xref: /linux/drivers/cpufreq/cpufreq.c (revision 9a6b55ac)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/drivers/cpufreq/cpufreq.c
4  *
5  *  Copyright (C) 2001 Russell King
6  *            (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
7  *            (C) 2013 Viresh Kumar <viresh.kumar@linaro.org>
8  *
9  *  Oct 2005 - Ashok Raj <ashok.raj@intel.com>
10  *	Added handling for CPU hotplug
11  *  Feb 2006 - Jacob Shin <jacob.shin@amd.com>
12  *	Fix handling for CPU hotplug -- affected CPUs
13  */
14 
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16 
17 #include <linux/cpu.h>
18 #include <linux/cpufreq.h>
19 #include <linux/cpu_cooling.h>
20 #include <linux/delay.h>
21 #include <linux/device.h>
22 #include <linux/init.h>
23 #include <linux/kernel_stat.h>
24 #include <linux/module.h>
25 #include <linux/mutex.h>
26 #include <linux/pm_qos.h>
27 #include <linux/slab.h>
28 #include <linux/suspend.h>
29 #include <linux/syscore_ops.h>
30 #include <linux/tick.h>
31 #include <trace/events/power.h>
32 
33 static LIST_HEAD(cpufreq_policy_list);
34 
35 /* Macros to iterate over CPU policies */
36 #define for_each_suitable_policy(__policy, __active)			 \
37 	list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \
38 		if ((__active) == !policy_is_inactive(__policy))
39 
40 #define for_each_active_policy(__policy)		\
41 	for_each_suitable_policy(__policy, true)
42 #define for_each_inactive_policy(__policy)		\
43 	for_each_suitable_policy(__policy, false)
44 
45 #define for_each_policy(__policy)			\
46 	list_for_each_entry(__policy, &cpufreq_policy_list, policy_list)
47 
48 /* Iterate over governors */
49 static LIST_HEAD(cpufreq_governor_list);
50 #define for_each_governor(__governor)				\
51 	list_for_each_entry(__governor, &cpufreq_governor_list, governor_list)
52 
53 /**
54  * The "cpufreq driver" - the arch- or hardware-dependent low
55  * level driver of CPUFreq support, and its spinlock. This lock
56  * also protects the cpufreq_cpu_data array.
57  */
58 static struct cpufreq_driver *cpufreq_driver;
59 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
60 static DEFINE_RWLOCK(cpufreq_driver_lock);
61 
62 /* Flag to suspend/resume CPUFreq governors */
63 static bool cpufreq_suspended;
64 
65 static inline bool has_target(void)
66 {
67 	return cpufreq_driver->target_index || cpufreq_driver->target;
68 }
69 
70 /* internal prototypes */
71 static unsigned int __cpufreq_get(struct cpufreq_policy *policy);
72 static int cpufreq_init_governor(struct cpufreq_policy *policy);
73 static void cpufreq_exit_governor(struct cpufreq_policy *policy);
74 static int cpufreq_start_governor(struct cpufreq_policy *policy);
75 static void cpufreq_stop_governor(struct cpufreq_policy *policy);
76 static void cpufreq_governor_limits(struct cpufreq_policy *policy);
77 
78 /**
79  * Two notifier lists: the "policy" list is involved in the
80  * validation process for a new CPU frequency policy; the
81  * "transition" list for kernel code that needs to handle
82  * changes to devices when the CPU clock speed changes.
83  * The mutex locks both lists.
84  */
85 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
86 SRCU_NOTIFIER_HEAD_STATIC(cpufreq_transition_notifier_list);
87 
88 static int off __read_mostly;
89 static int cpufreq_disabled(void)
90 {
91 	return off;
92 }
93 void disable_cpufreq(void)
94 {
95 	off = 1;
96 }
97 static DEFINE_MUTEX(cpufreq_governor_mutex);
98 
99 bool have_governor_per_policy(void)
100 {
101 	return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY);
102 }
103 EXPORT_SYMBOL_GPL(have_governor_per_policy);
104 
105 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy)
106 {
107 	if (have_governor_per_policy())
108 		return &policy->kobj;
109 	else
110 		return cpufreq_global_kobject;
111 }
112 EXPORT_SYMBOL_GPL(get_governor_parent_kobj);
113 
114 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
115 {
116 	struct kernel_cpustat kcpustat;
117 	u64 cur_wall_time;
118 	u64 idle_time;
119 	u64 busy_time;
120 
121 	cur_wall_time = jiffies64_to_nsecs(get_jiffies_64());
122 
123 	kcpustat_cpu_fetch(&kcpustat, cpu);
124 
125 	busy_time = kcpustat.cpustat[CPUTIME_USER];
126 	busy_time += kcpustat.cpustat[CPUTIME_SYSTEM];
127 	busy_time += kcpustat.cpustat[CPUTIME_IRQ];
128 	busy_time += kcpustat.cpustat[CPUTIME_SOFTIRQ];
129 	busy_time += kcpustat.cpustat[CPUTIME_STEAL];
130 	busy_time += kcpustat.cpustat[CPUTIME_NICE];
131 
132 	idle_time = cur_wall_time - busy_time;
133 	if (wall)
134 		*wall = div_u64(cur_wall_time, NSEC_PER_USEC);
135 
136 	return div_u64(idle_time, NSEC_PER_USEC);
137 }
138 
139 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy)
140 {
141 	u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL);
142 
143 	if (idle_time == -1ULL)
144 		return get_cpu_idle_time_jiffy(cpu, wall);
145 	else if (!io_busy)
146 		idle_time += get_cpu_iowait_time_us(cpu, wall);
147 
148 	return idle_time;
149 }
150 EXPORT_SYMBOL_GPL(get_cpu_idle_time);
151 
152 __weak void arch_set_freq_scale(struct cpumask *cpus, unsigned long cur_freq,
153 		unsigned long max_freq)
154 {
155 }
156 EXPORT_SYMBOL_GPL(arch_set_freq_scale);
157 
158 /*
159  * This is a generic cpufreq init() routine which can be used by cpufreq
160  * drivers of SMP systems. It will do following:
161  * - validate & show freq table passed
162  * - set policies transition latency
163  * - policy->cpus with all possible CPUs
164  */
165 void cpufreq_generic_init(struct cpufreq_policy *policy,
166 		struct cpufreq_frequency_table *table,
167 		unsigned int transition_latency)
168 {
169 	policy->freq_table = table;
170 	policy->cpuinfo.transition_latency = transition_latency;
171 
172 	/*
173 	 * The driver only supports the SMP configuration where all processors
174 	 * share the clock and voltage and clock.
175 	 */
176 	cpumask_setall(policy->cpus);
177 }
178 EXPORT_SYMBOL_GPL(cpufreq_generic_init);
179 
180 struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu)
181 {
182 	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
183 
184 	return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL;
185 }
186 EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw);
187 
188 unsigned int cpufreq_generic_get(unsigned int cpu)
189 {
190 	struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu);
191 
192 	if (!policy || IS_ERR(policy->clk)) {
193 		pr_err("%s: No %s associated to cpu: %d\n",
194 		       __func__, policy ? "clk" : "policy", cpu);
195 		return 0;
196 	}
197 
198 	return clk_get_rate(policy->clk) / 1000;
199 }
200 EXPORT_SYMBOL_GPL(cpufreq_generic_get);
201 
202 /**
203  * cpufreq_cpu_get - Return policy for a CPU and mark it as busy.
204  * @cpu: CPU to find the policy for.
205  *
206  * Call cpufreq_cpu_get_raw() to obtain a cpufreq policy for @cpu and increment
207  * the kobject reference counter of that policy.  Return a valid policy on
208  * success or NULL on failure.
209  *
210  * The policy returned by this function has to be released with the help of
211  * cpufreq_cpu_put() to balance its kobject reference counter properly.
212  */
213 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
214 {
215 	struct cpufreq_policy *policy = NULL;
216 	unsigned long flags;
217 
218 	if (WARN_ON(cpu >= nr_cpu_ids))
219 		return NULL;
220 
221 	/* get the cpufreq driver */
222 	read_lock_irqsave(&cpufreq_driver_lock, flags);
223 
224 	if (cpufreq_driver) {
225 		/* get the CPU */
226 		policy = cpufreq_cpu_get_raw(cpu);
227 		if (policy)
228 			kobject_get(&policy->kobj);
229 	}
230 
231 	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
232 
233 	return policy;
234 }
235 EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
236 
237 /**
238  * cpufreq_cpu_put - Decrement kobject usage counter for cpufreq policy.
239  * @policy: cpufreq policy returned by cpufreq_cpu_get().
240  */
241 void cpufreq_cpu_put(struct cpufreq_policy *policy)
242 {
243 	kobject_put(&policy->kobj);
244 }
245 EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
246 
247 /**
248  * cpufreq_cpu_release - Unlock a policy and decrement its usage counter.
249  * @policy: cpufreq policy returned by cpufreq_cpu_acquire().
250  */
251 void cpufreq_cpu_release(struct cpufreq_policy *policy)
252 {
253 	if (WARN_ON(!policy))
254 		return;
255 
256 	lockdep_assert_held(&policy->rwsem);
257 
258 	up_write(&policy->rwsem);
259 
260 	cpufreq_cpu_put(policy);
261 }
262 
263 /**
264  * cpufreq_cpu_acquire - Find policy for a CPU, mark it as busy and lock it.
265  * @cpu: CPU to find the policy for.
266  *
267  * Call cpufreq_cpu_get() to get a reference on the cpufreq policy for @cpu and
268  * if the policy returned by it is not NULL, acquire its rwsem for writing.
269  * Return the policy if it is active or release it and return NULL otherwise.
270  *
271  * The policy returned by this function has to be released with the help of
272  * cpufreq_cpu_release() in order to release its rwsem and balance its usage
273  * counter properly.
274  */
275 struct cpufreq_policy *cpufreq_cpu_acquire(unsigned int cpu)
276 {
277 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
278 
279 	if (!policy)
280 		return NULL;
281 
282 	down_write(&policy->rwsem);
283 
284 	if (policy_is_inactive(policy)) {
285 		cpufreq_cpu_release(policy);
286 		return NULL;
287 	}
288 
289 	return policy;
290 }
291 
292 /*********************************************************************
293  *            EXTERNALLY AFFECTING FREQUENCY CHANGES                 *
294  *********************************************************************/
295 
296 /**
297  * adjust_jiffies - adjust the system "loops_per_jiffy"
298  *
299  * This function alters the system "loops_per_jiffy" for the clock
300  * speed change. Note that loops_per_jiffy cannot be updated on SMP
301  * systems as each CPU might be scaled differently. So, use the arch
302  * per-CPU loops_per_jiffy value wherever possible.
303  */
304 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
305 {
306 #ifndef CONFIG_SMP
307 	static unsigned long l_p_j_ref;
308 	static unsigned int l_p_j_ref_freq;
309 
310 	if (ci->flags & CPUFREQ_CONST_LOOPS)
311 		return;
312 
313 	if (!l_p_j_ref_freq) {
314 		l_p_j_ref = loops_per_jiffy;
315 		l_p_j_ref_freq = ci->old;
316 		pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n",
317 			 l_p_j_ref, l_p_j_ref_freq);
318 	}
319 	if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) {
320 		loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
321 								ci->new);
322 		pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n",
323 			 loops_per_jiffy, ci->new);
324 	}
325 #endif
326 }
327 
328 /**
329  * cpufreq_notify_transition - Notify frequency transition and adjust_jiffies.
330  * @policy: cpufreq policy to enable fast frequency switching for.
331  * @freqs: contain details of the frequency update.
332  * @state: set to CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE.
333  *
334  * This function calls the transition notifiers and the "adjust_jiffies"
335  * function. It is called twice on all CPU frequency changes that have
336  * external effects.
337  */
338 static void cpufreq_notify_transition(struct cpufreq_policy *policy,
339 				      struct cpufreq_freqs *freqs,
340 				      unsigned int state)
341 {
342 	int cpu;
343 
344 	BUG_ON(irqs_disabled());
345 
346 	if (cpufreq_disabled())
347 		return;
348 
349 	freqs->policy = policy;
350 	freqs->flags = cpufreq_driver->flags;
351 	pr_debug("notification %u of frequency transition to %u kHz\n",
352 		 state, freqs->new);
353 
354 	switch (state) {
355 	case CPUFREQ_PRECHANGE:
356 		/*
357 		 * Detect if the driver reported a value as "old frequency"
358 		 * which is not equal to what the cpufreq core thinks is
359 		 * "old frequency".
360 		 */
361 		if (policy->cur && policy->cur != freqs->old) {
362 			pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n",
363 				 freqs->old, policy->cur);
364 			freqs->old = policy->cur;
365 		}
366 
367 		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
368 					 CPUFREQ_PRECHANGE, freqs);
369 
370 		adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
371 		break;
372 
373 	case CPUFREQ_POSTCHANGE:
374 		adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
375 		pr_debug("FREQ: %u - CPUs: %*pbl\n", freqs->new,
376 			 cpumask_pr_args(policy->cpus));
377 
378 		for_each_cpu(cpu, policy->cpus)
379 			trace_cpu_frequency(freqs->new, cpu);
380 
381 		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
382 					 CPUFREQ_POSTCHANGE, freqs);
383 
384 		cpufreq_stats_record_transition(policy, freqs->new);
385 		policy->cur = freqs->new;
386 	}
387 }
388 
389 /* Do post notifications when there are chances that transition has failed */
390 static void cpufreq_notify_post_transition(struct cpufreq_policy *policy,
391 		struct cpufreq_freqs *freqs, int transition_failed)
392 {
393 	cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
394 	if (!transition_failed)
395 		return;
396 
397 	swap(freqs->old, freqs->new);
398 	cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
399 	cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
400 }
401 
402 void cpufreq_freq_transition_begin(struct cpufreq_policy *policy,
403 		struct cpufreq_freqs *freqs)
404 {
405 
406 	/*
407 	 * Catch double invocations of _begin() which lead to self-deadlock.
408 	 * ASYNC_NOTIFICATION drivers are left out because the cpufreq core
409 	 * doesn't invoke _begin() on their behalf, and hence the chances of
410 	 * double invocations are very low. Moreover, there are scenarios
411 	 * where these checks can emit false-positive warnings in these
412 	 * drivers; so we avoid that by skipping them altogether.
413 	 */
414 	WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION)
415 				&& current == policy->transition_task);
416 
417 wait:
418 	wait_event(policy->transition_wait, !policy->transition_ongoing);
419 
420 	spin_lock(&policy->transition_lock);
421 
422 	if (unlikely(policy->transition_ongoing)) {
423 		spin_unlock(&policy->transition_lock);
424 		goto wait;
425 	}
426 
427 	policy->transition_ongoing = true;
428 	policy->transition_task = current;
429 
430 	spin_unlock(&policy->transition_lock);
431 
432 	cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
433 }
434 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin);
435 
436 void cpufreq_freq_transition_end(struct cpufreq_policy *policy,
437 		struct cpufreq_freqs *freqs, int transition_failed)
438 {
439 	if (WARN_ON(!policy->transition_ongoing))
440 		return;
441 
442 	cpufreq_notify_post_transition(policy, freqs, transition_failed);
443 
444 	policy->transition_ongoing = false;
445 	policy->transition_task = NULL;
446 
447 	wake_up(&policy->transition_wait);
448 }
449 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end);
450 
451 /*
452  * Fast frequency switching status count.  Positive means "enabled", negative
453  * means "disabled" and 0 means "not decided yet".
454  */
455 static int cpufreq_fast_switch_count;
456 static DEFINE_MUTEX(cpufreq_fast_switch_lock);
457 
458 static void cpufreq_list_transition_notifiers(void)
459 {
460 	struct notifier_block *nb;
461 
462 	pr_info("Registered transition notifiers:\n");
463 
464 	mutex_lock(&cpufreq_transition_notifier_list.mutex);
465 
466 	for (nb = cpufreq_transition_notifier_list.head; nb; nb = nb->next)
467 		pr_info("%pS\n", nb->notifier_call);
468 
469 	mutex_unlock(&cpufreq_transition_notifier_list.mutex);
470 }
471 
472 /**
473  * cpufreq_enable_fast_switch - Enable fast frequency switching for policy.
474  * @policy: cpufreq policy to enable fast frequency switching for.
475  *
476  * Try to enable fast frequency switching for @policy.
477  *
478  * The attempt will fail if there is at least one transition notifier registered
479  * at this point, as fast frequency switching is quite fundamentally at odds
480  * with transition notifiers.  Thus if successful, it will make registration of
481  * transition notifiers fail going forward.
482  */
483 void cpufreq_enable_fast_switch(struct cpufreq_policy *policy)
484 {
485 	lockdep_assert_held(&policy->rwsem);
486 
487 	if (!policy->fast_switch_possible)
488 		return;
489 
490 	mutex_lock(&cpufreq_fast_switch_lock);
491 	if (cpufreq_fast_switch_count >= 0) {
492 		cpufreq_fast_switch_count++;
493 		policy->fast_switch_enabled = true;
494 	} else {
495 		pr_warn("CPU%u: Fast frequency switching not enabled\n",
496 			policy->cpu);
497 		cpufreq_list_transition_notifiers();
498 	}
499 	mutex_unlock(&cpufreq_fast_switch_lock);
500 }
501 EXPORT_SYMBOL_GPL(cpufreq_enable_fast_switch);
502 
503 /**
504  * cpufreq_disable_fast_switch - Disable fast frequency switching for policy.
505  * @policy: cpufreq policy to disable fast frequency switching for.
506  */
507 void cpufreq_disable_fast_switch(struct cpufreq_policy *policy)
508 {
509 	mutex_lock(&cpufreq_fast_switch_lock);
510 	if (policy->fast_switch_enabled) {
511 		policy->fast_switch_enabled = false;
512 		if (!WARN_ON(cpufreq_fast_switch_count <= 0))
513 			cpufreq_fast_switch_count--;
514 	}
515 	mutex_unlock(&cpufreq_fast_switch_lock);
516 }
517 EXPORT_SYMBOL_GPL(cpufreq_disable_fast_switch);
518 
519 /**
520  * cpufreq_driver_resolve_freq - Map a target frequency to a driver-supported
521  * one.
522  * @target_freq: target frequency to resolve.
523  *
524  * The target to driver frequency mapping is cached in the policy.
525  *
526  * Return: Lowest driver-supported frequency greater than or equal to the
527  * given target_freq, subject to policy (min/max) and driver limitations.
528  */
529 unsigned int cpufreq_driver_resolve_freq(struct cpufreq_policy *policy,
530 					 unsigned int target_freq)
531 {
532 	target_freq = clamp_val(target_freq, policy->min, policy->max);
533 	policy->cached_target_freq = target_freq;
534 
535 	if (cpufreq_driver->target_index) {
536 		int idx;
537 
538 		idx = cpufreq_frequency_table_target(policy, target_freq,
539 						     CPUFREQ_RELATION_L);
540 		policy->cached_resolved_idx = idx;
541 		return policy->freq_table[idx].frequency;
542 	}
543 
544 	if (cpufreq_driver->resolve_freq)
545 		return cpufreq_driver->resolve_freq(policy, target_freq);
546 
547 	return target_freq;
548 }
549 EXPORT_SYMBOL_GPL(cpufreq_driver_resolve_freq);
550 
551 unsigned int cpufreq_policy_transition_delay_us(struct cpufreq_policy *policy)
552 {
553 	unsigned int latency;
554 
555 	if (policy->transition_delay_us)
556 		return policy->transition_delay_us;
557 
558 	latency = policy->cpuinfo.transition_latency / NSEC_PER_USEC;
559 	if (latency) {
560 		/*
561 		 * For platforms that can change the frequency very fast (< 10
562 		 * us), the above formula gives a decent transition delay. But
563 		 * for platforms where transition_latency is in milliseconds, it
564 		 * ends up giving unrealistic values.
565 		 *
566 		 * Cap the default transition delay to 10 ms, which seems to be
567 		 * a reasonable amount of time after which we should reevaluate
568 		 * the frequency.
569 		 */
570 		return min(latency * LATENCY_MULTIPLIER, (unsigned int)10000);
571 	}
572 
573 	return LATENCY_MULTIPLIER;
574 }
575 EXPORT_SYMBOL_GPL(cpufreq_policy_transition_delay_us);
576 
577 /*********************************************************************
578  *                          SYSFS INTERFACE                          *
579  *********************************************************************/
580 static ssize_t show_boost(struct kobject *kobj,
581 			  struct kobj_attribute *attr, char *buf)
582 {
583 	return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled);
584 }
585 
586 static ssize_t store_boost(struct kobject *kobj, struct kobj_attribute *attr,
587 			   const char *buf, size_t count)
588 {
589 	int ret, enable;
590 
591 	ret = sscanf(buf, "%d", &enable);
592 	if (ret != 1 || enable < 0 || enable > 1)
593 		return -EINVAL;
594 
595 	if (cpufreq_boost_trigger_state(enable)) {
596 		pr_err("%s: Cannot %s BOOST!\n",
597 		       __func__, enable ? "enable" : "disable");
598 		return -EINVAL;
599 	}
600 
601 	pr_debug("%s: cpufreq BOOST %s\n",
602 		 __func__, enable ? "enabled" : "disabled");
603 
604 	return count;
605 }
606 define_one_global_rw(boost);
607 
608 static struct cpufreq_governor *find_governor(const char *str_governor)
609 {
610 	struct cpufreq_governor *t;
611 
612 	for_each_governor(t)
613 		if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN))
614 			return t;
615 
616 	return NULL;
617 }
618 
619 static int cpufreq_parse_policy(char *str_governor,
620 				struct cpufreq_policy *policy)
621 {
622 	if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN)) {
623 		policy->policy = CPUFREQ_POLICY_PERFORMANCE;
624 		return 0;
625 	}
626 	if (!strncasecmp(str_governor, "powersave", CPUFREQ_NAME_LEN)) {
627 		policy->policy = CPUFREQ_POLICY_POWERSAVE;
628 		return 0;
629 	}
630 	return -EINVAL;
631 }
632 
633 /**
634  * cpufreq_parse_governor - parse a governor string only for has_target()
635  */
636 static int cpufreq_parse_governor(char *str_governor,
637 				  struct cpufreq_policy *policy)
638 {
639 	struct cpufreq_governor *t;
640 
641 	mutex_lock(&cpufreq_governor_mutex);
642 
643 	t = find_governor(str_governor);
644 	if (!t) {
645 		int ret;
646 
647 		mutex_unlock(&cpufreq_governor_mutex);
648 
649 		ret = request_module("cpufreq_%s", str_governor);
650 		if (ret)
651 			return -EINVAL;
652 
653 		mutex_lock(&cpufreq_governor_mutex);
654 
655 		t = find_governor(str_governor);
656 	}
657 	if (t && !try_module_get(t->owner))
658 		t = NULL;
659 
660 	mutex_unlock(&cpufreq_governor_mutex);
661 
662 	if (t) {
663 		policy->governor = t;
664 		return 0;
665 	}
666 
667 	return -EINVAL;
668 }
669 
670 /**
671  * cpufreq_per_cpu_attr_read() / show_##file_name() -
672  * print out cpufreq information
673  *
674  * Write out information from cpufreq_driver->policy[cpu]; object must be
675  * "unsigned int".
676  */
677 
678 #define show_one(file_name, object)			\
679 static ssize_t show_##file_name				\
680 (struct cpufreq_policy *policy, char *buf)		\
681 {							\
682 	return sprintf(buf, "%u\n", policy->object);	\
683 }
684 
685 show_one(cpuinfo_min_freq, cpuinfo.min_freq);
686 show_one(cpuinfo_max_freq, cpuinfo.max_freq);
687 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
688 show_one(scaling_min_freq, min);
689 show_one(scaling_max_freq, max);
690 
691 __weak unsigned int arch_freq_get_on_cpu(int cpu)
692 {
693 	return 0;
694 }
695 
696 static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf)
697 {
698 	ssize_t ret;
699 	unsigned int freq;
700 
701 	freq = arch_freq_get_on_cpu(policy->cpu);
702 	if (freq)
703 		ret = sprintf(buf, "%u\n", freq);
704 	else if (cpufreq_driver && cpufreq_driver->setpolicy &&
705 			cpufreq_driver->get)
706 		ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu));
707 	else
708 		ret = sprintf(buf, "%u\n", policy->cur);
709 	return ret;
710 }
711 
712 /**
713  * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
714  */
715 #define store_one(file_name, object)			\
716 static ssize_t store_##file_name					\
717 (struct cpufreq_policy *policy, const char *buf, size_t count)		\
718 {									\
719 	unsigned long val;						\
720 	int ret;							\
721 									\
722 	ret = sscanf(buf, "%lu", &val);					\
723 	if (ret != 1)							\
724 		return -EINVAL;						\
725 									\
726 	ret = freq_qos_update_request(policy->object##_freq_req, val);\
727 	return ret >= 0 ? count : ret;					\
728 }
729 
730 store_one(scaling_min_freq, min);
731 store_one(scaling_max_freq, max);
732 
733 /**
734  * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
735  */
736 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
737 					char *buf)
738 {
739 	unsigned int cur_freq = __cpufreq_get(policy);
740 
741 	if (cur_freq)
742 		return sprintf(buf, "%u\n", cur_freq);
743 
744 	return sprintf(buf, "<unknown>\n");
745 }
746 
747 /**
748  * show_scaling_governor - show the current policy for the specified CPU
749  */
750 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
751 {
752 	if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
753 		return sprintf(buf, "powersave\n");
754 	else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
755 		return sprintf(buf, "performance\n");
756 	else if (policy->governor)
757 		return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n",
758 				policy->governor->name);
759 	return -EINVAL;
760 }
761 
762 /**
763  * store_scaling_governor - store policy for the specified CPU
764  */
765 static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
766 					const char *buf, size_t count)
767 {
768 	int ret;
769 	char	str_governor[16];
770 	struct cpufreq_policy new_policy;
771 
772 	memcpy(&new_policy, policy, sizeof(*policy));
773 
774 	ret = sscanf(buf, "%15s", str_governor);
775 	if (ret != 1)
776 		return -EINVAL;
777 
778 	if (cpufreq_driver->setpolicy) {
779 		if (cpufreq_parse_policy(str_governor, &new_policy))
780 			return -EINVAL;
781 	} else {
782 		if (cpufreq_parse_governor(str_governor, &new_policy))
783 			return -EINVAL;
784 	}
785 
786 	ret = cpufreq_set_policy(policy, &new_policy);
787 
788 	if (new_policy.governor)
789 		module_put(new_policy.governor->owner);
790 
791 	return ret ? ret : count;
792 }
793 
794 /**
795  * show_scaling_driver - show the cpufreq driver currently loaded
796  */
797 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
798 {
799 	return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name);
800 }
801 
802 /**
803  * show_scaling_available_governors - show the available CPUfreq governors
804  */
805 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
806 						char *buf)
807 {
808 	ssize_t i = 0;
809 	struct cpufreq_governor *t;
810 
811 	if (!has_target()) {
812 		i += sprintf(buf, "performance powersave");
813 		goto out;
814 	}
815 
816 	for_each_governor(t) {
817 		if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
818 		    - (CPUFREQ_NAME_LEN + 2)))
819 			goto out;
820 		i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name);
821 	}
822 out:
823 	i += sprintf(&buf[i], "\n");
824 	return i;
825 }
826 
827 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf)
828 {
829 	ssize_t i = 0;
830 	unsigned int cpu;
831 
832 	for_each_cpu(cpu, mask) {
833 		if (i)
834 			i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " ");
835 		i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu);
836 		if (i >= (PAGE_SIZE - 5))
837 			break;
838 	}
839 	i += sprintf(&buf[i], "\n");
840 	return i;
841 }
842 EXPORT_SYMBOL_GPL(cpufreq_show_cpus);
843 
844 /**
845  * show_related_cpus - show the CPUs affected by each transition even if
846  * hw coordination is in use
847  */
848 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
849 {
850 	return cpufreq_show_cpus(policy->related_cpus, buf);
851 }
852 
853 /**
854  * show_affected_cpus - show the CPUs affected by each transition
855  */
856 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
857 {
858 	return cpufreq_show_cpus(policy->cpus, buf);
859 }
860 
861 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
862 					const char *buf, size_t count)
863 {
864 	unsigned int freq = 0;
865 	unsigned int ret;
866 
867 	if (!policy->governor || !policy->governor->store_setspeed)
868 		return -EINVAL;
869 
870 	ret = sscanf(buf, "%u", &freq);
871 	if (ret != 1)
872 		return -EINVAL;
873 
874 	policy->governor->store_setspeed(policy, freq);
875 
876 	return count;
877 }
878 
879 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
880 {
881 	if (!policy->governor || !policy->governor->show_setspeed)
882 		return sprintf(buf, "<unsupported>\n");
883 
884 	return policy->governor->show_setspeed(policy, buf);
885 }
886 
887 /**
888  * show_bios_limit - show the current cpufreq HW/BIOS limitation
889  */
890 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
891 {
892 	unsigned int limit;
893 	int ret;
894 	ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
895 	if (!ret)
896 		return sprintf(buf, "%u\n", limit);
897 	return sprintf(buf, "%u\n", policy->cpuinfo.max_freq);
898 }
899 
900 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
901 cpufreq_freq_attr_ro(cpuinfo_min_freq);
902 cpufreq_freq_attr_ro(cpuinfo_max_freq);
903 cpufreq_freq_attr_ro(cpuinfo_transition_latency);
904 cpufreq_freq_attr_ro(scaling_available_governors);
905 cpufreq_freq_attr_ro(scaling_driver);
906 cpufreq_freq_attr_ro(scaling_cur_freq);
907 cpufreq_freq_attr_ro(bios_limit);
908 cpufreq_freq_attr_ro(related_cpus);
909 cpufreq_freq_attr_ro(affected_cpus);
910 cpufreq_freq_attr_rw(scaling_min_freq);
911 cpufreq_freq_attr_rw(scaling_max_freq);
912 cpufreq_freq_attr_rw(scaling_governor);
913 cpufreq_freq_attr_rw(scaling_setspeed);
914 
915 static struct attribute *default_attrs[] = {
916 	&cpuinfo_min_freq.attr,
917 	&cpuinfo_max_freq.attr,
918 	&cpuinfo_transition_latency.attr,
919 	&scaling_min_freq.attr,
920 	&scaling_max_freq.attr,
921 	&affected_cpus.attr,
922 	&related_cpus.attr,
923 	&scaling_governor.attr,
924 	&scaling_driver.attr,
925 	&scaling_available_governors.attr,
926 	&scaling_setspeed.attr,
927 	NULL
928 };
929 
930 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
931 #define to_attr(a) container_of(a, struct freq_attr, attr)
932 
933 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
934 {
935 	struct cpufreq_policy *policy = to_policy(kobj);
936 	struct freq_attr *fattr = to_attr(attr);
937 	ssize_t ret;
938 
939 	if (!fattr->show)
940 		return -EIO;
941 
942 	down_read(&policy->rwsem);
943 	ret = fattr->show(policy, buf);
944 	up_read(&policy->rwsem);
945 
946 	return ret;
947 }
948 
949 static ssize_t store(struct kobject *kobj, struct attribute *attr,
950 		     const char *buf, size_t count)
951 {
952 	struct cpufreq_policy *policy = to_policy(kobj);
953 	struct freq_attr *fattr = to_attr(attr);
954 	ssize_t ret = -EINVAL;
955 
956 	if (!fattr->store)
957 		return -EIO;
958 
959 	/*
960 	 * cpus_read_trylock() is used here to work around a circular lock
961 	 * dependency problem with respect to the cpufreq_register_driver().
962 	 */
963 	if (!cpus_read_trylock())
964 		return -EBUSY;
965 
966 	if (cpu_online(policy->cpu)) {
967 		down_write(&policy->rwsem);
968 		ret = fattr->store(policy, buf, count);
969 		up_write(&policy->rwsem);
970 	}
971 
972 	cpus_read_unlock();
973 
974 	return ret;
975 }
976 
977 static void cpufreq_sysfs_release(struct kobject *kobj)
978 {
979 	struct cpufreq_policy *policy = to_policy(kobj);
980 	pr_debug("last reference is dropped\n");
981 	complete(&policy->kobj_unregister);
982 }
983 
984 static const struct sysfs_ops sysfs_ops = {
985 	.show	= show,
986 	.store	= store,
987 };
988 
989 static struct kobj_type ktype_cpufreq = {
990 	.sysfs_ops	= &sysfs_ops,
991 	.default_attrs	= default_attrs,
992 	.release	= cpufreq_sysfs_release,
993 };
994 
995 static void add_cpu_dev_symlink(struct cpufreq_policy *policy, unsigned int cpu)
996 {
997 	struct device *dev = get_cpu_device(cpu);
998 
999 	if (unlikely(!dev))
1000 		return;
1001 
1002 	if (cpumask_test_and_set_cpu(cpu, policy->real_cpus))
1003 		return;
1004 
1005 	dev_dbg(dev, "%s: Adding symlink\n", __func__);
1006 	if (sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq"))
1007 		dev_err(dev, "cpufreq symlink creation failed\n");
1008 }
1009 
1010 static void remove_cpu_dev_symlink(struct cpufreq_policy *policy,
1011 				   struct device *dev)
1012 {
1013 	dev_dbg(dev, "%s: Removing symlink\n", __func__);
1014 	sysfs_remove_link(&dev->kobj, "cpufreq");
1015 }
1016 
1017 static int cpufreq_add_dev_interface(struct cpufreq_policy *policy)
1018 {
1019 	struct freq_attr **drv_attr;
1020 	int ret = 0;
1021 
1022 	/* set up files for this cpu device */
1023 	drv_attr = cpufreq_driver->attr;
1024 	while (drv_attr && *drv_attr) {
1025 		ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
1026 		if (ret)
1027 			return ret;
1028 		drv_attr++;
1029 	}
1030 	if (cpufreq_driver->get) {
1031 		ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
1032 		if (ret)
1033 			return ret;
1034 	}
1035 
1036 	ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
1037 	if (ret)
1038 		return ret;
1039 
1040 	if (cpufreq_driver->bios_limit) {
1041 		ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
1042 		if (ret)
1043 			return ret;
1044 	}
1045 
1046 	return 0;
1047 }
1048 
1049 __weak struct cpufreq_governor *cpufreq_default_governor(void)
1050 {
1051 	return NULL;
1052 }
1053 
1054 static int cpufreq_init_policy(struct cpufreq_policy *policy)
1055 {
1056 	struct cpufreq_governor *gov = NULL, *def_gov = NULL;
1057 	struct cpufreq_policy new_policy;
1058 
1059 	memcpy(&new_policy, policy, sizeof(*policy));
1060 
1061 	def_gov = cpufreq_default_governor();
1062 
1063 	if (has_target()) {
1064 		/*
1065 		 * Update governor of new_policy to the governor used before
1066 		 * hotplug
1067 		 */
1068 		gov = find_governor(policy->last_governor);
1069 		if (gov) {
1070 			pr_debug("Restoring governor %s for cpu %d\n",
1071 				policy->governor->name, policy->cpu);
1072 		} else {
1073 			if (!def_gov)
1074 				return -ENODATA;
1075 			gov = def_gov;
1076 		}
1077 		new_policy.governor = gov;
1078 	} else {
1079 		/* Use the default policy if there is no last_policy. */
1080 		if (policy->last_policy) {
1081 			new_policy.policy = policy->last_policy;
1082 		} else {
1083 			if (!def_gov)
1084 				return -ENODATA;
1085 			cpufreq_parse_policy(def_gov->name, &new_policy);
1086 		}
1087 	}
1088 
1089 	return cpufreq_set_policy(policy, &new_policy);
1090 }
1091 
1092 static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu)
1093 {
1094 	int ret = 0;
1095 
1096 	/* Has this CPU been taken care of already? */
1097 	if (cpumask_test_cpu(cpu, policy->cpus))
1098 		return 0;
1099 
1100 	down_write(&policy->rwsem);
1101 	if (has_target())
1102 		cpufreq_stop_governor(policy);
1103 
1104 	cpumask_set_cpu(cpu, policy->cpus);
1105 
1106 	if (has_target()) {
1107 		ret = cpufreq_start_governor(policy);
1108 		if (ret)
1109 			pr_err("%s: Failed to start governor\n", __func__);
1110 	}
1111 	up_write(&policy->rwsem);
1112 	return ret;
1113 }
1114 
1115 void refresh_frequency_limits(struct cpufreq_policy *policy)
1116 {
1117 	struct cpufreq_policy new_policy;
1118 
1119 	if (!policy_is_inactive(policy)) {
1120 		new_policy = *policy;
1121 		pr_debug("updating policy for CPU %u\n", policy->cpu);
1122 
1123 		cpufreq_set_policy(policy, &new_policy);
1124 	}
1125 }
1126 EXPORT_SYMBOL(refresh_frequency_limits);
1127 
1128 static void handle_update(struct work_struct *work)
1129 {
1130 	struct cpufreq_policy *policy =
1131 		container_of(work, struct cpufreq_policy, update);
1132 
1133 	pr_debug("handle_update for cpu %u called\n", policy->cpu);
1134 	down_write(&policy->rwsem);
1135 	refresh_frequency_limits(policy);
1136 	up_write(&policy->rwsem);
1137 }
1138 
1139 static int cpufreq_notifier_min(struct notifier_block *nb, unsigned long freq,
1140 				void *data)
1141 {
1142 	struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_min);
1143 
1144 	schedule_work(&policy->update);
1145 	return 0;
1146 }
1147 
1148 static int cpufreq_notifier_max(struct notifier_block *nb, unsigned long freq,
1149 				void *data)
1150 {
1151 	struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_max);
1152 
1153 	schedule_work(&policy->update);
1154 	return 0;
1155 }
1156 
1157 static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy)
1158 {
1159 	struct kobject *kobj;
1160 	struct completion *cmp;
1161 
1162 	down_write(&policy->rwsem);
1163 	cpufreq_stats_free_table(policy);
1164 	kobj = &policy->kobj;
1165 	cmp = &policy->kobj_unregister;
1166 	up_write(&policy->rwsem);
1167 	kobject_put(kobj);
1168 
1169 	/*
1170 	 * We need to make sure that the underlying kobj is
1171 	 * actually not referenced anymore by anybody before we
1172 	 * proceed with unloading.
1173 	 */
1174 	pr_debug("waiting for dropping of refcount\n");
1175 	wait_for_completion(cmp);
1176 	pr_debug("wait complete\n");
1177 }
1178 
1179 static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu)
1180 {
1181 	struct cpufreq_policy *policy;
1182 	struct device *dev = get_cpu_device(cpu);
1183 	int ret;
1184 
1185 	if (!dev)
1186 		return NULL;
1187 
1188 	policy = kzalloc(sizeof(*policy), GFP_KERNEL);
1189 	if (!policy)
1190 		return NULL;
1191 
1192 	if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
1193 		goto err_free_policy;
1194 
1195 	if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
1196 		goto err_free_cpumask;
1197 
1198 	if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL))
1199 		goto err_free_rcpumask;
1200 
1201 	ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
1202 				   cpufreq_global_kobject, "policy%u", cpu);
1203 	if (ret) {
1204 		dev_err(dev, "%s: failed to init policy->kobj: %d\n", __func__, ret);
1205 		/*
1206 		 * The entire policy object will be freed below, but the extra
1207 		 * memory allocated for the kobject name needs to be freed by
1208 		 * releasing the kobject.
1209 		 */
1210 		kobject_put(&policy->kobj);
1211 		goto err_free_real_cpus;
1212 	}
1213 
1214 	freq_constraints_init(&policy->constraints);
1215 
1216 	policy->nb_min.notifier_call = cpufreq_notifier_min;
1217 	policy->nb_max.notifier_call = cpufreq_notifier_max;
1218 
1219 	ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MIN,
1220 				    &policy->nb_min);
1221 	if (ret) {
1222 		dev_err(dev, "Failed to register MIN QoS notifier: %d (%*pbl)\n",
1223 			ret, cpumask_pr_args(policy->cpus));
1224 		goto err_kobj_remove;
1225 	}
1226 
1227 	ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MAX,
1228 				    &policy->nb_max);
1229 	if (ret) {
1230 		dev_err(dev, "Failed to register MAX QoS notifier: %d (%*pbl)\n",
1231 			ret, cpumask_pr_args(policy->cpus));
1232 		goto err_min_qos_notifier;
1233 	}
1234 
1235 	INIT_LIST_HEAD(&policy->policy_list);
1236 	init_rwsem(&policy->rwsem);
1237 	spin_lock_init(&policy->transition_lock);
1238 	init_waitqueue_head(&policy->transition_wait);
1239 	init_completion(&policy->kobj_unregister);
1240 	INIT_WORK(&policy->update, handle_update);
1241 
1242 	policy->cpu = cpu;
1243 	return policy;
1244 
1245 err_min_qos_notifier:
1246 	freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1247 				 &policy->nb_min);
1248 err_kobj_remove:
1249 	cpufreq_policy_put_kobj(policy);
1250 err_free_real_cpus:
1251 	free_cpumask_var(policy->real_cpus);
1252 err_free_rcpumask:
1253 	free_cpumask_var(policy->related_cpus);
1254 err_free_cpumask:
1255 	free_cpumask_var(policy->cpus);
1256 err_free_policy:
1257 	kfree(policy);
1258 
1259 	return NULL;
1260 }
1261 
1262 static void cpufreq_policy_free(struct cpufreq_policy *policy)
1263 {
1264 	unsigned long flags;
1265 	int cpu;
1266 
1267 	/* Remove policy from list */
1268 	write_lock_irqsave(&cpufreq_driver_lock, flags);
1269 	list_del(&policy->policy_list);
1270 
1271 	for_each_cpu(cpu, policy->related_cpus)
1272 		per_cpu(cpufreq_cpu_data, cpu) = NULL;
1273 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1274 
1275 	freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MAX,
1276 				 &policy->nb_max);
1277 	freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1278 				 &policy->nb_min);
1279 
1280 	/* Cancel any pending policy->update work before freeing the policy. */
1281 	cancel_work_sync(&policy->update);
1282 
1283 	if (policy->max_freq_req) {
1284 		/*
1285 		 * CPUFREQ_CREATE_POLICY notification is sent only after
1286 		 * successfully adding max_freq_req request.
1287 		 */
1288 		blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1289 					     CPUFREQ_REMOVE_POLICY, policy);
1290 		freq_qos_remove_request(policy->max_freq_req);
1291 	}
1292 
1293 	freq_qos_remove_request(policy->min_freq_req);
1294 	kfree(policy->min_freq_req);
1295 
1296 	cpufreq_policy_put_kobj(policy);
1297 	free_cpumask_var(policy->real_cpus);
1298 	free_cpumask_var(policy->related_cpus);
1299 	free_cpumask_var(policy->cpus);
1300 	kfree(policy);
1301 }
1302 
1303 static int cpufreq_online(unsigned int cpu)
1304 {
1305 	struct cpufreq_policy *policy;
1306 	bool new_policy;
1307 	unsigned long flags;
1308 	unsigned int j;
1309 	int ret;
1310 
1311 	pr_debug("%s: bringing CPU%u online\n", __func__, cpu);
1312 
1313 	/* Check if this CPU already has a policy to manage it */
1314 	policy = per_cpu(cpufreq_cpu_data, cpu);
1315 	if (policy) {
1316 		WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus));
1317 		if (!policy_is_inactive(policy))
1318 			return cpufreq_add_policy_cpu(policy, cpu);
1319 
1320 		/* This is the only online CPU for the policy.  Start over. */
1321 		new_policy = false;
1322 		down_write(&policy->rwsem);
1323 		policy->cpu = cpu;
1324 		policy->governor = NULL;
1325 		up_write(&policy->rwsem);
1326 	} else {
1327 		new_policy = true;
1328 		policy = cpufreq_policy_alloc(cpu);
1329 		if (!policy)
1330 			return -ENOMEM;
1331 	}
1332 
1333 	if (!new_policy && cpufreq_driver->online) {
1334 		ret = cpufreq_driver->online(policy);
1335 		if (ret) {
1336 			pr_debug("%s: %d: initialization failed\n", __func__,
1337 				 __LINE__);
1338 			goto out_exit_policy;
1339 		}
1340 
1341 		/* Recover policy->cpus using related_cpus */
1342 		cpumask_copy(policy->cpus, policy->related_cpus);
1343 	} else {
1344 		cpumask_copy(policy->cpus, cpumask_of(cpu));
1345 
1346 		/*
1347 		 * Call driver. From then on the cpufreq must be able
1348 		 * to accept all calls to ->verify and ->setpolicy for this CPU.
1349 		 */
1350 		ret = cpufreq_driver->init(policy);
1351 		if (ret) {
1352 			pr_debug("%s: %d: initialization failed\n", __func__,
1353 				 __LINE__);
1354 			goto out_free_policy;
1355 		}
1356 
1357 		ret = cpufreq_table_validate_and_sort(policy);
1358 		if (ret)
1359 			goto out_exit_policy;
1360 
1361 		/* related_cpus should at least include policy->cpus. */
1362 		cpumask_copy(policy->related_cpus, policy->cpus);
1363 	}
1364 
1365 	down_write(&policy->rwsem);
1366 	/*
1367 	 * affected cpus must always be the one, which are online. We aren't
1368 	 * managing offline cpus here.
1369 	 */
1370 	cpumask_and(policy->cpus, policy->cpus, cpu_online_mask);
1371 
1372 	if (new_policy) {
1373 		for_each_cpu(j, policy->related_cpus) {
1374 			per_cpu(cpufreq_cpu_data, j) = policy;
1375 			add_cpu_dev_symlink(policy, j);
1376 		}
1377 
1378 		policy->min_freq_req = kzalloc(2 * sizeof(*policy->min_freq_req),
1379 					       GFP_KERNEL);
1380 		if (!policy->min_freq_req)
1381 			goto out_destroy_policy;
1382 
1383 		ret = freq_qos_add_request(&policy->constraints,
1384 					   policy->min_freq_req, FREQ_QOS_MIN,
1385 					   policy->min);
1386 		if (ret < 0) {
1387 			/*
1388 			 * So we don't call freq_qos_remove_request() for an
1389 			 * uninitialized request.
1390 			 */
1391 			kfree(policy->min_freq_req);
1392 			policy->min_freq_req = NULL;
1393 			goto out_destroy_policy;
1394 		}
1395 
1396 		/*
1397 		 * This must be initialized right here to avoid calling
1398 		 * freq_qos_remove_request() on uninitialized request in case
1399 		 * of errors.
1400 		 */
1401 		policy->max_freq_req = policy->min_freq_req + 1;
1402 
1403 		ret = freq_qos_add_request(&policy->constraints,
1404 					   policy->max_freq_req, FREQ_QOS_MAX,
1405 					   policy->max);
1406 		if (ret < 0) {
1407 			policy->max_freq_req = NULL;
1408 			goto out_destroy_policy;
1409 		}
1410 
1411 		blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1412 				CPUFREQ_CREATE_POLICY, policy);
1413 	}
1414 
1415 	if (cpufreq_driver->get && has_target()) {
1416 		policy->cur = cpufreq_driver->get(policy->cpu);
1417 		if (!policy->cur) {
1418 			pr_err("%s: ->get() failed\n", __func__);
1419 			goto out_destroy_policy;
1420 		}
1421 	}
1422 
1423 	/*
1424 	 * Sometimes boot loaders set CPU frequency to a value outside of
1425 	 * frequency table present with cpufreq core. In such cases CPU might be
1426 	 * unstable if it has to run on that frequency for long duration of time
1427 	 * and so its better to set it to a frequency which is specified in
1428 	 * freq-table. This also makes cpufreq stats inconsistent as
1429 	 * cpufreq-stats would fail to register because current frequency of CPU
1430 	 * isn't found in freq-table.
1431 	 *
1432 	 * Because we don't want this change to effect boot process badly, we go
1433 	 * for the next freq which is >= policy->cur ('cur' must be set by now,
1434 	 * otherwise we will end up setting freq to lowest of the table as 'cur'
1435 	 * is initialized to zero).
1436 	 *
1437 	 * We are passing target-freq as "policy->cur - 1" otherwise
1438 	 * __cpufreq_driver_target() would simply fail, as policy->cur will be
1439 	 * equal to target-freq.
1440 	 */
1441 	if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK)
1442 	    && has_target()) {
1443 		/* Are we running at unknown frequency ? */
1444 		ret = cpufreq_frequency_table_get_index(policy, policy->cur);
1445 		if (ret == -EINVAL) {
1446 			/* Warn user and fix it */
1447 			pr_warn("%s: CPU%d: Running at unlisted freq: %u KHz\n",
1448 				__func__, policy->cpu, policy->cur);
1449 			ret = __cpufreq_driver_target(policy, policy->cur - 1,
1450 				CPUFREQ_RELATION_L);
1451 
1452 			/*
1453 			 * Reaching here after boot in a few seconds may not
1454 			 * mean that system will remain stable at "unknown"
1455 			 * frequency for longer duration. Hence, a BUG_ON().
1456 			 */
1457 			BUG_ON(ret);
1458 			pr_warn("%s: CPU%d: Unlisted initial frequency changed to: %u KHz\n",
1459 				__func__, policy->cpu, policy->cur);
1460 		}
1461 	}
1462 
1463 	if (new_policy) {
1464 		ret = cpufreq_add_dev_interface(policy);
1465 		if (ret)
1466 			goto out_destroy_policy;
1467 
1468 		cpufreq_stats_create_table(policy);
1469 
1470 		write_lock_irqsave(&cpufreq_driver_lock, flags);
1471 		list_add(&policy->policy_list, &cpufreq_policy_list);
1472 		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1473 	}
1474 
1475 	ret = cpufreq_init_policy(policy);
1476 	if (ret) {
1477 		pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n",
1478 		       __func__, cpu, ret);
1479 		goto out_destroy_policy;
1480 	}
1481 
1482 	up_write(&policy->rwsem);
1483 
1484 	kobject_uevent(&policy->kobj, KOBJ_ADD);
1485 
1486 	/* Callback for handling stuff after policy is ready */
1487 	if (cpufreq_driver->ready)
1488 		cpufreq_driver->ready(policy);
1489 
1490 	if (cpufreq_thermal_control_enabled(cpufreq_driver))
1491 		policy->cdev = of_cpufreq_cooling_register(policy);
1492 
1493 	pr_debug("initialization complete\n");
1494 
1495 	return 0;
1496 
1497 out_destroy_policy:
1498 	for_each_cpu(j, policy->real_cpus)
1499 		remove_cpu_dev_symlink(policy, get_cpu_device(j));
1500 
1501 	up_write(&policy->rwsem);
1502 
1503 out_exit_policy:
1504 	if (cpufreq_driver->exit)
1505 		cpufreq_driver->exit(policy);
1506 
1507 out_free_policy:
1508 	cpufreq_policy_free(policy);
1509 	return ret;
1510 }
1511 
1512 /**
1513  * cpufreq_add_dev - the cpufreq interface for a CPU device.
1514  * @dev: CPU device.
1515  * @sif: Subsystem interface structure pointer (not used)
1516  */
1517 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1518 {
1519 	struct cpufreq_policy *policy;
1520 	unsigned cpu = dev->id;
1521 	int ret;
1522 
1523 	dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu);
1524 
1525 	if (cpu_online(cpu)) {
1526 		ret = cpufreq_online(cpu);
1527 		if (ret)
1528 			return ret;
1529 	}
1530 
1531 	/* Create sysfs link on CPU registration */
1532 	policy = per_cpu(cpufreq_cpu_data, cpu);
1533 	if (policy)
1534 		add_cpu_dev_symlink(policy, cpu);
1535 
1536 	return 0;
1537 }
1538 
1539 static int cpufreq_offline(unsigned int cpu)
1540 {
1541 	struct cpufreq_policy *policy;
1542 	int ret;
1543 
1544 	pr_debug("%s: unregistering CPU %u\n", __func__, cpu);
1545 
1546 	policy = cpufreq_cpu_get_raw(cpu);
1547 	if (!policy) {
1548 		pr_debug("%s: No cpu_data found\n", __func__);
1549 		return 0;
1550 	}
1551 
1552 	down_write(&policy->rwsem);
1553 	if (has_target())
1554 		cpufreq_stop_governor(policy);
1555 
1556 	cpumask_clear_cpu(cpu, policy->cpus);
1557 
1558 	if (policy_is_inactive(policy)) {
1559 		if (has_target())
1560 			strncpy(policy->last_governor, policy->governor->name,
1561 				CPUFREQ_NAME_LEN);
1562 		else
1563 			policy->last_policy = policy->policy;
1564 	} else if (cpu == policy->cpu) {
1565 		/* Nominate new CPU */
1566 		policy->cpu = cpumask_any(policy->cpus);
1567 	}
1568 
1569 	/* Start governor again for active policy */
1570 	if (!policy_is_inactive(policy)) {
1571 		if (has_target()) {
1572 			ret = cpufreq_start_governor(policy);
1573 			if (ret)
1574 				pr_err("%s: Failed to start governor\n", __func__);
1575 		}
1576 
1577 		goto unlock;
1578 	}
1579 
1580 	if (cpufreq_thermal_control_enabled(cpufreq_driver)) {
1581 		cpufreq_cooling_unregister(policy->cdev);
1582 		policy->cdev = NULL;
1583 	}
1584 
1585 	if (cpufreq_driver->stop_cpu)
1586 		cpufreq_driver->stop_cpu(policy);
1587 
1588 	if (has_target())
1589 		cpufreq_exit_governor(policy);
1590 
1591 	/*
1592 	 * Perform the ->offline() during light-weight tear-down, as
1593 	 * that allows fast recovery when the CPU comes back.
1594 	 */
1595 	if (cpufreq_driver->offline) {
1596 		cpufreq_driver->offline(policy);
1597 	} else if (cpufreq_driver->exit) {
1598 		cpufreq_driver->exit(policy);
1599 		policy->freq_table = NULL;
1600 	}
1601 
1602 unlock:
1603 	up_write(&policy->rwsem);
1604 	return 0;
1605 }
1606 
1607 /**
1608  * cpufreq_remove_dev - remove a CPU device
1609  *
1610  * Removes the cpufreq interface for a CPU device.
1611  */
1612 static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1613 {
1614 	unsigned int cpu = dev->id;
1615 	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1616 
1617 	if (!policy)
1618 		return;
1619 
1620 	if (cpu_online(cpu))
1621 		cpufreq_offline(cpu);
1622 
1623 	cpumask_clear_cpu(cpu, policy->real_cpus);
1624 	remove_cpu_dev_symlink(policy, dev);
1625 
1626 	if (cpumask_empty(policy->real_cpus)) {
1627 		/* We did light-weight exit earlier, do full tear down now */
1628 		if (cpufreq_driver->offline)
1629 			cpufreq_driver->exit(policy);
1630 
1631 		cpufreq_policy_free(policy);
1632 	}
1633 }
1634 
1635 /**
1636  *	cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're
1637  *	in deep trouble.
1638  *	@policy: policy managing CPUs
1639  *	@new_freq: CPU frequency the CPU actually runs at
1640  *
1641  *	We adjust to current frequency first, and need to clean up later.
1642  *	So either call to cpufreq_update_policy() or schedule handle_update()).
1643  */
1644 static void cpufreq_out_of_sync(struct cpufreq_policy *policy,
1645 				unsigned int new_freq)
1646 {
1647 	struct cpufreq_freqs freqs;
1648 
1649 	pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n",
1650 		 policy->cur, new_freq);
1651 
1652 	freqs.old = policy->cur;
1653 	freqs.new = new_freq;
1654 
1655 	cpufreq_freq_transition_begin(policy, &freqs);
1656 	cpufreq_freq_transition_end(policy, &freqs, 0);
1657 }
1658 
1659 static unsigned int cpufreq_verify_current_freq(struct cpufreq_policy *policy, bool update)
1660 {
1661 	unsigned int new_freq;
1662 
1663 	new_freq = cpufreq_driver->get(policy->cpu);
1664 	if (!new_freq)
1665 		return 0;
1666 
1667 	/*
1668 	 * If fast frequency switching is used with the given policy, the check
1669 	 * against policy->cur is pointless, so skip it in that case.
1670 	 */
1671 	if (policy->fast_switch_enabled || !has_target())
1672 		return new_freq;
1673 
1674 	if (policy->cur != new_freq) {
1675 		cpufreq_out_of_sync(policy, new_freq);
1676 		if (update)
1677 			schedule_work(&policy->update);
1678 	}
1679 
1680 	return new_freq;
1681 }
1682 
1683 /**
1684  * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1685  * @cpu: CPU number
1686  *
1687  * This is the last known freq, without actually getting it from the driver.
1688  * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1689  */
1690 unsigned int cpufreq_quick_get(unsigned int cpu)
1691 {
1692 	struct cpufreq_policy *policy;
1693 	unsigned int ret_freq = 0;
1694 	unsigned long flags;
1695 
1696 	read_lock_irqsave(&cpufreq_driver_lock, flags);
1697 
1698 	if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) {
1699 		ret_freq = cpufreq_driver->get(cpu);
1700 		read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1701 		return ret_freq;
1702 	}
1703 
1704 	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1705 
1706 	policy = cpufreq_cpu_get(cpu);
1707 	if (policy) {
1708 		ret_freq = policy->cur;
1709 		cpufreq_cpu_put(policy);
1710 	}
1711 
1712 	return ret_freq;
1713 }
1714 EXPORT_SYMBOL(cpufreq_quick_get);
1715 
1716 /**
1717  * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1718  * @cpu: CPU number
1719  *
1720  * Just return the max possible frequency for a given CPU.
1721  */
1722 unsigned int cpufreq_quick_get_max(unsigned int cpu)
1723 {
1724 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1725 	unsigned int ret_freq = 0;
1726 
1727 	if (policy) {
1728 		ret_freq = policy->max;
1729 		cpufreq_cpu_put(policy);
1730 	}
1731 
1732 	return ret_freq;
1733 }
1734 EXPORT_SYMBOL(cpufreq_quick_get_max);
1735 
1736 static unsigned int __cpufreq_get(struct cpufreq_policy *policy)
1737 {
1738 	if (unlikely(policy_is_inactive(policy)))
1739 		return 0;
1740 
1741 	return cpufreq_verify_current_freq(policy, true);
1742 }
1743 
1744 /**
1745  * cpufreq_get - get the current CPU frequency (in kHz)
1746  * @cpu: CPU number
1747  *
1748  * Get the CPU current (static) CPU frequency
1749  */
1750 unsigned int cpufreq_get(unsigned int cpu)
1751 {
1752 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1753 	unsigned int ret_freq = 0;
1754 
1755 	if (policy) {
1756 		down_read(&policy->rwsem);
1757 		if (cpufreq_driver->get)
1758 			ret_freq = __cpufreq_get(policy);
1759 		up_read(&policy->rwsem);
1760 
1761 		cpufreq_cpu_put(policy);
1762 	}
1763 
1764 	return ret_freq;
1765 }
1766 EXPORT_SYMBOL(cpufreq_get);
1767 
1768 static struct subsys_interface cpufreq_interface = {
1769 	.name		= "cpufreq",
1770 	.subsys		= &cpu_subsys,
1771 	.add_dev	= cpufreq_add_dev,
1772 	.remove_dev	= cpufreq_remove_dev,
1773 };
1774 
1775 /*
1776  * In case platform wants some specific frequency to be configured
1777  * during suspend..
1778  */
1779 int cpufreq_generic_suspend(struct cpufreq_policy *policy)
1780 {
1781 	int ret;
1782 
1783 	if (!policy->suspend_freq) {
1784 		pr_debug("%s: suspend_freq not defined\n", __func__);
1785 		return 0;
1786 	}
1787 
1788 	pr_debug("%s: Setting suspend-freq: %u\n", __func__,
1789 			policy->suspend_freq);
1790 
1791 	ret = __cpufreq_driver_target(policy, policy->suspend_freq,
1792 			CPUFREQ_RELATION_H);
1793 	if (ret)
1794 		pr_err("%s: unable to set suspend-freq: %u. err: %d\n",
1795 				__func__, policy->suspend_freq, ret);
1796 
1797 	return ret;
1798 }
1799 EXPORT_SYMBOL(cpufreq_generic_suspend);
1800 
1801 /**
1802  * cpufreq_suspend() - Suspend CPUFreq governors
1803  *
1804  * Called during system wide Suspend/Hibernate cycles for suspending governors
1805  * as some platforms can't change frequency after this point in suspend cycle.
1806  * Because some of the devices (like: i2c, regulators, etc) they use for
1807  * changing frequency are suspended quickly after this point.
1808  */
1809 void cpufreq_suspend(void)
1810 {
1811 	struct cpufreq_policy *policy;
1812 
1813 	if (!cpufreq_driver)
1814 		return;
1815 
1816 	if (!has_target() && !cpufreq_driver->suspend)
1817 		goto suspend;
1818 
1819 	pr_debug("%s: Suspending Governors\n", __func__);
1820 
1821 	for_each_active_policy(policy) {
1822 		if (has_target()) {
1823 			down_write(&policy->rwsem);
1824 			cpufreq_stop_governor(policy);
1825 			up_write(&policy->rwsem);
1826 		}
1827 
1828 		if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy))
1829 			pr_err("%s: Failed to suspend driver: %s\n", __func__,
1830 				cpufreq_driver->name);
1831 	}
1832 
1833 suspend:
1834 	cpufreq_suspended = true;
1835 }
1836 
1837 /**
1838  * cpufreq_resume() - Resume CPUFreq governors
1839  *
1840  * Called during system wide Suspend/Hibernate cycle for resuming governors that
1841  * are suspended with cpufreq_suspend().
1842  */
1843 void cpufreq_resume(void)
1844 {
1845 	struct cpufreq_policy *policy;
1846 	int ret;
1847 
1848 	if (!cpufreq_driver)
1849 		return;
1850 
1851 	if (unlikely(!cpufreq_suspended))
1852 		return;
1853 
1854 	cpufreq_suspended = false;
1855 
1856 	if (!has_target() && !cpufreq_driver->resume)
1857 		return;
1858 
1859 	pr_debug("%s: Resuming Governors\n", __func__);
1860 
1861 	for_each_active_policy(policy) {
1862 		if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) {
1863 			pr_err("%s: Failed to resume driver: %p\n", __func__,
1864 				policy);
1865 		} else if (has_target()) {
1866 			down_write(&policy->rwsem);
1867 			ret = cpufreq_start_governor(policy);
1868 			up_write(&policy->rwsem);
1869 
1870 			if (ret)
1871 				pr_err("%s: Failed to start governor for policy: %p\n",
1872 				       __func__, policy);
1873 		}
1874 	}
1875 }
1876 
1877 /**
1878  *	cpufreq_get_current_driver - return current driver's name
1879  *
1880  *	Return the name string of the currently loaded cpufreq driver
1881  *	or NULL, if none.
1882  */
1883 const char *cpufreq_get_current_driver(void)
1884 {
1885 	if (cpufreq_driver)
1886 		return cpufreq_driver->name;
1887 
1888 	return NULL;
1889 }
1890 EXPORT_SYMBOL_GPL(cpufreq_get_current_driver);
1891 
1892 /**
1893  *	cpufreq_get_driver_data - return current driver data
1894  *
1895  *	Return the private data of the currently loaded cpufreq
1896  *	driver, or NULL if no cpufreq driver is loaded.
1897  */
1898 void *cpufreq_get_driver_data(void)
1899 {
1900 	if (cpufreq_driver)
1901 		return cpufreq_driver->driver_data;
1902 
1903 	return NULL;
1904 }
1905 EXPORT_SYMBOL_GPL(cpufreq_get_driver_data);
1906 
1907 /*********************************************************************
1908  *                     NOTIFIER LISTS INTERFACE                      *
1909  *********************************************************************/
1910 
1911 /**
1912  *	cpufreq_register_notifier - register a driver with cpufreq
1913  *	@nb: notifier function to register
1914  *      @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1915  *
1916  *	Add a driver to one of two lists: either a list of drivers that
1917  *      are notified about clock rate changes (once before and once after
1918  *      the transition), or a list of drivers that are notified about
1919  *      changes in cpufreq policy.
1920  *
1921  *	This function may sleep, and has the same return conditions as
1922  *	blocking_notifier_chain_register.
1923  */
1924 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
1925 {
1926 	int ret;
1927 
1928 	if (cpufreq_disabled())
1929 		return -EINVAL;
1930 
1931 	switch (list) {
1932 	case CPUFREQ_TRANSITION_NOTIFIER:
1933 		mutex_lock(&cpufreq_fast_switch_lock);
1934 
1935 		if (cpufreq_fast_switch_count > 0) {
1936 			mutex_unlock(&cpufreq_fast_switch_lock);
1937 			return -EBUSY;
1938 		}
1939 		ret = srcu_notifier_chain_register(
1940 				&cpufreq_transition_notifier_list, nb);
1941 		if (!ret)
1942 			cpufreq_fast_switch_count--;
1943 
1944 		mutex_unlock(&cpufreq_fast_switch_lock);
1945 		break;
1946 	case CPUFREQ_POLICY_NOTIFIER:
1947 		ret = blocking_notifier_chain_register(
1948 				&cpufreq_policy_notifier_list, nb);
1949 		break;
1950 	default:
1951 		ret = -EINVAL;
1952 	}
1953 
1954 	return ret;
1955 }
1956 EXPORT_SYMBOL(cpufreq_register_notifier);
1957 
1958 /**
1959  *	cpufreq_unregister_notifier - unregister a driver with cpufreq
1960  *	@nb: notifier block to be unregistered
1961  *	@list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1962  *
1963  *	Remove a driver from the CPU frequency notifier list.
1964  *
1965  *	This function may sleep, and has the same return conditions as
1966  *	blocking_notifier_chain_unregister.
1967  */
1968 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
1969 {
1970 	int ret;
1971 
1972 	if (cpufreq_disabled())
1973 		return -EINVAL;
1974 
1975 	switch (list) {
1976 	case CPUFREQ_TRANSITION_NOTIFIER:
1977 		mutex_lock(&cpufreq_fast_switch_lock);
1978 
1979 		ret = srcu_notifier_chain_unregister(
1980 				&cpufreq_transition_notifier_list, nb);
1981 		if (!ret && !WARN_ON(cpufreq_fast_switch_count >= 0))
1982 			cpufreq_fast_switch_count++;
1983 
1984 		mutex_unlock(&cpufreq_fast_switch_lock);
1985 		break;
1986 	case CPUFREQ_POLICY_NOTIFIER:
1987 		ret = blocking_notifier_chain_unregister(
1988 				&cpufreq_policy_notifier_list, nb);
1989 		break;
1990 	default:
1991 		ret = -EINVAL;
1992 	}
1993 
1994 	return ret;
1995 }
1996 EXPORT_SYMBOL(cpufreq_unregister_notifier);
1997 
1998 
1999 /*********************************************************************
2000  *                              GOVERNORS                            *
2001  *********************************************************************/
2002 
2003 /**
2004  * cpufreq_driver_fast_switch - Carry out a fast CPU frequency switch.
2005  * @policy: cpufreq policy to switch the frequency for.
2006  * @target_freq: New frequency to set (may be approximate).
2007  *
2008  * Carry out a fast frequency switch without sleeping.
2009  *
2010  * The driver's ->fast_switch() callback invoked by this function must be
2011  * suitable for being called from within RCU-sched read-side critical sections
2012  * and it is expected to select the minimum available frequency greater than or
2013  * equal to @target_freq (CPUFREQ_RELATION_L).
2014  *
2015  * This function must not be called if policy->fast_switch_enabled is unset.
2016  *
2017  * Governors calling this function must guarantee that it will never be invoked
2018  * twice in parallel for the same policy and that it will never be called in
2019  * parallel with either ->target() or ->target_index() for the same policy.
2020  *
2021  * Returns the actual frequency set for the CPU.
2022  *
2023  * If 0 is returned by the driver's ->fast_switch() callback to indicate an
2024  * error condition, the hardware configuration must be preserved.
2025  */
2026 unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy,
2027 					unsigned int target_freq)
2028 {
2029 	target_freq = clamp_val(target_freq, policy->min, policy->max);
2030 
2031 	return cpufreq_driver->fast_switch(policy, target_freq);
2032 }
2033 EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch);
2034 
2035 /* Must set freqs->new to intermediate frequency */
2036 static int __target_intermediate(struct cpufreq_policy *policy,
2037 				 struct cpufreq_freqs *freqs, int index)
2038 {
2039 	int ret;
2040 
2041 	freqs->new = cpufreq_driver->get_intermediate(policy, index);
2042 
2043 	/* We don't need to switch to intermediate freq */
2044 	if (!freqs->new)
2045 		return 0;
2046 
2047 	pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n",
2048 		 __func__, policy->cpu, freqs->old, freqs->new);
2049 
2050 	cpufreq_freq_transition_begin(policy, freqs);
2051 	ret = cpufreq_driver->target_intermediate(policy, index);
2052 	cpufreq_freq_transition_end(policy, freqs, ret);
2053 
2054 	if (ret)
2055 		pr_err("%s: Failed to change to intermediate frequency: %d\n",
2056 		       __func__, ret);
2057 
2058 	return ret;
2059 }
2060 
2061 static int __target_index(struct cpufreq_policy *policy, int index)
2062 {
2063 	struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0};
2064 	unsigned int intermediate_freq = 0;
2065 	unsigned int newfreq = policy->freq_table[index].frequency;
2066 	int retval = -EINVAL;
2067 	bool notify;
2068 
2069 	if (newfreq == policy->cur)
2070 		return 0;
2071 
2072 	notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION);
2073 	if (notify) {
2074 		/* Handle switching to intermediate frequency */
2075 		if (cpufreq_driver->get_intermediate) {
2076 			retval = __target_intermediate(policy, &freqs, index);
2077 			if (retval)
2078 				return retval;
2079 
2080 			intermediate_freq = freqs.new;
2081 			/* Set old freq to intermediate */
2082 			if (intermediate_freq)
2083 				freqs.old = freqs.new;
2084 		}
2085 
2086 		freqs.new = newfreq;
2087 		pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n",
2088 			 __func__, policy->cpu, freqs.old, freqs.new);
2089 
2090 		cpufreq_freq_transition_begin(policy, &freqs);
2091 	}
2092 
2093 	retval = cpufreq_driver->target_index(policy, index);
2094 	if (retval)
2095 		pr_err("%s: Failed to change cpu frequency: %d\n", __func__,
2096 		       retval);
2097 
2098 	if (notify) {
2099 		cpufreq_freq_transition_end(policy, &freqs, retval);
2100 
2101 		/*
2102 		 * Failed after setting to intermediate freq? Driver should have
2103 		 * reverted back to initial frequency and so should we. Check
2104 		 * here for intermediate_freq instead of get_intermediate, in
2105 		 * case we haven't switched to intermediate freq at all.
2106 		 */
2107 		if (unlikely(retval && intermediate_freq)) {
2108 			freqs.old = intermediate_freq;
2109 			freqs.new = policy->restore_freq;
2110 			cpufreq_freq_transition_begin(policy, &freqs);
2111 			cpufreq_freq_transition_end(policy, &freqs, 0);
2112 		}
2113 	}
2114 
2115 	return retval;
2116 }
2117 
2118 int __cpufreq_driver_target(struct cpufreq_policy *policy,
2119 			    unsigned int target_freq,
2120 			    unsigned int relation)
2121 {
2122 	unsigned int old_target_freq = target_freq;
2123 	int index;
2124 
2125 	if (cpufreq_disabled())
2126 		return -ENODEV;
2127 
2128 	/* Make sure that target_freq is within supported range */
2129 	target_freq = clamp_val(target_freq, policy->min, policy->max);
2130 
2131 	pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n",
2132 		 policy->cpu, target_freq, relation, old_target_freq);
2133 
2134 	/*
2135 	 * This might look like a redundant call as we are checking it again
2136 	 * after finding index. But it is left intentionally for cases where
2137 	 * exactly same freq is called again and so we can save on few function
2138 	 * calls.
2139 	 */
2140 	if (target_freq == policy->cur)
2141 		return 0;
2142 
2143 	/* Save last value to restore later on errors */
2144 	policy->restore_freq = policy->cur;
2145 
2146 	if (cpufreq_driver->target)
2147 		return cpufreq_driver->target(policy, target_freq, relation);
2148 
2149 	if (!cpufreq_driver->target_index)
2150 		return -EINVAL;
2151 
2152 	index = cpufreq_frequency_table_target(policy, target_freq, relation);
2153 
2154 	return __target_index(policy, index);
2155 }
2156 EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
2157 
2158 int cpufreq_driver_target(struct cpufreq_policy *policy,
2159 			  unsigned int target_freq,
2160 			  unsigned int relation)
2161 {
2162 	int ret;
2163 
2164 	down_write(&policy->rwsem);
2165 
2166 	ret = __cpufreq_driver_target(policy, target_freq, relation);
2167 
2168 	up_write(&policy->rwsem);
2169 
2170 	return ret;
2171 }
2172 EXPORT_SYMBOL_GPL(cpufreq_driver_target);
2173 
2174 __weak struct cpufreq_governor *cpufreq_fallback_governor(void)
2175 {
2176 	return NULL;
2177 }
2178 
2179 static int cpufreq_init_governor(struct cpufreq_policy *policy)
2180 {
2181 	int ret;
2182 
2183 	/* Don't start any governor operations if we are entering suspend */
2184 	if (cpufreq_suspended)
2185 		return 0;
2186 	/*
2187 	 * Governor might not be initiated here if ACPI _PPC changed
2188 	 * notification happened, so check it.
2189 	 */
2190 	if (!policy->governor)
2191 		return -EINVAL;
2192 
2193 	/* Platform doesn't want dynamic frequency switching ? */
2194 	if (policy->governor->dynamic_switching &&
2195 	    cpufreq_driver->flags & CPUFREQ_NO_AUTO_DYNAMIC_SWITCHING) {
2196 		struct cpufreq_governor *gov = cpufreq_fallback_governor();
2197 
2198 		if (gov) {
2199 			pr_warn("Can't use %s governor as dynamic switching is disallowed. Fallback to %s governor\n",
2200 				policy->governor->name, gov->name);
2201 			policy->governor = gov;
2202 		} else {
2203 			return -EINVAL;
2204 		}
2205 	}
2206 
2207 	if (!try_module_get(policy->governor->owner))
2208 		return -EINVAL;
2209 
2210 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2211 
2212 	if (policy->governor->init) {
2213 		ret = policy->governor->init(policy);
2214 		if (ret) {
2215 			module_put(policy->governor->owner);
2216 			return ret;
2217 		}
2218 	}
2219 
2220 	return 0;
2221 }
2222 
2223 static void cpufreq_exit_governor(struct cpufreq_policy *policy)
2224 {
2225 	if (cpufreq_suspended || !policy->governor)
2226 		return;
2227 
2228 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2229 
2230 	if (policy->governor->exit)
2231 		policy->governor->exit(policy);
2232 
2233 	module_put(policy->governor->owner);
2234 }
2235 
2236 static int cpufreq_start_governor(struct cpufreq_policy *policy)
2237 {
2238 	int ret;
2239 
2240 	if (cpufreq_suspended)
2241 		return 0;
2242 
2243 	if (!policy->governor)
2244 		return -EINVAL;
2245 
2246 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2247 
2248 	if (cpufreq_driver->get)
2249 		cpufreq_verify_current_freq(policy, false);
2250 
2251 	if (policy->governor->start) {
2252 		ret = policy->governor->start(policy);
2253 		if (ret)
2254 			return ret;
2255 	}
2256 
2257 	if (policy->governor->limits)
2258 		policy->governor->limits(policy);
2259 
2260 	return 0;
2261 }
2262 
2263 static void cpufreq_stop_governor(struct cpufreq_policy *policy)
2264 {
2265 	if (cpufreq_suspended || !policy->governor)
2266 		return;
2267 
2268 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2269 
2270 	if (policy->governor->stop)
2271 		policy->governor->stop(policy);
2272 }
2273 
2274 static void cpufreq_governor_limits(struct cpufreq_policy *policy)
2275 {
2276 	if (cpufreq_suspended || !policy->governor)
2277 		return;
2278 
2279 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2280 
2281 	if (policy->governor->limits)
2282 		policy->governor->limits(policy);
2283 }
2284 
2285 int cpufreq_register_governor(struct cpufreq_governor *governor)
2286 {
2287 	int err;
2288 
2289 	if (!governor)
2290 		return -EINVAL;
2291 
2292 	if (cpufreq_disabled())
2293 		return -ENODEV;
2294 
2295 	mutex_lock(&cpufreq_governor_mutex);
2296 
2297 	err = -EBUSY;
2298 	if (!find_governor(governor->name)) {
2299 		err = 0;
2300 		list_add(&governor->governor_list, &cpufreq_governor_list);
2301 	}
2302 
2303 	mutex_unlock(&cpufreq_governor_mutex);
2304 	return err;
2305 }
2306 EXPORT_SYMBOL_GPL(cpufreq_register_governor);
2307 
2308 void cpufreq_unregister_governor(struct cpufreq_governor *governor)
2309 {
2310 	struct cpufreq_policy *policy;
2311 	unsigned long flags;
2312 
2313 	if (!governor)
2314 		return;
2315 
2316 	if (cpufreq_disabled())
2317 		return;
2318 
2319 	/* clear last_governor for all inactive policies */
2320 	read_lock_irqsave(&cpufreq_driver_lock, flags);
2321 	for_each_inactive_policy(policy) {
2322 		if (!strcmp(policy->last_governor, governor->name)) {
2323 			policy->governor = NULL;
2324 			strcpy(policy->last_governor, "\0");
2325 		}
2326 	}
2327 	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
2328 
2329 	mutex_lock(&cpufreq_governor_mutex);
2330 	list_del(&governor->governor_list);
2331 	mutex_unlock(&cpufreq_governor_mutex);
2332 }
2333 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
2334 
2335 
2336 /*********************************************************************
2337  *                          POLICY INTERFACE                         *
2338  *********************************************************************/
2339 
2340 /**
2341  * cpufreq_get_policy - get the current cpufreq_policy
2342  * @policy: struct cpufreq_policy into which the current cpufreq_policy
2343  *	is written
2344  *
2345  * Reads the current cpufreq policy.
2346  */
2347 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
2348 {
2349 	struct cpufreq_policy *cpu_policy;
2350 	if (!policy)
2351 		return -EINVAL;
2352 
2353 	cpu_policy = cpufreq_cpu_get(cpu);
2354 	if (!cpu_policy)
2355 		return -EINVAL;
2356 
2357 	memcpy(policy, cpu_policy, sizeof(*policy));
2358 
2359 	cpufreq_cpu_put(cpu_policy);
2360 	return 0;
2361 }
2362 EXPORT_SYMBOL(cpufreq_get_policy);
2363 
2364 /**
2365  * cpufreq_set_policy - Modify cpufreq policy parameters.
2366  * @policy: Policy object to modify.
2367  * @new_policy: New policy data.
2368  *
2369  * Pass @new_policy to the cpufreq driver's ->verify() callback. Next, copy the
2370  * min and max parameters of @new_policy to @policy and either invoke the
2371  * driver's ->setpolicy() callback (if present) or carry out a governor update
2372  * for @policy.  That is, run the current governor's ->limits() callback (if the
2373  * governor field in @new_policy points to the same object as the one in
2374  * @policy) or replace the governor for @policy with the new one stored in
2375  * @new_policy.
2376  *
2377  * The cpuinfo part of @policy is not updated by this function.
2378  */
2379 int cpufreq_set_policy(struct cpufreq_policy *policy,
2380 		       struct cpufreq_policy *new_policy)
2381 {
2382 	struct cpufreq_governor *old_gov;
2383 	int ret;
2384 
2385 	pr_debug("setting new policy for CPU %u: %u - %u kHz\n",
2386 		 new_policy->cpu, new_policy->min, new_policy->max);
2387 
2388 	memcpy(&new_policy->cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo));
2389 
2390 	/*
2391 	 * PM QoS framework collects all the requests from users and provide us
2392 	 * the final aggregated value here.
2393 	 */
2394 	new_policy->min = freq_qos_read_value(&policy->constraints, FREQ_QOS_MIN);
2395 	new_policy->max = freq_qos_read_value(&policy->constraints, FREQ_QOS_MAX);
2396 
2397 	/*
2398 	 * Verify that the CPU speed can be set within these limits and make sure
2399 	 * that min <= max.
2400 	 */
2401 	ret = cpufreq_driver->verify(new_policy);
2402 	if (ret)
2403 		return ret;
2404 
2405 	policy->min = new_policy->min;
2406 	policy->max = new_policy->max;
2407 	trace_cpu_frequency_limits(policy);
2408 
2409 	policy->cached_target_freq = UINT_MAX;
2410 
2411 	pr_debug("new min and max freqs are %u - %u kHz\n",
2412 		 policy->min, policy->max);
2413 
2414 	if (cpufreq_driver->setpolicy) {
2415 		policy->policy = new_policy->policy;
2416 		pr_debug("setting range\n");
2417 		return cpufreq_driver->setpolicy(policy);
2418 	}
2419 
2420 	if (new_policy->governor == policy->governor) {
2421 		pr_debug("governor limits update\n");
2422 		cpufreq_governor_limits(policy);
2423 		return 0;
2424 	}
2425 
2426 	pr_debug("governor switch\n");
2427 
2428 	/* save old, working values */
2429 	old_gov = policy->governor;
2430 	/* end old governor */
2431 	if (old_gov) {
2432 		cpufreq_stop_governor(policy);
2433 		cpufreq_exit_governor(policy);
2434 	}
2435 
2436 	/* start new governor */
2437 	policy->governor = new_policy->governor;
2438 	ret = cpufreq_init_governor(policy);
2439 	if (!ret) {
2440 		ret = cpufreq_start_governor(policy);
2441 		if (!ret) {
2442 			pr_debug("governor change\n");
2443 			sched_cpufreq_governor_change(policy, old_gov);
2444 			return 0;
2445 		}
2446 		cpufreq_exit_governor(policy);
2447 	}
2448 
2449 	/* new governor failed, so re-start old one */
2450 	pr_debug("starting governor %s failed\n", policy->governor->name);
2451 	if (old_gov) {
2452 		policy->governor = old_gov;
2453 		if (cpufreq_init_governor(policy))
2454 			policy->governor = NULL;
2455 		else
2456 			cpufreq_start_governor(policy);
2457 	}
2458 
2459 	return ret;
2460 }
2461 
2462 /**
2463  * cpufreq_update_policy - Re-evaluate an existing cpufreq policy.
2464  * @cpu: CPU to re-evaluate the policy for.
2465  *
2466  * Update the current frequency for the cpufreq policy of @cpu and use
2467  * cpufreq_set_policy() to re-apply the min and max limits, which triggers the
2468  * evaluation of policy notifiers and the cpufreq driver's ->verify() callback
2469  * for the policy in question, among other things.
2470  */
2471 void cpufreq_update_policy(unsigned int cpu)
2472 {
2473 	struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
2474 
2475 	if (!policy)
2476 		return;
2477 
2478 	/*
2479 	 * BIOS might change freq behind our back
2480 	 * -> ask driver for current freq and notify governors about a change
2481 	 */
2482 	if (cpufreq_driver->get && has_target() &&
2483 	    (cpufreq_suspended || WARN_ON(!cpufreq_verify_current_freq(policy, false))))
2484 		goto unlock;
2485 
2486 	refresh_frequency_limits(policy);
2487 
2488 unlock:
2489 	cpufreq_cpu_release(policy);
2490 }
2491 EXPORT_SYMBOL(cpufreq_update_policy);
2492 
2493 /**
2494  * cpufreq_update_limits - Update policy limits for a given CPU.
2495  * @cpu: CPU to update the policy limits for.
2496  *
2497  * Invoke the driver's ->update_limits callback if present or call
2498  * cpufreq_update_policy() for @cpu.
2499  */
2500 void cpufreq_update_limits(unsigned int cpu)
2501 {
2502 	if (cpufreq_driver->update_limits)
2503 		cpufreq_driver->update_limits(cpu);
2504 	else
2505 		cpufreq_update_policy(cpu);
2506 }
2507 EXPORT_SYMBOL_GPL(cpufreq_update_limits);
2508 
2509 /*********************************************************************
2510  *               BOOST						     *
2511  *********************************************************************/
2512 static int cpufreq_boost_set_sw(int state)
2513 {
2514 	struct cpufreq_policy *policy;
2515 	int ret = -EINVAL;
2516 
2517 	for_each_active_policy(policy) {
2518 		if (!policy->freq_table)
2519 			continue;
2520 
2521 		ret = cpufreq_frequency_table_cpuinfo(policy,
2522 						      policy->freq_table);
2523 		if (ret) {
2524 			pr_err("%s: Policy frequency update failed\n",
2525 			       __func__);
2526 			break;
2527 		}
2528 
2529 		ret = freq_qos_update_request(policy->max_freq_req, policy->max);
2530 		if (ret < 0)
2531 			break;
2532 	}
2533 
2534 	return ret;
2535 }
2536 
2537 int cpufreq_boost_trigger_state(int state)
2538 {
2539 	unsigned long flags;
2540 	int ret = 0;
2541 
2542 	if (cpufreq_driver->boost_enabled == state)
2543 		return 0;
2544 
2545 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2546 	cpufreq_driver->boost_enabled = state;
2547 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2548 
2549 	ret = cpufreq_driver->set_boost(state);
2550 	if (ret) {
2551 		write_lock_irqsave(&cpufreq_driver_lock, flags);
2552 		cpufreq_driver->boost_enabled = !state;
2553 		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2554 
2555 		pr_err("%s: Cannot %s BOOST\n",
2556 		       __func__, state ? "enable" : "disable");
2557 	}
2558 
2559 	return ret;
2560 }
2561 
2562 static bool cpufreq_boost_supported(void)
2563 {
2564 	return cpufreq_driver->set_boost;
2565 }
2566 
2567 static int create_boost_sysfs_file(void)
2568 {
2569 	int ret;
2570 
2571 	ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr);
2572 	if (ret)
2573 		pr_err("%s: cannot register global BOOST sysfs file\n",
2574 		       __func__);
2575 
2576 	return ret;
2577 }
2578 
2579 static void remove_boost_sysfs_file(void)
2580 {
2581 	if (cpufreq_boost_supported())
2582 		sysfs_remove_file(cpufreq_global_kobject, &boost.attr);
2583 }
2584 
2585 int cpufreq_enable_boost_support(void)
2586 {
2587 	if (!cpufreq_driver)
2588 		return -EINVAL;
2589 
2590 	if (cpufreq_boost_supported())
2591 		return 0;
2592 
2593 	cpufreq_driver->set_boost = cpufreq_boost_set_sw;
2594 
2595 	/* This will get removed on driver unregister */
2596 	return create_boost_sysfs_file();
2597 }
2598 EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support);
2599 
2600 int cpufreq_boost_enabled(void)
2601 {
2602 	return cpufreq_driver->boost_enabled;
2603 }
2604 EXPORT_SYMBOL_GPL(cpufreq_boost_enabled);
2605 
2606 /*********************************************************************
2607  *               REGISTER / UNREGISTER CPUFREQ DRIVER                *
2608  *********************************************************************/
2609 static enum cpuhp_state hp_online;
2610 
2611 static int cpuhp_cpufreq_online(unsigned int cpu)
2612 {
2613 	cpufreq_online(cpu);
2614 
2615 	return 0;
2616 }
2617 
2618 static int cpuhp_cpufreq_offline(unsigned int cpu)
2619 {
2620 	cpufreq_offline(cpu);
2621 
2622 	return 0;
2623 }
2624 
2625 /**
2626  * cpufreq_register_driver - register a CPU Frequency driver
2627  * @driver_data: A struct cpufreq_driver containing the values#
2628  * submitted by the CPU Frequency driver.
2629  *
2630  * Registers a CPU Frequency driver to this core code. This code
2631  * returns zero on success, -EEXIST when another driver got here first
2632  * (and isn't unregistered in the meantime).
2633  *
2634  */
2635 int cpufreq_register_driver(struct cpufreq_driver *driver_data)
2636 {
2637 	unsigned long flags;
2638 	int ret;
2639 
2640 	if (cpufreq_disabled())
2641 		return -ENODEV;
2642 
2643 	/*
2644 	 * The cpufreq core depends heavily on the availability of device
2645 	 * structure, make sure they are available before proceeding further.
2646 	 */
2647 	if (!get_cpu_device(0))
2648 		return -EPROBE_DEFER;
2649 
2650 	if (!driver_data || !driver_data->verify || !driver_data->init ||
2651 	    !(driver_data->setpolicy || driver_data->target_index ||
2652 		    driver_data->target) ||
2653 	     (driver_data->setpolicy && (driver_data->target_index ||
2654 		    driver_data->target)) ||
2655 	     (!driver_data->get_intermediate != !driver_data->target_intermediate) ||
2656 	     (!driver_data->online != !driver_data->offline))
2657 		return -EINVAL;
2658 
2659 	pr_debug("trying to register driver %s\n", driver_data->name);
2660 
2661 	/* Protect against concurrent CPU online/offline. */
2662 	cpus_read_lock();
2663 
2664 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2665 	if (cpufreq_driver) {
2666 		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2667 		ret = -EEXIST;
2668 		goto out;
2669 	}
2670 	cpufreq_driver = driver_data;
2671 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2672 
2673 	if (driver_data->setpolicy)
2674 		driver_data->flags |= CPUFREQ_CONST_LOOPS;
2675 
2676 	if (cpufreq_boost_supported()) {
2677 		ret = create_boost_sysfs_file();
2678 		if (ret)
2679 			goto err_null_driver;
2680 	}
2681 
2682 	ret = subsys_interface_register(&cpufreq_interface);
2683 	if (ret)
2684 		goto err_boost_unreg;
2685 
2686 	if (!(cpufreq_driver->flags & CPUFREQ_STICKY) &&
2687 	    list_empty(&cpufreq_policy_list)) {
2688 		/* if all ->init() calls failed, unregister */
2689 		ret = -ENODEV;
2690 		pr_debug("%s: No CPU initialized for driver %s\n", __func__,
2691 			 driver_data->name);
2692 		goto err_if_unreg;
2693 	}
2694 
2695 	ret = cpuhp_setup_state_nocalls_cpuslocked(CPUHP_AP_ONLINE_DYN,
2696 						   "cpufreq:online",
2697 						   cpuhp_cpufreq_online,
2698 						   cpuhp_cpufreq_offline);
2699 	if (ret < 0)
2700 		goto err_if_unreg;
2701 	hp_online = ret;
2702 	ret = 0;
2703 
2704 	pr_debug("driver %s up and running\n", driver_data->name);
2705 	goto out;
2706 
2707 err_if_unreg:
2708 	subsys_interface_unregister(&cpufreq_interface);
2709 err_boost_unreg:
2710 	remove_boost_sysfs_file();
2711 err_null_driver:
2712 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2713 	cpufreq_driver = NULL;
2714 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2715 out:
2716 	cpus_read_unlock();
2717 	return ret;
2718 }
2719 EXPORT_SYMBOL_GPL(cpufreq_register_driver);
2720 
2721 /**
2722  * cpufreq_unregister_driver - unregister the current CPUFreq driver
2723  *
2724  * Unregister the current CPUFreq driver. Only call this if you have
2725  * the right to do so, i.e. if you have succeeded in initialising before!
2726  * Returns zero if successful, and -EINVAL if the cpufreq_driver is
2727  * currently not initialised.
2728  */
2729 int cpufreq_unregister_driver(struct cpufreq_driver *driver)
2730 {
2731 	unsigned long flags;
2732 
2733 	if (!cpufreq_driver || (driver != cpufreq_driver))
2734 		return -EINVAL;
2735 
2736 	pr_debug("unregistering driver %s\n", driver->name);
2737 
2738 	/* Protect against concurrent cpu hotplug */
2739 	cpus_read_lock();
2740 	subsys_interface_unregister(&cpufreq_interface);
2741 	remove_boost_sysfs_file();
2742 	cpuhp_remove_state_nocalls_cpuslocked(hp_online);
2743 
2744 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2745 
2746 	cpufreq_driver = NULL;
2747 
2748 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2749 	cpus_read_unlock();
2750 
2751 	return 0;
2752 }
2753 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
2754 
2755 struct kobject *cpufreq_global_kobject;
2756 EXPORT_SYMBOL(cpufreq_global_kobject);
2757 
2758 static int __init cpufreq_core_init(void)
2759 {
2760 	if (cpufreq_disabled())
2761 		return -ENODEV;
2762 
2763 	cpufreq_global_kobject = kobject_create_and_add("cpufreq", &cpu_subsys.dev_root->kobj);
2764 	BUG_ON(!cpufreq_global_kobject);
2765 
2766 	return 0;
2767 }
2768 module_param(off, int, 0444);
2769 core_initcall(cpufreq_core_init);
2770