underflow flag, which will be set when slot 1 execution has
427 	 * finished transferring the DAC's data DWORD from the output FIFO
428 	 * to the output buffer register.
429 	 */
430 	ret = comedi_timeout(dev, NULL, NULL, s626_send_dac_eoc,
431 			     s626_send_dac_wait_ssr_af2_out);
432 	if (ret) {
433 		dev_err(dev->class_dev,
434 			"TSL timeout waiting for slot 1 to execute\n");
435 		return ret;
436 	}
437 
438 	/*
439 	 * Set up to trap execution at slot 0 when the TSL sequencer cycles
440 	 * back to slot 0 after executing the EOS in slot 5.  Also,
441 	 * simultaneously shift out and in the 0x00 that is ALWAYS the value
442 	 * stored in the last byte to be shifted out of the FIFO's DWORD
443 	 * buffer register.
444 	 */
445 	writel(S626_XSD2 | S626_XFIFO_2 | S626_RSD2 | S626_SIB_A2 | S626_EOS,
446 	       dev->mmio + S626_VECTPORT(0));
447 
448 	/* WAIT FOR THE TRANSACTION TO FINISH ----------------------- */
449 
450 	/*
451 	 * Wait for the TSL to finish executing all time slots before
452 	 * exiting this function.  We must do this so that the next DAC
453 	 * write doesn't start, thereby enabling clock/chip select signals:
454 	 *
455 	 * 1. Before the TSL sequence cycles back to slot 0, which disables
456 	 *    the clock/cs signal gating and traps slot // list execution.
457 	 *    we have not yet finished slot 5 then the clock/cs signals are
458 	 *    still gated and we have not finished transmitting the stream.
459 	 *
460 	 * 2. While slots 2-5 are executing due to a late slot 0 trap.  In
461 	 *    this case, the slot sequence is currently repeating, but with
462 	 *    clock/cs signals disabled.  We must wait for slot 0 to trap
463 	 *    execution before setting up the next DAC setpoint DMA transfer
464 	 *    and enabling the clock/cs signals.  To detect the end of slot 5,
465 	 *    we test for the FB_BUFFER2 MSB contents to be equal to 0xFF.  If
466 	 *    the TSL has not yet finished executing slot 5 ...
467 	 */
468 	if (readl(dev->mmio + S626_P_FB_BUFFER2) & 0xff000000) {
469 		/*
470 		 * The trap was set on time and we are still executing somewhere
471 		 * in slots 2-5, so we now wait for slot 0 to execute and trap
472 		 * TSL execution.  This is detected when FB_BUFFER2 MSB changes
473 		 * from 0xFF to 0x00, which slot 0 causes to happen by shifting
474 		 * out/in on SD2 the 0x00 that is always referenced by slot 5.
475 		 */
476 		ret = comedi_timeout(dev, NULL, NULL, s626_send_dac_eoc,
477 				     s626_send_dac_wait_fb_buffer2_msb_00);
478 		if (ret) {
479 			dev_err(dev->class_dev,
480 				"TSL timeout waiting for slot 0 to execute\n");
481 			return ret;
482 		}
483 	}
484 	/*
485 	 * Either (1) we were too late setting the slot 0 trap; the TSL
486 	 * sequencer restarted slot 0 before we could set the EOS trap flag,
487 	 * or (2) we were not late and execution is now trapped at slot 0.
488 	 * In either case, we must now change slot 0 so that it will store
489 	 * value 0xFF (instead of 0x00) to FB_BUFFER2 next time it executes.
490 	 * In order to do this, we reprogram slot 0 so that it will shift in
491 	 * SD3, which is driven only by a pull-up resistor.
492 	 */
493 	writel(S626_RSD3 | S626_SIB_A2 | S626_EOS,
494 	       dev->mmio + S626_VECTPORT(0));
495 
496 	/*
497 	 * Wait for slot 0 to execute, at which time the TSL is setup for
498 	 * the next DAC write.  This is detected when FB_BUFFER2 MSB changes
499 	 * from 0x00 to 0xFF.
500 	 */
501 	ret = comedi_timeout(dev, NULL, NULL, s626_send_dac_eoc,
502 			     s626_send_dac_wait_fb_buffer2_msb_ff);
503 	if (ret) {
504 		dev_err(dev->class_dev,
505 			"TSL timeout waiting for slot 0 to execute\n");
506 		return ret;
507 	}
508 	return 0;
509 }
510 
511 /*
512  * Private helper function: Write setpoint to an application DAC channel.
513  */
514 static int s626_set_dac(struct comedi_device *dev,
515 			u16 chan, int16_t dacdata)
516 {
517 	struct s626_private *devpriv = dev->private;
518 	u16 signmask;
519 	u32 ws_image;
520 	u32 val;
521 
522 	/*
523 	 * Adjust DAC data polarity and set up Polarity Control Register image.
524 	 */
525 	signmask = 1 << chan;
526 	if (dacdata < 0) {
527 		dacdata = -dacdata;
528 		devpriv->dacpol |= signmask;
529 	} else {
530 		devpriv->dacpol &= ~signmask;
531 	}
532 
533 	/* Limit DAC setpoint value to valid range. */
534 	if ((u16)dacdata > 0x1FFF)
535 		dacdata = 0x1FFF;
536 
537 	/*
538 	 * Set up TSL2 records (aka "vectors") for DAC update.  Vectors V2
539 	 * and V3 transmit the setpoint to the target DAC.  V4 and V5 send
540 	 * data to a non-existent TrimDac channel just to keep the clock
541 	 * running after sending data to the target DAC.  This is necessary
542 	 * to eliminate the clock glitch that would otherwise occur at the
543 	 * end of the target DAC's serial data stream.  When the sequence
544 	 * restarts at V0 (after executing V5), the gate array automatically
545 	 * disables gating for the DAC clock and all DAC chip selects.
546 	 */
547 
548 	/* Choose DAC chip select to be asserted */
549 	ws_image = (chan & 2) ? S626_WS1 : S626_WS2;
550 	/* Slot 2: Transmit high data byte to target DAC */
551 	writel(S626_XSD2 | S626_XFIFO_1 | ws_image,
552 	       dev->mmio + S626_VECTPORT(2));
553 	/* Slot 3: Transmit low data byte to target DAC */
554 	writel(S626_XSD2 | S626_XFIFO_0 | ws_image,
555 	       dev->mmio + S626_VECTPORT(3));
556 	/* Slot 4: Transmit to non-existent TrimDac channel to keep clock */
557 	writel(S626_XSD2 | S626_XFIFO_3 | S626_WS3,
558 	       dev->mmio + S626_VECTPORT(4));
559 	/* Slot 5: running after writing target DAC's low data byte */
560 	writel(S626_XSD2 | S626_XFIFO_2 | S626_WS3 | S626_EOS,
561 	       dev->mmio + S626_VECTPORT(5));
562 
563 	/*
564 	 * Construct and transmit target DAC's serial packet:
565 	 * (A10D DDDD), (DDDD DDDD), (0x0F), (0x00) where A is chan<0>,
566 	 * and D<12:0> is the DAC setpoint.  Append a WORD value (that writes
567 	 * to a  non-existent TrimDac channel) that serves to keep the clock
568 	 * running after the packet has been sent to the target DAC.
569 	 */
570 	val = 0x0F000000;	/* Continue clock after target DAC data
571 				 * (write to non-existent trimdac).
572 				 */
573 	val |= 0x00004000;	/* Address the two main dual-DAC devices
574 				 * (TSL's chip select enables target device).
575 				 */
576 	val |= ((u32)(chan & 1) << 15);	/* Address the DAC channel
577 					 * within the device.
578 					 */
579 	val |= (u32)dacdata;	/* Include DAC setpoint data. */
580 	return s626_send_dac(dev, val);
581 }
582 
583 static int s626_write_trim_dac(struct comedi_device *dev,
584 			       u8 logical_chan, u8 dac_data)
585 {
586 	struct s626_private *devpriv = dev->private;
587 	u32 chan;
588 
589 	/*
590 	 * Save the new setpoint in case the application needs to read it back
591 	 * later.
592 	 */
593 	devpriv->trim_setpoint[logical_chan] = dac_data;
594 
595 	/* Map logical channel number to physical channel number. */
596 	chan = s626_trimchan[logical_chan];
597 
598 	/*
599 	 * Set up TSL2 records for TrimDac write operation.  All slots shift
600 	 * 0xFF in from pulled-up SD3 so that the end of the slot sequence
601 	 * can be detected.
602 	 */
603 
604 	/* Slot 2: Send high uint8_t to target TrimDac */
605 	writel(S626_XSD2 | S626_XFIFO_1 | S626_WS3,
606 	       dev->mmio + S626_VECTPORT(2));
607 	/* Slot 3: Send low uint8_t to target TrimDac */
608 	writel(S626_XSD2 | S626_XFIFO_0 | S626_WS3,
609 	       dev->mmio + S626_VECTPORT(3));
610 	/* Slot 4: Send NOP high uint8_t to DAC0 to keep clock running */
611 	writel(S626_XSD2 | S626_XFIFO_3 | S626_WS1,
612 	       dev->mmio + S626_VECTPORT(4));
613 	/* Slot 5: Send NOP low  uint8_t to DAC0 */
614 	writel(S626_XSD2 | S626_XFIFO_2 | S626_WS1 | S626_EOS,
615 	       dev->mmio + S626_VECTPORT(5));
616 
617 	/*
618 	 * Construct and transmit target DAC's serial packet:
619 	 * (0000 AAAA), (DDDD DDDD), (0x00), (0x00) where A<3:0> is the
620 	 * DAC channel's address, and D<7:0> is the DAC setpoint.  Append a
621 	 * WORD value (that writes a channel 0 NOP command to a non-existent
622 	 * main DAC channel) that serves to keep the clock running after the
623 	 * packet has been sent to the target DAC.
624 	 */
625 
626 	/*
627 	 * Address the DAC channel within the trimdac device.
628 	 * Include DAC setpoint data.
629 	 */
630 	return s626_send_dac(dev, (chan << 8) | dac_data);
631 }
632 
633 static int s626_load_trim_dacs(struct comedi_device *dev)
634 {
635 	u8 i;
636 	int ret;
637 
638 	/* Copy TrimDac setpoint values from EEPROM to TrimDacs. */
639 	for (i = 0; i < ARRAY_SIZE(s626_trimchan); i++) {
640 		ret = s626_write_trim_dac(dev, i,
641 					  s626_i2c_read(dev, s626_trimadrs[i]));
642 		if (ret)
643 			return ret;
644 	}
645 	return 0;
646 }
647 
648 /* ******  COUNTER FUNCTIONS  ******* */
649 
650 /*
651  * All counter functions address a specific counter by means of the
652  * "Counter" argument, which is a logical counter number.  The Counter
653  * argument may have any of the following legal values: 0=0A, 1=1A,
654  * 2=2A, 3=0B, 4=1B, 5=2B.
655  */
656 
657 /*
658  * Return/set a counter pair's latch trigger source.  0: On read
659  * access, 1: A index latches A, 2: B index latches B, 3: A overflow
660  * latches B.
661  */
662 static void s626_set_latch_source(struct comedi_device *dev,
663 				  unsigned int chan, u16 value)
664 {
665 	s626_debi_replace(dev, S626_LP_CRB(chan),
666 			  ~(S626_CRBMSK_INTCTRL | S626_CRBMSK_LATCHSRC),
667 			  S626_SET_CRB_LATCHSRC(value));
668 }
669 
670 /*
671  * Write value into counter preload register.
672  */
673 static void s626_preload(struct comedi_device *dev,
674 			 unsigned int chan, u32 value)
675 {
676 	s626_debi_write(dev, S626_LP_CNTR(chan), value);
677 	s626_debi_write(dev, S626_LP_CNTR(chan) + 2, value >> 16);
678 }
679 
680 /* ******  PRIVATE COUNTER FUNCTIONS ****** */
681 
682 /*
683  * Reset a counter's index and overflow event capture flags.
684  */
685 static void s626_reset_cap_flags(struct comedi_device *dev,
686 				 unsigned int chan)
687 {
688 	u16 set;
689 
690 	set = S626_SET_CRB_INTRESETCMD(1);
691 	if (chan < 3)
692 		set |= S626_SET_CRB_INTRESET_A(1);
693 	else
694 		set |= S626_SET_CRB_INTRESET_B(1);
695 
696 	s626_debi_replace(dev, S626_LP_CRB(chan), ~S626_CRBMSK_INTCTRL, set);
697 }
698 
699 /*
700  * Set the operating mode for the specified counter.  The setup
701  * parameter is treated as a COUNTER_SETUP data type.  The following
702  * parameters are programmable (all other parms are ignored): ClkMult,
703  * ClkPol, ClkEnab, IndexSrc, IndexPol, LoadSrc.
704  */
705 static void s626_set_mode_a(struct comedi_device *dev,
706 			    unsigned int chan, u16 setup,
707 			    u16 disable_int_src)
708 {
709 	struct s626_private *devpriv = dev->private;
710 	u16 cra;
711 	u16 crb;
712 	unsigned int cntsrc, clkmult, clkpol;
713 
714 	/* Initialize CRA and CRB images. */
715 	/* Preload trigger is passed through. */
716 	cra = S626_SET_CRA_LOADSRC_A(S626_GET_STD_LOADSRC(setup));
717 	/* IndexSrc is passed through. */
718 	cra |= S626_SET_CRA_INDXSRC_A(S626_GET_STD_INDXSRC(setup));
719 
720 	/* Reset any pending CounterA event captures. */
721 	crb = S626_SET_CRB_INTRESETCMD(1) | S626_SET_CRB_INTRESET_A(1);
722 	/* Clock enable is passed through. */
723 	crb |= S626_SET_CRB_CLKENAB_A(S626_GET_STD_CLKENAB(setup));
724 
725 	/* Force IntSrc to Disabled if disable_int_src is asserted. */
726 	if (!disable_int_src)
727 		cra |= S626_SET_CRA_INTSRC_A(S626_GET_STD_INTSRC(setup));
728 
729 	/* Populate all mode-dependent attributes of CRA & CRB images. */
730 	clkpol = S626_GET_STD_CLKPOL(setup);
731 	switch (S626_GET_STD_ENCMODE(setup)) {
732 	case S626_ENCMODE_EXTENDER: /* Extender Mode: */
733 		/* Force to Timer mode (Extender valid only for B counters). */
734 		/* Fall through to case S626_ENCMODE_TIMER: */
735 	case S626_ENCMODE_TIMER:	/* Timer Mode: */
736 		/* CntSrcA<1> selects system clock */
737 		cntsrc = S626_CNTSRC_SYSCLK;
738 		/* Count direction (CntSrcA<0>) obtained from ClkPol. */
739 		cntsrc |= clkpol;
740 		/* ClkPolA behaves as always-on clock enable. */
741 		clkpol = 1;
742 		/* ClkMult must be 1x. */
743 		clkmult = S626_CLKMULT_1X;
744 		break;
745 	default:		/* Counter Mode: */
746 		/* Select ENC_C and ENC_D as clock/direction inputs. */
747 		cntsrc = S626_CNTSRC_ENCODER;
748 		/* Clock polarity is passed through. */
749 		/* Force multiplier to x1 if not legal, else pass through. */
750 		clkmult = S626_GET_STD_CLKMULT(setup);
751 		if (clkmult == S626_CLKMULT_SPECIAL)
752 			clkmult = S626_CLKMULT_1X;
753 		break;
754 	}
755 	cra |= S626_SET_CRA_CNTSRC_A(cntsrc) | S626_SET_CRA_CLKPOL_A(clkpol) |
756 	       S626_SET_CRA_CLKMULT_A(clkmult);
757 
758 	/*
759 	 * Force positive index polarity if IndxSrc is software-driven only,
760 	 * otherwise pass it through.
761 	 */
762 	if (S626_GET_STD_INDXSRC(setup) != S626_INDXSRC_SOFT)
763 		cra |= S626_SET_CRA_INDXPOL_A(S626_GET_STD_INDXPOL(setup));
764 
765 	/*
766 	 * If IntSrc has been forced to Disabled, update the MISC2 interrupt
767 	 * enable mask to indicate the counter interrupt is disabled.
768 	 */
769 	if (disable_int_src)
770 		devpriv->counter_int_enabs &= ~(S626_OVERMASK(chan) |
771 						S626_INDXMASK(chan));
772 
773 	/*
774 	 * While retaining CounterB and LatchSrc configurations, program the
775 	 * new counter operating mode.
776 	 */
777 	s626_debi_replace(dev, S626_LP_CRA(chan),
778 			  S626_CRAMSK_INDXSRC_B | S626_CRAMSK_CNTSRC_B, cra);
779 	s626_debi_replace(dev, S626_LP_CRB(chan),
780 			  ~(S626_CRBMSK_INTCTRL | S626_CRBMSK_CLKENAB_A), crb);
781 }
782 
783 static void s626_set_mode_b(struct comedi_device *dev,
784 			    unsigned int chan, u16 setup,
785 			    u16 disable_int_src)
786 {
787 	struct s626_private *devpriv = dev->private;
788 	u16 cra;
789 	u16 crb;
790 	unsigned int cntsrc, clkmult, clkpol;
791 
792 	/* Initialize CRA and CRB images. */
793 	/* IndexSrc is passed through. */
794 	cra = S626_SET_CRA_INDXSRC_B(S626_GET_STD_INDXSRC(setup));
795 
796 	/* Reset event captures and disable interrupts. */
797 	crb = S626_SET_CRB_INTRESETCMD(1) | S626_SET_CRB_INTRESET_B(1);
798 	/* Clock enable is passed through. */
799 	crb |= S626_SET_CRB_CLKENAB_B(S626_GET_STD_CLKENAB(setup));
800 	/* Preload trigger source is passed through. */
801 	crb |= S626_SET_CRB_LOADSRC_B(S626_GET_STD_LOADSRC(setup));
802 
803 	/* Force IntSrc to Disabled if disable_int_src is asserted. */
804 	if (!disable_int_src)
805 		crb |= S626_SET_CRB_INTSRC_B(S626_GET_STD_INTSRC(setup));
806 
807 	/* Populate all mode-dependent attributes of CRA & CRB images. */
808 	clkpol = S626_GET_STD_CLKPOL(setup);
809 	switch (S626_GET_STD_ENCMODE(setup)) {
810 	case S626_ENCMODE_TIMER:	/* Timer Mode: */
811 		/* CntSrcB<1> selects system clock */
812 		cntsrc = S626_CNTSRC_SYSCLK;
813 		/* with direction (CntSrcB<0>) obtained from ClkPol. */
814 		cntsrc |= clkpol;
815 		/* ClkPolB behaves as always-on clock enable. */
816 		clkpol = 1;
817 		/* ClkMultB must be 1x. */
818 		clkmult = S626_CLKMULT_1X;
819 		break;
820 	case S626_ENCMODE_EXTENDER:	/* Extender Mode: */
821 		/* CntSrcB source is OverflowA (same as "timer") */
822 		cntsrc = S626_CNTSRC_SYSCLK;
823 		/* with direction obtained from ClkPol. */
824 		cntsrc |= clkpol;
825 		/* ClkPolB controls IndexB -- always set to active. */
826 		clkpol = 1;
827 		/* ClkMultB selects OverflowA as the clock source. */
828 		clkmult = S626_CLKMULT_SPECIAL;
829 		break;
830 	default:		/* Counter Mode: */
831 		/* Select ENC_C and ENC_D as clock/direction inputs. */
832 		cntsrc = S626_CNTSRC_ENCODER;
833 		/* ClkPol is passed through. */
834 		/* Force ClkMult to x1 if not legal, otherwise pass through. */
835 		clkmult = S626_GET_STD_CLKMULT(setup);
836 		if (clkmult == S626_CLKMULT_SPECIAL)
837 			clkmult = S626_CLKMULT_1X;
838 		break;
839 	}
840 	cra |= S626_SET_CRA_CNTSRC_B(cntsrc);
841 	crb |= S626_SET_CRB_CLKPOL_B(clkpol) | S626_SET_CRB_CLKMULT_B(clkmult);
842 
843 	/*
844 	 * Force positive index polarity if IndxSrc is software-driven only,
845 	 * otherwise pass it through.
846 	 */
847 	if (S626_GET_STD_INDXSRC(setup) != S626_INDXSRC_SOFT)
848 		crb |= S626_SET_CRB_INDXPOL_B(S626_GET_STD_INDXPOL(setup));
849 
850 	/*
851 	 * If IntSrc has been forced to Disabled, update the MISC2 interrupt
852 	 * enable mask to indicate the counter interrupt is disabled.
853 	 */
854 	if (disable_int_src)
855 		devpriv->counter_int_enabs &= ~(S626_OVERMASK(chan) |
856 						S626_INDXMASK(chan));
857 
858 	/*
859 	 * While retaining CounterA and LatchSrc configurations, program the
860 	 * new counter operating mode.
861 	 */
862 	s626_debi_replace(dev, S626_LP_CRA(chan),
863 			  ~(S626_CRAMSK_INDXSRC_B | S626_CRAMSK_CNTSRC_B), cra);
864 	s626_debi_replace(dev, S626_LP_CRB(chan),
865 			  S626_CRBMSK_CLKENAB_A | S626_CRBMSK_LATCHSRC, crb);
866 }
867 
868 static void s626_set_mode(struct comedi_device *dev,
869 			  unsigned int chan,
870 			  u16 setup, u16 disable_int_src)
871 {
872 	if (chan < 3)
873 		s626_set_mode_a(dev, chan, setup, disable_int_src);
874 	else
875 		s626_set_mode_b(dev, chan, setup, disable_int_src);
876 }
877 
878 /*
879  * Return/set a counter's enable.  enab: 0=always enabled, 1=enabled by index.
880  */
881 static void s626_set_enable(struct comedi_device *dev,
882 			    unsigned int chan, u16 enab)
883 {
884 	unsigned int mask = S626_CRBMSK_INTCTRL;
885 	unsigned int set;
886 
887 	if (chan < 3) {
888 		mask |= S626_CRBMSK_CLKENAB_A;
889 		set = S626_SET_CRB_CLKENAB_A(enab);
890 	} else {
891 		mask |= S626_CRBMSK_CLKENAB_B;
892 		set = S626_SET_CRB_CLKENAB_B(enab);
893 	}
894 	s626_debi_replace(dev, S626_LP_CRB(chan), ~mask, set);
895 }
896 
897 /*
898  * Return/set the event that will trigger transfer of the preload
899  * register into the counter.  0=ThisCntr_Index, 1=ThisCntr_Overflow,
900  * 2=OverflowA (B counters only), 3=disabled.
901  */
902 static void s626_set_load_trig(struct comedi_device *dev,
903 			       unsigned int chan, u16 trig)
904 {
905 	u16 reg;
906 	u16 mask;
907 	u16 set;
908 
909 	if (chan < 3) {
910 		reg = S626_LP_CRA(chan);
911 		mask = S626_CRAMSK_LOADSRC_A;
912 		set = S626_SET_CRA_LOADSRC_A(trig);
913 	} else {
914 		reg = S626_LP_CRB(chan);
915 		mask = S626_CRBMSK_LOADSRC_B | S626_CRBMSK_INTCTRL;
916 		set = S626_SET_CRB_LOADSRC_B(trig);
917 	}
918 	s626_debi_replace(dev, reg, ~mask, set);
919 }
920 
921 /*
922  * Return/set counter interrupt source and clear any captured
923  * index/overflow events.  int_source: 0=Disabled, 1=OverflowOnly,
924  * 2=IndexOnly, 3=IndexAndOverflow.
925  */
926 static void s626_set_int_src(struct comedi_device *dev,
927 			     unsigned int chan, u16 int_source)
928 {
929 	struct s626_private *devpriv = dev->private;
930 	u16 cra_reg = S626_LP_CRA(chan);
931 	u16 crb_reg = S626_LP_CRB(chan);
932 
933 	if (chan < 3) {
934 		/* Reset any pending counter overflow or index captures */
935 		s626_debi_replace(dev, crb_reg, ~S626_CRBMSK_INTCTRL,
936 				  S626_SET_CRB_INTRESETCMD(1) |
937 				  S626_SET_CRB_INTRESET_A(1));
938 
939 		/* Program counter interrupt source */
940 		s626_debi_replace(dev, cra_reg, ~S626_CRAMSK_INTSRC_A,
941 				  S626_SET_CRA_INTSRC_A(int_source));
942 	} else {
943 		u16 crb;
944 
945 		/* Cache writeable CRB register image */
946 		crb = s626_debi_read(dev, crb_reg);
947 		crb &= ~S626_CRBMSK_INTCTRL;
948 
949 		/* Reset any pending counter overflow or index captures */
950 		s626_debi_write(dev, crb_reg,
951 				crb | S626_SET_CRB_INTRESETCMD(1) |
952 				S626_SET_CRB_INTRESET_B(1));
953 
954 		/* Program counter interrupt source */
955 		s626_debi_write(dev, crb_reg,
956 				(crb & ~S626_CRBMSK_INTSRC_B) |
957 				S626_SET_CRB_INTSRC_B(int_source));
958 	}
959 
960 	/* Update MISC2 interrupt enable mask. */
961 	devpriv->counter_int_enabs &= ~(S626_OVERMASK(chan) |
962 					S626_INDXMASK(chan));
963 	switch (int_source) {
964 	case 0:
965 	default:
966 		break;
967 	case 1:
968 		devpriv->counter_int_enabs |= S626_OVERMASK(chan);
969 		break;
970 	case 2:
971 		devpriv->counter_int_enabs |= S626_INDXMASK(chan);
972 		break;
973 	case 3:
974 		devpriv->counter_int_enabs |= (S626_OVERMASK(chan) |
975 					       S626_INDXMASK(chan));
976 		break;
977 	}
978 }
979 
980 /*
981  * Generate an index pulse.
982  */
983 static void s626_pulse_index(struct comedi_device *dev,
984 			     unsigned int chan)
985 {
986 	if (chan < 3) {
987 		u16 cra;
988 
989 		cra = s626_debi_read(dev, S626_LP_CRA(chan));
990 
991 		/* Pulse index */
992 		s626_debi_write(dev, S626_LP_CRA(chan),
993 				(cra ^ S626_CRAMSK_INDXPOL_A));
994 		s626_debi_write(dev, S626_LP_CRA(chan), cra);
995 	} else {
996 		u16 crb;
997 
998 		crb = s626_debi_read(dev, S626_LP_CRB(chan));
999 		crb &= ~S626_CRBMSK_INTCTRL;
1000 
1001 		/* Pulse index */
1002 		s626_debi_write(dev, S626_LP_CRB(chan),
1003 				(crb ^ S626_CRBMSK_INDXPOL_B));
1004 		s626_debi_write(dev, S626_LP_CRB(chan), crb);
1005 	}
1006 }
1007 
1008 static unsigned int s626_ai_reg_to_uint(unsigned int data)
1009 {
1010 	return ((data >> 18) & 0x3fff) ^ 0x2000;
1011 }
1012 
1013 static int s626_dio_set_irq(struct comedi_device *dev, unsigned int chan)
1014 {
1015 	unsigned int group = chan / 16;
1016 	unsigned int mask = 1 << (chan - (16 * group));
1017 	unsigned int status;
1018 
1019 	/* set channel to capture positive edge */
1020 	status = s626_debi_read(dev, S626_LP_RDEDGSEL(group));
1021 	s626_debi_write(dev, S626_LP_WREDGSEL(group), mask | status);
1022 
1023 	/* enable interrupt on selected channel */
1024 	status = s626_debi_read(dev, S626_LP_RDINTSEL(group));
1025 	s626_debi_write(dev, S626_LP_WRINTSEL(group), mask | status);
1026 
1027 	/* enable edge capture write command */
1028 	s626_debi_write(dev, S626_LP_MISC1, S626_MISC1_EDCAP);
1029 
1030 	/* enable edge capture on selected channel */
1031 	status = s626_debi_read(dev, S626_LP_RDCAPSEL(group));
1032 	s626_debi_write(dev, S626_LP_WRCAPSEL(group), mask | status);
1033 
1034 	return 0;
1035 }
1036 
1037 static int s626_dio_reset_irq(struct comedi_device *dev, unsigned int group,
1038 			      unsigned int mask)
1039 {
1040 	/* disable edge capture write command */
1041 	s626_debi_write(dev, S626_LP_MISC1, S626_MISC1_NOEDCAP);
1042 
1043 	/* enable edge capture on selected channel */
1044 	s626_debi_write(dev, S626_LP_WRCAPSEL(group), mask);
1045 
1046 	return 0;
1047 }
1048 
1049 static int s626_dio_clear_irq(struct comedi_device *dev)
1050 {
1051 	unsigned int group;
1052 
1053 	/* disable edge capture write command */
1054 	s626_debi_write(dev, S626_LP_MISC1, S626_MISC1_NOEDCAP);
1055 
1056 	/* clear all dio pending events and interrupt */
1057 	for (group = 0; group < S626_DIO_BANKS; group++)
1058 		s626_debi_write(dev, S626_LP_WRCAPSEL(group), 0xffff);
1059 
1060 	return 0;
1061 }
1062 
1063 static void s626_handle_dio_interrupt(struct comedi_device *dev,
1064 				      u16 irqbit, u8 group)
1065 {
1066 	struct s626_private *devpriv = dev->private;
1067 	struct comedi_subdevice *s = dev->read_subdev;
1068 	struct comedi_cmd *cmd = &s->async->cmd;
1069 
1070 	s626_dio_reset_irq(dev, group, irqbit);
1071 
1072 	if (devpriv->ai_cmd_running) {
1073 		/* check if interrupt is an ai acquisition start trigger */
1074 		if ((irqbit >> (cmd->start_arg - (16 * group))) == 1 &&
1075 		    cmd->start_src == TRIG_EXT) {
1076 			/* Start executing the RPS program */
1077 			s626_mc_enable(dev, S626_MC1_ERPS1, S626_P_MC1);
1078 
1079 			if (cmd->scan_begin_src == TRIG_EXT)
1080 				s626_dio_set_irq(dev, cmd->scan_begin_arg);
1081 		}
1082 		if ((irqbit >> (cmd->scan_begin_arg - (16 * group))) == 1 &&
1083 		    cmd->scan_begin_src == TRIG_EXT) {
1084 			/* Trigger ADC scan loop start */
1085 			s626_mc_enable(dev, S626_MC2_ADC_RPS, S626_P_MC2);
1086 
1087 			if (cmd->convert_src == TRIG_EXT) {
1088 				devpriv->ai_convert_count = cmd->chanlist_len;
1089 
1090 				s626_dio_set_irq(dev, cmd->convert_arg);
1091 			}
1092 
1093 			if (cmd->convert_src == TRIG_TIMER) {
1094 				devpriv->ai_convert_count = cmd->chanlist_len;
1095 				s626_set_enable(dev, 5, S626_CLKENAB_ALWAYS);
1096 			}
1097 		}
1098 		if ((irqbit >> (cmd->convert_arg - (16 * group))) == 1 &&
1099 		    cmd->convert_src == TRIG_EXT) {
1100 			/* Trigger ADC scan loop start */
1101 			s626_mc_enable(dev, S626_MC2_ADC_RPS, S626_P_MC2);
1102 
1103 			devpriv->ai_convert_count--;
1104 			if (devpriv->ai_convert_count > 0)
1105 				s626_dio_set_irq(dev, cmd->convert_arg);
1106 		}
1107 	}
1108 }
1109 
1110 static void s626_check_dio_interrupts(struct comedi_device *dev)
1111 {
1112 	u16 irqbit;
1113 	u8 group;
1114 
1115 	for (group = 0; group < S626_DIO_BANKS; group++) {
1116 		/* read interrupt type */
1117 		irqbit = s626_debi_read(dev, S626_LP_RDCAPFLG(group));
1118 
1119 		/* check if interrupt is generated from dio channels */
1120 		if (irqbit) {
1121 			s626_handle_dio_interrupt(dev, irqbit, group);
1122 			return;
1123 		}
1124 	}
1125 }
1126 
1127 static void s626_check_counter_interrupts(struct comedi_device *dev)
1128 {
1129 	struct s626_private *devpriv = dev->private;
1130 	struct comedi_subdevice *s = dev->read_subdev;
1131 	struct comedi_async *async = s->async;
1132 	struct comedi_cmd *cmd = &async->cmd;
1133 	u16 irqbit;
1134 
1135 	/* read interrupt type */
1136 	irqbit = s626_debi_read(dev, S626_LP_RDMISC2);
1137 
1138 	/* check interrupt on counters */
1139 	if (irqbit & S626_IRQ_COINT1A) {
1140 		/* clear interrupt capture flag */
1141 		s626_reset_cap_flags(dev, 0);
1142 	}
1143 	if (irqbit & S626_IRQ_COINT2A) {
1144 		/* clear interrupt capture flag */
1145 		s626_reset_cap_flags(dev, 1);
1146 	}
1147 	if (irqbit & S626_IRQ_COINT3A) {
1148 		/* clear interrupt capture flag */
1149 		s626_reset_cap_flags(dev, 2);
1150 	}
1151 	if (irqbit & S626_IRQ_COINT1B) {
1152 		/* clear interrupt capture flag */
1153 		s626_reset_cap_flags(dev, 3);
1154 	}
1155 	if (irqbit & S626_IRQ_COINT2B) {
1156 		/* clear interrupt capture flag */
1157 		s626_reset_cap_flags(dev, 4);
1158 
1159 		if (devpriv->ai_convert_count > 0) {
1160 			devpriv->ai_convert_count--;
1161 			if (devpriv->ai_convert_count == 0)
1162 				s626_set_enable(dev, 4, S626_CLKENAB_INDEX);
1163 
1164 			if (cmd->convert_src == TRIG_TIMER) {
1165 				/* Trigger ADC scan loop start */
1166 				s626_mc_enable(dev, S626_MC2_ADC_RPS,
1167 					       S626_P_MC2);
1168 			}
1169 		}
1170 	}
1171 	if (irqbit & S626_IRQ_COINT3B) {
1172 		/* clear interrupt capture flag */
1173 		s626_reset_cap_flags(dev, 5);
1174 
1175 		if (cmd->scan_begin_src == TRIG_TIMER) {
1176 			/* Trigger ADC scan loop start */
1177 			s626_mc_enable(dev, S626_MC2_ADC_RPS, S626_P_MC2);
1178 		}
1179 
1180 		if (cmd->convert_src == TRIG_TIMER) {
1181 			devpriv->ai_convert_count = cmd->chanlist_len;
1182 			s626_set_enable(dev, 4, S626_CLKENAB_ALWAYS);
1183 		}
1184 	}
1185 }
1186 
1187 static bool s626_handle_eos_interrupt(struct comedi_device *dev)
1188 {
1189 	struct s626_private *devpriv = dev->private;
1190 	struct comedi_subdevice *s = dev->read_subdev;
1191 	struct comedi_async *async = s->async;
1192 	struct comedi_cmd *cmd = &async->cmd;
1193 	/*
1194 	 * Init ptr to DMA buffer that holds new ADC data.  We skip the
1195 	 * first uint16_t in the buffer because it contains junk data
1196 	 * from the final ADC of the previous poll list scan.
1197 	 */
1198 	u32 *readaddr = (u32 *)devpriv->ana_buf.logical_base + 1;
1199 	int i;
1200 
1201 	/* get the data and hand it over to comedi */
1202 	for (i = 0; i < cmd->chanlist_len; i++) {
1203 		unsigned short tempdata;
1204 
1205 		/*
1206 		 * Convert ADC data to 16-bit integer values and copy
1207 		 * to application buffer.
1208 		 */
1209 		tempdata = s626_ai_reg_to_uint(*readaddr);
1210 		readaddr++;
1211 
1212 		comedi_buf_write_samples(s, &tempdata, 1);
1213 	}
1214 
1215 	if (cmd->stop_src == TRIG_COUNT && async->scans_done >= cmd->stop_arg)
1216 		async->events |= COMEDI_CB_EOA;
1217 
1218 	if (async->events & COMEDI_CB_CANCEL_MASK)
1219 		devpriv->ai_cmd_running = 0;
1220 
1221 	if (devpriv->ai_cmd_running && cmd->scan_begin_src == TRIG_EXT)
1222 		s626_dio_set_irq(dev, cmd->scan_begin_arg);
1223 
1224 	comedi_handle_events(dev, s);
1225 
1226 	return !devpriv->ai_cmd_running;
1227 }
1228 
1229 static irqreturn_t s626_irq_handler(int irq, void *d)
1230 {
1231 	struct comedi_device *dev = d;
1232 	unsigned long flags;
1233 	u32 irqtype, irqstatus;
1234 
1235 	if (!dev->attached)
1236 		return IRQ_NONE;
1237 	/* lock to avoid race with comedi_poll */
1238 	spin_lock_irqsave(&dev->spinlock, flags);
1239 
1240 	/* save interrupt enable register state */
1241 	irqstatus = readl(dev->mmio + S626_P_IER);
1242 
1243 	/* read interrupt type */
1244 	irqtype = readl(dev->mmio + S626_P_ISR);
1245 
1246 	/* disable master interrupt */
1247 	writel(0, dev->mmio + S626_P_IER);
1248 
1249 	/* clear interrupt */
1250 	writel(irqtype, dev->mmio + S626_P_ISR);
1251 
1252 	switch (irqtype) {
1253 	case S626_IRQ_RPS1:	/* end_of_scan occurs */
1254 		if (s626_handle_eos_interrupt(dev))
1255 			irqstatus = 0;
1256 		break;
1257 	case S626_IRQ_GPIO3:	/* check dio and counter interrupt */
1258 		/* s626_dio_clear_irq(dev); */
1259 		s626_check_dio_interrupts(dev);
1260 		s626_check_counter_interrupts(dev);
1261 		break;
1262 	}
1263 
1264 	/* enable interrupt */
1265 	writel(irqstatus, dev->mmio + S626_P_IER);
1266 
1267 	spin_unlock_irqrestore(&dev->spinlock, flags);
1268 	return IRQ_HANDLED;
1269 }
1270 
1271 /*
1272  * This function builds the RPS program for hardware driven acquisition.
1273  */
1274 static void s626_reset_adc(struct comedi_device *dev, u8 *ppl)
1275 {
1276 	struct s626_private *devpriv = dev->private;
1277 	struct comedi_subdevice *s = dev->read_subdev;
1278 	struct comedi_cmd *cmd = &s->async->cmd;
1279 	u32 *rps;
1280 	u32 jmp_adrs;
1281 	u16 i;
1282 	u16 n;
1283 	u32 local_ppl;
1284 
1285 	/* Stop RPS program in case it is currently running */
1286 	s626_mc_disable(dev, S626_MC1_ERPS1, S626_P_MC1);
1287 
1288 	/* Set starting logical address to write RPS commands. */
1289 	rps = (u32 *)devpriv->rps_buf.logical_base;
1290 
1291 	/* Initialize RPS instruction pointer */
1292 	writel((u32)devpriv->rps_buf.physical_base,
1293 	       dev->mmio + S626_P_RPSADDR1);
1294 
1295 	/* Construct RPS program in rps_buf DMA buffer */
1296 	if (cmd->scan_begin_src != TRIG_FOLLOW) {
1297 		/* Wait for Start trigger. */
1298 		*rps++ = S626_RPS_PAUSE | S626_RPS_SIGADC;
1299 		*rps++ = S626_RPS_CLRSIGNAL | S626_RPS_SIGADC;
1300 	}
1301 
1302 	/*
1303 	 * SAA7146 BUG WORKAROUND Do a dummy DEBI Write.  This is necessary
1304 	 * because the first RPS DEBI Write following a non-RPS DEBI write
1305 	 * seems to always fail.  If we don't do this dummy write, the ADC
1306 	 * gain might not be set to the value required for the first slot in
1307 	 * the poll list; the ADC gain would instead remain unchanged from
1308 	 * the previously programmed value.
1309 	 */
1310 	/* Write DEBI Write command and address to shadow RAM. */
1311 	*rps++ = S626_RPS_LDREG | (S626_P_DEBICMD >> 2);
1312 	*rps++ = S626_DEBI_CMD_WRWORD | S626_LP_GSEL;
1313 	*rps++ = S626_RPS_LDREG | (S626_P_DEBIAD >> 2);
1314 	/* Write DEBI immediate data  to shadow RAM: */
1315 	*rps++ = S626_GSEL_BIPOLAR5V;	/* arbitrary immediate data  value. */
1316 	*rps++ = S626_RPS_CLRSIGNAL | S626_RPS_DEBI;
1317 	/* Reset "shadow RAM  uploaded" flag. */
1318 	/* Invoke shadow RAM upload. */
1319 	*rps++ = S626_RPS_UPLOAD | S626_RPS_DEBI;
1320 	/* Wait for shadow upload to finish. */
1321 	*rps++ = S626_RPS_PAUSE | S626_RPS_DEBI;
1322 
1323 	/*
1324 	 * Digitize all slots in the poll list. This is implemented as a
1325 	 * for loop to limit the slot count to 16 in case the application
1326 	 * forgot to set the S626_EOPL flag in the final slot.
1327 	 */
1328 	for (devpriv->adc_items = 0; devpriv->adc_items < 16;
1329 	     devpriv->adc_items++) {
1330 		/*
1331 		 * Convert application's poll list item to private board class
1332 		 * format.  Each app poll list item is an uint8_t with form
1333 		 * (EOPL,x,x,RANGE,CHAN<3:0>), where RANGE code indicates 0 =
1334 		 * +-10V, 1 = +-5V, and EOPL = End of Poll List marker.
1335 		 */
1336 		local_ppl = (*ppl << 8) | (*ppl & 0x10 ? S626_GSEL_BIPOLAR5V :
1337 					   S626_GSEL_BIPOLAR10V);
1338 
1339 		/* Switch ADC analog gain. */
1340 		/* Write DEBI command and address to shadow RAM. */
1341 		*rps++ = S626_RPS_LDREG | (S626_P_DEBICMD >> 2);
1342 		*rps++ = S626_DEBI_CMD_WRWORD | S626_LP_GSEL;
1343 		/* Write DEBI immediate data to shadow RAM. */
1344 		*rps++ = S626_RPS_LDREG | (S626_P_DEBIAD >> 2);
1345 		*rps++ = local_ppl;
1346 		/* Reset "shadow RAM uploaded" flag. */
1347 		*rps++ = S626_RPS_CLRSIGNAL | S626_RPS_DEBI;
1348 		/* Invoke shadow RAM upload. */
1349 		*rps++ = S626_RPS_UPLOAD | S626_RPS_DEBI;
1350 		/* Wait for shadow upload to finish. */
1351 		*rps++ = S626_RPS_PAUSE | S626_RPS_DEBI;
1352 		/* Select ADC analog input channel. */
1353 		*rps++ = S626_RPS_LDREG | (S626_P_DEBICMD >> 2);
1354 		/* Write DEBI command and address to shadow RAM. */
1355 		*rps++ = S626_DEBI_CMD_WRWORD | S626_LP_ISEL;
1356 		*rps++ = S626_RPS_LDREG | (S626_P_DEBIAD >> 2);
1357 		/* Write DEBI immediate data to shadow RAM. */
1358 		*rps++ = local_ppl;
1359 		/* Reset "shadow RAM uploaded" flag. */
1360 		*rps++ = S626_RPS_CLRSIGNAL | S626_RPS_DEBI;
1361 		/* Invoke shadow RAM upload. */
1362 		*rps++ = S626_RPS_UPLOAD | S626_RPS_DEBI;
1363 		/* Wait for shadow upload to finish. */
1364 		*rps++ = S626_RPS_PAUSE | S626_RPS_DEBI;
1365 
1366 		/*
1367 		 * Delay at least 10 microseconds for analog input settling.
1368 		 * Instead of padding with NOPs, we use S626_RPS_JUMP
1369 		 * instructions here; this allows us to produce a longer delay
1370 		 * than is possible with NOPs because each S626_RPS_JUMP
1371 		 * flushes the RPS' instruction prefetch pipeline.
1372 		 */
1373 		jmp_adrs =
1374 			(u32)devpriv->rps_buf.physical_base +
1375 			(u32)((unsigned long)rps -
1376 			      (unsigned long)devpriv->rps_buf.logical_base);
1377 		for (i = 0; i < (10 * S626_RPSCLK_PER_US / 2); i++) {
1378 			jmp_adrs += 8;	/* Repeat to implement time delay: */
1379 			/* Jump to next RPS instruction. */
1380 			*rps++ = S626_RPS_JUMP;
1381 			*rps++ = jmp_adrs;
1382 		}
1383 
1384 		if (cmd->convert_src != TRIG_NOW) {
1385 			/* Wait for Start trigger. */
1386 			*rps++ = S626_RPS_PAUSE | S626_RPS_SIGADC;
1387 			*rps++ = S626_RPS_CLRSIGNAL | S626_RPS_SIGADC;
1388 		}
1389 		/* Start ADC by pulsing GPIO1. */
1390 		/* Begin ADC Start pulse. */
1391 		*rps++ = S626_RPS_LDREG | (S626_P_GPIO >> 2);
1392 		*rps++ = S626_GPIO_BASE | S626_GPIO1_LO;
1393 		*rps++ = S626_RPS_NOP;
1394 		/* VERSION 2.03 CHANGE: STRETCH OUT ADC START PULSE. */
1395 		/* End ADC Start pulse. */
1396 		*rps++ = S626_RPS_LDREG | (S626_P_GPIO >> 2);
1397 		*rps++ = S626_GPIO_BASE | S626_GPIO1_HI;
1398 		/*
1399 		 * Wait for ADC to complete (GPIO2 is asserted high when ADC not
1400 		 * busy) and for data from previous conversion to shift into FB
1401 		 * BUFFER 1 register.
1402 		 */
1403 		/* Wait for ADC done. */
1404 		*rps++ = S626_RPS_PAUSE | S626_RPS_GPIO2;
1405 
1406 		/* Transfer ADC data from FB BUFFER 1 register to DMA buffer. */
1407 		*rps++ = S626_RPS_STREG |
1408 			 (S626_BUGFIX_STREG(S626_P_FB_BUFFER1) >> 2);
1409 		*rps++ = (u32)devpriv->ana_buf.physical_base +
1410 			 (devpriv->adc_items << 2);
1411 
1412 		/*
1413 		 * If this slot's EndOfPollList flag is set, all channels have
1414 		 * now been processed.
1415 		 */
1416 		if (*ppl++ & S626_EOPL) {
1417 			devpriv->adc_items++; /* Adjust poll list item count. */
1418 			break;	/* Exit poll list processing loop. */
1419 		}
1420 	}
1421 
1422 	/*
1423 	 * VERSION 2.01 CHANGE: DELAY CHANGED FROM 250NS to 2US.  Allow the
1424 	 * ADC to stabilize for 2 microseconds before starting the final
1425 	 * (dummy) conversion.  This delay is necessary to allow sufficient
1426 	 * time between last conversion finished and the start of the dummy
1427 	 * conversion.  Without this delay, the last conversion's data value
1428 	 * is sometimes set to the previous conversion's data value.
1429 	 */
1430 	for (n = 0; n < (2 * S626_RPSCLK_PER_US); n++)
1431 		*rps++ = S626_RPS_NOP;
1432 
1433 	/*
1434 	 * Start a dummy conversion to cause the data from the last
1435 	 * conversion of interest to be shifted in.
1436 	 */
1437 	/* Begin ADC Start pulse. */
1438 	*rps++ = S626_RPS_LDREG | (S626_P_GPIO >> 2);
1439 	*rps++ = S626_GPIO_BASE | S626_GPIO1_LO;
1440 	*rps++ = S626_RPS_NOP;
1441 	/* VERSION 2.03 CHANGE: STRETCH OUT ADC START PULSE. */
1442 	*rps++ = S626_RPS_LDREG | (S626_P_GPIO >> 2); /* End ADC Start pulse. */
1443 	*rps++ = S626_GPIO_BASE | S626_GPIO1_HI;
1444 
1445 	/*
1446 	 * Wait for the data from the last conversion of interest to arrive
1447 	 * in FB BUFFER 1 register.
1448 	 */
1449 	*rps++ = S626_RPS_PAUSE | S626_RPS_GPIO2;	/* Wait for ADC done. */
1450 
1451 	/* Transfer final ADC data from FB BUFFER 1 register to DMA buffer. */
1452 	*rps++ = S626_RPS_STREG | (S626_BUGFIX_STREG(S626_P_FB_BUFFER1) >> 2);
1453 	*rps++ = (u32)devpriv->ana_buf.physical_base +
1454 		 (devpriv->adc_items << 2);
1455 
1456 	/* Indicate ADC scan loop is finished. */
1457 	/* Signal ReadADC() that scan is done. */
1458 	/* *rps++= S626_RPS_CLRSIGNAL | S626_RPS_SIGADC; */
1459 
1460 	/* invoke interrupt */
1461 	if (devpriv->ai_cmd_running == 1)
1462 		*rps++ = S626_RPS_IRQ;
1463 
1464 	/* Restart RPS program at its beginning. */
1465 	*rps++ = S626_RPS_JUMP;	/* Branch to start of RPS program. */
1466 	*rps++ = (u32)devpriv->rps_buf.physical_base;
1467 
1468 	/* End of RPS program build */
1469 }
1470 
1471 static int s626_ai_eoc(struct comedi_device *dev,
1472 		       struct comedi_subdevice *s,
1473 		       struct comedi_insn *insn,
1474 		       unsigned long context)
1475 {
1476 	unsigned int status;
1477 
1478 	status = readl(dev->mmio + S626_P_PSR);
1479 	if (status & S626_PSR_GPIO2)
1480 		return 0;
1481 	return -EBUSY;
1482 }
1483 
1484 static int s626_ai_insn_read(struct comedi_device *dev,
1485 			     struct comedi_subdevice *s,
1486 			     struct comedi_insn *insn,
1487 			     unsigned int *data)
1488 {
1489 	u16 chan = CR_CHAN(insn->chanspec);
1490 	u16 range = CR_RANGE(insn->chanspec);
1491 	u16 adc_spec = 0;
1492 	u32 gpio_image;
1493 	u32 tmp;
1494 	int ret;
1495 	int n;
1496 
1497 	/*
1498 	 * Convert application's ADC specification into form
1499 	 *  appropriate for register programming.
1500 	 */
1501 	if (range == 0)
1502 		adc_spec = (chan << 8) | (S626_GSEL_BIPOLAR5V);
1503 	else
1504 		adc_spec = (chan << 8) | (S626_GSEL_BIPOLAR10V);
1505 
1506 	/* Switch ADC analog gain. */
1507 	s626_debi_write(dev, S626_LP_GSEL, adc_spec);	/* Set gain. */
1508 
1509 	/* Select ADC analog input channel. */
1510 	s626_debi_write(dev, S626_LP_ISEL, adc_spec);	/* Select channel. */
1511 
1512 	for (n = 0; n < insn->n; n++) {
1513 		/* Delay 10 microseconds for analog input settling. */
1514 		usleep_range(10, 20);
1515 
1516 		/* Start ADC by pulsing GPIO1 low */
1517 		gpio_image = readl(dev->mmio + S626_P_GPIO);
1518 		/* Assert ADC Start command */
1519 		writel(gpio_image & ~S626_GPIO1_HI, dev->mmio + S626_P_GPIO);
1520 		/* and stretch it out */
1521 		writel(gpio_image & ~S626_GPIO1_HI, dev->mmio + S626_P_GPIO);
1522 		writel(gpio_image & ~S626_GPIO1_HI, dev->mmio + S626_P_GPIO);
1523 		/* Negate ADC Start command */
1524 		writel(gpio_image | S626_GPIO1_HI, dev->mmio + S626_P_GPIO);
1525 
1526 		/*
1527 		 * Wait for ADC to complete (GPIO2 is asserted high when
1528 		 * ADC not busy) and for data from previous conversion to
1529 		 * shift into FB BUFFER 1 register.
1530 		 */
1531 
1532 		/* Wait for ADC done */
1533 		ret = comedi_timeout(dev, s, insn, s626_ai_eoc, 0);
1534 		if (ret)
1535 			return ret;
1536 
1537 		/* Fetch ADC data */
1538 		if (n != 0) {
1539 			tmp = readl(dev->mmio + S626_P_FB_BUFFER1);
1540 			data[n - 1] = s626_ai_reg_to_uint(tmp);
1541 		}
1542 
1543 		/*
1544 		 * Allow the ADC to stabilize for 4 microseconds before
1545 		 * starting the next (final) conversion.  This delay is
1546 		 * necessary to allow sufficient time between last
1547 		 * conversion finished and the start of the next
1548 		 * conversion.  Without this delay, the last conversion's
1549 		 * data value is sometimes set to the previous
1550 		 * conversion's data value.
1551 		 */
1552 		udelay(4);
1553 	}
1554 
1555 	/*
1556 	 * Start a dummy conversion to cause the data from the
1557 	 * previous conversion to be shifted in.
1558 	 */
1559 	gpio_image = readl(dev->mmio + S626_P_GPIO);
1560 	/* Assert ADC Start command */
1561 	writel(gpio_image & ~S626_GPIO1_HI, dev->mmio + S626_P_GPIO);
1562 	/* and stretch it out */
1563 	writel(gpio_image & ~S626_GPIO1_HI, dev->mmio + S626_P_GPIO);
1564 	writel(gpio_image & ~S626_GPIO1_HI, dev->mmio + S626_P_GPIO);
1565 	/* Negate ADC Start command */
1566 	writel(gpio_image | S626_GPIO1_HI, dev->mmio + S626_P_GPIO);
1567 
1568 	/* Wait for the data to arrive in FB BUFFER 1 register. */
1569 
1570 	/* Wait for ADC done */
1571 	ret = comedi_timeout(dev, s, insn, s626_ai_eoc, 0);
1572 	if (ret)
1573 		return ret;
1574 
1575 	/* Fetch ADC data from audio interface's input shift register. */
1576 
1577 	/* Fetch ADC data */
1578 	if (n != 0) {
1579 		tmp = readl(dev->mmio + S626_P_FB_BUFFER1);
1580 		data[n - 1] = s626_ai_reg_to_uint(tmp);
1581 	}
1582 
1583 	return n;
1584 }
1585 
1586 static int s626_ai_load_polllist(u8 *ppl, struct comedi_cmd *cmd)
1587 {
1588 	int n;
1589 
1590 	for (n = 0; n < cmd->chanlist_len; n++) {
1591 		if (CR_RANGE(cmd->chanlist[n]) == 0)
1592 			ppl[n] = CR_CHAN(cmd->chanlist[n]) | S626_RANGE_5V;
1593 		else
1594 			ppl[n] = CR_CHAN(cmd->chanlist[n]) | S626_RANGE_10V;
1595 	}
1596 	if (n != 0)
1597 		ppl[n - 1] |= S626_EOPL;
1598 
1599 	return n;
1600 }
1601 
1602 static int s626_ai_inttrig(struct comedi_device *dev,
1603 			   struct comedi_subdevice *s,
1604 			   unsigned int trig_num)
1605 {
1606 	struct comedi_cmd *cmd = &s->async->cmd;
1607 
1608 	if (trig_num != cmd->start_arg)
1609 		return -EINVAL;
1610 
1611 	/* Start executing the RPS program */
1612 	s626_mc_enable(dev, S626_MC1_ERPS1, S626_P_MC1);
1613 
1614 	s->async->inttrig = NULL;
1615 
1616 	return 1;
1617 }
1618 
1619 /*
1620  * This function doesn't require a particular form, this is just what
1621  * happens to be used in some of the drivers.  It should convert ns
1622  * nanoseconds to a counter value suitable for programming the device.
1623  * Also, it should adjust ns so that it cooresponds to the actual time
1624  * that the device will use.
1625  */
1626 static int s626_ns_to_timer(unsigned int *nanosec, unsigned int flags)
1627 {
1628 	int divider, base;
1629 
1630 	base = 500;		/* 2MHz internal clock */
1631 
1632 	switch (flags & CMDF_ROUND_MASK) {
1633 	case CMDF_ROUND_NEAREST:
1634 	default:
1635 		divider = DIV_ROUND_CLOSEST(*nanosec, base);
1636 		break;
1637 	case CMDF_ROUND_DOWN:
1638 		divider = (*nanosec) / base;
1639 		break;
1640 	case CMDF_ROUND_UP:
1641 		divider = DIV_ROUND_UP(*nanosec, base);
1642 		break;
1643 	}
1644 
1645 	*nanosec = base * divider;
1646 	return divider - 1;
1647 }
1648 
1649 static void s626_timer_load(struct comedi_device *dev,
1650 			    unsigned int chan, int tick)
1651 {
1652 	u16 setup =
1653 		/* Preload upon index. */
1654 		S626_SET_STD_LOADSRC(S626_LOADSRC_INDX) |
1655 		/* Disable hardware index. */
1656 		S626_SET_STD_INDXSRC(S626_INDXSRC_SOFT) |
1657 		/* Operating mode is Timer. */
1658 		S626_SET_STD_ENCMODE(S626_ENCMODE_TIMER) |
1659 		/* Count direction is Down. */
1660 		S626_SET_STD_CLKPOL(S626_CNTDIR_DOWN) |
1661 		/* Clock multiplier is 1x. */
1662 		S626_SET_STD_CLKMULT(S626_CLKMULT_1X) |
1663 		/* Enabled by index */
1664 		S626_SET_STD_CLKENAB(S626_CLKENAB_INDEX);
1665 	u16 value_latchsrc = S626_LATCHSRC_A_INDXA;
1666 	/* uint16_t enab = S626_CLKENAB_ALWAYS; */
1667 
1668 	s626_set_mode(dev, chan, setup, false);
1669 
1670 	/* Set the preload register */
1671 	s626_preload(dev, chan, tick);
1672 
1673 	/*
1674 	 * Software index pulse forces the preload register to load
1675 	 * into the counter
1676 	 */
1677 	s626_set_load_trig(dev, chan, 0);
1678 	s626_pulse_index(dev, chan);
1679 
1680 	/* set reload on counter overflow */
1681 	s626_set_load_trig(dev, chan, 1);
1682 
1683 	/* set interrupt on overflow */
1684 	s626_set_int_src(dev, chan, S626_INTSRC_OVER);
1685 
1686 	s626_set_latch_source(dev, chan, value_latchsrc);
1687 	/* s626_set_enable(dev, chan, (uint16_t)(enab != 0)); */
1688 }
1689 
1690 /* TO COMPLETE  */
1691 static int s626_ai_cmd(struct comedi_device *dev, struct comedi_subdevice *s)
1692 {
1693 	struct s626_private *devpriv = dev->private;
1694 	u8 ppl[16];
1695 	struct comedi_cmd *cmd = &s->async->cmd;
1696 	int tick;
1697 
1698 	if (devpriv->ai_cmd_running) {
1699 		dev_err(dev->class_dev,
1700 			"%s: Another ai_cmd is running\n", __func__);
1701 		return -EBUSY;
1702 	}
1703 	/* disable interrupt */
1704 	writel(0, dev->mmio + S626_P_IER);
1705 
1706 	/* clear interrupt request */
1707 	writel(S626_IRQ_RPS1 | S626_IRQ_GPIO3, dev->mmio + S626_P_ISR);
1708 
1709 	/* clear any pending interrupt */
1710 	s626_dio_clear_irq(dev);
1711 	/* s626_enc_clear_irq(dev); */
1712 
1713 	/* reset ai_cmd_running flag */
1714 	devpriv->ai_cmd_running = 0;
1715 
1716 	s626_ai_load_polllist(ppl, cmd);
1717 	devpriv->ai_cmd_running = 1;
1718 	devpriv->ai_convert_count = 0;
1719 
1720 	switch (cmd->scan_begin_src) {
1721 	case TRIG_FOLLOW:
1722 		break;
1723 	case TRIG_TIMER:
1724 		/*
1725 		 * set a counter to generate adc trigger at scan_begin_arg
1726 		 * interval
1727 		 */
1728 		tick = s626_ns_to_timer(&cmd->scan_begin_arg, cmd->flags);
1729 
1730 		/* load timer value and enable interrupt */
1731 		s626_timer_load(dev, 5, tick);
1732 		s626_set_enable(dev, 5, S626_CLKENAB_ALWAYS);
1733 		break;
1734 	case TRIG_EXT:
1735 		/* set the digital line and interrupt for scan trigger */
1736 		if (cmd->start_src != TRIG_EXT)
1737 			s626_dio_set_irq(dev, cmd->scan_begin_arg);
1738 		break;
1739 	}
1740 
1741 	switch (cmd->convert_src) {
1742 	case TRIG_NOW:
1743 		break;
1744 	case TRIG_TIMER:
1745 		/*
1746 		 * set a counter to generate adc trigger at convert_arg
1747 		 * interval
1748 		 */
1749 		tick = s626_ns_to_timer(&cmd->convert_arg, cmd->flags);
1750 
1751 		/* load timer value and enable interrupt */
1752 		s626_timer_load(dev, 4, tick);
1753 		s626_set_enable(dev, 4, S626_CLKENAB_INDEX);
1754 		break;
1755 	case TRIG_EXT:
1756 		/* set the digital line and interrupt for convert trigger */
1757 		if (cmd->scan_begin_src != TRIG_EXT &&
1758 		    cmd->start_src == TRIG_EXT)
1759 			s626_dio_set_irq(dev, cmd->convert_arg);
1760 		break;
1761 	}
1762 
1763 	s626_reset_adc(dev, ppl);
1764 
1765 	switch (cmd->start_src) {
1766 	case TRIG_NOW:
1767 		/* Trigger ADC scan loop start */
1768 		/* s626_mc_enable(dev, S626_MC2_ADC_RPS, S626_P_MC2); */
1769 
1770 		/* Start executing the RPS program */
1771 		s626_mc_enable(dev, S626_MC1_ERPS1, S626_P_MC1);
1772 		s->async->inttrig = NULL;
1773 		break;
1774 	case TRIG_EXT:
1775 		/* configure DIO channel for acquisition trigger */
1776 		s626_dio_set_irq(dev, cmd->start_arg);
1777 		s->async->inttrig = NULL;
1778 		break;
1779 	case TRIG_INT:
1780 		s->async->inttrig = s626_ai_inttrig;
1781 		break;
1782 	}
1783 
1784 	/* enable interrupt */
1785 	writel(S626_IRQ_GPIO3 | S626_IRQ_RPS1, dev->mmio + S626_P_IER);
1786 
1787 	return 0;
1788 }
1789 
1790 static int s626_ai_cmdtest(struct comedi_device *dev,
1791 			   struct comedi_subdevice *s, struct comedi_cmd *cmd)
1792 {
1793 	int err = 0;
1794 	unsigned int arg;
1795 
1796 	/* Step 1 : check if triggers are trivially valid */
1797 
1798 	err |= comedi_check_trigger_src(&cmd->start_src,
1799 					TRIG_NOW | TRIG_INT | TRIG_EXT);
1800 	err |= comedi_check_trigger_src(&cmd->scan_begin_src,
1801 					TRIG_TIMER | TRIG_EXT | TRIG_FOLLOW);
1802 	err |= comedi_check_trigger_src(&cmd->convert_src,
1803 					TRIG_TIMER | TRIG_EXT | TRIG_NOW);
1804 	err |= comedi_check_trigger_src(&cmd->scan_end_src, TRIG_COUNT);
1805 	err |= comedi_check_trigger_src(&cmd->stop_src, TRIG_COUNT | TRIG_NONE);
1806 
1807 	if (err)
1808 		return 1;
1809 
1810 	/* Step 2a : make sure trigger sources are unique */
1811 
1812 	err |= comedi_check_trigger_is_unique(cmd->start_src);
1813 	err |= comedi_check_trigger_is_unique(cmd->scan_begin_src);
1814 	err |= comedi_check_trigger_is_unique(cmd->convert_src);
1815 	err |= comedi_check_trigger_is_unique(cmd->stop_src);
1816 
1817 	/* Step 2b : and mutually compatible */
1818 
1819 	if (err)
1820 		return 2;
1821 
1822 	/* Step 3: check if arguments are trivially valid */
1823 
1824 	switch (cmd->start_src) {
1825 	case TRIG_NOW:
1826 	case TRIG_INT:
1827 		err |= comedi_check_trigger_arg_is(&cmd->start_arg, 0);
1828 		break;
1829 	case TRIG_EXT:
1830 		err |= comedi_check_trigger_arg_max(&cmd->start_arg, 39);
1831 		break;
1832 	}
1833 
1834 	if (cmd->scan_begin_src == TRIG_EXT)
1835 		err |= comedi_check_trigger_arg_max(&cmd->scan_begin_arg, 39);
1836 	if (cmd->convert_src == TRIG_EXT)
1837 		err |= comedi_check_trigger_arg_max(&cmd->convert_arg, 39);
1838 
1839 #define S626_MAX_SPEED	200000	/* in nanoseconds */
1840 #define S626_MIN_SPEED	2000000000	/* in nanoseconds */
1841 
1842 	if (cmd->scan_begin_src == TRIG_TIMER) {
1843 		err |= comedi_check_trigger_arg_min(&cmd->scan_begin_arg,
1844 						    S626_MAX_SPEED);
1845 		err |= comedi_check_trigger_arg_max(&cmd->scan_begin_arg,
1846 						    S626_MIN_SPEED);
1847 	} else {
1848 		/*
1849 		 * external trigger
1850 		 * should be level/edge, hi/lo specification here
1851 		 * should specify multiple external triggers
1852 		 * err |= comedi_check_trigger_arg_max(&cmd->scan_begin_arg, 9);
1853 		 */
1854 	}
1855 	if (cmd->convert_src == TRIG_TIMER) {
1856 		err |= comedi_check_trigger_arg_min(&cmd->convert_arg,
1857 						    S626_MAX_SPEED);
1858 		err |= comedi_check_trigger_arg_max(&cmd->convert_arg,
1859 						    S626_MIN_SPEED);
1860 	} else {
1861 		/*
1862 		 * external trigger - see above
1863 		 * err |= comedi_check_trigger_arg_max(&cmd->scan_begin_arg, 9);
1864 		 */
1865 	}
1866 
1867 	err |= comedi_check_trigger_arg_is(&cmd->scan_end_arg,
1868 					   cmd->chanlist_len);
1869 
1870 	if (cmd->stop_src == TRIG_COUNT)
1871 		err |= comedi_check_trigger_arg_min(&cmd->stop_arg, 1);
1872 	else	/* TRIG_NONE */
1873 		err |= comedi_check_trigger_arg_is(&cmd->stop_arg, 0);
1874 
1875 	if (err)
1876 		return 3;
1877 
1878 	/* step 4: fix up any arguments */
1879 
1880 	if (cmd->scan_begin_src == TRIG_TIMER) {
1881 		arg = cmd->scan_begin_arg;
1882 		s626_ns_to_timer(&arg, cmd->flags);
1883 		err |= comedi_check_trigger_arg_is(&cmd->scan_begin_arg, arg);
1884 	}
1885 
1886 	if (cmd->convert_src == TRIG_TIMER) {
1887 		arg = cmd->convert_arg;
1888 		s626_ns_to_timer(&arg, cmd->flags);
1889 		err |= comedi_check_trigger_arg_is(&cmd->convert_arg, arg);
1890 
1891 		if (cmd->scan_begin_src == TRIG_TIMER) {
1892 			arg = cmd->convert_arg * cmd->scan_end_arg;
1893 			err |= comedi_check_trigger_arg_min(
1894 					&cmd->scan_begin_arg, arg);
1895 		}
1896 	}
1897 
1898 	if (err)
1899 		return 4;
1900 
1901 	return 0;
1902 }
1903 
1904 static int s626_ai_cancel(struct comedi_device *dev, struct comedi_subdevice *s)
1905 {
1906 	struct s626_private *devpriv = dev->private;
1907 
1908 	/* Stop RPS program in case it is currently running */
1909 	s626_mc_disable(dev, S626_MC1_ERPS1, S626_P_MC1);
1910 
1911 	/* disable master interrupt */
1912 	writel(0, dev->mmio + S626_P_IER);
1913 
1914 	devpriv->ai_cmd_running = 0;
1915 
1916 	return 0;
1917 }
1918 
1919 static int s626_ao_insn_write(struct comedi_device *dev,
1920 			      struct comedi_subdevice *s,
1921 			      struct comedi_insn *insn,
1922 			      unsigned int *data)
1923 {
1924 	unsigned int chan = CR_CHAN(insn->chanspec);
1925 	int i;
1926 
1927 	for (i = 0; i < insn->n; i++) {
1928 		s16 dacdata = (s16)data[i];
1929 		int ret;
1930 
1931 		dacdata -= (0x1fff);
1932 
1933 		ret = s626_set_dac(dev, chan, dacdata);
1934 		if (ret)
1935 			return ret;
1936 
1937 		s->readback[chan] = data[i];
1938 	}
1939 
1940 	return insn->n;
1941 }
1942 
1943 /* *************** DIGITAL I/O FUNCTIONS *************** */
1944 
1945 /*
1946  * All DIO functions address a group of DIO channels by means of
1947  * "group" argument.  group may be 0, 1 or 2, which correspond to DIO
1948  * ports A, B and C, respectively.
1949  */
1950 
1951 static void s626_dio_init(struct comedi_device *dev)
1952 {
1953 	u16 group;
1954 
1955 	/* Prepare to treat writes to WRCapSel as capture disables. */
1956 	s626_debi_write(dev, S626_LP_MISC1, S626_MISC1_NOEDCAP);
1957 
1958 	/* For each group of sixteen channels ... */
1959 	for (group = 0; group < S626_DIO_BANKS; group++) {
1960 		/* Disable all interrupts */
1961 		s626_debi_write(dev, S626_LP_WRINTSEL(group), 0);
1962 		/* Disable all event captures */
1963 		s626_debi_write(dev, S626_LP_WRCAPSEL(group), 0xffff);
1964 		/* Init all DIOs to default edge polarity */
1965 		s626_debi_write(dev, S626_LP_WREDGSEL(group), 0);
1966 		/* Program all outputs to inactive state */
1967 		s626_debi_write(dev, S626_LP_WRDOUT(group), 0);
1968 	}
1969 }
1970 
1971 static int s626_dio_insn_bits(struct comedi_device *dev,
1972 			      struct comedi_subdevice *s,
1973 			      struct comedi_insn *insn,
1974 			      unsigned int *data)
1975 {
1976 	unsigned long group = (unsigned long)s->private;
1977 
1978 	if (comedi_dio_update_state(s, data))
1979 		s626_debi_write(dev, S626_LP_WRDOUT(group), s->state);
1980 
1981 	data[1] = s626_debi_read(dev, S626_LP_RDDIN(group));
1982 
1983 	return insn->n;
1984 }
1985 
1986 static int s626_dio_insn_config(struct comedi_device *dev,
1987 				struct comedi_subdevice *s,
1988 				struct comedi_insn *insn,
1989 				unsigned int *data)
1990 {
1991 	unsigned long group = (unsigned long)s->private;
1992 	int ret;
1993 
1994 	ret = comedi_dio_insn_config(dev, s, insn, data, 0);
1995 	if (ret)
1996 		return ret;
1997 
1998 	s626_debi_write(dev, S626_LP_WRDOUT(group), s->io_bits);
1999 
2000 	return insn->n;
2001 }
2002 
2003 /*
2004  * Now this function initializes the value of the counter (data[0])
2005  * and set the subdevice. To complete with trigger and interrupt
2006  * configuration.
2007  *
2008  * FIXME: data[0] is supposed to be an INSN_CONFIG_xxx constant indicating
2009  * what is being configured, but this function appears to be using data[0]
2010  * as a variable.
2011  */
2012 static int s626_enc_insn_config(struct comedi_device *dev,
2013 				struct comedi_subdevice *s,
2014 				struct comedi_insn *insn, unsigned int *data)
2015 {
2016 	unsigned int chan = CR_CHAN(insn->chanspec);
2017 	u16 setup =
2018 		/* Preload upon index. */
2019 		S626_SET_STD_LOADSRC(S626_LOADSRC_INDX) |
2020 		/* Disable hardware index. */
2021 		S626_SET_STD_INDXSRC(S626_INDXSRC_SOFT) |
2022 		/* Operating mode is Counter. */
2023 		S626_SET_STD_ENCMODE(S626_ENCMODE_COUNTER) |
2024 		/* Active high clock. */
2025 		S626_SET_STD_CLKPOL(S626_CLKPOL_POS) |
2026 		/* Clock multiplier is 1x. */
2027 		S626_SET_STD_CLKMULT(S626_CLKMULT_1X) |
2028 		/* Enabled by index */
2029 		S626_SET_STD_CLKENAB(S626_CLKENAB_INDEX);
2030 	/* uint16_t disable_int_src = true; */
2031 	/* uint32_t Preloadvalue;              //Counter initial value */
2032 	u16 value_latchsrc = S626_LATCHSRC_AB_READ;
2033 	u16 enab = S626_CLKENAB_ALWAYS;
2034 
2035 	/* (data==NULL) ? (Preloadvalue=0) : (Preloadvalue=data[0]); */
2036 
2037 	s626_set_mode(dev, chan, setup, true);
2038 	s626_preload(dev, chan, data[0]);
2039 	s626_pulse_index(dev, chan);
2040 	s626_set_latch_source(dev, chan, value_latchsrc);
2041 	s626_set_enable(dev, chan, (enab != 0));
2042 
2043 	return insn->n;
2044 }
2045 
2046 static int s626_enc_insn_read(struct comedi_device *dev,
2047 			      struct comedi_subdevice *s,
2048 			      struct comedi_insn *insn,
2049 			      unsigned int *data)
2050 {
2051 	unsigned int chan = CR_CHAN(insn->chanspec);
2052 	u16 cntr_latch_reg = S626_LP_CNTR(chan);
2053 	int i;
2054 
2055 	for (i = 0; i < insn->n; i++) {
2056 		unsigned int val;
2057 
2058 		/*
2059 		 * Read the counter's output latch LSW/MSW.
2060 		 * Latches on LSW read.
2061 		 */
2062 		val = s626_debi_read(dev, cntr_latch_reg);
2063 		val |= (s626_debi_read(dev, cntr_latch_reg + 2) << 16);
2064 		data[i] = val;
2065 	}
2066 
2067 	return insn->n;
2068 }
2069 
2070 static int s626_enc_insn_write(struct comedi_device *dev,
2071 			       struct comedi_subdevice *s,
2072 			       struct comedi_insn *insn, unsigned int *data)
2073 {
2074 	unsigned int chan = CR_CHAN(insn->chanspec);
2075 
2076 	/* Set the preload register */
2077 	s626_preload(dev, chan, data[0]);
2078 
2079 	/*
2080 	 * Software index pulse forces the preload register to load
2081 	 * into the counter
2082 	 */
2083 	s626_set_load_trig(dev, chan, 0);
2084 	s626_pulse_index(dev, chan);
2085 	s626_set_load_trig(dev, chan, 2);
2086 
2087 	return 1;
2088 }
2089 
2090 static void s626_write_misc2(struct comedi_device *dev, u16 new_image)
2091 {
2092 	s626_debi_write(dev, S626_LP_MISC1, S626_MISC1_WENABLE);
2093 	s626_debi_write(dev, S626_LP_WRMISC2, new_image);
2094 	s626_debi_write(dev, S626_LP_MISC1, S626_MISC1_WDISABLE);
2095 }
2096 
2097 static void s626_counters_init(struct comedi_device *dev)
2098 {
2099 	int chan;
2100 	u16 setup =
2101 		/* Preload upon index. */
2102 		S626_SET_STD_LOADSRC(S626_LOADSRC_INDX) |
2103 		/* Disable hardware index. */
2104 		S626_SET_STD_INDXSRC(S626_INDXSRC_SOFT) |
2105 		/* Operating mode is counter. */
2106 		S626_SET_STD_ENCMODE(S626_ENCMODE_COUNTER) |
2107 		/* Active high clock. */
2108 		S626_SET_STD_CLKPOL(S626_CLKPOL_POS) |
2109 		/* Clock multiplier is 1x. */
2110 		S626_SET_STD_CLKMULT(S626_CLKMULT_1X) |
2111 		/* Enabled by index */
2112 		S626_SET_STD_CLKENAB(S626_CLKENAB_INDEX);
2113 
2114 	/*
2115 	 * Disable all counter interrupts and clear any captured counter events.
2116 	 */
2117 	for (chan = 0; chan < S626_ENCODER_CHANNELS; chan++) {
2118 		s626_set_mode(dev, chan, setup, true);
2119 		s626_set_int_src(dev, chan, 0);
2120 		s626_reset_cap_flags(dev, chan);
2121 		s626_set_enable(dev, chan, S626_CLKENAB_ALWAYS);
2122 	}
2123 }
2124 
2125 static int s626_allocate_dma_buffers(struct comedi_device *dev)
2126 {
2127 	struct pci_dev *pcidev = comedi_to_pci_dev(dev);
2128 	struct s626_private *devpriv = dev->private;
2129 	void *addr;
2130 	dma_addr_t appdma;
2131 
2132 	addr = dma_alloc_coherent(&pcidev->dev, S626_DMABUF_SIZE, &appdma,
2133 				  GFP_KERNEL);
2134 	if (!addr)
2135 		return -ENOMEM;
2136 	devpriv->ana_buf.logical_base = addr;
2137 	devpriv->ana_buf.physical_base = appdma;
2138 
2139 	addr = dma_alloc_coherent(&pcidev->dev, S626_DMABUF_SIZE, &appdma,
2140 				  GFP_KERNEL);
2141 	if (!addr)
2142 		return -ENOMEM;
2143 	devpriv->rps_buf.logical_base = addr;
2144 	devpriv->rps_buf.physical_base = appdma;
2145 
2146 	return 0;
2147 }
2148 
2149 static void s626_free_dma_buffers(struct comedi_device *dev)
2150 {
2151 	struct pci_dev *pcidev = comedi_to_pci_dev(dev);
2152 	struct s626_private *devpriv = dev->private;
2153 
2154 	if (!devpriv)
2155 		return;
2156 
2157 	if (devpriv->rps_buf.logical_base)
2158 		dma_free_coherent(&pcidev->dev, S626_DMABUF_SIZE,
2159 				  devpriv->rps_buf.logical_base,
2160 				  devpriv->rps_buf.physical_base);
2161 	if (devpriv->ana_buf.logical_base)
2162 		dma_free_coherent(&pcidev->dev, S626_DMABUF_SIZE,
2163 				  devpriv->ana_buf.logical_base,
2164 				  devpriv->ana_buf.physical_base);
2165 }
2166 
2167 static int s626_initialize(struct comedi_device *dev)
2168 {
2169 	struct s626_private *devpriv = dev->private;
2170 	dma_addr_t phys_buf;
2171 	u16 chan;
2172 	int i;
2173 	int ret;
2174 
2175 	/* Enable DEBI and audio pins, enable I2C interface */
2176 	s626_mc_enable(dev, S626_MC1_DEBI | S626_MC1_AUDIO | S626_MC1_I2C,
2177 		       S626_P_MC1);
2178 
2179 	/*
2180 	 * Configure DEBI operating mode
2181 	 *
2182 	 *  Local bus is 16 bits wide
2183 	 *  Declare DEBI transfer timeout interval
2184 	 *  Set up byte lane steering
2185 	 *  Intel-compatible local bus (DEBI never times out)
2186 	 */
2187 	writel(S626_DEBI_CFG_SLAVE16 |
2188 	       (S626_DEBI_TOUT << S626_DEBI_CFG_TOUT_BIT) | S626_DEBI_SWAP |
2189 	       S626_DEBI_CFG_INTEL, dev->mmio + S626_P_DEBICFG);
2190 
2191 	/* Disable MMU paging */
2192 	writel(S626_DEBI_PAGE_DISABLE, dev->mmio + S626_P_DEBIPAGE);
2193 
2194 	/* Init GPIO so that ADC Start* is negated */
2195 	writel(S626_GPIO_BASE | S626_GPIO1_HI, dev->mmio + S626_P_GPIO);
2196 
2197 	/* I2C device address for onboard eeprom (revb) */
2198 	devpriv->i2c_adrs = 0xA0;
2199 
2200 	/*
2201 	 * Issue an I2C ABORT command to halt any I2C
2202 	 * operation in progress and reset BUSY flag.
2203 	 */
2204 	writel(S626_I2C_CLKSEL | S626_I2C_ABORT,
2205 	       dev->mmio + S626_P_I2CSTAT);
2206 	s626_mc_enable(dev, S626_MC2_UPLD_IIC, S626_P_MC2);
2207 	ret = comedi_timeout(dev, NULL, NULL, s626_i2c_handshake_eoc, 0);
2208 	if (ret)
2209 		return ret;
2210 
2211 	/*
2212 	 * Per SAA7146 data sheet, write to STATUS
2213 	 * reg twice to reset all  I2C error flags.
2214 	 */
2215 	for (i = 0; i < 2; i++) {
2216 		writel(S626_I2C_CLKSEL, dev->mmio + S626_P_I2CSTAT);
2217 		s626_mc_enable(dev, S626_MC2_UPLD_IIC, S626_P_MC2);
2218 		ret = comedi_timeout(dev, NULL,
2219 				     NULL, s626_i2c_handshake_eoc, 0);
2220 		if (ret)
2221 			return ret;
2222 	}
2223 
2224 	/*
2225 	 * Init audio interface functional attributes: set DAC/ADC
2226 	 * serial clock rates, invert DAC serial clock so that
2227 	 * DAC data setup times are satisfied, enable DAC serial
2228 	 * clock out.
2229 	 */
2230 	writel(S626_ACON2_INIT, dev->mmio + S626_P_ACON2);
2231 
2232 	/*
2233 	 * Set up TSL1 slot list, which is used to control the
2234 	 * accumulation of ADC data: S626_RSD1 = shift data in on SD1.
2235 	 * S626_SIB_A1  = store data uint8_t at next available location
2236 	 * in FB BUFFER1 register.
2237 	 */
2238 	writel(S626_RSD1 | S626_SIB_A1, dev->mmio + S626_P_TSL1);
2239 	writel(S626_RSD1 | S626_SIB_A1 | S626_EOS,
2240 	       dev->mmio + S626_P_TSL1 + 4);
2241 
2242 	/* Enable TSL1 slot list so that it executes all the time */
2243 	writel(S626_ACON1_ADCSTART, dev->mmio + S626_P_ACON1);
2244 
2245 	/*
2246 	 * Initialize RPS registers used for ADC
2247 	 */
2248 
2249 	/* Physical start of RPS program */
2250 	writel((u32)devpriv->rps_buf.physical_base,
2251 	       dev->mmio + S626_P_RPSADDR1);
2252 	/* RPS program performs no explicit mem writes */
2253 	writel(0, dev->mmio + S626_P_RPSPAGE1);
2254 	/* Disable RPS timeouts */
2255 	writel(0, dev->mmio + S626_P_RPS1_TOUT);
2256 
2257 #if 0
2258 	/*
2259 	 * SAA7146 BUG WORKAROUND
2260 	 *
2261 	 * Initialize SAA7146 ADC interface to a known state by
2262 	 * invoking ADCs until FB BUFFER 1 register shows that it
2263 	 * is correctly receiving ADC data. This is necessary
2264 	 * because the SAA7146 ADC interface does not start up in
2265 	 * a defined state after a PCI reset.
2266 	 */
2267 	{
2268 		struct comedi_subdevice *s = dev->read_subdev;
2269 		u8 poll_list;
2270 		u16 adc_data;
2271 		u16 start_val;
2272 		u16 index;
2273 		unsigned int data[16];
2274 
2275 		/* Create a simple polling list for analog input channel 0 */
2276 		poll_list = S626_EOPL;
2277 		s626_reset_adc(dev, &poll_list);
2278 
2279 		/* Get initial ADC value */
2280 		s626_ai_rinsn(dev, s, NULL, data);
2281 		start_val = data[0];
2282 
2283 		/*
2284 		 * VERSION 2.01 CHANGE: TIMEOUT ADDED TO PREVENT HANGED
2285 		 * EXECUTION.
2286 		 *
2287 		 * Invoke ADCs until the new ADC value differs from the initial
2288 		 * value or a timeout occurs.  The timeout protects against the
2289 		 * possibility that the driver is restarting and the ADC data is
2290 		 * a fixed value resulting from the applied ADC analog input
2291 		 * being unusually quiet or at the rail.
2292 		 */
2293 		for (index = 0; index < 500; index++) {
2294 			s626_ai_rinsn(dev, s, NULL, data);
2295 			adc_data = data[0];
2296 			if (adc_data != start_val)
2297 				break;
2298 		}
2299 	}
2300 #endif	/* SAA7146 BUG WORKAROUND */
2301 
2302 	/*
2303 	 * Initialize the DAC interface
2304 	 */
2305 
2306 	/*
2307 	 * Init Audio2's output DMAC attributes:
2308 	 *   burst length = 1 DWORD
2309 	 *   threshold = 1 DWORD.
2310 	 */
2311 	writel(0, dev->mmio + S626_P_PCI_BT_A);
2312 
2313 	/*
2314 	 * Init Audio2's output DMA physical addresses.  The protection
2315 	 * address is set to 1 DWORD past the base address so that a
2316 	 * single DWORD will be transferred each time a DMA transfer is
2317 	 * enabled.
2318 	 */
2319 	phys_buf = devpriv->ana_buf.physical_base +
2320 		   (S626_DAC_WDMABUF_OS * sizeof(u32));
2321 	writel((u32)phys_buf, dev->mmio + S626_P_BASEA2_OUT);
2322 	writel((u32)(phys_buf + sizeof(u32)),
2323 	       dev->mmio + S626_P_PROTA2_OUT);
2324 
2325 	/*
2326 	 * Cache Audio2's output DMA buffer logical address.  This is
2327 	 * where DAC data is buffered for A2 output DMA transfers.
2328 	 */
2329 	devpriv->dac_wbuf = (u32 *)devpriv->ana_buf.logical_base +
2330 			    S626_DAC_WDMABUF_OS;
2331 
2332 	/*
2333 	 * Audio2's output channels does not use paging.  The
2334 	 * protection violation handling bit is set so that the
2335 	 * DMAC will automatically halt and its PCI address pointer
2336 	 * will be reset when the protection address is reached.
2337 	 */
2338 	writel(8, dev->mmio + S626_P_PAGEA2_OUT);
2339 
2340 	/*
2341 	 * Initialize time slot list 2 (TSL2), which is used to control
2342 	 * the clock generation for and serialization of data to be sent
2343 	 * to the DAC devices.  Slot 0 is a NOP that is used to trap TSL
2344 	 * execution; this permits other slots to be safely modified
2345 	 * without first turning off the TSL sequencer (which is
2346 	 * apparently impossible to do).  Also, SD3 (which is driven by a
2347 	 * pull-up resistor) is shifted in and stored to the MSB of
2348 	 * FB_BUFFER2 to be used as evidence that the slot sequence has
2349 	 * not yet finished executing.
2350 	 */
2351 
2352 	/* Slot 0: Trap TSL execution, shift 0xFF into FB_BUFFER2 */
2353 	writel(S626_XSD2 | S626_RSD3 | S626_SIB_A2 | S626_EOS,
2354 	       dev->mmio + S626_VECTPORT(0));
2355 
2356 	/*
2357 	 * Initialize slot 1, which is constant.  Slot 1 causes a
2358 	 * DWORD to be transferred from audio channel 2's output FIFO
2359 	 * to the FIFO's output buffer so that it can be serialized
2360 	 * and sent to the DAC during subsequent slots.  All remaining
2361 	 * slots are dynamically populated as required by the target
2362 	 * DAC device.
2363 	 */
2364 
2365 	/* Slot 1: Fetch DWORD from Audio2's output FIFO */
2366 	writel(S626_LF_A2, dev->mmio + S626_VECTPORT(1));
2367 
2368 	/* Start DAC's audio interface (TSL2) running */
2369 	writel(S626_ACON1_DACSTART, dev->mmio + S626_P_ACON1);
2370 
2371 	/*
2372 	 * Init Trim DACs to calibrated values.  Do it twice because the
2373 	 * SAA7146 audio channel does not always reset properly and
2374 	 * sometimes causes the first few TrimDAC writes to malfunction.
2375 	 */
2376 	s626_load_trim_dacs(dev);
2377 	ret = s626_load_trim_dacs(dev);
2378 	if (ret)
2379 		return ret;
2380 
2381 	/*
2382 	 * Manually init all gate array hardware in case this is a soft
2383 	 * reset (we have no way of determining whether this is a warm
2384 	 * or cold start).  This is necessary because the gate array will
2385 	 * reset only in response to a PCI hard reset; there is no soft
2386 	 * reset function.
2387 	 */
2388 
2389 	/*
2390 	 * Init all DAC outputs to 0V and init all DAC setpoint and
2391 	 * polarity images.
2392 	 */
2393 	for (chan = 0; chan < S626_DAC_CHANNELS; chan++) {
2394 		ret = s626_set_dac(dev, chan, 0);
2395 		if (ret)
2396 			return ret;
2397 	}
2398 
2399 	/* Init counters */
2400 	s626_counters_init(dev);
2401 
2402 	/*
2403 	 * Without modifying the state of the Battery Backup enab, disable
2404 	 * the watchdog timer, set DIO channels 0-5 to operate in the
2405 	 * standard DIO (vs. counter overflow) mode, disable the battery
2406 	 * charger, and reset the watchdog interval selector to zero.
2407 	 */
2408 	s626_write_misc2(dev, (s626_debi_read(dev, S626_LP_RDMISC2) &
2409 			       S626_MISC2_BATT_ENABLE));
2410 
2411 	/* Initialize the digital I/O subsystem */
2412 	s626_dio_init(dev);
2413 
2414 	return 0;
2415 }
2416 
2417 static int s626_auto_attach(struct comedi_device *dev,
2418 			    unsigned long context_unused)
2419 {
2420 	struct pci_dev *pcidev = comedi_to_pci_dev(dev);
2421 	struct s626_private *devpriv;
2422 	struct comedi_subdevice *s;
2423 	int ret;
2424 
2425 	devpriv = comedi_alloc_devpriv(dev, sizeof(*devpriv));
2426 	if (!devpriv)
2427 		return -ENOMEM;
2428 
2429 	ret = comedi_pci_enable(dev);
2430 	if (ret)
2431 		return ret;
2432 
2433 	dev->mmio = pci_ioremap_bar(pcidev, 0);
2434 	if (!dev->mmio)
2435 		return -ENOMEM;
2436 
2437 	/* disable master interrupt */
2438 	writel(0, dev->mmio + S626_P_IER);
2439 
2440 	/* soft reset */
2441 	writel(S626_MC1_SOFT_RESET, dev->mmio + S626_P_MC1);
2442 
2443 	/* DMA FIXME DMA// */
2444 
2445 	ret = s626_allocate_dma_buffers(dev);
2446 	if (ret)
2447 		return ret;
2448 
2449 	if (pcidev->irq) {
2450 		ret = request_irq(pcidev->irq, s626_irq_handler, IRQF_SHARED,
2451 				  dev->board_name, dev);
2452 
2453 		if (ret == 0)
2454 			dev->irq = pcidev->irq;
2455 	}
2456 
2457 	ret = comedi_alloc_subdevices(dev, 6);
2458 	if (ret)
2459 		return ret;
2460 
2461 	s = &dev->subdevices[0];
2462 	/* analog input subdevice */
2463 	s->type		= COMEDI_SUBD_AI;
2464 	s->subdev_flags	= SDF_READABLE | SDF_DIFF;
2465 	s->n_chan	= S626_ADC_CHANNELS;
2466 	s->maxdata	= 0x3fff;
2467 	s->range_table	= &s626_range_table;
2468 	s->len_chanlist	= S626_ADC_CHANNELS;
2469 	s->insn_read	= s626_ai_insn_read;
2470 	if (dev->irq) {
2471 		dev->read_subdev = s;
2472 		s->subdev_flags	|= SDF_CMD_READ;
2473 		s->do_cmd	= s626_ai_cmd;
2474 		s->do_cmdtest	= s626_ai_cmdtest;
2475 		s->cancel	= s626_ai_cancel;
2476 	}
2477 
2478 	s = &dev->subdevices[1];
2479 	/* analog output subdevice */
2480 	s->type		= COMEDI_SUBD_AO;
2481 	s->subdev_flags	= SDF_WRITABLE | SDF_READABLE;
2482 	s->n_chan	= S626_DAC_CHANNELS;
2483 	s->maxdata	= 0x3fff;
2484 	s->range_table	= &range_bipolar10;
2485 	s->insn_write	= s626_ao_insn_write;
2486 
2487 	ret = comedi_alloc_subdev_readback(s);
2488 	if (ret)
2489 		return ret;
2490 
2491 	s = &dev->subdevices[2];
2492 	/* digital I/O subdevice */
2493 	s->type		= COMEDI_SUBD_DIO;
2494 	s->subdev_flags	= SDF_WRITABLE | SDF_READABLE;
2495 	s->n_chan	= 16;
2496 	s->maxdata	= 1;
2497 	s->io_bits	= 0xffff;
2498 	s->private	= (void *)0;	/* DIO group 0 */
2499 	s->range_table	= &range_digital;
2500 	s->insn_config	= s626_dio_insn_config;
2501 	s->insn_bits	= s626_dio_insn_bits;
2502 
2503 	s = &dev->subdevices[3];
2504 	/* digital I/O subdevice */
2505 	s->type		= COMEDI_SUBD_DIO;
2506 	s->subdev_flags	= SDF_WRITABLE | SDF_READABLE;
2507 	s->n_chan	= 16;
2508 	s->maxdata	= 1;
2509 	s->io_bits	= 0xffff;
2510 	s->private	= (void *)1;	/* DIO group 1 */
2511 	s->range_table	= &range_digital;
2512 	s->insn_config	= s626_dio_insn_config;
2513 	s->insn_bits	= s626_dio_insn_bits;
2514 
2515 	s = &dev->subdevices[4];
2516 	/* digital I/O subdevice */
2517 	s->type		= COMEDI_SUBD_DIO;
2518 	s->subdev_flags	= SDF_WRITABLE | SDF_READABLE;
2519 	s->n_chan	= 16;
2520 	s->maxdata	= 1;
2521 	s->io_bits	= 0xffff;
2522 	s->private	= (void *)2;	/* DIO group 2 */
2523 	s->range_table	= &range_digital;
2524 	s->insn_config	= s626_dio_insn_config;
2525 	s->insn_bits	= s626_dio_insn_bits;
2526 
2527 	s = &dev->subdevices[5];
2528 	/* encoder (counter) subdevice */
2529 	s->type		= COMEDI_SUBD_COUNTER;
2530 	s->subdev_flags	= SDF_WRITABLE | SDF_READABLE | SDF_LSAMPL;
2531 	s->n_chan	= S626_ENCODER_CHANNELS;
2532 	s->maxdata	= 0xffffff;
2533 	s->range_table	= &range_unknown;
2534 	s->insn_config	= s626_enc_insn_config;
2535 	s->insn_read	= s626_enc_insn_read;
2536 	s->insn_write	= s626_enc_insn_write;
2537 
2538 	return s626_initialize(dev);
2539 }
2540 
2541 static void s626_detach(struct comedi_device *dev)
2542 {
2543 	struct s626_private *devpriv = dev->private;
2544 
2545 	if (devpriv) {
2546 		/* stop ai_command */
2547 		devpriv->ai_cmd_running = 0;
2548 
2549 		if (dev->mmio) {
2550 			/* interrupt mask */
2551 			/* Disable master interrupt */
2552 			writel(0, dev->mmio + S626_P_IER);
2553 			/* Clear board's IRQ status flag */
2554 			writel(S626_IRQ_GPIO3 | S626_IRQ_RPS1,
2555 			       dev->mmio + S626_P_ISR);
2556 
2557 			/* Disable the watchdog timer and battery charger. */
2558 			s626_write_misc2(dev, 0);
2559 
2560 			/* Close all interfaces on 7146 device */
2561 			writel(S626_MC1_SHUTDOWN, dev->mmio + S626_P_MC1);
2562 			writel(S626_ACON1_BASE, dev->mmio + S626_P_ACON1);
2563 		}
2564 	}
2565 	comedi_pci_detach(dev);
2566 	s626_free_dma_buffers(dev);
2567 }
2568 
2569 static struct comedi_driver s626_driver = {
2570 	.driver_name	= "s626",
2571 	.module		= THIS_MODULE,
2572 	.auto_attach	= s626_auto_attach,
2573 	.detach		= s626_detach,
2574 };
2575 
2576 static int s626_pci_probe(struct pci_dev *dev,
2577 			  const struct pci_device_id *id)
2578 {
2579 	return comedi_pci_auto_config(dev, &s626_driver, id->driver_data);
2580 }
2581 
2582 /*
2583  * For devices with vendor:device id == 0x1131:0x7146 you must specify
2584  * also subvendor:subdevice ids, because otherwise it will conflict with
2585  * Philips SAA7146 media/dvb based cards.
2586  */
2587 static const struct pci_device_id s626_pci_table[] = {
2588 	{ PCI_DEVICE_SUB(PCI_VENDOR_ID_PHILIPS, PCI_DEVICE_ID_PHILIPS_SAA7146,
2589 			 0x6000, 0x0272) },
2590 	{ 0 }
2591 };
2592 MODULE_DEVICE_TABLE(pci, s626_pci_table);
2593 
2594 static struct pci_driver s626_pci_driver = {
2595 	.name		= "s626",
2596 	.id_table	= s626_pci_table,
2597 	.probe		= s626_pci_probe,
2598 	.remove		= comedi_pci_auto_unconfig,
2599 };
2600 module_comedi_pci_driver(s626_driver, s626_pci_driver);
2601 
2602 MODULE_AUTHOR("Gianluca Palli <gpalli@deis.unibo.it>");
2603 MODULE_DESCRIPTION("Sensoray 626 Comedi driver module");
2604 MODULE_LICENSE("GPL");
2605