xref: /linux/drivers/cpufreq/cpufreq.c (revision 6c8c1406)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/drivers/cpufreq/cpufreq.c
4  *
5  *  Copyright (C) 2001 Russell King
6  *            (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
7  *            (C) 2013 Viresh Kumar <viresh.kumar@linaro.org>
8  *
9  *  Oct 2005 - Ashok Raj <ashok.raj@intel.com>
10  *	Added handling for CPU hotplug
11  *  Feb 2006 - Jacob Shin <jacob.shin@amd.com>
12  *	Fix handling for CPU hotplug -- affected CPUs
13  */
14 
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16 
17 #include <linux/cpu.h>
18 #include <linux/cpufreq.h>
19 #include <linux/cpu_cooling.h>
20 #include <linux/delay.h>
21 #include <linux/device.h>
22 #include <linux/init.h>
23 #include <linux/kernel_stat.h>
24 #include <linux/module.h>
25 #include <linux/mutex.h>
26 #include <linux/pm_qos.h>
27 #include <linux/slab.h>
28 #include <linux/suspend.h>
29 #include <linux/syscore_ops.h>
30 #include <linux/tick.h>
31 #include <linux/units.h>
32 #include <trace/events/power.h>
33 
34 static LIST_HEAD(cpufreq_policy_list);
35 
36 /* Macros to iterate over CPU policies */
37 #define for_each_suitable_policy(__policy, __active)			 \
38 	list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \
39 		if ((__active) == !policy_is_inactive(__policy))
40 
41 #define for_each_active_policy(__policy)		\
42 	for_each_suitable_policy(__policy, true)
43 #define for_each_inactive_policy(__policy)		\
44 	for_each_suitable_policy(__policy, false)
45 
46 /* Iterate over governors */
47 static LIST_HEAD(cpufreq_governor_list);
48 #define for_each_governor(__governor)				\
49 	list_for_each_entry(__governor, &cpufreq_governor_list, governor_list)
50 
51 static char default_governor[CPUFREQ_NAME_LEN];
52 
53 /*
54  * The "cpufreq driver" - the arch- or hardware-dependent low
55  * level driver of CPUFreq support, and its spinlock. This lock
56  * also protects the cpufreq_cpu_data array.
57  */
58 static struct cpufreq_driver *cpufreq_driver;
59 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
60 static DEFINE_RWLOCK(cpufreq_driver_lock);
61 
62 static DEFINE_STATIC_KEY_FALSE(cpufreq_freq_invariance);
63 bool cpufreq_supports_freq_invariance(void)
64 {
65 	return static_branch_likely(&cpufreq_freq_invariance);
66 }
67 
68 /* Flag to suspend/resume CPUFreq governors */
69 static bool cpufreq_suspended;
70 
71 static inline bool has_target(void)
72 {
73 	return cpufreq_driver->target_index || cpufreq_driver->target;
74 }
75 
76 /* internal prototypes */
77 static unsigned int __cpufreq_get(struct cpufreq_policy *policy);
78 static int cpufreq_init_governor(struct cpufreq_policy *policy);
79 static void cpufreq_exit_governor(struct cpufreq_policy *policy);
80 static void cpufreq_governor_limits(struct cpufreq_policy *policy);
81 static int cpufreq_set_policy(struct cpufreq_policy *policy,
82 			      struct cpufreq_governor *new_gov,
83 			      unsigned int new_pol);
84 
85 /*
86  * Two notifier lists: the "policy" list is involved in the
87  * validation process for a new CPU frequency policy; the
88  * "transition" list for kernel code that needs to handle
89  * changes to devices when the CPU clock speed changes.
90  * The mutex locks both lists.
91  */
92 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
93 SRCU_NOTIFIER_HEAD_STATIC(cpufreq_transition_notifier_list);
94 
95 static int off __read_mostly;
96 static int cpufreq_disabled(void)
97 {
98 	return off;
99 }
100 void disable_cpufreq(void)
101 {
102 	off = 1;
103 }
104 static DEFINE_MUTEX(cpufreq_governor_mutex);
105 
106 bool have_governor_per_policy(void)
107 {
108 	return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY);
109 }
110 EXPORT_SYMBOL_GPL(have_governor_per_policy);
111 
112 static struct kobject *cpufreq_global_kobject;
113 
114 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy)
115 {
116 	if (have_governor_per_policy())
117 		return &policy->kobj;
118 	else
119 		return cpufreq_global_kobject;
120 }
121 EXPORT_SYMBOL_GPL(get_governor_parent_kobj);
122 
123 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
124 {
125 	struct kernel_cpustat kcpustat;
126 	u64 cur_wall_time;
127 	u64 idle_time;
128 	u64 busy_time;
129 
130 	cur_wall_time = jiffies64_to_nsecs(get_jiffies_64());
131 
132 	kcpustat_cpu_fetch(&kcpustat, cpu);
133 
134 	busy_time = kcpustat.cpustat[CPUTIME_USER];
135 	busy_time += kcpustat.cpustat[CPUTIME_SYSTEM];
136 	busy_time += kcpustat.cpustat[CPUTIME_IRQ];
137 	busy_time += kcpustat.cpustat[CPUTIME_SOFTIRQ];
138 	busy_time += kcpustat.cpustat[CPUTIME_STEAL];
139 	busy_time += kcpustat.cpustat[CPUTIME_NICE];
140 
141 	idle_time = cur_wall_time - busy_time;
142 	if (wall)
143 		*wall = div_u64(cur_wall_time, NSEC_PER_USEC);
144 
145 	return div_u64(idle_time, NSEC_PER_USEC);
146 }
147 
148 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy)
149 {
150 	u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL);
151 
152 	if (idle_time == -1ULL)
153 		return get_cpu_idle_time_jiffy(cpu, wall);
154 	else if (!io_busy)
155 		idle_time += get_cpu_iowait_time_us(cpu, wall);
156 
157 	return idle_time;
158 }
159 EXPORT_SYMBOL_GPL(get_cpu_idle_time);
160 
161 /*
162  * This is a generic cpufreq init() routine which can be used by cpufreq
163  * drivers of SMP systems. It will do following:
164  * - validate & show freq table passed
165  * - set policies transition latency
166  * - policy->cpus with all possible CPUs
167  */
168 void cpufreq_generic_init(struct cpufreq_policy *policy,
169 		struct cpufreq_frequency_table *table,
170 		unsigned int transition_latency)
171 {
172 	policy->freq_table = table;
173 	policy->cpuinfo.transition_latency = transition_latency;
174 
175 	/*
176 	 * The driver only supports the SMP configuration where all processors
177 	 * share the clock and voltage and clock.
178 	 */
179 	cpumask_setall(policy->cpus);
180 }
181 EXPORT_SYMBOL_GPL(cpufreq_generic_init);
182 
183 struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu)
184 {
185 	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
186 
187 	return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL;
188 }
189 EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw);
190 
191 unsigned int cpufreq_generic_get(unsigned int cpu)
192 {
193 	struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu);
194 
195 	if (!policy || IS_ERR(policy->clk)) {
196 		pr_err("%s: No %s associated to cpu: %d\n",
197 		       __func__, policy ? "clk" : "policy", cpu);
198 		return 0;
199 	}
200 
201 	return clk_get_rate(policy->clk) / 1000;
202 }
203 EXPORT_SYMBOL_GPL(cpufreq_generic_get);
204 
205 /**
206  * cpufreq_cpu_get - Return policy for a CPU and mark it as busy.
207  * @cpu: CPU to find the policy for.
208  *
209  * Call cpufreq_cpu_get_raw() to obtain a cpufreq policy for @cpu and increment
210  * the kobject reference counter of that policy.  Return a valid policy on
211  * success or NULL on failure.
212  *
213  * The policy returned by this function has to be released with the help of
214  * cpufreq_cpu_put() to balance its kobject reference counter properly.
215  */
216 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
217 {
218 	struct cpufreq_policy *policy = NULL;
219 	unsigned long flags;
220 
221 	if (WARN_ON(cpu >= nr_cpu_ids))
222 		return NULL;
223 
224 	/* get the cpufreq driver */
225 	read_lock_irqsave(&cpufreq_driver_lock, flags);
226 
227 	if (cpufreq_driver) {
228 		/* get the CPU */
229 		policy = cpufreq_cpu_get_raw(cpu);
230 		if (policy)
231 			kobject_get(&policy->kobj);
232 	}
233 
234 	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
235 
236 	return policy;
237 }
238 EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
239 
240 /**
241  * cpufreq_cpu_put - Decrement kobject usage counter for cpufreq policy.
242  * @policy: cpufreq policy returned by cpufreq_cpu_get().
243  */
244 void cpufreq_cpu_put(struct cpufreq_policy *policy)
245 {
246 	kobject_put(&policy->kobj);
247 }
248 EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
249 
250 /**
251  * cpufreq_cpu_release - Unlock a policy and decrement its usage counter.
252  * @policy: cpufreq policy returned by cpufreq_cpu_acquire().
253  */
254 void cpufreq_cpu_release(struct cpufreq_policy *policy)
255 {
256 	if (WARN_ON(!policy))
257 		return;
258 
259 	lockdep_assert_held(&policy->rwsem);
260 
261 	up_write(&policy->rwsem);
262 
263 	cpufreq_cpu_put(policy);
264 }
265 
266 /**
267  * cpufreq_cpu_acquire - Find policy for a CPU, mark it as busy and lock it.
268  * @cpu: CPU to find the policy for.
269  *
270  * Call cpufreq_cpu_get() to get a reference on the cpufreq policy for @cpu and
271  * if the policy returned by it is not NULL, acquire its rwsem for writing.
272  * Return the policy if it is active or release it and return NULL otherwise.
273  *
274  * The policy returned by this function has to be released with the help of
275  * cpufreq_cpu_release() in order to release its rwsem and balance its usage
276  * counter properly.
277  */
278 struct cpufreq_policy *cpufreq_cpu_acquire(unsigned int cpu)
279 {
280 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
281 
282 	if (!policy)
283 		return NULL;
284 
285 	down_write(&policy->rwsem);
286 
287 	if (policy_is_inactive(policy)) {
288 		cpufreq_cpu_release(policy);
289 		return NULL;
290 	}
291 
292 	return policy;
293 }
294 
295 /*********************************************************************
296  *            EXTERNALLY AFFECTING FREQUENCY CHANGES                 *
297  *********************************************************************/
298 
299 /**
300  * adjust_jiffies - Adjust the system "loops_per_jiffy".
301  * @val: CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE.
302  * @ci: Frequency change information.
303  *
304  * This function alters the system "loops_per_jiffy" for the clock
305  * speed change. Note that loops_per_jiffy cannot be updated on SMP
306  * systems as each CPU might be scaled differently. So, use the arch
307  * per-CPU loops_per_jiffy value wherever possible.
308  */
309 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
310 {
311 #ifndef CONFIG_SMP
312 	static unsigned long l_p_j_ref;
313 	static unsigned int l_p_j_ref_freq;
314 
315 	if (ci->flags & CPUFREQ_CONST_LOOPS)
316 		return;
317 
318 	if (!l_p_j_ref_freq) {
319 		l_p_j_ref = loops_per_jiffy;
320 		l_p_j_ref_freq = ci->old;
321 		pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n",
322 			 l_p_j_ref, l_p_j_ref_freq);
323 	}
324 	if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) {
325 		loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
326 								ci->new);
327 		pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n",
328 			 loops_per_jiffy, ci->new);
329 	}
330 #endif
331 }
332 
333 /**
334  * cpufreq_notify_transition - Notify frequency transition and adjust jiffies.
335  * @policy: cpufreq policy to enable fast frequency switching for.
336  * @freqs: contain details of the frequency update.
337  * @state: set to CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE.
338  *
339  * This function calls the transition notifiers and adjust_jiffies().
340  *
341  * It is called twice on all CPU frequency changes that have external effects.
342  */
343 static void cpufreq_notify_transition(struct cpufreq_policy *policy,
344 				      struct cpufreq_freqs *freqs,
345 				      unsigned int state)
346 {
347 	int cpu;
348 
349 	BUG_ON(irqs_disabled());
350 
351 	if (cpufreq_disabled())
352 		return;
353 
354 	freqs->policy = policy;
355 	freqs->flags = cpufreq_driver->flags;
356 	pr_debug("notification %u of frequency transition to %u kHz\n",
357 		 state, freqs->new);
358 
359 	switch (state) {
360 	case CPUFREQ_PRECHANGE:
361 		/*
362 		 * Detect if the driver reported a value as "old frequency"
363 		 * which is not equal to what the cpufreq core thinks is
364 		 * "old frequency".
365 		 */
366 		if (policy->cur && policy->cur != freqs->old) {
367 			pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n",
368 				 freqs->old, policy->cur);
369 			freqs->old = policy->cur;
370 		}
371 
372 		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
373 					 CPUFREQ_PRECHANGE, freqs);
374 
375 		adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
376 		break;
377 
378 	case CPUFREQ_POSTCHANGE:
379 		adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
380 		pr_debug("FREQ: %u - CPUs: %*pbl\n", freqs->new,
381 			 cpumask_pr_args(policy->cpus));
382 
383 		for_each_cpu(cpu, policy->cpus)
384 			trace_cpu_frequency(freqs->new, cpu);
385 
386 		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
387 					 CPUFREQ_POSTCHANGE, freqs);
388 
389 		cpufreq_stats_record_transition(policy, freqs->new);
390 		policy->cur = freqs->new;
391 	}
392 }
393 
394 /* Do post notifications when there are chances that transition has failed */
395 static void cpufreq_notify_post_transition(struct cpufreq_policy *policy,
396 		struct cpufreq_freqs *freqs, int transition_failed)
397 {
398 	cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
399 	if (!transition_failed)
400 		return;
401 
402 	swap(freqs->old, freqs->new);
403 	cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
404 	cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
405 }
406 
407 void cpufreq_freq_transition_begin(struct cpufreq_policy *policy,
408 		struct cpufreq_freqs *freqs)
409 {
410 
411 	/*
412 	 * Catch double invocations of _begin() which lead to self-deadlock.
413 	 * ASYNC_NOTIFICATION drivers are left out because the cpufreq core
414 	 * doesn't invoke _begin() on their behalf, and hence the chances of
415 	 * double invocations are very low. Moreover, there are scenarios
416 	 * where these checks can emit false-positive warnings in these
417 	 * drivers; so we avoid that by skipping them altogether.
418 	 */
419 	WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION)
420 				&& current == policy->transition_task);
421 
422 wait:
423 	wait_event(policy->transition_wait, !policy->transition_ongoing);
424 
425 	spin_lock(&policy->transition_lock);
426 
427 	if (unlikely(policy->transition_ongoing)) {
428 		spin_unlock(&policy->transition_lock);
429 		goto wait;
430 	}
431 
432 	policy->transition_ongoing = true;
433 	policy->transition_task = current;
434 
435 	spin_unlock(&policy->transition_lock);
436 
437 	cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
438 }
439 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin);
440 
441 void cpufreq_freq_transition_end(struct cpufreq_policy *policy,
442 		struct cpufreq_freqs *freqs, int transition_failed)
443 {
444 	if (WARN_ON(!policy->transition_ongoing))
445 		return;
446 
447 	cpufreq_notify_post_transition(policy, freqs, transition_failed);
448 
449 	arch_set_freq_scale(policy->related_cpus,
450 			    policy->cur,
451 			    policy->cpuinfo.max_freq);
452 
453 	policy->transition_ongoing = false;
454 	policy->transition_task = NULL;
455 
456 	wake_up(&policy->transition_wait);
457 }
458 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end);
459 
460 /*
461  * Fast frequency switching status count.  Positive means "enabled", negative
462  * means "disabled" and 0 means "not decided yet".
463  */
464 static int cpufreq_fast_switch_count;
465 static DEFINE_MUTEX(cpufreq_fast_switch_lock);
466 
467 static void cpufreq_list_transition_notifiers(void)
468 {
469 	struct notifier_block *nb;
470 
471 	pr_info("Registered transition notifiers:\n");
472 
473 	mutex_lock(&cpufreq_transition_notifier_list.mutex);
474 
475 	for (nb = cpufreq_transition_notifier_list.head; nb; nb = nb->next)
476 		pr_info("%pS\n", nb->notifier_call);
477 
478 	mutex_unlock(&cpufreq_transition_notifier_list.mutex);
479 }
480 
481 /**
482  * cpufreq_enable_fast_switch - Enable fast frequency switching for policy.
483  * @policy: cpufreq policy to enable fast frequency switching for.
484  *
485  * Try to enable fast frequency switching for @policy.
486  *
487  * The attempt will fail if there is at least one transition notifier registered
488  * at this point, as fast frequency switching is quite fundamentally at odds
489  * with transition notifiers.  Thus if successful, it will make registration of
490  * transition notifiers fail going forward.
491  */
492 void cpufreq_enable_fast_switch(struct cpufreq_policy *policy)
493 {
494 	lockdep_assert_held(&policy->rwsem);
495 
496 	if (!policy->fast_switch_possible)
497 		return;
498 
499 	mutex_lock(&cpufreq_fast_switch_lock);
500 	if (cpufreq_fast_switch_count >= 0) {
501 		cpufreq_fast_switch_count++;
502 		policy->fast_switch_enabled = true;
503 	} else {
504 		pr_warn("CPU%u: Fast frequency switching not enabled\n",
505 			policy->cpu);
506 		cpufreq_list_transition_notifiers();
507 	}
508 	mutex_unlock(&cpufreq_fast_switch_lock);
509 }
510 EXPORT_SYMBOL_GPL(cpufreq_enable_fast_switch);
511 
512 /**
513  * cpufreq_disable_fast_switch - Disable fast frequency switching for policy.
514  * @policy: cpufreq policy to disable fast frequency switching for.
515  */
516 void cpufreq_disable_fast_switch(struct cpufreq_policy *policy)
517 {
518 	mutex_lock(&cpufreq_fast_switch_lock);
519 	if (policy->fast_switch_enabled) {
520 		policy->fast_switch_enabled = false;
521 		if (!WARN_ON(cpufreq_fast_switch_count <= 0))
522 			cpufreq_fast_switch_count--;
523 	}
524 	mutex_unlock(&cpufreq_fast_switch_lock);
525 }
526 EXPORT_SYMBOL_GPL(cpufreq_disable_fast_switch);
527 
528 static unsigned int __resolve_freq(struct cpufreq_policy *policy,
529 		unsigned int target_freq, unsigned int relation)
530 {
531 	unsigned int idx;
532 
533 	target_freq = clamp_val(target_freq, policy->min, policy->max);
534 
535 	if (!policy->freq_table)
536 		return target_freq;
537 
538 	idx = cpufreq_frequency_table_target(policy, target_freq, relation);
539 	policy->cached_resolved_idx = idx;
540 	policy->cached_target_freq = target_freq;
541 	return policy->freq_table[idx].frequency;
542 }
543 
544 /**
545  * cpufreq_driver_resolve_freq - Map a target frequency to a driver-supported
546  * one.
547  * @policy: associated policy to interrogate
548  * @target_freq: target frequency to resolve.
549  *
550  * The target to driver frequency mapping is cached in the policy.
551  *
552  * Return: Lowest driver-supported frequency greater than or equal to the
553  * given target_freq, subject to policy (min/max) and driver limitations.
554  */
555 unsigned int cpufreq_driver_resolve_freq(struct cpufreq_policy *policy,
556 					 unsigned int target_freq)
557 {
558 	return __resolve_freq(policy, target_freq, CPUFREQ_RELATION_LE);
559 }
560 EXPORT_SYMBOL_GPL(cpufreq_driver_resolve_freq);
561 
562 unsigned int cpufreq_policy_transition_delay_us(struct cpufreq_policy *policy)
563 {
564 	unsigned int latency;
565 
566 	if (policy->transition_delay_us)
567 		return policy->transition_delay_us;
568 
569 	latency = policy->cpuinfo.transition_latency / NSEC_PER_USEC;
570 	if (latency) {
571 		/*
572 		 * For platforms that can change the frequency very fast (< 10
573 		 * us), the above formula gives a decent transition delay. But
574 		 * for platforms where transition_latency is in milliseconds, it
575 		 * ends up giving unrealistic values.
576 		 *
577 		 * Cap the default transition delay to 10 ms, which seems to be
578 		 * a reasonable amount of time after which we should reevaluate
579 		 * the frequency.
580 		 */
581 		return min(latency * LATENCY_MULTIPLIER, (unsigned int)10000);
582 	}
583 
584 	return LATENCY_MULTIPLIER;
585 }
586 EXPORT_SYMBOL_GPL(cpufreq_policy_transition_delay_us);
587 
588 /*********************************************************************
589  *                          SYSFS INTERFACE                          *
590  *********************************************************************/
591 static ssize_t show_boost(struct kobject *kobj,
592 			  struct kobj_attribute *attr, char *buf)
593 {
594 	return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled);
595 }
596 
597 static ssize_t store_boost(struct kobject *kobj, struct kobj_attribute *attr,
598 			   const char *buf, size_t count)
599 {
600 	int ret, enable;
601 
602 	ret = sscanf(buf, "%d", &enable);
603 	if (ret != 1 || enable < 0 || enable > 1)
604 		return -EINVAL;
605 
606 	if (cpufreq_boost_trigger_state(enable)) {
607 		pr_err("%s: Cannot %s BOOST!\n",
608 		       __func__, enable ? "enable" : "disable");
609 		return -EINVAL;
610 	}
611 
612 	pr_debug("%s: cpufreq BOOST %s\n",
613 		 __func__, enable ? "enabled" : "disabled");
614 
615 	return count;
616 }
617 define_one_global_rw(boost);
618 
619 static struct cpufreq_governor *find_governor(const char *str_governor)
620 {
621 	struct cpufreq_governor *t;
622 
623 	for_each_governor(t)
624 		if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN))
625 			return t;
626 
627 	return NULL;
628 }
629 
630 static struct cpufreq_governor *get_governor(const char *str_governor)
631 {
632 	struct cpufreq_governor *t;
633 
634 	mutex_lock(&cpufreq_governor_mutex);
635 	t = find_governor(str_governor);
636 	if (!t)
637 		goto unlock;
638 
639 	if (!try_module_get(t->owner))
640 		t = NULL;
641 
642 unlock:
643 	mutex_unlock(&cpufreq_governor_mutex);
644 
645 	return t;
646 }
647 
648 static unsigned int cpufreq_parse_policy(char *str_governor)
649 {
650 	if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN))
651 		return CPUFREQ_POLICY_PERFORMANCE;
652 
653 	if (!strncasecmp(str_governor, "powersave", CPUFREQ_NAME_LEN))
654 		return CPUFREQ_POLICY_POWERSAVE;
655 
656 	return CPUFREQ_POLICY_UNKNOWN;
657 }
658 
659 /**
660  * cpufreq_parse_governor - parse a governor string only for has_target()
661  * @str_governor: Governor name.
662  */
663 static struct cpufreq_governor *cpufreq_parse_governor(char *str_governor)
664 {
665 	struct cpufreq_governor *t;
666 
667 	t = get_governor(str_governor);
668 	if (t)
669 		return t;
670 
671 	if (request_module("cpufreq_%s", str_governor))
672 		return NULL;
673 
674 	return get_governor(str_governor);
675 }
676 
677 /*
678  * cpufreq_per_cpu_attr_read() / show_##file_name() -
679  * print out cpufreq information
680  *
681  * Write out information from cpufreq_driver->policy[cpu]; object must be
682  * "unsigned int".
683  */
684 
685 #define show_one(file_name, object)			\
686 static ssize_t show_##file_name				\
687 (struct cpufreq_policy *policy, char *buf)		\
688 {							\
689 	return sprintf(buf, "%u\n", policy->object);	\
690 }
691 
692 show_one(cpuinfo_min_freq, cpuinfo.min_freq);
693 show_one(cpuinfo_max_freq, cpuinfo.max_freq);
694 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
695 show_one(scaling_min_freq, min);
696 show_one(scaling_max_freq, max);
697 
698 __weak unsigned int arch_freq_get_on_cpu(int cpu)
699 {
700 	return 0;
701 }
702 
703 static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf)
704 {
705 	ssize_t ret;
706 	unsigned int freq;
707 
708 	freq = arch_freq_get_on_cpu(policy->cpu);
709 	if (freq)
710 		ret = sprintf(buf, "%u\n", freq);
711 	else if (cpufreq_driver->setpolicy && cpufreq_driver->get)
712 		ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu));
713 	else
714 		ret = sprintf(buf, "%u\n", policy->cur);
715 	return ret;
716 }
717 
718 /*
719  * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
720  */
721 #define store_one(file_name, object)			\
722 static ssize_t store_##file_name					\
723 (struct cpufreq_policy *policy, const char *buf, size_t count)		\
724 {									\
725 	unsigned long val;						\
726 	int ret;							\
727 									\
728 	ret = sscanf(buf, "%lu", &val);					\
729 	if (ret != 1)							\
730 		return -EINVAL;						\
731 									\
732 	ret = freq_qos_update_request(policy->object##_freq_req, val);\
733 	return ret >= 0 ? count : ret;					\
734 }
735 
736 store_one(scaling_min_freq, min);
737 store_one(scaling_max_freq, max);
738 
739 /*
740  * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
741  */
742 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
743 					char *buf)
744 {
745 	unsigned int cur_freq = __cpufreq_get(policy);
746 
747 	if (cur_freq)
748 		return sprintf(buf, "%u\n", cur_freq);
749 
750 	return sprintf(buf, "<unknown>\n");
751 }
752 
753 /*
754  * show_scaling_governor - show the current policy for the specified CPU
755  */
756 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
757 {
758 	if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
759 		return sprintf(buf, "powersave\n");
760 	else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
761 		return sprintf(buf, "performance\n");
762 	else if (policy->governor)
763 		return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n",
764 				policy->governor->name);
765 	return -EINVAL;
766 }
767 
768 /*
769  * store_scaling_governor - store policy for the specified CPU
770  */
771 static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
772 					const char *buf, size_t count)
773 {
774 	char str_governor[16];
775 	int ret;
776 
777 	ret = sscanf(buf, "%15s", str_governor);
778 	if (ret != 1)
779 		return -EINVAL;
780 
781 	if (cpufreq_driver->setpolicy) {
782 		unsigned int new_pol;
783 
784 		new_pol = cpufreq_parse_policy(str_governor);
785 		if (!new_pol)
786 			return -EINVAL;
787 
788 		ret = cpufreq_set_policy(policy, NULL, new_pol);
789 	} else {
790 		struct cpufreq_governor *new_gov;
791 
792 		new_gov = cpufreq_parse_governor(str_governor);
793 		if (!new_gov)
794 			return -EINVAL;
795 
796 		ret = cpufreq_set_policy(policy, new_gov,
797 					 CPUFREQ_POLICY_UNKNOWN);
798 
799 		module_put(new_gov->owner);
800 	}
801 
802 	return ret ? ret : count;
803 }
804 
805 /*
806  * show_scaling_driver - show the cpufreq driver currently loaded
807  */
808 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
809 {
810 	return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name);
811 }
812 
813 /*
814  * show_scaling_available_governors - show the available CPUfreq governors
815  */
816 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
817 						char *buf)
818 {
819 	ssize_t i = 0;
820 	struct cpufreq_governor *t;
821 
822 	if (!has_target()) {
823 		i += sprintf(buf, "performance powersave");
824 		goto out;
825 	}
826 
827 	mutex_lock(&cpufreq_governor_mutex);
828 	for_each_governor(t) {
829 		if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
830 		    - (CPUFREQ_NAME_LEN + 2)))
831 			break;
832 		i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name);
833 	}
834 	mutex_unlock(&cpufreq_governor_mutex);
835 out:
836 	i += sprintf(&buf[i], "\n");
837 	return i;
838 }
839 
840 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf)
841 {
842 	ssize_t i = 0;
843 	unsigned int cpu;
844 
845 	for_each_cpu(cpu, mask) {
846 		i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u ", cpu);
847 		if (i >= (PAGE_SIZE - 5))
848 			break;
849 	}
850 
851 	/* Remove the extra space at the end */
852 	i--;
853 
854 	i += sprintf(&buf[i], "\n");
855 	return i;
856 }
857 EXPORT_SYMBOL_GPL(cpufreq_show_cpus);
858 
859 /*
860  * show_related_cpus - show the CPUs affected by each transition even if
861  * hw coordination is in use
862  */
863 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
864 {
865 	return cpufreq_show_cpus(policy->related_cpus, buf);
866 }
867 
868 /*
869  * show_affected_cpus - show the CPUs affected by each transition
870  */
871 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
872 {
873 	return cpufreq_show_cpus(policy->cpus, buf);
874 }
875 
876 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
877 					const char *buf, size_t count)
878 {
879 	unsigned int freq = 0;
880 	unsigned int ret;
881 
882 	if (!policy->governor || !policy->governor->store_setspeed)
883 		return -EINVAL;
884 
885 	ret = sscanf(buf, "%u", &freq);
886 	if (ret != 1)
887 		return -EINVAL;
888 
889 	policy->governor->store_setspeed(policy, freq);
890 
891 	return count;
892 }
893 
894 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
895 {
896 	if (!policy->governor || !policy->governor->show_setspeed)
897 		return sprintf(buf, "<unsupported>\n");
898 
899 	return policy->governor->show_setspeed(policy, buf);
900 }
901 
902 /*
903  * show_bios_limit - show the current cpufreq HW/BIOS limitation
904  */
905 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
906 {
907 	unsigned int limit;
908 	int ret;
909 	ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
910 	if (!ret)
911 		return sprintf(buf, "%u\n", limit);
912 	return sprintf(buf, "%u\n", policy->cpuinfo.max_freq);
913 }
914 
915 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
916 cpufreq_freq_attr_ro(cpuinfo_min_freq);
917 cpufreq_freq_attr_ro(cpuinfo_max_freq);
918 cpufreq_freq_attr_ro(cpuinfo_transition_latency);
919 cpufreq_freq_attr_ro(scaling_available_governors);
920 cpufreq_freq_attr_ro(scaling_driver);
921 cpufreq_freq_attr_ro(scaling_cur_freq);
922 cpufreq_freq_attr_ro(bios_limit);
923 cpufreq_freq_attr_ro(related_cpus);
924 cpufreq_freq_attr_ro(affected_cpus);
925 cpufreq_freq_attr_rw(scaling_min_freq);
926 cpufreq_freq_attr_rw(scaling_max_freq);
927 cpufreq_freq_attr_rw(scaling_governor);
928 cpufreq_freq_attr_rw(scaling_setspeed);
929 
930 static struct attribute *cpufreq_attrs[] = {
931 	&cpuinfo_min_freq.attr,
932 	&cpuinfo_max_freq.attr,
933 	&cpuinfo_transition_latency.attr,
934 	&scaling_min_freq.attr,
935 	&scaling_max_freq.attr,
936 	&affected_cpus.attr,
937 	&related_cpus.attr,
938 	&scaling_governor.attr,
939 	&scaling_driver.attr,
940 	&scaling_available_governors.attr,
941 	&scaling_setspeed.attr,
942 	NULL
943 };
944 ATTRIBUTE_GROUPS(cpufreq);
945 
946 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
947 #define to_attr(a) container_of(a, struct freq_attr, attr)
948 
949 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
950 {
951 	struct cpufreq_policy *policy = to_policy(kobj);
952 	struct freq_attr *fattr = to_attr(attr);
953 	ssize_t ret = -EBUSY;
954 
955 	if (!fattr->show)
956 		return -EIO;
957 
958 	down_read(&policy->rwsem);
959 	if (likely(!policy_is_inactive(policy)))
960 		ret = fattr->show(policy, buf);
961 	up_read(&policy->rwsem);
962 
963 	return ret;
964 }
965 
966 static ssize_t store(struct kobject *kobj, struct attribute *attr,
967 		     const char *buf, size_t count)
968 {
969 	struct cpufreq_policy *policy = to_policy(kobj);
970 	struct freq_attr *fattr = to_attr(attr);
971 	ssize_t ret = -EBUSY;
972 
973 	if (!fattr->store)
974 		return -EIO;
975 
976 	down_write(&policy->rwsem);
977 	if (likely(!policy_is_inactive(policy)))
978 		ret = fattr->store(policy, buf, count);
979 	up_write(&policy->rwsem);
980 
981 	return ret;
982 }
983 
984 static void cpufreq_sysfs_release(struct kobject *kobj)
985 {
986 	struct cpufreq_policy *policy = to_policy(kobj);
987 	pr_debug("last reference is dropped\n");
988 	complete(&policy->kobj_unregister);
989 }
990 
991 static const struct sysfs_ops sysfs_ops = {
992 	.show	= show,
993 	.store	= store,
994 };
995 
996 static struct kobj_type ktype_cpufreq = {
997 	.sysfs_ops	= &sysfs_ops,
998 	.default_groups	= cpufreq_groups,
999 	.release	= cpufreq_sysfs_release,
1000 };
1001 
1002 static void add_cpu_dev_symlink(struct cpufreq_policy *policy, unsigned int cpu,
1003 				struct device *dev)
1004 {
1005 	if (unlikely(!dev))
1006 		return;
1007 
1008 	if (cpumask_test_and_set_cpu(cpu, policy->real_cpus))
1009 		return;
1010 
1011 	dev_dbg(dev, "%s: Adding symlink\n", __func__);
1012 	if (sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq"))
1013 		dev_err(dev, "cpufreq symlink creation failed\n");
1014 }
1015 
1016 static void remove_cpu_dev_symlink(struct cpufreq_policy *policy, int cpu,
1017 				   struct device *dev)
1018 {
1019 	dev_dbg(dev, "%s: Removing symlink\n", __func__);
1020 	sysfs_remove_link(&dev->kobj, "cpufreq");
1021 	cpumask_clear_cpu(cpu, policy->real_cpus);
1022 }
1023 
1024 static int cpufreq_add_dev_interface(struct cpufreq_policy *policy)
1025 {
1026 	struct freq_attr **drv_attr;
1027 	int ret = 0;
1028 
1029 	/* set up files for this cpu device */
1030 	drv_attr = cpufreq_driver->attr;
1031 	while (drv_attr && *drv_attr) {
1032 		ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
1033 		if (ret)
1034 			return ret;
1035 		drv_attr++;
1036 	}
1037 	if (cpufreq_driver->get) {
1038 		ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
1039 		if (ret)
1040 			return ret;
1041 	}
1042 
1043 	ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
1044 	if (ret)
1045 		return ret;
1046 
1047 	if (cpufreq_driver->bios_limit) {
1048 		ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
1049 		if (ret)
1050 			return ret;
1051 	}
1052 
1053 	return 0;
1054 }
1055 
1056 static int cpufreq_init_policy(struct cpufreq_policy *policy)
1057 {
1058 	struct cpufreq_governor *gov = NULL;
1059 	unsigned int pol = CPUFREQ_POLICY_UNKNOWN;
1060 	int ret;
1061 
1062 	if (has_target()) {
1063 		/* Update policy governor to the one used before hotplug. */
1064 		gov = get_governor(policy->last_governor);
1065 		if (gov) {
1066 			pr_debug("Restoring governor %s for cpu %d\n",
1067 				 gov->name, policy->cpu);
1068 		} else {
1069 			gov = get_governor(default_governor);
1070 		}
1071 
1072 		if (!gov) {
1073 			gov = cpufreq_default_governor();
1074 			__module_get(gov->owner);
1075 		}
1076 
1077 	} else {
1078 
1079 		/* Use the default policy if there is no last_policy. */
1080 		if (policy->last_policy) {
1081 			pol = policy->last_policy;
1082 		} else {
1083 			pol = cpufreq_parse_policy(default_governor);
1084 			/*
1085 			 * In case the default governor is neither "performance"
1086 			 * nor "powersave", fall back to the initial policy
1087 			 * value set by the driver.
1088 			 */
1089 			if (pol == CPUFREQ_POLICY_UNKNOWN)
1090 				pol = policy->policy;
1091 		}
1092 		if (pol != CPUFREQ_POLICY_PERFORMANCE &&
1093 		    pol != CPUFREQ_POLICY_POWERSAVE)
1094 			return -ENODATA;
1095 	}
1096 
1097 	ret = cpufreq_set_policy(policy, gov, pol);
1098 	if (gov)
1099 		module_put(gov->owner);
1100 
1101 	return ret;
1102 }
1103 
1104 static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu)
1105 {
1106 	int ret = 0;
1107 
1108 	/* Has this CPU been taken care of already? */
1109 	if (cpumask_test_cpu(cpu, policy->cpus))
1110 		return 0;
1111 
1112 	down_write(&policy->rwsem);
1113 	if (has_target())
1114 		cpufreq_stop_governor(policy);
1115 
1116 	cpumask_set_cpu(cpu, policy->cpus);
1117 
1118 	if (has_target()) {
1119 		ret = cpufreq_start_governor(policy);
1120 		if (ret)
1121 			pr_err("%s: Failed to start governor\n", __func__);
1122 	}
1123 	up_write(&policy->rwsem);
1124 	return ret;
1125 }
1126 
1127 void refresh_frequency_limits(struct cpufreq_policy *policy)
1128 {
1129 	if (!policy_is_inactive(policy)) {
1130 		pr_debug("updating policy for CPU %u\n", policy->cpu);
1131 
1132 		cpufreq_set_policy(policy, policy->governor, policy->policy);
1133 	}
1134 }
1135 EXPORT_SYMBOL(refresh_frequency_limits);
1136 
1137 static void handle_update(struct work_struct *work)
1138 {
1139 	struct cpufreq_policy *policy =
1140 		container_of(work, struct cpufreq_policy, update);
1141 
1142 	pr_debug("handle_update for cpu %u called\n", policy->cpu);
1143 	down_write(&policy->rwsem);
1144 	refresh_frequency_limits(policy);
1145 	up_write(&policy->rwsem);
1146 }
1147 
1148 static int cpufreq_notifier_min(struct notifier_block *nb, unsigned long freq,
1149 				void *data)
1150 {
1151 	struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_min);
1152 
1153 	schedule_work(&policy->update);
1154 	return 0;
1155 }
1156 
1157 static int cpufreq_notifier_max(struct notifier_block *nb, unsigned long freq,
1158 				void *data)
1159 {
1160 	struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_max);
1161 
1162 	schedule_work(&policy->update);
1163 	return 0;
1164 }
1165 
1166 static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy)
1167 {
1168 	struct kobject *kobj;
1169 	struct completion *cmp;
1170 
1171 	down_write(&policy->rwsem);
1172 	cpufreq_stats_free_table(policy);
1173 	kobj = &policy->kobj;
1174 	cmp = &policy->kobj_unregister;
1175 	up_write(&policy->rwsem);
1176 	kobject_put(kobj);
1177 
1178 	/*
1179 	 * We need to make sure that the underlying kobj is
1180 	 * actually not referenced anymore by anybody before we
1181 	 * proceed with unloading.
1182 	 */
1183 	pr_debug("waiting for dropping of refcount\n");
1184 	wait_for_completion(cmp);
1185 	pr_debug("wait complete\n");
1186 }
1187 
1188 static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu)
1189 {
1190 	struct cpufreq_policy *policy;
1191 	struct device *dev = get_cpu_device(cpu);
1192 	int ret;
1193 
1194 	if (!dev)
1195 		return NULL;
1196 
1197 	policy = kzalloc(sizeof(*policy), GFP_KERNEL);
1198 	if (!policy)
1199 		return NULL;
1200 
1201 	if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
1202 		goto err_free_policy;
1203 
1204 	if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
1205 		goto err_free_cpumask;
1206 
1207 	if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL))
1208 		goto err_free_rcpumask;
1209 
1210 	ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
1211 				   cpufreq_global_kobject, "policy%u", cpu);
1212 	if (ret) {
1213 		dev_err(dev, "%s: failed to init policy->kobj: %d\n", __func__, ret);
1214 		/*
1215 		 * The entire policy object will be freed below, but the extra
1216 		 * memory allocated for the kobject name needs to be freed by
1217 		 * releasing the kobject.
1218 		 */
1219 		kobject_put(&policy->kobj);
1220 		goto err_free_real_cpus;
1221 	}
1222 
1223 	freq_constraints_init(&policy->constraints);
1224 
1225 	policy->nb_min.notifier_call = cpufreq_notifier_min;
1226 	policy->nb_max.notifier_call = cpufreq_notifier_max;
1227 
1228 	ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MIN,
1229 				    &policy->nb_min);
1230 	if (ret) {
1231 		dev_err(dev, "Failed to register MIN QoS notifier: %d (%*pbl)\n",
1232 			ret, cpumask_pr_args(policy->cpus));
1233 		goto err_kobj_remove;
1234 	}
1235 
1236 	ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MAX,
1237 				    &policy->nb_max);
1238 	if (ret) {
1239 		dev_err(dev, "Failed to register MAX QoS notifier: %d (%*pbl)\n",
1240 			ret, cpumask_pr_args(policy->cpus));
1241 		goto err_min_qos_notifier;
1242 	}
1243 
1244 	INIT_LIST_HEAD(&policy->policy_list);
1245 	init_rwsem(&policy->rwsem);
1246 	spin_lock_init(&policy->transition_lock);
1247 	init_waitqueue_head(&policy->transition_wait);
1248 	init_completion(&policy->kobj_unregister);
1249 	INIT_WORK(&policy->update, handle_update);
1250 
1251 	policy->cpu = cpu;
1252 	return policy;
1253 
1254 err_min_qos_notifier:
1255 	freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1256 				 &policy->nb_min);
1257 err_kobj_remove:
1258 	cpufreq_policy_put_kobj(policy);
1259 err_free_real_cpus:
1260 	free_cpumask_var(policy->real_cpus);
1261 err_free_rcpumask:
1262 	free_cpumask_var(policy->related_cpus);
1263 err_free_cpumask:
1264 	free_cpumask_var(policy->cpus);
1265 err_free_policy:
1266 	kfree(policy);
1267 
1268 	return NULL;
1269 }
1270 
1271 static void cpufreq_policy_free(struct cpufreq_policy *policy)
1272 {
1273 	unsigned long flags;
1274 	int cpu;
1275 
1276 	/*
1277 	 * The callers must ensure the policy is inactive by now, to avoid any
1278 	 * races with show()/store() callbacks.
1279 	 */
1280 	if (unlikely(!policy_is_inactive(policy)))
1281 		pr_warn("%s: Freeing active policy\n", __func__);
1282 
1283 	/* Remove policy from list */
1284 	write_lock_irqsave(&cpufreq_driver_lock, flags);
1285 	list_del(&policy->policy_list);
1286 
1287 	for_each_cpu(cpu, policy->related_cpus)
1288 		per_cpu(cpufreq_cpu_data, cpu) = NULL;
1289 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1290 
1291 	freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MAX,
1292 				 &policy->nb_max);
1293 	freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1294 				 &policy->nb_min);
1295 
1296 	/* Cancel any pending policy->update work before freeing the policy. */
1297 	cancel_work_sync(&policy->update);
1298 
1299 	if (policy->max_freq_req) {
1300 		/*
1301 		 * Remove max_freq_req after sending CPUFREQ_REMOVE_POLICY
1302 		 * notification, since CPUFREQ_CREATE_POLICY notification was
1303 		 * sent after adding max_freq_req earlier.
1304 		 */
1305 		blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1306 					     CPUFREQ_REMOVE_POLICY, policy);
1307 		freq_qos_remove_request(policy->max_freq_req);
1308 	}
1309 
1310 	freq_qos_remove_request(policy->min_freq_req);
1311 	kfree(policy->min_freq_req);
1312 
1313 	cpufreq_policy_put_kobj(policy);
1314 	free_cpumask_var(policy->real_cpus);
1315 	free_cpumask_var(policy->related_cpus);
1316 	free_cpumask_var(policy->cpus);
1317 	kfree(policy);
1318 }
1319 
1320 static int cpufreq_online(unsigned int cpu)
1321 {
1322 	struct cpufreq_policy *policy;
1323 	bool new_policy;
1324 	unsigned long flags;
1325 	unsigned int j;
1326 	int ret;
1327 
1328 	pr_debug("%s: bringing CPU%u online\n", __func__, cpu);
1329 
1330 	/* Check if this CPU already has a policy to manage it */
1331 	policy = per_cpu(cpufreq_cpu_data, cpu);
1332 	if (policy) {
1333 		WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus));
1334 		if (!policy_is_inactive(policy))
1335 			return cpufreq_add_policy_cpu(policy, cpu);
1336 
1337 		/* This is the only online CPU for the policy.  Start over. */
1338 		new_policy = false;
1339 		down_write(&policy->rwsem);
1340 		policy->cpu = cpu;
1341 		policy->governor = NULL;
1342 	} else {
1343 		new_policy = true;
1344 		policy = cpufreq_policy_alloc(cpu);
1345 		if (!policy)
1346 			return -ENOMEM;
1347 		down_write(&policy->rwsem);
1348 	}
1349 
1350 	if (!new_policy && cpufreq_driver->online) {
1351 		/* Recover policy->cpus using related_cpus */
1352 		cpumask_copy(policy->cpus, policy->related_cpus);
1353 
1354 		ret = cpufreq_driver->online(policy);
1355 		if (ret) {
1356 			pr_debug("%s: %d: initialization failed\n", __func__,
1357 				 __LINE__);
1358 			goto out_exit_policy;
1359 		}
1360 	} else {
1361 		cpumask_copy(policy->cpus, cpumask_of(cpu));
1362 
1363 		/*
1364 		 * Call driver. From then on the cpufreq must be able
1365 		 * to accept all calls to ->verify and ->setpolicy for this CPU.
1366 		 */
1367 		ret = cpufreq_driver->init(policy);
1368 		if (ret) {
1369 			pr_debug("%s: %d: initialization failed\n", __func__,
1370 				 __LINE__);
1371 			goto out_free_policy;
1372 		}
1373 
1374 		/*
1375 		 * The initialization has succeeded and the policy is online.
1376 		 * If there is a problem with its frequency table, take it
1377 		 * offline and drop it.
1378 		 */
1379 		ret = cpufreq_table_validate_and_sort(policy);
1380 		if (ret)
1381 			goto out_offline_policy;
1382 
1383 		/* related_cpus should at least include policy->cpus. */
1384 		cpumask_copy(policy->related_cpus, policy->cpus);
1385 	}
1386 
1387 	/*
1388 	 * affected cpus must always be the one, which are online. We aren't
1389 	 * managing offline cpus here.
1390 	 */
1391 	cpumask_and(policy->cpus, policy->cpus, cpu_online_mask);
1392 
1393 	if (new_policy) {
1394 		for_each_cpu(j, policy->related_cpus) {
1395 			per_cpu(cpufreq_cpu_data, j) = policy;
1396 			add_cpu_dev_symlink(policy, j, get_cpu_device(j));
1397 		}
1398 
1399 		policy->min_freq_req = kzalloc(2 * sizeof(*policy->min_freq_req),
1400 					       GFP_KERNEL);
1401 		if (!policy->min_freq_req) {
1402 			ret = -ENOMEM;
1403 			goto out_destroy_policy;
1404 		}
1405 
1406 		ret = freq_qos_add_request(&policy->constraints,
1407 					   policy->min_freq_req, FREQ_QOS_MIN,
1408 					   FREQ_QOS_MIN_DEFAULT_VALUE);
1409 		if (ret < 0) {
1410 			/*
1411 			 * So we don't call freq_qos_remove_request() for an
1412 			 * uninitialized request.
1413 			 */
1414 			kfree(policy->min_freq_req);
1415 			policy->min_freq_req = NULL;
1416 			goto out_destroy_policy;
1417 		}
1418 
1419 		/*
1420 		 * This must be initialized right here to avoid calling
1421 		 * freq_qos_remove_request() on uninitialized request in case
1422 		 * of errors.
1423 		 */
1424 		policy->max_freq_req = policy->min_freq_req + 1;
1425 
1426 		ret = freq_qos_add_request(&policy->constraints,
1427 					   policy->max_freq_req, FREQ_QOS_MAX,
1428 					   FREQ_QOS_MAX_DEFAULT_VALUE);
1429 		if (ret < 0) {
1430 			policy->max_freq_req = NULL;
1431 			goto out_destroy_policy;
1432 		}
1433 
1434 		blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1435 				CPUFREQ_CREATE_POLICY, policy);
1436 	}
1437 
1438 	if (cpufreq_driver->get && has_target()) {
1439 		policy->cur = cpufreq_driver->get(policy->cpu);
1440 		if (!policy->cur) {
1441 			ret = -EIO;
1442 			pr_err("%s: ->get() failed\n", __func__);
1443 			goto out_destroy_policy;
1444 		}
1445 	}
1446 
1447 	/*
1448 	 * Sometimes boot loaders set CPU frequency to a value outside of
1449 	 * frequency table present with cpufreq core. In such cases CPU might be
1450 	 * unstable if it has to run on that frequency for long duration of time
1451 	 * and so its better to set it to a frequency which is specified in
1452 	 * freq-table. This also makes cpufreq stats inconsistent as
1453 	 * cpufreq-stats would fail to register because current frequency of CPU
1454 	 * isn't found in freq-table.
1455 	 *
1456 	 * Because we don't want this change to effect boot process badly, we go
1457 	 * for the next freq which is >= policy->cur ('cur' must be set by now,
1458 	 * otherwise we will end up setting freq to lowest of the table as 'cur'
1459 	 * is initialized to zero).
1460 	 *
1461 	 * We are passing target-freq as "policy->cur - 1" otherwise
1462 	 * __cpufreq_driver_target() would simply fail, as policy->cur will be
1463 	 * equal to target-freq.
1464 	 */
1465 	if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK)
1466 	    && has_target()) {
1467 		unsigned int old_freq = policy->cur;
1468 
1469 		/* Are we running at unknown frequency ? */
1470 		ret = cpufreq_frequency_table_get_index(policy, old_freq);
1471 		if (ret == -EINVAL) {
1472 			ret = __cpufreq_driver_target(policy, old_freq - 1,
1473 						      CPUFREQ_RELATION_L);
1474 
1475 			/*
1476 			 * Reaching here after boot in a few seconds may not
1477 			 * mean that system will remain stable at "unknown"
1478 			 * frequency for longer duration. Hence, a BUG_ON().
1479 			 */
1480 			BUG_ON(ret);
1481 			pr_info("%s: CPU%d: Running at unlisted initial frequency: %u KHz, changing to: %u KHz\n",
1482 				__func__, policy->cpu, old_freq, policy->cur);
1483 		}
1484 	}
1485 
1486 	if (new_policy) {
1487 		ret = cpufreq_add_dev_interface(policy);
1488 		if (ret)
1489 			goto out_destroy_policy;
1490 
1491 		cpufreq_stats_create_table(policy);
1492 
1493 		write_lock_irqsave(&cpufreq_driver_lock, flags);
1494 		list_add(&policy->policy_list, &cpufreq_policy_list);
1495 		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1496 
1497 		/*
1498 		 * Register with the energy model before
1499 		 * sched_cpufreq_governor_change() is called, which will result
1500 		 * in rebuilding of the sched domains, which should only be done
1501 		 * once the energy model is properly initialized for the policy
1502 		 * first.
1503 		 *
1504 		 * Also, this should be called before the policy is registered
1505 		 * with cooling framework.
1506 		 */
1507 		if (cpufreq_driver->register_em)
1508 			cpufreq_driver->register_em(policy);
1509 	}
1510 
1511 	ret = cpufreq_init_policy(policy);
1512 	if (ret) {
1513 		pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n",
1514 		       __func__, cpu, ret);
1515 		goto out_destroy_policy;
1516 	}
1517 
1518 	up_write(&policy->rwsem);
1519 
1520 	kobject_uevent(&policy->kobj, KOBJ_ADD);
1521 
1522 	/* Callback for handling stuff after policy is ready */
1523 	if (cpufreq_driver->ready)
1524 		cpufreq_driver->ready(policy);
1525 
1526 	if (cpufreq_thermal_control_enabled(cpufreq_driver))
1527 		policy->cdev = of_cpufreq_cooling_register(policy);
1528 
1529 	pr_debug("initialization complete\n");
1530 
1531 	return 0;
1532 
1533 out_destroy_policy:
1534 	for_each_cpu(j, policy->real_cpus)
1535 		remove_cpu_dev_symlink(policy, j, get_cpu_device(j));
1536 
1537 out_offline_policy:
1538 	if (cpufreq_driver->offline)
1539 		cpufreq_driver->offline(policy);
1540 
1541 out_exit_policy:
1542 	if (cpufreq_driver->exit)
1543 		cpufreq_driver->exit(policy);
1544 
1545 out_free_policy:
1546 	cpumask_clear(policy->cpus);
1547 	up_write(&policy->rwsem);
1548 
1549 	cpufreq_policy_free(policy);
1550 	return ret;
1551 }
1552 
1553 /**
1554  * cpufreq_add_dev - the cpufreq interface for a CPU device.
1555  * @dev: CPU device.
1556  * @sif: Subsystem interface structure pointer (not used)
1557  */
1558 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1559 {
1560 	struct cpufreq_policy *policy;
1561 	unsigned cpu = dev->id;
1562 	int ret;
1563 
1564 	dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu);
1565 
1566 	if (cpu_online(cpu)) {
1567 		ret = cpufreq_online(cpu);
1568 		if (ret)
1569 			return ret;
1570 	}
1571 
1572 	/* Create sysfs link on CPU registration */
1573 	policy = per_cpu(cpufreq_cpu_data, cpu);
1574 	if (policy)
1575 		add_cpu_dev_symlink(policy, cpu, dev);
1576 
1577 	return 0;
1578 }
1579 
1580 static void __cpufreq_offline(unsigned int cpu, struct cpufreq_policy *policy)
1581 {
1582 	int ret;
1583 
1584 	if (has_target())
1585 		cpufreq_stop_governor(policy);
1586 
1587 	cpumask_clear_cpu(cpu, policy->cpus);
1588 
1589 	if (!policy_is_inactive(policy)) {
1590 		/* Nominate a new CPU if necessary. */
1591 		if (cpu == policy->cpu)
1592 			policy->cpu = cpumask_any(policy->cpus);
1593 
1594 		/* Start the governor again for the active policy. */
1595 		if (has_target()) {
1596 			ret = cpufreq_start_governor(policy);
1597 			if (ret)
1598 				pr_err("%s: Failed to start governor\n", __func__);
1599 		}
1600 
1601 		return;
1602 	}
1603 
1604 	if (has_target())
1605 		strncpy(policy->last_governor, policy->governor->name,
1606 			CPUFREQ_NAME_LEN);
1607 	else
1608 		policy->last_policy = policy->policy;
1609 
1610 	if (cpufreq_thermal_control_enabled(cpufreq_driver)) {
1611 		cpufreq_cooling_unregister(policy->cdev);
1612 		policy->cdev = NULL;
1613 	}
1614 
1615 	if (has_target())
1616 		cpufreq_exit_governor(policy);
1617 
1618 	/*
1619 	 * Perform the ->offline() during light-weight tear-down, as
1620 	 * that allows fast recovery when the CPU comes back.
1621 	 */
1622 	if (cpufreq_driver->offline) {
1623 		cpufreq_driver->offline(policy);
1624 	} else if (cpufreq_driver->exit) {
1625 		cpufreq_driver->exit(policy);
1626 		policy->freq_table = NULL;
1627 	}
1628 }
1629 
1630 static int cpufreq_offline(unsigned int cpu)
1631 {
1632 	struct cpufreq_policy *policy;
1633 
1634 	pr_debug("%s: unregistering CPU %u\n", __func__, cpu);
1635 
1636 	policy = cpufreq_cpu_get_raw(cpu);
1637 	if (!policy) {
1638 		pr_debug("%s: No cpu_data found\n", __func__);
1639 		return 0;
1640 	}
1641 
1642 	down_write(&policy->rwsem);
1643 
1644 	__cpufreq_offline(cpu, policy);
1645 
1646 	up_write(&policy->rwsem);
1647 	return 0;
1648 }
1649 
1650 /*
1651  * cpufreq_remove_dev - remove a CPU device
1652  *
1653  * Removes the cpufreq interface for a CPU device.
1654  */
1655 static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1656 {
1657 	unsigned int cpu = dev->id;
1658 	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1659 
1660 	if (!policy)
1661 		return;
1662 
1663 	down_write(&policy->rwsem);
1664 
1665 	if (cpu_online(cpu))
1666 		__cpufreq_offline(cpu, policy);
1667 
1668 	remove_cpu_dev_symlink(policy, cpu, dev);
1669 
1670 	if (!cpumask_empty(policy->real_cpus)) {
1671 		up_write(&policy->rwsem);
1672 		return;
1673 	}
1674 
1675 	/* We did light-weight exit earlier, do full tear down now */
1676 	if (cpufreq_driver->offline)
1677 		cpufreq_driver->exit(policy);
1678 
1679 	up_write(&policy->rwsem);
1680 
1681 	cpufreq_policy_free(policy);
1682 }
1683 
1684 /**
1685  * cpufreq_out_of_sync - Fix up actual and saved CPU frequency difference.
1686  * @policy: Policy managing CPUs.
1687  * @new_freq: New CPU frequency.
1688  *
1689  * Adjust to the current frequency first and clean up later by either calling
1690  * cpufreq_update_policy(), or scheduling handle_update().
1691  */
1692 static void cpufreq_out_of_sync(struct cpufreq_policy *policy,
1693 				unsigned int new_freq)
1694 {
1695 	struct cpufreq_freqs freqs;
1696 
1697 	pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n",
1698 		 policy->cur, new_freq);
1699 
1700 	freqs.old = policy->cur;
1701 	freqs.new = new_freq;
1702 
1703 	cpufreq_freq_transition_begin(policy, &freqs);
1704 	cpufreq_freq_transition_end(policy, &freqs, 0);
1705 }
1706 
1707 static unsigned int cpufreq_verify_current_freq(struct cpufreq_policy *policy, bool update)
1708 {
1709 	unsigned int new_freq;
1710 
1711 	new_freq = cpufreq_driver->get(policy->cpu);
1712 	if (!new_freq)
1713 		return 0;
1714 
1715 	/*
1716 	 * If fast frequency switching is used with the given policy, the check
1717 	 * against policy->cur is pointless, so skip it in that case.
1718 	 */
1719 	if (policy->fast_switch_enabled || !has_target())
1720 		return new_freq;
1721 
1722 	if (policy->cur != new_freq) {
1723 		/*
1724 		 * For some platforms, the frequency returned by hardware may be
1725 		 * slightly different from what is provided in the frequency
1726 		 * table, for example hardware may return 499 MHz instead of 500
1727 		 * MHz. In such cases it is better to avoid getting into
1728 		 * unnecessary frequency updates.
1729 		 */
1730 		if (abs(policy->cur - new_freq) < HZ_PER_MHZ)
1731 			return policy->cur;
1732 
1733 		cpufreq_out_of_sync(policy, new_freq);
1734 		if (update)
1735 			schedule_work(&policy->update);
1736 	}
1737 
1738 	return new_freq;
1739 }
1740 
1741 /**
1742  * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1743  * @cpu: CPU number
1744  *
1745  * This is the last known freq, without actually getting it from the driver.
1746  * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1747  */
1748 unsigned int cpufreq_quick_get(unsigned int cpu)
1749 {
1750 	struct cpufreq_policy *policy;
1751 	unsigned int ret_freq = 0;
1752 	unsigned long flags;
1753 
1754 	read_lock_irqsave(&cpufreq_driver_lock, flags);
1755 
1756 	if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) {
1757 		ret_freq = cpufreq_driver->get(cpu);
1758 		read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1759 		return ret_freq;
1760 	}
1761 
1762 	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1763 
1764 	policy = cpufreq_cpu_get(cpu);
1765 	if (policy) {
1766 		ret_freq = policy->cur;
1767 		cpufreq_cpu_put(policy);
1768 	}
1769 
1770 	return ret_freq;
1771 }
1772 EXPORT_SYMBOL(cpufreq_quick_get);
1773 
1774 /**
1775  * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1776  * @cpu: CPU number
1777  *
1778  * Just return the max possible frequency for a given CPU.
1779  */
1780 unsigned int cpufreq_quick_get_max(unsigned int cpu)
1781 {
1782 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1783 	unsigned int ret_freq = 0;
1784 
1785 	if (policy) {
1786 		ret_freq = policy->max;
1787 		cpufreq_cpu_put(policy);
1788 	}
1789 
1790 	return ret_freq;
1791 }
1792 EXPORT_SYMBOL(cpufreq_quick_get_max);
1793 
1794 /**
1795  * cpufreq_get_hw_max_freq - get the max hardware frequency of the CPU
1796  * @cpu: CPU number
1797  *
1798  * The default return value is the max_freq field of cpuinfo.
1799  */
1800 __weak unsigned int cpufreq_get_hw_max_freq(unsigned int cpu)
1801 {
1802 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1803 	unsigned int ret_freq = 0;
1804 
1805 	if (policy) {
1806 		ret_freq = policy->cpuinfo.max_freq;
1807 		cpufreq_cpu_put(policy);
1808 	}
1809 
1810 	return ret_freq;
1811 }
1812 EXPORT_SYMBOL(cpufreq_get_hw_max_freq);
1813 
1814 static unsigned int __cpufreq_get(struct cpufreq_policy *policy)
1815 {
1816 	if (unlikely(policy_is_inactive(policy)))
1817 		return 0;
1818 
1819 	return cpufreq_verify_current_freq(policy, true);
1820 }
1821 
1822 /**
1823  * cpufreq_get - get the current CPU frequency (in kHz)
1824  * @cpu: CPU number
1825  *
1826  * Get the CPU current (static) CPU frequency
1827  */
1828 unsigned int cpufreq_get(unsigned int cpu)
1829 {
1830 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1831 	unsigned int ret_freq = 0;
1832 
1833 	if (policy) {
1834 		down_read(&policy->rwsem);
1835 		if (cpufreq_driver->get)
1836 			ret_freq = __cpufreq_get(policy);
1837 		up_read(&policy->rwsem);
1838 
1839 		cpufreq_cpu_put(policy);
1840 	}
1841 
1842 	return ret_freq;
1843 }
1844 EXPORT_SYMBOL(cpufreq_get);
1845 
1846 static struct subsys_interface cpufreq_interface = {
1847 	.name		= "cpufreq",
1848 	.subsys		= &cpu_subsys,
1849 	.add_dev	= cpufreq_add_dev,
1850 	.remove_dev	= cpufreq_remove_dev,
1851 };
1852 
1853 /*
1854  * In case platform wants some specific frequency to be configured
1855  * during suspend..
1856  */
1857 int cpufreq_generic_suspend(struct cpufreq_policy *policy)
1858 {
1859 	int ret;
1860 
1861 	if (!policy->suspend_freq) {
1862 		pr_debug("%s: suspend_freq not defined\n", __func__);
1863 		return 0;
1864 	}
1865 
1866 	pr_debug("%s: Setting suspend-freq: %u\n", __func__,
1867 			policy->suspend_freq);
1868 
1869 	ret = __cpufreq_driver_target(policy, policy->suspend_freq,
1870 			CPUFREQ_RELATION_H);
1871 	if (ret)
1872 		pr_err("%s: unable to set suspend-freq: %u. err: %d\n",
1873 				__func__, policy->suspend_freq, ret);
1874 
1875 	return ret;
1876 }
1877 EXPORT_SYMBOL(cpufreq_generic_suspend);
1878 
1879 /**
1880  * cpufreq_suspend() - Suspend CPUFreq governors.
1881  *
1882  * Called during system wide Suspend/Hibernate cycles for suspending governors
1883  * as some platforms can't change frequency after this point in suspend cycle.
1884  * Because some of the devices (like: i2c, regulators, etc) they use for
1885  * changing frequency are suspended quickly after this point.
1886  */
1887 void cpufreq_suspend(void)
1888 {
1889 	struct cpufreq_policy *policy;
1890 
1891 	if (!cpufreq_driver)
1892 		return;
1893 
1894 	if (!has_target() && !cpufreq_driver->suspend)
1895 		goto suspend;
1896 
1897 	pr_debug("%s: Suspending Governors\n", __func__);
1898 
1899 	for_each_active_policy(policy) {
1900 		if (has_target()) {
1901 			down_write(&policy->rwsem);
1902 			cpufreq_stop_governor(policy);
1903 			up_write(&policy->rwsem);
1904 		}
1905 
1906 		if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy))
1907 			pr_err("%s: Failed to suspend driver: %s\n", __func__,
1908 				cpufreq_driver->name);
1909 	}
1910 
1911 suspend:
1912 	cpufreq_suspended = true;
1913 }
1914 
1915 /**
1916  * cpufreq_resume() - Resume CPUFreq governors.
1917  *
1918  * Called during system wide Suspend/Hibernate cycle for resuming governors that
1919  * are suspended with cpufreq_suspend().
1920  */
1921 void cpufreq_resume(void)
1922 {
1923 	struct cpufreq_policy *policy;
1924 	int ret;
1925 
1926 	if (!cpufreq_driver)
1927 		return;
1928 
1929 	if (unlikely(!cpufreq_suspended))
1930 		return;
1931 
1932 	cpufreq_suspended = false;
1933 
1934 	if (!has_target() && !cpufreq_driver->resume)
1935 		return;
1936 
1937 	pr_debug("%s: Resuming Governors\n", __func__);
1938 
1939 	for_each_active_policy(policy) {
1940 		if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) {
1941 			pr_err("%s: Failed to resume driver: %p\n", __func__,
1942 				policy);
1943 		} else if (has_target()) {
1944 			down_write(&policy->rwsem);
1945 			ret = cpufreq_start_governor(policy);
1946 			up_write(&policy->rwsem);
1947 
1948 			if (ret)
1949 				pr_err("%s: Failed to start governor for policy: %p\n",
1950 				       __func__, policy);
1951 		}
1952 	}
1953 }
1954 
1955 /**
1956  * cpufreq_driver_test_flags - Test cpufreq driver's flags against given ones.
1957  * @flags: Flags to test against the current cpufreq driver's flags.
1958  *
1959  * Assumes that the driver is there, so callers must ensure that this is the
1960  * case.
1961  */
1962 bool cpufreq_driver_test_flags(u16 flags)
1963 {
1964 	return !!(cpufreq_driver->flags & flags);
1965 }
1966 
1967 /**
1968  * cpufreq_get_current_driver - Return the current driver's name.
1969  *
1970  * Return the name string of the currently registered cpufreq driver or NULL if
1971  * none.
1972  */
1973 const char *cpufreq_get_current_driver(void)
1974 {
1975 	if (cpufreq_driver)
1976 		return cpufreq_driver->name;
1977 
1978 	return NULL;
1979 }
1980 EXPORT_SYMBOL_GPL(cpufreq_get_current_driver);
1981 
1982 /**
1983  * cpufreq_get_driver_data - Return current driver data.
1984  *
1985  * Return the private data of the currently registered cpufreq driver, or NULL
1986  * if no cpufreq driver has been registered.
1987  */
1988 void *cpufreq_get_driver_data(void)
1989 {
1990 	if (cpufreq_driver)
1991 		return cpufreq_driver->driver_data;
1992 
1993 	return NULL;
1994 }
1995 EXPORT_SYMBOL_GPL(cpufreq_get_driver_data);
1996 
1997 /*********************************************************************
1998  *                     NOTIFIER LISTS INTERFACE                      *
1999  *********************************************************************/
2000 
2001 /**
2002  * cpufreq_register_notifier - Register a notifier with cpufreq.
2003  * @nb: notifier function to register.
2004  * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER.
2005  *
2006  * Add a notifier to one of two lists: either a list of notifiers that run on
2007  * clock rate changes (once before and once after every transition), or a list
2008  * of notifiers that ron on cpufreq policy changes.
2009  *
2010  * This function may sleep and it has the same return values as
2011  * blocking_notifier_chain_register().
2012  */
2013 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
2014 {
2015 	int ret;
2016 
2017 	if (cpufreq_disabled())
2018 		return -EINVAL;
2019 
2020 	switch (list) {
2021 	case CPUFREQ_TRANSITION_NOTIFIER:
2022 		mutex_lock(&cpufreq_fast_switch_lock);
2023 
2024 		if (cpufreq_fast_switch_count > 0) {
2025 			mutex_unlock(&cpufreq_fast_switch_lock);
2026 			return -EBUSY;
2027 		}
2028 		ret = srcu_notifier_chain_register(
2029 				&cpufreq_transition_notifier_list, nb);
2030 		if (!ret)
2031 			cpufreq_fast_switch_count--;
2032 
2033 		mutex_unlock(&cpufreq_fast_switch_lock);
2034 		break;
2035 	case CPUFREQ_POLICY_NOTIFIER:
2036 		ret = blocking_notifier_chain_register(
2037 				&cpufreq_policy_notifier_list, nb);
2038 		break;
2039 	default:
2040 		ret = -EINVAL;
2041 	}
2042 
2043 	return ret;
2044 }
2045 EXPORT_SYMBOL(cpufreq_register_notifier);
2046 
2047 /**
2048  * cpufreq_unregister_notifier - Unregister a notifier from cpufreq.
2049  * @nb: notifier block to be unregistered.
2050  * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER.
2051  *
2052  * Remove a notifier from one of the cpufreq notifier lists.
2053  *
2054  * This function may sleep and it has the same return values as
2055  * blocking_notifier_chain_unregister().
2056  */
2057 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
2058 {
2059 	int ret;
2060 
2061 	if (cpufreq_disabled())
2062 		return -EINVAL;
2063 
2064 	switch (list) {
2065 	case CPUFREQ_TRANSITION_NOTIFIER:
2066 		mutex_lock(&cpufreq_fast_switch_lock);
2067 
2068 		ret = srcu_notifier_chain_unregister(
2069 				&cpufreq_transition_notifier_list, nb);
2070 		if (!ret && !WARN_ON(cpufreq_fast_switch_count >= 0))
2071 			cpufreq_fast_switch_count++;
2072 
2073 		mutex_unlock(&cpufreq_fast_switch_lock);
2074 		break;
2075 	case CPUFREQ_POLICY_NOTIFIER:
2076 		ret = blocking_notifier_chain_unregister(
2077 				&cpufreq_policy_notifier_list, nb);
2078 		break;
2079 	default:
2080 		ret = -EINVAL;
2081 	}
2082 
2083 	return ret;
2084 }
2085 EXPORT_SYMBOL(cpufreq_unregister_notifier);
2086 
2087 
2088 /*********************************************************************
2089  *                              GOVERNORS                            *
2090  *********************************************************************/
2091 
2092 /**
2093  * cpufreq_driver_fast_switch - Carry out a fast CPU frequency switch.
2094  * @policy: cpufreq policy to switch the frequency for.
2095  * @target_freq: New frequency to set (may be approximate).
2096  *
2097  * Carry out a fast frequency switch without sleeping.
2098  *
2099  * The driver's ->fast_switch() callback invoked by this function must be
2100  * suitable for being called from within RCU-sched read-side critical sections
2101  * and it is expected to select the minimum available frequency greater than or
2102  * equal to @target_freq (CPUFREQ_RELATION_L).
2103  *
2104  * This function must not be called if policy->fast_switch_enabled is unset.
2105  *
2106  * Governors calling this function must guarantee that it will never be invoked
2107  * twice in parallel for the same policy and that it will never be called in
2108  * parallel with either ->target() or ->target_index() for the same policy.
2109  *
2110  * Returns the actual frequency set for the CPU.
2111  *
2112  * If 0 is returned by the driver's ->fast_switch() callback to indicate an
2113  * error condition, the hardware configuration must be preserved.
2114  */
2115 unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy,
2116 					unsigned int target_freq)
2117 {
2118 	unsigned int freq;
2119 	int cpu;
2120 
2121 	target_freq = clamp_val(target_freq, policy->min, policy->max);
2122 	freq = cpufreq_driver->fast_switch(policy, target_freq);
2123 
2124 	if (!freq)
2125 		return 0;
2126 
2127 	policy->cur = freq;
2128 	arch_set_freq_scale(policy->related_cpus, freq,
2129 			    policy->cpuinfo.max_freq);
2130 	cpufreq_stats_record_transition(policy, freq);
2131 
2132 	if (trace_cpu_frequency_enabled()) {
2133 		for_each_cpu(cpu, policy->cpus)
2134 			trace_cpu_frequency(freq, cpu);
2135 	}
2136 
2137 	return freq;
2138 }
2139 EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch);
2140 
2141 /**
2142  * cpufreq_driver_adjust_perf - Adjust CPU performance level in one go.
2143  * @cpu: Target CPU.
2144  * @min_perf: Minimum (required) performance level (units of @capacity).
2145  * @target_perf: Target (desired) performance level (units of @capacity).
2146  * @capacity: Capacity of the target CPU.
2147  *
2148  * Carry out a fast performance level switch of @cpu without sleeping.
2149  *
2150  * The driver's ->adjust_perf() callback invoked by this function must be
2151  * suitable for being called from within RCU-sched read-side critical sections
2152  * and it is expected to select a suitable performance level equal to or above
2153  * @min_perf and preferably equal to or below @target_perf.
2154  *
2155  * This function must not be called if policy->fast_switch_enabled is unset.
2156  *
2157  * Governors calling this function must guarantee that it will never be invoked
2158  * twice in parallel for the same CPU and that it will never be called in
2159  * parallel with either ->target() or ->target_index() or ->fast_switch() for
2160  * the same CPU.
2161  */
2162 void cpufreq_driver_adjust_perf(unsigned int cpu,
2163 				 unsigned long min_perf,
2164 				 unsigned long target_perf,
2165 				 unsigned long capacity)
2166 {
2167 	cpufreq_driver->adjust_perf(cpu, min_perf, target_perf, capacity);
2168 }
2169 
2170 /**
2171  * cpufreq_driver_has_adjust_perf - Check "direct fast switch" callback.
2172  *
2173  * Return 'true' if the ->adjust_perf callback is present for the
2174  * current driver or 'false' otherwise.
2175  */
2176 bool cpufreq_driver_has_adjust_perf(void)
2177 {
2178 	return !!cpufreq_driver->adjust_perf;
2179 }
2180 
2181 /* Must set freqs->new to intermediate frequency */
2182 static int __target_intermediate(struct cpufreq_policy *policy,
2183 				 struct cpufreq_freqs *freqs, int index)
2184 {
2185 	int ret;
2186 
2187 	freqs->new = cpufreq_driver->get_intermediate(policy, index);
2188 
2189 	/* We don't need to switch to intermediate freq */
2190 	if (!freqs->new)
2191 		return 0;
2192 
2193 	pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n",
2194 		 __func__, policy->cpu, freqs->old, freqs->new);
2195 
2196 	cpufreq_freq_transition_begin(policy, freqs);
2197 	ret = cpufreq_driver->target_intermediate(policy, index);
2198 	cpufreq_freq_transition_end(policy, freqs, ret);
2199 
2200 	if (ret)
2201 		pr_err("%s: Failed to change to intermediate frequency: %d\n",
2202 		       __func__, ret);
2203 
2204 	return ret;
2205 }
2206 
2207 static int __target_index(struct cpufreq_policy *policy, int index)
2208 {
2209 	struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0};
2210 	unsigned int restore_freq, intermediate_freq = 0;
2211 	unsigned int newfreq = policy->freq_table[index].frequency;
2212 	int retval = -EINVAL;
2213 	bool notify;
2214 
2215 	if (newfreq == policy->cur)
2216 		return 0;
2217 
2218 	/* Save last value to restore later on errors */
2219 	restore_freq = policy->cur;
2220 
2221 	notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION);
2222 	if (notify) {
2223 		/* Handle switching to intermediate frequency */
2224 		if (cpufreq_driver->get_intermediate) {
2225 			retval = __target_intermediate(policy, &freqs, index);
2226 			if (retval)
2227 				return retval;
2228 
2229 			intermediate_freq = freqs.new;
2230 			/* Set old freq to intermediate */
2231 			if (intermediate_freq)
2232 				freqs.old = freqs.new;
2233 		}
2234 
2235 		freqs.new = newfreq;
2236 		pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n",
2237 			 __func__, policy->cpu, freqs.old, freqs.new);
2238 
2239 		cpufreq_freq_transition_begin(policy, &freqs);
2240 	}
2241 
2242 	retval = cpufreq_driver->target_index(policy, index);
2243 	if (retval)
2244 		pr_err("%s: Failed to change cpu frequency: %d\n", __func__,
2245 		       retval);
2246 
2247 	if (notify) {
2248 		cpufreq_freq_transition_end(policy, &freqs, retval);
2249 
2250 		/*
2251 		 * Failed after setting to intermediate freq? Driver should have
2252 		 * reverted back to initial frequency and so should we. Check
2253 		 * here for intermediate_freq instead of get_intermediate, in
2254 		 * case we haven't switched to intermediate freq at all.
2255 		 */
2256 		if (unlikely(retval && intermediate_freq)) {
2257 			freqs.old = intermediate_freq;
2258 			freqs.new = restore_freq;
2259 			cpufreq_freq_transition_begin(policy, &freqs);
2260 			cpufreq_freq_transition_end(policy, &freqs, 0);
2261 		}
2262 	}
2263 
2264 	return retval;
2265 }
2266 
2267 int __cpufreq_driver_target(struct cpufreq_policy *policy,
2268 			    unsigned int target_freq,
2269 			    unsigned int relation)
2270 {
2271 	unsigned int old_target_freq = target_freq;
2272 
2273 	if (cpufreq_disabled())
2274 		return -ENODEV;
2275 
2276 	target_freq = __resolve_freq(policy, target_freq, relation);
2277 
2278 	pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n",
2279 		 policy->cpu, target_freq, relation, old_target_freq);
2280 
2281 	/*
2282 	 * This might look like a redundant call as we are checking it again
2283 	 * after finding index. But it is left intentionally for cases where
2284 	 * exactly same freq is called again and so we can save on few function
2285 	 * calls.
2286 	 */
2287 	if (target_freq == policy->cur &&
2288 	    !(cpufreq_driver->flags & CPUFREQ_NEED_UPDATE_LIMITS))
2289 		return 0;
2290 
2291 	if (cpufreq_driver->target) {
2292 		/*
2293 		 * If the driver hasn't setup a single inefficient frequency,
2294 		 * it's unlikely it knows how to decode CPUFREQ_RELATION_E.
2295 		 */
2296 		if (!policy->efficiencies_available)
2297 			relation &= ~CPUFREQ_RELATION_E;
2298 
2299 		return cpufreq_driver->target(policy, target_freq, relation);
2300 	}
2301 
2302 	if (!cpufreq_driver->target_index)
2303 		return -EINVAL;
2304 
2305 	return __target_index(policy, policy->cached_resolved_idx);
2306 }
2307 EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
2308 
2309 int cpufreq_driver_target(struct cpufreq_policy *policy,
2310 			  unsigned int target_freq,
2311 			  unsigned int relation)
2312 {
2313 	int ret;
2314 
2315 	down_write(&policy->rwsem);
2316 
2317 	ret = __cpufreq_driver_target(policy, target_freq, relation);
2318 
2319 	up_write(&policy->rwsem);
2320 
2321 	return ret;
2322 }
2323 EXPORT_SYMBOL_GPL(cpufreq_driver_target);
2324 
2325 __weak struct cpufreq_governor *cpufreq_fallback_governor(void)
2326 {
2327 	return NULL;
2328 }
2329 
2330 static int cpufreq_init_governor(struct cpufreq_policy *policy)
2331 {
2332 	int ret;
2333 
2334 	/* Don't start any governor operations if we are entering suspend */
2335 	if (cpufreq_suspended)
2336 		return 0;
2337 	/*
2338 	 * Governor might not be initiated here if ACPI _PPC changed
2339 	 * notification happened, so check it.
2340 	 */
2341 	if (!policy->governor)
2342 		return -EINVAL;
2343 
2344 	/* Platform doesn't want dynamic frequency switching ? */
2345 	if (policy->governor->flags & CPUFREQ_GOV_DYNAMIC_SWITCHING &&
2346 	    cpufreq_driver->flags & CPUFREQ_NO_AUTO_DYNAMIC_SWITCHING) {
2347 		struct cpufreq_governor *gov = cpufreq_fallback_governor();
2348 
2349 		if (gov) {
2350 			pr_warn("Can't use %s governor as dynamic switching is disallowed. Fallback to %s governor\n",
2351 				policy->governor->name, gov->name);
2352 			policy->governor = gov;
2353 		} else {
2354 			return -EINVAL;
2355 		}
2356 	}
2357 
2358 	if (!try_module_get(policy->governor->owner))
2359 		return -EINVAL;
2360 
2361 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2362 
2363 	if (policy->governor->init) {
2364 		ret = policy->governor->init(policy);
2365 		if (ret) {
2366 			module_put(policy->governor->owner);
2367 			return ret;
2368 		}
2369 	}
2370 
2371 	policy->strict_target = !!(policy->governor->flags & CPUFREQ_GOV_STRICT_TARGET);
2372 
2373 	return 0;
2374 }
2375 
2376 static void cpufreq_exit_governor(struct cpufreq_policy *policy)
2377 {
2378 	if (cpufreq_suspended || !policy->governor)
2379 		return;
2380 
2381 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2382 
2383 	if (policy->governor->exit)
2384 		policy->governor->exit(policy);
2385 
2386 	module_put(policy->governor->owner);
2387 }
2388 
2389 int cpufreq_start_governor(struct cpufreq_policy *policy)
2390 {
2391 	int ret;
2392 
2393 	if (cpufreq_suspended)
2394 		return 0;
2395 
2396 	if (!policy->governor)
2397 		return -EINVAL;
2398 
2399 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2400 
2401 	if (cpufreq_driver->get)
2402 		cpufreq_verify_current_freq(policy, false);
2403 
2404 	if (policy->governor->start) {
2405 		ret = policy->governor->start(policy);
2406 		if (ret)
2407 			return ret;
2408 	}
2409 
2410 	if (policy->governor->limits)
2411 		policy->governor->limits(policy);
2412 
2413 	return 0;
2414 }
2415 
2416 void cpufreq_stop_governor(struct cpufreq_policy *policy)
2417 {
2418 	if (cpufreq_suspended || !policy->governor)
2419 		return;
2420 
2421 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2422 
2423 	if (policy->governor->stop)
2424 		policy->governor->stop(policy);
2425 }
2426 
2427 static void cpufreq_governor_limits(struct cpufreq_policy *policy)
2428 {
2429 	if (cpufreq_suspended || !policy->governor)
2430 		return;
2431 
2432 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2433 
2434 	if (policy->governor->limits)
2435 		policy->governor->limits(policy);
2436 }
2437 
2438 int cpufreq_register_governor(struct cpufreq_governor *governor)
2439 {
2440 	int err;
2441 
2442 	if (!governor)
2443 		return -EINVAL;
2444 
2445 	if (cpufreq_disabled())
2446 		return -ENODEV;
2447 
2448 	mutex_lock(&cpufreq_governor_mutex);
2449 
2450 	err = -EBUSY;
2451 	if (!find_governor(governor->name)) {
2452 		err = 0;
2453 		list_add(&governor->governor_list, &cpufreq_governor_list);
2454 	}
2455 
2456 	mutex_unlock(&cpufreq_governor_mutex);
2457 	return err;
2458 }
2459 EXPORT_SYMBOL_GPL(cpufreq_register_governor);
2460 
2461 void cpufreq_unregister_governor(struct cpufreq_governor *governor)
2462 {
2463 	struct cpufreq_policy *policy;
2464 	unsigned long flags;
2465 
2466 	if (!governor)
2467 		return;
2468 
2469 	if (cpufreq_disabled())
2470 		return;
2471 
2472 	/* clear last_governor for all inactive policies */
2473 	read_lock_irqsave(&cpufreq_driver_lock, flags);
2474 	for_each_inactive_policy(policy) {
2475 		if (!strcmp(policy->last_governor, governor->name)) {
2476 			policy->governor = NULL;
2477 			strcpy(policy->last_governor, "\0");
2478 		}
2479 	}
2480 	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
2481 
2482 	mutex_lock(&cpufreq_governor_mutex);
2483 	list_del(&governor->governor_list);
2484 	mutex_unlock(&cpufreq_governor_mutex);
2485 }
2486 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
2487 
2488 
2489 /*********************************************************************
2490  *                          POLICY INTERFACE                         *
2491  *********************************************************************/
2492 
2493 /**
2494  * cpufreq_get_policy - get the current cpufreq_policy
2495  * @policy: struct cpufreq_policy into which the current cpufreq_policy
2496  *	is written
2497  * @cpu: CPU to find the policy for
2498  *
2499  * Reads the current cpufreq policy.
2500  */
2501 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
2502 {
2503 	struct cpufreq_policy *cpu_policy;
2504 	if (!policy)
2505 		return -EINVAL;
2506 
2507 	cpu_policy = cpufreq_cpu_get(cpu);
2508 	if (!cpu_policy)
2509 		return -EINVAL;
2510 
2511 	memcpy(policy, cpu_policy, sizeof(*policy));
2512 
2513 	cpufreq_cpu_put(cpu_policy);
2514 	return 0;
2515 }
2516 EXPORT_SYMBOL(cpufreq_get_policy);
2517 
2518 /**
2519  * cpufreq_set_policy - Modify cpufreq policy parameters.
2520  * @policy: Policy object to modify.
2521  * @new_gov: Policy governor pointer.
2522  * @new_pol: Policy value (for drivers with built-in governors).
2523  *
2524  * Invoke the cpufreq driver's ->verify() callback to sanity-check the frequency
2525  * limits to be set for the policy, update @policy with the verified limits
2526  * values and either invoke the driver's ->setpolicy() callback (if present) or
2527  * carry out a governor update for @policy.  That is, run the current governor's
2528  * ->limits() callback (if @new_gov points to the same object as the one in
2529  * @policy) or replace the governor for @policy with @new_gov.
2530  *
2531  * The cpuinfo part of @policy is not updated by this function.
2532  */
2533 static int cpufreq_set_policy(struct cpufreq_policy *policy,
2534 			      struct cpufreq_governor *new_gov,
2535 			      unsigned int new_pol)
2536 {
2537 	struct cpufreq_policy_data new_data;
2538 	struct cpufreq_governor *old_gov;
2539 	int ret;
2540 
2541 	memcpy(&new_data.cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo));
2542 	new_data.freq_table = policy->freq_table;
2543 	new_data.cpu = policy->cpu;
2544 	/*
2545 	 * PM QoS framework collects all the requests from users and provide us
2546 	 * the final aggregated value here.
2547 	 */
2548 	new_data.min = freq_qos_read_value(&policy->constraints, FREQ_QOS_MIN);
2549 	new_data.max = freq_qos_read_value(&policy->constraints, FREQ_QOS_MAX);
2550 
2551 	pr_debug("setting new policy for CPU %u: %u - %u kHz\n",
2552 		 new_data.cpu, new_data.min, new_data.max);
2553 
2554 	/*
2555 	 * Verify that the CPU speed can be set within these limits and make sure
2556 	 * that min <= max.
2557 	 */
2558 	ret = cpufreq_driver->verify(&new_data);
2559 	if (ret)
2560 		return ret;
2561 
2562 	/*
2563 	 * Resolve policy min/max to available frequencies. It ensures
2564 	 * no frequency resolution will neither overshoot the requested maximum
2565 	 * nor undershoot the requested minimum.
2566 	 */
2567 	policy->min = new_data.min;
2568 	policy->max = new_data.max;
2569 	policy->min = __resolve_freq(policy, policy->min, CPUFREQ_RELATION_L);
2570 	policy->max = __resolve_freq(policy, policy->max, CPUFREQ_RELATION_H);
2571 	trace_cpu_frequency_limits(policy);
2572 
2573 	policy->cached_target_freq = UINT_MAX;
2574 
2575 	pr_debug("new min and max freqs are %u - %u kHz\n",
2576 		 policy->min, policy->max);
2577 
2578 	if (cpufreq_driver->setpolicy) {
2579 		policy->policy = new_pol;
2580 		pr_debug("setting range\n");
2581 		return cpufreq_driver->setpolicy(policy);
2582 	}
2583 
2584 	if (new_gov == policy->governor) {
2585 		pr_debug("governor limits update\n");
2586 		cpufreq_governor_limits(policy);
2587 		return 0;
2588 	}
2589 
2590 	pr_debug("governor switch\n");
2591 
2592 	/* save old, working values */
2593 	old_gov = policy->governor;
2594 	/* end old governor */
2595 	if (old_gov) {
2596 		cpufreq_stop_governor(policy);
2597 		cpufreq_exit_governor(policy);
2598 	}
2599 
2600 	/* start new governor */
2601 	policy->governor = new_gov;
2602 	ret = cpufreq_init_governor(policy);
2603 	if (!ret) {
2604 		ret = cpufreq_start_governor(policy);
2605 		if (!ret) {
2606 			pr_debug("governor change\n");
2607 			sched_cpufreq_governor_change(policy, old_gov);
2608 			return 0;
2609 		}
2610 		cpufreq_exit_governor(policy);
2611 	}
2612 
2613 	/* new governor failed, so re-start old one */
2614 	pr_debug("starting governor %s failed\n", policy->governor->name);
2615 	if (old_gov) {
2616 		policy->governor = old_gov;
2617 		if (cpufreq_init_governor(policy))
2618 			policy->governor = NULL;
2619 		else
2620 			cpufreq_start_governor(policy);
2621 	}
2622 
2623 	return ret;
2624 }
2625 
2626 /**
2627  * cpufreq_update_policy - Re-evaluate an existing cpufreq policy.
2628  * @cpu: CPU to re-evaluate the policy for.
2629  *
2630  * Update the current frequency for the cpufreq policy of @cpu and use
2631  * cpufreq_set_policy() to re-apply the min and max limits, which triggers the
2632  * evaluation of policy notifiers and the cpufreq driver's ->verify() callback
2633  * for the policy in question, among other things.
2634  */
2635 void cpufreq_update_policy(unsigned int cpu)
2636 {
2637 	struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
2638 
2639 	if (!policy)
2640 		return;
2641 
2642 	/*
2643 	 * BIOS might change freq behind our back
2644 	 * -> ask driver for current freq and notify governors about a change
2645 	 */
2646 	if (cpufreq_driver->get && has_target() &&
2647 	    (cpufreq_suspended || WARN_ON(!cpufreq_verify_current_freq(policy, false))))
2648 		goto unlock;
2649 
2650 	refresh_frequency_limits(policy);
2651 
2652 unlock:
2653 	cpufreq_cpu_release(policy);
2654 }
2655 EXPORT_SYMBOL(cpufreq_update_policy);
2656 
2657 /**
2658  * cpufreq_update_limits - Update policy limits for a given CPU.
2659  * @cpu: CPU to update the policy limits for.
2660  *
2661  * Invoke the driver's ->update_limits callback if present or call
2662  * cpufreq_update_policy() for @cpu.
2663  */
2664 void cpufreq_update_limits(unsigned int cpu)
2665 {
2666 	if (cpufreq_driver->update_limits)
2667 		cpufreq_driver->update_limits(cpu);
2668 	else
2669 		cpufreq_update_policy(cpu);
2670 }
2671 EXPORT_SYMBOL_GPL(cpufreq_update_limits);
2672 
2673 /*********************************************************************
2674  *               BOOST						     *
2675  *********************************************************************/
2676 static int cpufreq_boost_set_sw(struct cpufreq_policy *policy, int state)
2677 {
2678 	int ret;
2679 
2680 	if (!policy->freq_table)
2681 		return -ENXIO;
2682 
2683 	ret = cpufreq_frequency_table_cpuinfo(policy, policy->freq_table);
2684 	if (ret) {
2685 		pr_err("%s: Policy frequency update failed\n", __func__);
2686 		return ret;
2687 	}
2688 
2689 	ret = freq_qos_update_request(policy->max_freq_req, policy->max);
2690 	if (ret < 0)
2691 		return ret;
2692 
2693 	return 0;
2694 }
2695 
2696 int cpufreq_boost_trigger_state(int state)
2697 {
2698 	struct cpufreq_policy *policy;
2699 	unsigned long flags;
2700 	int ret = 0;
2701 
2702 	if (cpufreq_driver->boost_enabled == state)
2703 		return 0;
2704 
2705 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2706 	cpufreq_driver->boost_enabled = state;
2707 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2708 
2709 	cpus_read_lock();
2710 	for_each_active_policy(policy) {
2711 		ret = cpufreq_driver->set_boost(policy, state);
2712 		if (ret)
2713 			goto err_reset_state;
2714 	}
2715 	cpus_read_unlock();
2716 
2717 	return 0;
2718 
2719 err_reset_state:
2720 	cpus_read_unlock();
2721 
2722 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2723 	cpufreq_driver->boost_enabled = !state;
2724 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2725 
2726 	pr_err("%s: Cannot %s BOOST\n",
2727 	       __func__, state ? "enable" : "disable");
2728 
2729 	return ret;
2730 }
2731 
2732 static bool cpufreq_boost_supported(void)
2733 {
2734 	return cpufreq_driver->set_boost;
2735 }
2736 
2737 static int create_boost_sysfs_file(void)
2738 {
2739 	int ret;
2740 
2741 	ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr);
2742 	if (ret)
2743 		pr_err("%s: cannot register global BOOST sysfs file\n",
2744 		       __func__);
2745 
2746 	return ret;
2747 }
2748 
2749 static void remove_boost_sysfs_file(void)
2750 {
2751 	if (cpufreq_boost_supported())
2752 		sysfs_remove_file(cpufreq_global_kobject, &boost.attr);
2753 }
2754 
2755 int cpufreq_enable_boost_support(void)
2756 {
2757 	if (!cpufreq_driver)
2758 		return -EINVAL;
2759 
2760 	if (cpufreq_boost_supported())
2761 		return 0;
2762 
2763 	cpufreq_driver->set_boost = cpufreq_boost_set_sw;
2764 
2765 	/* This will get removed on driver unregister */
2766 	return create_boost_sysfs_file();
2767 }
2768 EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support);
2769 
2770 int cpufreq_boost_enabled(void)
2771 {
2772 	return cpufreq_driver->boost_enabled;
2773 }
2774 EXPORT_SYMBOL_GPL(cpufreq_boost_enabled);
2775 
2776 /*********************************************************************
2777  *               REGISTER / UNREGISTER CPUFREQ DRIVER                *
2778  *********************************************************************/
2779 static enum cpuhp_state hp_online;
2780 
2781 static int cpuhp_cpufreq_online(unsigned int cpu)
2782 {
2783 	cpufreq_online(cpu);
2784 
2785 	return 0;
2786 }
2787 
2788 static int cpuhp_cpufreq_offline(unsigned int cpu)
2789 {
2790 	cpufreq_offline(cpu);
2791 
2792 	return 0;
2793 }
2794 
2795 /**
2796  * cpufreq_register_driver - register a CPU Frequency driver
2797  * @driver_data: A struct cpufreq_driver containing the values#
2798  * submitted by the CPU Frequency driver.
2799  *
2800  * Registers a CPU Frequency driver to this core code. This code
2801  * returns zero on success, -EEXIST when another driver got here first
2802  * (and isn't unregistered in the meantime).
2803  *
2804  */
2805 int cpufreq_register_driver(struct cpufreq_driver *driver_data)
2806 {
2807 	unsigned long flags;
2808 	int ret;
2809 
2810 	if (cpufreq_disabled())
2811 		return -ENODEV;
2812 
2813 	/*
2814 	 * The cpufreq core depends heavily on the availability of device
2815 	 * structure, make sure they are available before proceeding further.
2816 	 */
2817 	if (!get_cpu_device(0))
2818 		return -EPROBE_DEFER;
2819 
2820 	if (!driver_data || !driver_data->verify || !driver_data->init ||
2821 	    !(driver_data->setpolicy || driver_data->target_index ||
2822 		    driver_data->target) ||
2823 	     (driver_data->setpolicy && (driver_data->target_index ||
2824 		    driver_data->target)) ||
2825 	     (!driver_data->get_intermediate != !driver_data->target_intermediate) ||
2826 	     (!driver_data->online != !driver_data->offline))
2827 		return -EINVAL;
2828 
2829 	pr_debug("trying to register driver %s\n", driver_data->name);
2830 
2831 	/* Protect against concurrent CPU online/offline. */
2832 	cpus_read_lock();
2833 
2834 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2835 	if (cpufreq_driver) {
2836 		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2837 		ret = -EEXIST;
2838 		goto out;
2839 	}
2840 	cpufreq_driver = driver_data;
2841 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2842 
2843 	/*
2844 	 * Mark support for the scheduler's frequency invariance engine for
2845 	 * drivers that implement target(), target_index() or fast_switch().
2846 	 */
2847 	if (!cpufreq_driver->setpolicy) {
2848 		static_branch_enable_cpuslocked(&cpufreq_freq_invariance);
2849 		pr_debug("supports frequency invariance");
2850 	}
2851 
2852 	if (driver_data->setpolicy)
2853 		driver_data->flags |= CPUFREQ_CONST_LOOPS;
2854 
2855 	if (cpufreq_boost_supported()) {
2856 		ret = create_boost_sysfs_file();
2857 		if (ret)
2858 			goto err_null_driver;
2859 	}
2860 
2861 	ret = subsys_interface_register(&cpufreq_interface);
2862 	if (ret)
2863 		goto err_boost_unreg;
2864 
2865 	if (unlikely(list_empty(&cpufreq_policy_list))) {
2866 		/* if all ->init() calls failed, unregister */
2867 		ret = -ENODEV;
2868 		pr_debug("%s: No CPU initialized for driver %s\n", __func__,
2869 			 driver_data->name);
2870 		goto err_if_unreg;
2871 	}
2872 
2873 	ret = cpuhp_setup_state_nocalls_cpuslocked(CPUHP_AP_ONLINE_DYN,
2874 						   "cpufreq:online",
2875 						   cpuhp_cpufreq_online,
2876 						   cpuhp_cpufreq_offline);
2877 	if (ret < 0)
2878 		goto err_if_unreg;
2879 	hp_online = ret;
2880 	ret = 0;
2881 
2882 	pr_debug("driver %s up and running\n", driver_data->name);
2883 	goto out;
2884 
2885 err_if_unreg:
2886 	subsys_interface_unregister(&cpufreq_interface);
2887 err_boost_unreg:
2888 	remove_boost_sysfs_file();
2889 err_null_driver:
2890 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2891 	cpufreq_driver = NULL;
2892 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2893 out:
2894 	cpus_read_unlock();
2895 	return ret;
2896 }
2897 EXPORT_SYMBOL_GPL(cpufreq_register_driver);
2898 
2899 /*
2900  * cpufreq_unregister_driver - unregister the current CPUFreq driver
2901  *
2902  * Unregister the current CPUFreq driver. Only call this if you have
2903  * the right to do so, i.e. if you have succeeded in initialising before!
2904  * Returns zero if successful, and -EINVAL if the cpufreq_driver is
2905  * currently not initialised.
2906  */
2907 int cpufreq_unregister_driver(struct cpufreq_driver *driver)
2908 {
2909 	unsigned long flags;
2910 
2911 	if (!cpufreq_driver || (driver != cpufreq_driver))
2912 		return -EINVAL;
2913 
2914 	pr_debug("unregistering driver %s\n", driver->name);
2915 
2916 	/* Protect against concurrent cpu hotplug */
2917 	cpus_read_lock();
2918 	subsys_interface_unregister(&cpufreq_interface);
2919 	remove_boost_sysfs_file();
2920 	static_branch_disable_cpuslocked(&cpufreq_freq_invariance);
2921 	cpuhp_remove_state_nocalls_cpuslocked(hp_online);
2922 
2923 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2924 
2925 	cpufreq_driver = NULL;
2926 
2927 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2928 	cpus_read_unlock();
2929 
2930 	return 0;
2931 }
2932 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
2933 
2934 static int __init cpufreq_core_init(void)
2935 {
2936 	struct cpufreq_governor *gov = cpufreq_default_governor();
2937 
2938 	if (cpufreq_disabled())
2939 		return -ENODEV;
2940 
2941 	cpufreq_global_kobject = kobject_create_and_add("cpufreq", &cpu_subsys.dev_root->kobj);
2942 	BUG_ON(!cpufreq_global_kobject);
2943 
2944 	if (!strlen(default_governor))
2945 		strncpy(default_governor, gov->name, CPUFREQ_NAME_LEN);
2946 
2947 	return 0;
2948 }
2949 module_param(off, int, 0444);
2950 module_param_string(default_governor, default_governor, CPUFREQ_NAME_LEN, 0444);
2951 core_initcall(cpufreq_core_init);
2952