xref: /linux/drivers/crypto/amcc/crypto4xx_core.c (revision 9a6b55ac)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /**
3  * AMCC SoC PPC4xx Crypto Driver
4  *
5  * Copyright (c) 2008 Applied Micro Circuits Corporation.
6  * All rights reserved. James Hsiao <jhsiao@amcc.com>
7  *
8  * This file implements AMCC crypto offload Linux device driver for use with
9  * Linux CryptoAPI.
10  */
11 
12 #include <linux/kernel.h>
13 #include <linux/interrupt.h>
14 #include <linux/spinlock_types.h>
15 #include <linux/random.h>
16 #include <linux/scatterlist.h>
17 #include <linux/crypto.h>
18 #include <linux/dma-mapping.h>
19 #include <linux/platform_device.h>
20 #include <linux/init.h>
21 #include <linux/module.h>
22 #include <linux/of_address.h>
23 #include <linux/of_irq.h>
24 #include <linux/of_platform.h>
25 #include <linux/slab.h>
26 #include <asm/dcr.h>
27 #include <asm/dcr-regs.h>
28 #include <asm/cacheflush.h>
29 #include <crypto/aead.h>
30 #include <crypto/aes.h>
31 #include <crypto/ctr.h>
32 #include <crypto/gcm.h>
33 #include <crypto/sha.h>
34 #include <crypto/rng.h>
35 #include <crypto/scatterwalk.h>
36 #include <crypto/skcipher.h>
37 #include <crypto/internal/aead.h>
38 #include <crypto/internal/rng.h>
39 #include <crypto/internal/skcipher.h>
40 #include "crypto4xx_reg_def.h"
41 #include "crypto4xx_core.h"
42 #include "crypto4xx_sa.h"
43 #include "crypto4xx_trng.h"
44 
45 #define PPC4XX_SEC_VERSION_STR			"0.5"
46 
47 /**
48  * PPC4xx Crypto Engine Initialization Routine
49  */
50 static void crypto4xx_hw_init(struct crypto4xx_device *dev)
51 {
52 	union ce_ring_size ring_size;
53 	union ce_ring_control ring_ctrl;
54 	union ce_part_ring_size part_ring_size;
55 	union ce_io_threshold io_threshold;
56 	u32 rand_num;
57 	union ce_pe_dma_cfg pe_dma_cfg;
58 	u32 device_ctrl;
59 
60 	writel(PPC4XX_BYTE_ORDER, dev->ce_base + CRYPTO4XX_BYTE_ORDER_CFG);
61 	/* setup pe dma, include reset sg, pdr and pe, then release reset */
62 	pe_dma_cfg.w = 0;
63 	pe_dma_cfg.bf.bo_sgpd_en = 1;
64 	pe_dma_cfg.bf.bo_data_en = 0;
65 	pe_dma_cfg.bf.bo_sa_en = 1;
66 	pe_dma_cfg.bf.bo_pd_en = 1;
67 	pe_dma_cfg.bf.dynamic_sa_en = 1;
68 	pe_dma_cfg.bf.reset_sg = 1;
69 	pe_dma_cfg.bf.reset_pdr = 1;
70 	pe_dma_cfg.bf.reset_pe = 1;
71 	writel(pe_dma_cfg.w, dev->ce_base + CRYPTO4XX_PE_DMA_CFG);
72 	/* un reset pe,sg and pdr */
73 	pe_dma_cfg.bf.pe_mode = 0;
74 	pe_dma_cfg.bf.reset_sg = 0;
75 	pe_dma_cfg.bf.reset_pdr = 0;
76 	pe_dma_cfg.bf.reset_pe = 0;
77 	pe_dma_cfg.bf.bo_td_en = 0;
78 	writel(pe_dma_cfg.w, dev->ce_base + CRYPTO4XX_PE_DMA_CFG);
79 	writel(dev->pdr_pa, dev->ce_base + CRYPTO4XX_PDR_BASE);
80 	writel(dev->pdr_pa, dev->ce_base + CRYPTO4XX_RDR_BASE);
81 	writel(PPC4XX_PRNG_CTRL_AUTO_EN, dev->ce_base + CRYPTO4XX_PRNG_CTRL);
82 	get_random_bytes(&rand_num, sizeof(rand_num));
83 	writel(rand_num, dev->ce_base + CRYPTO4XX_PRNG_SEED_L);
84 	get_random_bytes(&rand_num, sizeof(rand_num));
85 	writel(rand_num, dev->ce_base + CRYPTO4XX_PRNG_SEED_H);
86 	ring_size.w = 0;
87 	ring_size.bf.ring_offset = PPC4XX_PD_SIZE;
88 	ring_size.bf.ring_size   = PPC4XX_NUM_PD;
89 	writel(ring_size.w, dev->ce_base + CRYPTO4XX_RING_SIZE);
90 	ring_ctrl.w = 0;
91 	writel(ring_ctrl.w, dev->ce_base + CRYPTO4XX_RING_CTRL);
92 	device_ctrl = readl(dev->ce_base + CRYPTO4XX_DEVICE_CTRL);
93 	device_ctrl |= PPC4XX_DC_3DES_EN;
94 	writel(device_ctrl, dev->ce_base + CRYPTO4XX_DEVICE_CTRL);
95 	writel(dev->gdr_pa, dev->ce_base + CRYPTO4XX_GATH_RING_BASE);
96 	writel(dev->sdr_pa, dev->ce_base + CRYPTO4XX_SCAT_RING_BASE);
97 	part_ring_size.w = 0;
98 	part_ring_size.bf.sdr_size = PPC4XX_SDR_SIZE;
99 	part_ring_size.bf.gdr_size = PPC4XX_GDR_SIZE;
100 	writel(part_ring_size.w, dev->ce_base + CRYPTO4XX_PART_RING_SIZE);
101 	writel(PPC4XX_SD_BUFFER_SIZE, dev->ce_base + CRYPTO4XX_PART_RING_CFG);
102 	io_threshold.w = 0;
103 	io_threshold.bf.output_threshold = PPC4XX_OUTPUT_THRESHOLD;
104 	io_threshold.bf.input_threshold  = PPC4XX_INPUT_THRESHOLD;
105 	writel(io_threshold.w, dev->ce_base + CRYPTO4XX_IO_THRESHOLD);
106 	writel(0, dev->ce_base + CRYPTO4XX_PDR_BASE_UADDR);
107 	writel(0, dev->ce_base + CRYPTO4XX_RDR_BASE_UADDR);
108 	writel(0, dev->ce_base + CRYPTO4XX_PKT_SRC_UADDR);
109 	writel(0, dev->ce_base + CRYPTO4XX_PKT_DEST_UADDR);
110 	writel(0, dev->ce_base + CRYPTO4XX_SA_UADDR);
111 	writel(0, dev->ce_base + CRYPTO4XX_GATH_RING_BASE_UADDR);
112 	writel(0, dev->ce_base + CRYPTO4XX_SCAT_RING_BASE_UADDR);
113 	/* un reset pe,sg and pdr */
114 	pe_dma_cfg.bf.pe_mode = 1;
115 	pe_dma_cfg.bf.reset_sg = 0;
116 	pe_dma_cfg.bf.reset_pdr = 0;
117 	pe_dma_cfg.bf.reset_pe = 0;
118 	pe_dma_cfg.bf.bo_td_en = 0;
119 	writel(pe_dma_cfg.w, dev->ce_base + CRYPTO4XX_PE_DMA_CFG);
120 	/*clear all pending interrupt*/
121 	writel(PPC4XX_INTERRUPT_CLR, dev->ce_base + CRYPTO4XX_INT_CLR);
122 	writel(PPC4XX_INT_DESCR_CNT, dev->ce_base + CRYPTO4XX_INT_DESCR_CNT);
123 	writel(PPC4XX_INT_DESCR_CNT, dev->ce_base + CRYPTO4XX_INT_DESCR_CNT);
124 	writel(PPC4XX_INT_CFG, dev->ce_base + CRYPTO4XX_INT_CFG);
125 	if (dev->is_revb) {
126 		writel(PPC4XX_INT_TIMEOUT_CNT_REVB << 10,
127 		       dev->ce_base + CRYPTO4XX_INT_TIMEOUT_CNT);
128 		writel(PPC4XX_PD_DONE_INT | PPC4XX_TMO_ERR_INT,
129 		       dev->ce_base + CRYPTO4XX_INT_EN);
130 	} else {
131 		writel(PPC4XX_PD_DONE_INT, dev->ce_base + CRYPTO4XX_INT_EN);
132 	}
133 }
134 
135 int crypto4xx_alloc_sa(struct crypto4xx_ctx *ctx, u32 size)
136 {
137 	ctx->sa_in = kcalloc(size, 4, GFP_ATOMIC);
138 	if (ctx->sa_in == NULL)
139 		return -ENOMEM;
140 
141 	ctx->sa_out = kcalloc(size, 4, GFP_ATOMIC);
142 	if (ctx->sa_out == NULL) {
143 		kfree(ctx->sa_in);
144 		ctx->sa_in = NULL;
145 		return -ENOMEM;
146 	}
147 
148 	ctx->sa_len = size;
149 
150 	return 0;
151 }
152 
153 void crypto4xx_free_sa(struct crypto4xx_ctx *ctx)
154 {
155 	kfree(ctx->sa_in);
156 	ctx->sa_in = NULL;
157 	kfree(ctx->sa_out);
158 	ctx->sa_out = NULL;
159 	ctx->sa_len = 0;
160 }
161 
162 /**
163  * alloc memory for the gather ring
164  * no need to alloc buf for the ring
165  * gdr_tail, gdr_head and gdr_count are initialized by this function
166  */
167 static u32 crypto4xx_build_pdr(struct crypto4xx_device *dev)
168 {
169 	int i;
170 	dev->pdr = dma_alloc_coherent(dev->core_dev->device,
171 				      sizeof(struct ce_pd) * PPC4XX_NUM_PD,
172 				      &dev->pdr_pa, GFP_ATOMIC);
173 	if (!dev->pdr)
174 		return -ENOMEM;
175 
176 	dev->pdr_uinfo = kcalloc(PPC4XX_NUM_PD, sizeof(struct pd_uinfo),
177 				 GFP_KERNEL);
178 	if (!dev->pdr_uinfo) {
179 		dma_free_coherent(dev->core_dev->device,
180 				  sizeof(struct ce_pd) * PPC4XX_NUM_PD,
181 				  dev->pdr,
182 				  dev->pdr_pa);
183 		return -ENOMEM;
184 	}
185 	dev->shadow_sa_pool = dma_alloc_coherent(dev->core_dev->device,
186 				   sizeof(union shadow_sa_buf) * PPC4XX_NUM_PD,
187 				   &dev->shadow_sa_pool_pa,
188 				   GFP_ATOMIC);
189 	if (!dev->shadow_sa_pool)
190 		return -ENOMEM;
191 
192 	dev->shadow_sr_pool = dma_alloc_coherent(dev->core_dev->device,
193 			 sizeof(struct sa_state_record) * PPC4XX_NUM_PD,
194 			 &dev->shadow_sr_pool_pa, GFP_ATOMIC);
195 	if (!dev->shadow_sr_pool)
196 		return -ENOMEM;
197 	for (i = 0; i < PPC4XX_NUM_PD; i++) {
198 		struct ce_pd *pd = &dev->pdr[i];
199 		struct pd_uinfo *pd_uinfo = &dev->pdr_uinfo[i];
200 
201 		pd->sa = dev->shadow_sa_pool_pa +
202 			sizeof(union shadow_sa_buf) * i;
203 
204 		/* alloc 256 bytes which is enough for any kind of dynamic sa */
205 		pd_uinfo->sa_va = &dev->shadow_sa_pool[i].sa;
206 
207 		/* alloc state record */
208 		pd_uinfo->sr_va = &dev->shadow_sr_pool[i];
209 		pd_uinfo->sr_pa = dev->shadow_sr_pool_pa +
210 		    sizeof(struct sa_state_record) * i;
211 	}
212 
213 	return 0;
214 }
215 
216 static void crypto4xx_destroy_pdr(struct crypto4xx_device *dev)
217 {
218 	if (dev->pdr)
219 		dma_free_coherent(dev->core_dev->device,
220 				  sizeof(struct ce_pd) * PPC4XX_NUM_PD,
221 				  dev->pdr, dev->pdr_pa);
222 
223 	if (dev->shadow_sa_pool)
224 		dma_free_coherent(dev->core_dev->device,
225 			sizeof(union shadow_sa_buf) * PPC4XX_NUM_PD,
226 			dev->shadow_sa_pool, dev->shadow_sa_pool_pa);
227 
228 	if (dev->shadow_sr_pool)
229 		dma_free_coherent(dev->core_dev->device,
230 			sizeof(struct sa_state_record) * PPC4XX_NUM_PD,
231 			dev->shadow_sr_pool, dev->shadow_sr_pool_pa);
232 
233 	kfree(dev->pdr_uinfo);
234 }
235 
236 static u32 crypto4xx_get_pd_from_pdr_nolock(struct crypto4xx_device *dev)
237 {
238 	u32 retval;
239 	u32 tmp;
240 
241 	retval = dev->pdr_head;
242 	tmp = (dev->pdr_head + 1) % PPC4XX_NUM_PD;
243 
244 	if (tmp == dev->pdr_tail)
245 		return ERING_WAS_FULL;
246 
247 	dev->pdr_head = tmp;
248 
249 	return retval;
250 }
251 
252 static u32 crypto4xx_put_pd_to_pdr(struct crypto4xx_device *dev, u32 idx)
253 {
254 	struct pd_uinfo *pd_uinfo = &dev->pdr_uinfo[idx];
255 	u32 tail;
256 	unsigned long flags;
257 
258 	spin_lock_irqsave(&dev->core_dev->lock, flags);
259 	pd_uinfo->state = PD_ENTRY_FREE;
260 
261 	if (dev->pdr_tail != PPC4XX_LAST_PD)
262 		dev->pdr_tail++;
263 	else
264 		dev->pdr_tail = 0;
265 	tail = dev->pdr_tail;
266 	spin_unlock_irqrestore(&dev->core_dev->lock, flags);
267 
268 	return tail;
269 }
270 
271 /**
272  * alloc memory for the gather ring
273  * no need to alloc buf for the ring
274  * gdr_tail, gdr_head and gdr_count are initialized by this function
275  */
276 static u32 crypto4xx_build_gdr(struct crypto4xx_device *dev)
277 {
278 	dev->gdr = dma_alloc_coherent(dev->core_dev->device,
279 				      sizeof(struct ce_gd) * PPC4XX_NUM_GD,
280 				      &dev->gdr_pa, GFP_ATOMIC);
281 	if (!dev->gdr)
282 		return -ENOMEM;
283 
284 	return 0;
285 }
286 
287 static inline void crypto4xx_destroy_gdr(struct crypto4xx_device *dev)
288 {
289 	dma_free_coherent(dev->core_dev->device,
290 			  sizeof(struct ce_gd) * PPC4XX_NUM_GD,
291 			  dev->gdr, dev->gdr_pa);
292 }
293 
294 /*
295  * when this function is called.
296  * preemption or interrupt must be disabled
297  */
298 static u32 crypto4xx_get_n_gd(struct crypto4xx_device *dev, int n)
299 {
300 	u32 retval;
301 	u32 tmp;
302 
303 	if (n >= PPC4XX_NUM_GD)
304 		return ERING_WAS_FULL;
305 
306 	retval = dev->gdr_head;
307 	tmp = (dev->gdr_head + n) % PPC4XX_NUM_GD;
308 	if (dev->gdr_head > dev->gdr_tail) {
309 		if (tmp < dev->gdr_head && tmp >= dev->gdr_tail)
310 			return ERING_WAS_FULL;
311 	} else if (dev->gdr_head < dev->gdr_tail) {
312 		if (tmp < dev->gdr_head || tmp >= dev->gdr_tail)
313 			return ERING_WAS_FULL;
314 	}
315 	dev->gdr_head = tmp;
316 
317 	return retval;
318 }
319 
320 static u32 crypto4xx_put_gd_to_gdr(struct crypto4xx_device *dev)
321 {
322 	unsigned long flags;
323 
324 	spin_lock_irqsave(&dev->core_dev->lock, flags);
325 	if (dev->gdr_tail == dev->gdr_head) {
326 		spin_unlock_irqrestore(&dev->core_dev->lock, flags);
327 		return 0;
328 	}
329 
330 	if (dev->gdr_tail != PPC4XX_LAST_GD)
331 		dev->gdr_tail++;
332 	else
333 		dev->gdr_tail = 0;
334 
335 	spin_unlock_irqrestore(&dev->core_dev->lock, flags);
336 
337 	return 0;
338 }
339 
340 static inline struct ce_gd *crypto4xx_get_gdp(struct crypto4xx_device *dev,
341 					      dma_addr_t *gd_dma, u32 idx)
342 {
343 	*gd_dma = dev->gdr_pa + sizeof(struct ce_gd) * idx;
344 
345 	return &dev->gdr[idx];
346 }
347 
348 /**
349  * alloc memory for the scatter ring
350  * need to alloc buf for the ring
351  * sdr_tail, sdr_head and sdr_count are initialized by this function
352  */
353 static u32 crypto4xx_build_sdr(struct crypto4xx_device *dev)
354 {
355 	int i;
356 
357 	/* alloc memory for scatter descriptor ring */
358 	dev->sdr = dma_alloc_coherent(dev->core_dev->device,
359 				      sizeof(struct ce_sd) * PPC4XX_NUM_SD,
360 				      &dev->sdr_pa, GFP_ATOMIC);
361 	if (!dev->sdr)
362 		return -ENOMEM;
363 
364 	dev->scatter_buffer_va =
365 		dma_alloc_coherent(dev->core_dev->device,
366 			PPC4XX_SD_BUFFER_SIZE * PPC4XX_NUM_SD,
367 			&dev->scatter_buffer_pa, GFP_ATOMIC);
368 	if (!dev->scatter_buffer_va)
369 		return -ENOMEM;
370 
371 	for (i = 0; i < PPC4XX_NUM_SD; i++) {
372 		dev->sdr[i].ptr = dev->scatter_buffer_pa +
373 				  PPC4XX_SD_BUFFER_SIZE * i;
374 	}
375 
376 	return 0;
377 }
378 
379 static void crypto4xx_destroy_sdr(struct crypto4xx_device *dev)
380 {
381 	if (dev->sdr)
382 		dma_free_coherent(dev->core_dev->device,
383 				  sizeof(struct ce_sd) * PPC4XX_NUM_SD,
384 				  dev->sdr, dev->sdr_pa);
385 
386 	if (dev->scatter_buffer_va)
387 		dma_free_coherent(dev->core_dev->device,
388 				  PPC4XX_SD_BUFFER_SIZE * PPC4XX_NUM_SD,
389 				  dev->scatter_buffer_va,
390 				  dev->scatter_buffer_pa);
391 }
392 
393 /*
394  * when this function is called.
395  * preemption or interrupt must be disabled
396  */
397 static u32 crypto4xx_get_n_sd(struct crypto4xx_device *dev, int n)
398 {
399 	u32 retval;
400 	u32 tmp;
401 
402 	if (n >= PPC4XX_NUM_SD)
403 		return ERING_WAS_FULL;
404 
405 	retval = dev->sdr_head;
406 	tmp = (dev->sdr_head + n) % PPC4XX_NUM_SD;
407 	if (dev->sdr_head > dev->gdr_tail) {
408 		if (tmp < dev->sdr_head && tmp >= dev->sdr_tail)
409 			return ERING_WAS_FULL;
410 	} else if (dev->sdr_head < dev->sdr_tail) {
411 		if (tmp < dev->sdr_head || tmp >= dev->sdr_tail)
412 			return ERING_WAS_FULL;
413 	} /* the head = tail, or empty case is already take cared */
414 	dev->sdr_head = tmp;
415 
416 	return retval;
417 }
418 
419 static u32 crypto4xx_put_sd_to_sdr(struct crypto4xx_device *dev)
420 {
421 	unsigned long flags;
422 
423 	spin_lock_irqsave(&dev->core_dev->lock, flags);
424 	if (dev->sdr_tail == dev->sdr_head) {
425 		spin_unlock_irqrestore(&dev->core_dev->lock, flags);
426 		return 0;
427 	}
428 	if (dev->sdr_tail != PPC4XX_LAST_SD)
429 		dev->sdr_tail++;
430 	else
431 		dev->sdr_tail = 0;
432 	spin_unlock_irqrestore(&dev->core_dev->lock, flags);
433 
434 	return 0;
435 }
436 
437 static inline struct ce_sd *crypto4xx_get_sdp(struct crypto4xx_device *dev,
438 					      dma_addr_t *sd_dma, u32 idx)
439 {
440 	*sd_dma = dev->sdr_pa + sizeof(struct ce_sd) * idx;
441 
442 	return &dev->sdr[idx];
443 }
444 
445 static void crypto4xx_copy_pkt_to_dst(struct crypto4xx_device *dev,
446 				      struct ce_pd *pd,
447 				      struct pd_uinfo *pd_uinfo,
448 				      u32 nbytes,
449 				      struct scatterlist *dst)
450 {
451 	unsigned int first_sd = pd_uinfo->first_sd;
452 	unsigned int last_sd;
453 	unsigned int overflow = 0;
454 	unsigned int to_copy;
455 	unsigned int dst_start = 0;
456 
457 	/*
458 	 * Because the scatter buffers are all neatly organized in one
459 	 * big continuous ringbuffer; scatterwalk_map_and_copy() can
460 	 * be instructed to copy a range of buffers in one go.
461 	 */
462 
463 	last_sd = (first_sd + pd_uinfo->num_sd);
464 	if (last_sd > PPC4XX_LAST_SD) {
465 		last_sd = PPC4XX_LAST_SD;
466 		overflow = last_sd % PPC4XX_NUM_SD;
467 	}
468 
469 	while (nbytes) {
470 		void *buf = dev->scatter_buffer_va +
471 			first_sd * PPC4XX_SD_BUFFER_SIZE;
472 
473 		to_copy = min(nbytes, PPC4XX_SD_BUFFER_SIZE *
474 				      (1 + last_sd - first_sd));
475 		scatterwalk_map_and_copy(buf, dst, dst_start, to_copy, 1);
476 		nbytes -= to_copy;
477 
478 		if (overflow) {
479 			first_sd = 0;
480 			last_sd = overflow;
481 			dst_start += to_copy;
482 			overflow = 0;
483 		}
484 	}
485 }
486 
487 static void crypto4xx_copy_digest_to_dst(void *dst,
488 					struct pd_uinfo *pd_uinfo,
489 					struct crypto4xx_ctx *ctx)
490 {
491 	struct dynamic_sa_ctl *sa = (struct dynamic_sa_ctl *) ctx->sa_in;
492 
493 	if (sa->sa_command_0.bf.hash_alg == SA_HASH_ALG_SHA1) {
494 		memcpy(dst, pd_uinfo->sr_va->save_digest,
495 		       SA_HASH_ALG_SHA1_DIGEST_SIZE);
496 	}
497 }
498 
499 static void crypto4xx_ret_sg_desc(struct crypto4xx_device *dev,
500 				  struct pd_uinfo *pd_uinfo)
501 {
502 	int i;
503 	if (pd_uinfo->num_gd) {
504 		for (i = 0; i < pd_uinfo->num_gd; i++)
505 			crypto4xx_put_gd_to_gdr(dev);
506 		pd_uinfo->first_gd = 0xffffffff;
507 		pd_uinfo->num_gd = 0;
508 	}
509 	if (pd_uinfo->num_sd) {
510 		for (i = 0; i < pd_uinfo->num_sd; i++)
511 			crypto4xx_put_sd_to_sdr(dev);
512 
513 		pd_uinfo->first_sd = 0xffffffff;
514 		pd_uinfo->num_sd = 0;
515 	}
516 }
517 
518 static void crypto4xx_cipher_done(struct crypto4xx_device *dev,
519 				     struct pd_uinfo *pd_uinfo,
520 				     struct ce_pd *pd)
521 {
522 	struct skcipher_request *req;
523 	struct scatterlist *dst;
524 	dma_addr_t addr;
525 
526 	req = skcipher_request_cast(pd_uinfo->async_req);
527 
528 	if (pd_uinfo->sa_va->sa_command_0.bf.scatter) {
529 		crypto4xx_copy_pkt_to_dst(dev, pd, pd_uinfo,
530 					  req->cryptlen, req->dst);
531 	} else {
532 		dst = pd_uinfo->dest_va;
533 		addr = dma_map_page(dev->core_dev->device, sg_page(dst),
534 				    dst->offset, dst->length, DMA_FROM_DEVICE);
535 	}
536 
537 	if (pd_uinfo->sa_va->sa_command_0.bf.save_iv == SA_SAVE_IV) {
538 		struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
539 
540 		crypto4xx_memcpy_from_le32((u32 *)req->iv,
541 			pd_uinfo->sr_va->save_iv,
542 			crypto_skcipher_ivsize(skcipher));
543 	}
544 
545 	crypto4xx_ret_sg_desc(dev, pd_uinfo);
546 
547 	if (pd_uinfo->state & PD_ENTRY_BUSY)
548 		skcipher_request_complete(req, -EINPROGRESS);
549 	skcipher_request_complete(req, 0);
550 }
551 
552 static void crypto4xx_ahash_done(struct crypto4xx_device *dev,
553 				struct pd_uinfo *pd_uinfo)
554 {
555 	struct crypto4xx_ctx *ctx;
556 	struct ahash_request *ahash_req;
557 
558 	ahash_req = ahash_request_cast(pd_uinfo->async_req);
559 	ctx  = crypto_tfm_ctx(ahash_req->base.tfm);
560 
561 	crypto4xx_copy_digest_to_dst(ahash_req->result, pd_uinfo,
562 				     crypto_tfm_ctx(ahash_req->base.tfm));
563 	crypto4xx_ret_sg_desc(dev, pd_uinfo);
564 
565 	if (pd_uinfo->state & PD_ENTRY_BUSY)
566 		ahash_request_complete(ahash_req, -EINPROGRESS);
567 	ahash_request_complete(ahash_req, 0);
568 }
569 
570 static void crypto4xx_aead_done(struct crypto4xx_device *dev,
571 				struct pd_uinfo *pd_uinfo,
572 				struct ce_pd *pd)
573 {
574 	struct aead_request *aead_req = container_of(pd_uinfo->async_req,
575 		struct aead_request, base);
576 	struct scatterlist *dst = pd_uinfo->dest_va;
577 	size_t cp_len = crypto_aead_authsize(
578 		crypto_aead_reqtfm(aead_req));
579 	u32 icv[AES_BLOCK_SIZE];
580 	int err = 0;
581 
582 	if (pd_uinfo->sa_va->sa_command_0.bf.scatter) {
583 		crypto4xx_copy_pkt_to_dst(dev, pd, pd_uinfo,
584 					  pd->pd_ctl_len.bf.pkt_len,
585 					  dst);
586 	} else {
587 		dma_unmap_page(dev->core_dev->device, pd->dest, dst->length,
588 				DMA_FROM_DEVICE);
589 	}
590 
591 	if (pd_uinfo->sa_va->sa_command_0.bf.dir == DIR_OUTBOUND) {
592 		/* append icv at the end */
593 		crypto4xx_memcpy_from_le32(icv, pd_uinfo->sr_va->save_digest,
594 					   sizeof(icv));
595 
596 		scatterwalk_map_and_copy(icv, dst, aead_req->cryptlen,
597 					 cp_len, 1);
598 	} else {
599 		/* check icv at the end */
600 		scatterwalk_map_and_copy(icv, aead_req->src,
601 			aead_req->assoclen + aead_req->cryptlen -
602 			cp_len, cp_len, 0);
603 
604 		crypto4xx_memcpy_from_le32(icv, icv, sizeof(icv));
605 
606 		if (crypto_memneq(icv, pd_uinfo->sr_va->save_digest, cp_len))
607 			err = -EBADMSG;
608 	}
609 
610 	crypto4xx_ret_sg_desc(dev, pd_uinfo);
611 
612 	if (pd->pd_ctl.bf.status & 0xff) {
613 		if (!__ratelimit(&dev->aead_ratelimit)) {
614 			if (pd->pd_ctl.bf.status & 2)
615 				pr_err("pad fail error\n");
616 			if (pd->pd_ctl.bf.status & 4)
617 				pr_err("seqnum fail\n");
618 			if (pd->pd_ctl.bf.status & 8)
619 				pr_err("error _notify\n");
620 			pr_err("aead return err status = 0x%02x\n",
621 				pd->pd_ctl.bf.status & 0xff);
622 			pr_err("pd pad_ctl = 0x%08x\n",
623 				pd->pd_ctl.bf.pd_pad_ctl);
624 		}
625 		err = -EINVAL;
626 	}
627 
628 	if (pd_uinfo->state & PD_ENTRY_BUSY)
629 		aead_request_complete(aead_req, -EINPROGRESS);
630 
631 	aead_request_complete(aead_req, err);
632 }
633 
634 static void crypto4xx_pd_done(struct crypto4xx_device *dev, u32 idx)
635 {
636 	struct ce_pd *pd = &dev->pdr[idx];
637 	struct pd_uinfo *pd_uinfo = &dev->pdr_uinfo[idx];
638 
639 	switch (crypto_tfm_alg_type(pd_uinfo->async_req->tfm)) {
640 	case CRYPTO_ALG_TYPE_SKCIPHER:
641 		crypto4xx_cipher_done(dev, pd_uinfo, pd);
642 		break;
643 	case CRYPTO_ALG_TYPE_AEAD:
644 		crypto4xx_aead_done(dev, pd_uinfo, pd);
645 		break;
646 	case CRYPTO_ALG_TYPE_AHASH:
647 		crypto4xx_ahash_done(dev, pd_uinfo);
648 		break;
649 	}
650 }
651 
652 static void crypto4xx_stop_all(struct crypto4xx_core_device *core_dev)
653 {
654 	crypto4xx_destroy_pdr(core_dev->dev);
655 	crypto4xx_destroy_gdr(core_dev->dev);
656 	crypto4xx_destroy_sdr(core_dev->dev);
657 	iounmap(core_dev->dev->ce_base);
658 	kfree(core_dev->dev);
659 	kfree(core_dev);
660 }
661 
662 static u32 get_next_gd(u32 current)
663 {
664 	if (current != PPC4XX_LAST_GD)
665 		return current + 1;
666 	else
667 		return 0;
668 }
669 
670 static u32 get_next_sd(u32 current)
671 {
672 	if (current != PPC4XX_LAST_SD)
673 		return current + 1;
674 	else
675 		return 0;
676 }
677 
678 int crypto4xx_build_pd(struct crypto_async_request *req,
679 		       struct crypto4xx_ctx *ctx,
680 		       struct scatterlist *src,
681 		       struct scatterlist *dst,
682 		       const unsigned int datalen,
683 		       const __le32 *iv, const u32 iv_len,
684 		       const struct dynamic_sa_ctl *req_sa,
685 		       const unsigned int sa_len,
686 		       const unsigned int assoclen,
687 		       struct scatterlist *_dst)
688 {
689 	struct crypto4xx_device *dev = ctx->dev;
690 	struct dynamic_sa_ctl *sa;
691 	struct ce_gd *gd;
692 	struct ce_pd *pd;
693 	u32 num_gd, num_sd;
694 	u32 fst_gd = 0xffffffff;
695 	u32 fst_sd = 0xffffffff;
696 	u32 pd_entry;
697 	unsigned long flags;
698 	struct pd_uinfo *pd_uinfo;
699 	unsigned int nbytes = datalen;
700 	size_t offset_to_sr_ptr;
701 	u32 gd_idx = 0;
702 	int tmp;
703 	bool is_busy, force_sd;
704 
705 	/*
706 	 * There's a very subtile/disguised "bug" in the hardware that
707 	 * gets indirectly mentioned in 18.1.3.5 Encryption/Decryption
708 	 * of the hardware spec:
709 	 * *drum roll* the AES/(T)DES OFB and CFB modes are listed as
710 	 * operation modes for >>> "Block ciphers" <<<.
711 	 *
712 	 * To workaround this issue and stop the hardware from causing
713 	 * "overran dst buffer" on crypttexts that are not a multiple
714 	 * of 16 (AES_BLOCK_SIZE), we force the driver to use the
715 	 * scatter buffers.
716 	 */
717 	force_sd = (req_sa->sa_command_1.bf.crypto_mode9_8 == CRYPTO_MODE_CFB
718 		|| req_sa->sa_command_1.bf.crypto_mode9_8 == CRYPTO_MODE_OFB)
719 		&& (datalen % AES_BLOCK_SIZE);
720 
721 	/* figure how many gd are needed */
722 	tmp = sg_nents_for_len(src, assoclen + datalen);
723 	if (tmp < 0) {
724 		dev_err(dev->core_dev->device, "Invalid number of src SG.\n");
725 		return tmp;
726 	}
727 	if (tmp == 1)
728 		tmp = 0;
729 	num_gd = tmp;
730 
731 	if (assoclen) {
732 		nbytes += assoclen;
733 		dst = scatterwalk_ffwd(_dst, dst, assoclen);
734 	}
735 
736 	/* figure how many sd are needed */
737 	if (sg_is_last(dst) && force_sd == false) {
738 		num_sd = 0;
739 	} else {
740 		if (datalen > PPC4XX_SD_BUFFER_SIZE) {
741 			num_sd = datalen / PPC4XX_SD_BUFFER_SIZE;
742 			if (datalen % PPC4XX_SD_BUFFER_SIZE)
743 				num_sd++;
744 		} else {
745 			num_sd = 1;
746 		}
747 	}
748 
749 	/*
750 	 * The follow section of code needs to be protected
751 	 * The gather ring and scatter ring needs to be consecutive
752 	 * In case of run out of any kind of descriptor, the descriptor
753 	 * already got must be return the original place.
754 	 */
755 	spin_lock_irqsave(&dev->core_dev->lock, flags);
756 	/*
757 	 * Let the caller know to slow down, once more than 13/16ths = 81%
758 	 * of the available data contexts are being used simultaneously.
759 	 *
760 	 * With PPC4XX_NUM_PD = 256, this will leave a "backlog queue" for
761 	 * 31 more contexts. Before new requests have to be rejected.
762 	 */
763 	if (req->flags & CRYPTO_TFM_REQ_MAY_BACKLOG) {
764 		is_busy = ((dev->pdr_head - dev->pdr_tail) % PPC4XX_NUM_PD) >=
765 			((PPC4XX_NUM_PD * 13) / 16);
766 	} else {
767 		/*
768 		 * To fix contention issues between ipsec (no blacklog) and
769 		 * dm-crypto (backlog) reserve 32 entries for "no backlog"
770 		 * data contexts.
771 		 */
772 		is_busy = ((dev->pdr_head - dev->pdr_tail) % PPC4XX_NUM_PD) >=
773 			((PPC4XX_NUM_PD * 15) / 16);
774 
775 		if (is_busy) {
776 			spin_unlock_irqrestore(&dev->core_dev->lock, flags);
777 			return -EBUSY;
778 		}
779 	}
780 
781 	if (num_gd) {
782 		fst_gd = crypto4xx_get_n_gd(dev, num_gd);
783 		if (fst_gd == ERING_WAS_FULL) {
784 			spin_unlock_irqrestore(&dev->core_dev->lock, flags);
785 			return -EAGAIN;
786 		}
787 	}
788 	if (num_sd) {
789 		fst_sd = crypto4xx_get_n_sd(dev, num_sd);
790 		if (fst_sd == ERING_WAS_FULL) {
791 			if (num_gd)
792 				dev->gdr_head = fst_gd;
793 			spin_unlock_irqrestore(&dev->core_dev->lock, flags);
794 			return -EAGAIN;
795 		}
796 	}
797 	pd_entry = crypto4xx_get_pd_from_pdr_nolock(dev);
798 	if (pd_entry == ERING_WAS_FULL) {
799 		if (num_gd)
800 			dev->gdr_head = fst_gd;
801 		if (num_sd)
802 			dev->sdr_head = fst_sd;
803 		spin_unlock_irqrestore(&dev->core_dev->lock, flags);
804 		return -EAGAIN;
805 	}
806 	spin_unlock_irqrestore(&dev->core_dev->lock, flags);
807 
808 	pd = &dev->pdr[pd_entry];
809 	pd->sa_len = sa_len;
810 
811 	pd_uinfo = &dev->pdr_uinfo[pd_entry];
812 	pd_uinfo->num_gd = num_gd;
813 	pd_uinfo->num_sd = num_sd;
814 	pd_uinfo->dest_va = dst;
815 	pd_uinfo->async_req = req;
816 
817 	if (iv_len)
818 		memcpy(pd_uinfo->sr_va->save_iv, iv, iv_len);
819 
820 	sa = pd_uinfo->sa_va;
821 	memcpy(sa, req_sa, sa_len * 4);
822 
823 	sa->sa_command_1.bf.hash_crypto_offset = (assoclen >> 2);
824 	offset_to_sr_ptr = get_dynamic_sa_offset_state_ptr_field(sa);
825 	*(u32 *)((unsigned long)sa + offset_to_sr_ptr) = pd_uinfo->sr_pa;
826 
827 	if (num_gd) {
828 		dma_addr_t gd_dma;
829 		struct scatterlist *sg;
830 
831 		/* get first gd we are going to use */
832 		gd_idx = fst_gd;
833 		pd_uinfo->first_gd = fst_gd;
834 		gd = crypto4xx_get_gdp(dev, &gd_dma, gd_idx);
835 		pd->src = gd_dma;
836 		/* enable gather */
837 		sa->sa_command_0.bf.gather = 1;
838 		/* walk the sg, and setup gather array */
839 
840 		sg = src;
841 		while (nbytes) {
842 			size_t len;
843 
844 			len = min(sg->length, nbytes);
845 			gd->ptr = dma_map_page(dev->core_dev->device,
846 				sg_page(sg), sg->offset, len, DMA_TO_DEVICE);
847 			gd->ctl_len.len = len;
848 			gd->ctl_len.done = 0;
849 			gd->ctl_len.ready = 1;
850 			if (len >= nbytes)
851 				break;
852 
853 			nbytes -= sg->length;
854 			gd_idx = get_next_gd(gd_idx);
855 			gd = crypto4xx_get_gdp(dev, &gd_dma, gd_idx);
856 			sg = sg_next(sg);
857 		}
858 	} else {
859 		pd->src = (u32)dma_map_page(dev->core_dev->device, sg_page(src),
860 				src->offset, min(nbytes, src->length),
861 				DMA_TO_DEVICE);
862 		/*
863 		 * Disable gather in sa command
864 		 */
865 		sa->sa_command_0.bf.gather = 0;
866 		/*
867 		 * Indicate gather array is not used
868 		 */
869 		pd_uinfo->first_gd = 0xffffffff;
870 	}
871 	if (!num_sd) {
872 		/*
873 		 * we know application give us dst a whole piece of memory
874 		 * no need to use scatter ring.
875 		 */
876 		pd_uinfo->first_sd = 0xffffffff;
877 		sa->sa_command_0.bf.scatter = 0;
878 		pd->dest = (u32)dma_map_page(dev->core_dev->device,
879 					     sg_page(dst), dst->offset,
880 					     min(datalen, dst->length),
881 					     DMA_TO_DEVICE);
882 	} else {
883 		dma_addr_t sd_dma;
884 		struct ce_sd *sd = NULL;
885 
886 		u32 sd_idx = fst_sd;
887 		nbytes = datalen;
888 		sa->sa_command_0.bf.scatter = 1;
889 		pd_uinfo->first_sd = fst_sd;
890 		sd = crypto4xx_get_sdp(dev, &sd_dma, sd_idx);
891 		pd->dest = sd_dma;
892 		/* setup scatter descriptor */
893 		sd->ctl.done = 0;
894 		sd->ctl.rdy = 1;
895 		/* sd->ptr should be setup by sd_init routine*/
896 		if (nbytes >= PPC4XX_SD_BUFFER_SIZE)
897 			nbytes -= PPC4XX_SD_BUFFER_SIZE;
898 		else
899 			nbytes = 0;
900 		while (nbytes) {
901 			sd_idx = get_next_sd(sd_idx);
902 			sd = crypto4xx_get_sdp(dev, &sd_dma, sd_idx);
903 			/* setup scatter descriptor */
904 			sd->ctl.done = 0;
905 			sd->ctl.rdy = 1;
906 			if (nbytes >= PPC4XX_SD_BUFFER_SIZE) {
907 				nbytes -= PPC4XX_SD_BUFFER_SIZE;
908 			} else {
909 				/*
910 				 * SD entry can hold PPC4XX_SD_BUFFER_SIZE,
911 				 * which is more than nbytes, so done.
912 				 */
913 				nbytes = 0;
914 			}
915 		}
916 	}
917 
918 	pd->pd_ctl.w = PD_CTL_HOST_READY |
919 		((crypto_tfm_alg_type(req->tfm) == CRYPTO_ALG_TYPE_AHASH) |
920 		 (crypto_tfm_alg_type(req->tfm) == CRYPTO_ALG_TYPE_AEAD) ?
921 			PD_CTL_HASH_FINAL : 0);
922 	pd->pd_ctl_len.w = 0x00400000 | (assoclen + datalen);
923 	pd_uinfo->state = PD_ENTRY_INUSE | (is_busy ? PD_ENTRY_BUSY : 0);
924 
925 	wmb();
926 	/* write any value to push engine to read a pd */
927 	writel(0, dev->ce_base + CRYPTO4XX_INT_DESCR_RD);
928 	writel(1, dev->ce_base + CRYPTO4XX_INT_DESCR_RD);
929 	return is_busy ? -EBUSY : -EINPROGRESS;
930 }
931 
932 /**
933  * Algorithm Registration Functions
934  */
935 static void crypto4xx_ctx_init(struct crypto4xx_alg *amcc_alg,
936 			       struct crypto4xx_ctx *ctx)
937 {
938 	ctx->dev = amcc_alg->dev;
939 	ctx->sa_in = NULL;
940 	ctx->sa_out = NULL;
941 	ctx->sa_len = 0;
942 }
943 
944 static int crypto4xx_sk_init(struct crypto_skcipher *sk)
945 {
946 	struct skcipher_alg *alg = crypto_skcipher_alg(sk);
947 	struct crypto4xx_alg *amcc_alg;
948 	struct crypto4xx_ctx *ctx =  crypto_skcipher_ctx(sk);
949 
950 	if (alg->base.cra_flags & CRYPTO_ALG_NEED_FALLBACK) {
951 		ctx->sw_cipher.cipher =
952 			crypto_alloc_sync_skcipher(alg->base.cra_name, 0,
953 					      CRYPTO_ALG_NEED_FALLBACK);
954 		if (IS_ERR(ctx->sw_cipher.cipher))
955 			return PTR_ERR(ctx->sw_cipher.cipher);
956 	}
957 
958 	amcc_alg = container_of(alg, struct crypto4xx_alg, alg.u.cipher);
959 	crypto4xx_ctx_init(amcc_alg, ctx);
960 	return 0;
961 }
962 
963 static void crypto4xx_common_exit(struct crypto4xx_ctx *ctx)
964 {
965 	crypto4xx_free_sa(ctx);
966 }
967 
968 static void crypto4xx_sk_exit(struct crypto_skcipher *sk)
969 {
970 	struct crypto4xx_ctx *ctx =  crypto_skcipher_ctx(sk);
971 
972 	crypto4xx_common_exit(ctx);
973 	if (ctx->sw_cipher.cipher)
974 		crypto_free_sync_skcipher(ctx->sw_cipher.cipher);
975 }
976 
977 static int crypto4xx_aead_init(struct crypto_aead *tfm)
978 {
979 	struct aead_alg *alg = crypto_aead_alg(tfm);
980 	struct crypto4xx_ctx *ctx = crypto_aead_ctx(tfm);
981 	struct crypto4xx_alg *amcc_alg;
982 
983 	ctx->sw_cipher.aead = crypto_alloc_aead(alg->base.cra_name, 0,
984 						CRYPTO_ALG_NEED_FALLBACK |
985 						CRYPTO_ALG_ASYNC);
986 	if (IS_ERR(ctx->sw_cipher.aead))
987 		return PTR_ERR(ctx->sw_cipher.aead);
988 
989 	amcc_alg = container_of(alg, struct crypto4xx_alg, alg.u.aead);
990 	crypto4xx_ctx_init(amcc_alg, ctx);
991 	crypto_aead_set_reqsize(tfm, max(sizeof(struct aead_request) + 32 +
992 				crypto_aead_reqsize(ctx->sw_cipher.aead),
993 				sizeof(struct crypto4xx_aead_reqctx)));
994 	return 0;
995 }
996 
997 static void crypto4xx_aead_exit(struct crypto_aead *tfm)
998 {
999 	struct crypto4xx_ctx *ctx = crypto_aead_ctx(tfm);
1000 
1001 	crypto4xx_common_exit(ctx);
1002 	crypto_free_aead(ctx->sw_cipher.aead);
1003 }
1004 
1005 static int crypto4xx_register_alg(struct crypto4xx_device *sec_dev,
1006 				  struct crypto4xx_alg_common *crypto_alg,
1007 				  int array_size)
1008 {
1009 	struct crypto4xx_alg *alg;
1010 	int i;
1011 	int rc = 0;
1012 
1013 	for (i = 0; i < array_size; i++) {
1014 		alg = kzalloc(sizeof(struct crypto4xx_alg), GFP_KERNEL);
1015 		if (!alg)
1016 			return -ENOMEM;
1017 
1018 		alg->alg = crypto_alg[i];
1019 		alg->dev = sec_dev;
1020 
1021 		switch (alg->alg.type) {
1022 		case CRYPTO_ALG_TYPE_AEAD:
1023 			rc = crypto_register_aead(&alg->alg.u.aead);
1024 			break;
1025 
1026 		case CRYPTO_ALG_TYPE_AHASH:
1027 			rc = crypto_register_ahash(&alg->alg.u.hash);
1028 			break;
1029 
1030 		case CRYPTO_ALG_TYPE_RNG:
1031 			rc = crypto_register_rng(&alg->alg.u.rng);
1032 			break;
1033 
1034 		default:
1035 			rc = crypto_register_skcipher(&alg->alg.u.cipher);
1036 			break;
1037 		}
1038 
1039 		if (rc)
1040 			kfree(alg);
1041 		else
1042 			list_add_tail(&alg->entry, &sec_dev->alg_list);
1043 	}
1044 
1045 	return 0;
1046 }
1047 
1048 static void crypto4xx_unregister_alg(struct crypto4xx_device *sec_dev)
1049 {
1050 	struct crypto4xx_alg *alg, *tmp;
1051 
1052 	list_for_each_entry_safe(alg, tmp, &sec_dev->alg_list, entry) {
1053 		list_del(&alg->entry);
1054 		switch (alg->alg.type) {
1055 		case CRYPTO_ALG_TYPE_AHASH:
1056 			crypto_unregister_ahash(&alg->alg.u.hash);
1057 			break;
1058 
1059 		case CRYPTO_ALG_TYPE_AEAD:
1060 			crypto_unregister_aead(&alg->alg.u.aead);
1061 			break;
1062 
1063 		case CRYPTO_ALG_TYPE_RNG:
1064 			crypto_unregister_rng(&alg->alg.u.rng);
1065 			break;
1066 
1067 		default:
1068 			crypto_unregister_skcipher(&alg->alg.u.cipher);
1069 		}
1070 		kfree(alg);
1071 	}
1072 }
1073 
1074 static void crypto4xx_bh_tasklet_cb(unsigned long data)
1075 {
1076 	struct device *dev = (struct device *)data;
1077 	struct crypto4xx_core_device *core_dev = dev_get_drvdata(dev);
1078 	struct pd_uinfo *pd_uinfo;
1079 	struct ce_pd *pd;
1080 	u32 tail = core_dev->dev->pdr_tail;
1081 	u32 head = core_dev->dev->pdr_head;
1082 
1083 	do {
1084 		pd_uinfo = &core_dev->dev->pdr_uinfo[tail];
1085 		pd = &core_dev->dev->pdr[tail];
1086 		if ((pd_uinfo->state & PD_ENTRY_INUSE) &&
1087 		     ((READ_ONCE(pd->pd_ctl.w) &
1088 		       (PD_CTL_PE_DONE | PD_CTL_HOST_READY)) ==
1089 		       PD_CTL_PE_DONE)) {
1090 			crypto4xx_pd_done(core_dev->dev, tail);
1091 			tail = crypto4xx_put_pd_to_pdr(core_dev->dev, tail);
1092 		} else {
1093 			/* if tail not done, break */
1094 			break;
1095 		}
1096 	} while (head != tail);
1097 }
1098 
1099 /**
1100  * Top Half of isr.
1101  */
1102 static inline irqreturn_t crypto4xx_interrupt_handler(int irq, void *data,
1103 						      u32 clr_val)
1104 {
1105 	struct device *dev = (struct device *)data;
1106 	struct crypto4xx_core_device *core_dev = dev_get_drvdata(dev);
1107 
1108 	writel(clr_val, core_dev->dev->ce_base + CRYPTO4XX_INT_CLR);
1109 	tasklet_schedule(&core_dev->tasklet);
1110 
1111 	return IRQ_HANDLED;
1112 }
1113 
1114 static irqreturn_t crypto4xx_ce_interrupt_handler(int irq, void *data)
1115 {
1116 	return crypto4xx_interrupt_handler(irq, data, PPC4XX_INTERRUPT_CLR);
1117 }
1118 
1119 static irqreturn_t crypto4xx_ce_interrupt_handler_revb(int irq, void *data)
1120 {
1121 	return crypto4xx_interrupt_handler(irq, data, PPC4XX_INTERRUPT_CLR |
1122 		PPC4XX_TMO_ERR_INT);
1123 }
1124 
1125 static int ppc4xx_prng_data_read(struct crypto4xx_device *dev,
1126 				 u8 *data, unsigned int max)
1127 {
1128 	unsigned int i, curr = 0;
1129 	u32 val[2];
1130 
1131 	do {
1132 		/* trigger PRN generation */
1133 		writel(PPC4XX_PRNG_CTRL_AUTO_EN,
1134 		       dev->ce_base + CRYPTO4XX_PRNG_CTRL);
1135 
1136 		for (i = 0; i < 1024; i++) {
1137 			/* usually 19 iterations are enough */
1138 			if ((readl(dev->ce_base + CRYPTO4XX_PRNG_STAT) &
1139 			     CRYPTO4XX_PRNG_STAT_BUSY))
1140 				continue;
1141 
1142 			val[0] = readl_be(dev->ce_base + CRYPTO4XX_PRNG_RES_0);
1143 			val[1] = readl_be(dev->ce_base + CRYPTO4XX_PRNG_RES_1);
1144 			break;
1145 		}
1146 		if (i == 1024)
1147 			return -ETIMEDOUT;
1148 
1149 		if ((max - curr) >= 8) {
1150 			memcpy(data, &val, 8);
1151 			data += 8;
1152 			curr += 8;
1153 		} else {
1154 			/* copy only remaining bytes */
1155 			memcpy(data, &val, max - curr);
1156 			break;
1157 		}
1158 	} while (curr < max);
1159 
1160 	return curr;
1161 }
1162 
1163 static int crypto4xx_prng_generate(struct crypto_rng *tfm,
1164 				   const u8 *src, unsigned int slen,
1165 				   u8 *dstn, unsigned int dlen)
1166 {
1167 	struct rng_alg *alg = crypto_rng_alg(tfm);
1168 	struct crypto4xx_alg *amcc_alg;
1169 	struct crypto4xx_device *dev;
1170 	int ret;
1171 
1172 	amcc_alg = container_of(alg, struct crypto4xx_alg, alg.u.rng);
1173 	dev = amcc_alg->dev;
1174 
1175 	mutex_lock(&dev->core_dev->rng_lock);
1176 	ret = ppc4xx_prng_data_read(dev, dstn, dlen);
1177 	mutex_unlock(&dev->core_dev->rng_lock);
1178 	return ret;
1179 }
1180 
1181 
1182 static int crypto4xx_prng_seed(struct crypto_rng *tfm, const u8 *seed,
1183 			unsigned int slen)
1184 {
1185 	return 0;
1186 }
1187 
1188 /**
1189  * Supported Crypto Algorithms
1190  */
1191 static struct crypto4xx_alg_common crypto4xx_alg[] = {
1192 	/* Crypto AES modes */
1193 	{ .type = CRYPTO_ALG_TYPE_SKCIPHER, .u.cipher = {
1194 		.base = {
1195 			.cra_name = "cbc(aes)",
1196 			.cra_driver_name = "cbc-aes-ppc4xx",
1197 			.cra_priority = CRYPTO4XX_CRYPTO_PRIORITY,
1198 			.cra_flags = CRYPTO_ALG_ASYNC |
1199 				CRYPTO_ALG_KERN_DRIVER_ONLY,
1200 			.cra_blocksize = AES_BLOCK_SIZE,
1201 			.cra_ctxsize = sizeof(struct crypto4xx_ctx),
1202 			.cra_module = THIS_MODULE,
1203 		},
1204 		.min_keysize = AES_MIN_KEY_SIZE,
1205 		.max_keysize = AES_MAX_KEY_SIZE,
1206 		.ivsize	= AES_IV_SIZE,
1207 		.setkey = crypto4xx_setkey_aes_cbc,
1208 		.encrypt = crypto4xx_encrypt_iv_block,
1209 		.decrypt = crypto4xx_decrypt_iv_block,
1210 		.init = crypto4xx_sk_init,
1211 		.exit = crypto4xx_sk_exit,
1212 	} },
1213 	{ .type = CRYPTO_ALG_TYPE_SKCIPHER, .u.cipher = {
1214 		.base = {
1215 			.cra_name = "cfb(aes)",
1216 			.cra_driver_name = "cfb-aes-ppc4xx",
1217 			.cra_priority = CRYPTO4XX_CRYPTO_PRIORITY,
1218 			.cra_flags = CRYPTO_ALG_ASYNC |
1219 				CRYPTO_ALG_KERN_DRIVER_ONLY,
1220 			.cra_blocksize = 1,
1221 			.cra_ctxsize = sizeof(struct crypto4xx_ctx),
1222 			.cra_module = THIS_MODULE,
1223 		},
1224 		.min_keysize = AES_MIN_KEY_SIZE,
1225 		.max_keysize = AES_MAX_KEY_SIZE,
1226 		.ivsize	= AES_IV_SIZE,
1227 		.setkey	= crypto4xx_setkey_aes_cfb,
1228 		.encrypt = crypto4xx_encrypt_iv_stream,
1229 		.decrypt = crypto4xx_decrypt_iv_stream,
1230 		.init = crypto4xx_sk_init,
1231 		.exit = crypto4xx_sk_exit,
1232 	} },
1233 	{ .type = CRYPTO_ALG_TYPE_SKCIPHER, .u.cipher = {
1234 		.base = {
1235 			.cra_name = "ctr(aes)",
1236 			.cra_driver_name = "ctr-aes-ppc4xx",
1237 			.cra_priority = CRYPTO4XX_CRYPTO_PRIORITY,
1238 			.cra_flags = CRYPTO_ALG_NEED_FALLBACK |
1239 				CRYPTO_ALG_ASYNC |
1240 				CRYPTO_ALG_KERN_DRIVER_ONLY,
1241 			.cra_blocksize = 1,
1242 			.cra_ctxsize = sizeof(struct crypto4xx_ctx),
1243 			.cra_module = THIS_MODULE,
1244 		},
1245 		.min_keysize = AES_MIN_KEY_SIZE,
1246 		.max_keysize = AES_MAX_KEY_SIZE,
1247 		.ivsize	= AES_IV_SIZE,
1248 		.setkey	= crypto4xx_setkey_aes_ctr,
1249 		.encrypt = crypto4xx_encrypt_ctr,
1250 		.decrypt = crypto4xx_decrypt_ctr,
1251 		.init = crypto4xx_sk_init,
1252 		.exit = crypto4xx_sk_exit,
1253 	} },
1254 	{ .type = CRYPTO_ALG_TYPE_SKCIPHER, .u.cipher = {
1255 		.base = {
1256 			.cra_name = "rfc3686(ctr(aes))",
1257 			.cra_driver_name = "rfc3686-ctr-aes-ppc4xx",
1258 			.cra_priority = CRYPTO4XX_CRYPTO_PRIORITY,
1259 			.cra_flags = CRYPTO_ALG_ASYNC |
1260 				CRYPTO_ALG_KERN_DRIVER_ONLY,
1261 			.cra_blocksize = 1,
1262 			.cra_ctxsize = sizeof(struct crypto4xx_ctx),
1263 			.cra_module = THIS_MODULE,
1264 		},
1265 		.min_keysize = AES_MIN_KEY_SIZE + CTR_RFC3686_NONCE_SIZE,
1266 		.max_keysize = AES_MAX_KEY_SIZE + CTR_RFC3686_NONCE_SIZE,
1267 		.ivsize	= CTR_RFC3686_IV_SIZE,
1268 		.setkey = crypto4xx_setkey_rfc3686,
1269 		.encrypt = crypto4xx_rfc3686_encrypt,
1270 		.decrypt = crypto4xx_rfc3686_decrypt,
1271 		.init = crypto4xx_sk_init,
1272 		.exit = crypto4xx_sk_exit,
1273 	} },
1274 	{ .type = CRYPTO_ALG_TYPE_SKCIPHER, .u.cipher = {
1275 		.base = {
1276 			.cra_name = "ecb(aes)",
1277 			.cra_driver_name = "ecb-aes-ppc4xx",
1278 			.cra_priority = CRYPTO4XX_CRYPTO_PRIORITY,
1279 			.cra_flags = CRYPTO_ALG_ASYNC |
1280 				CRYPTO_ALG_KERN_DRIVER_ONLY,
1281 			.cra_blocksize = AES_BLOCK_SIZE,
1282 			.cra_ctxsize = sizeof(struct crypto4xx_ctx),
1283 			.cra_module = THIS_MODULE,
1284 		},
1285 		.min_keysize = AES_MIN_KEY_SIZE,
1286 		.max_keysize = AES_MAX_KEY_SIZE,
1287 		.setkey	= crypto4xx_setkey_aes_ecb,
1288 		.encrypt = crypto4xx_encrypt_noiv_block,
1289 		.decrypt = crypto4xx_decrypt_noiv_block,
1290 		.init = crypto4xx_sk_init,
1291 		.exit = crypto4xx_sk_exit,
1292 	} },
1293 	{ .type = CRYPTO_ALG_TYPE_SKCIPHER, .u.cipher = {
1294 		.base = {
1295 			.cra_name = "ofb(aes)",
1296 			.cra_driver_name = "ofb-aes-ppc4xx",
1297 			.cra_priority = CRYPTO4XX_CRYPTO_PRIORITY,
1298 			.cra_flags = CRYPTO_ALG_ASYNC |
1299 				CRYPTO_ALG_KERN_DRIVER_ONLY,
1300 			.cra_blocksize = 1,
1301 			.cra_ctxsize = sizeof(struct crypto4xx_ctx),
1302 			.cra_module = THIS_MODULE,
1303 		},
1304 		.min_keysize = AES_MIN_KEY_SIZE,
1305 		.max_keysize = AES_MAX_KEY_SIZE,
1306 		.ivsize	= AES_IV_SIZE,
1307 		.setkey	= crypto4xx_setkey_aes_ofb,
1308 		.encrypt = crypto4xx_encrypt_iv_stream,
1309 		.decrypt = crypto4xx_decrypt_iv_stream,
1310 		.init = crypto4xx_sk_init,
1311 		.exit = crypto4xx_sk_exit,
1312 	} },
1313 
1314 	/* AEAD */
1315 	{ .type = CRYPTO_ALG_TYPE_AEAD, .u.aead = {
1316 		.setkey		= crypto4xx_setkey_aes_ccm,
1317 		.setauthsize	= crypto4xx_setauthsize_aead,
1318 		.encrypt	= crypto4xx_encrypt_aes_ccm,
1319 		.decrypt	= crypto4xx_decrypt_aes_ccm,
1320 		.init		= crypto4xx_aead_init,
1321 		.exit		= crypto4xx_aead_exit,
1322 		.ivsize		= AES_BLOCK_SIZE,
1323 		.maxauthsize    = 16,
1324 		.base = {
1325 			.cra_name	= "ccm(aes)",
1326 			.cra_driver_name = "ccm-aes-ppc4xx",
1327 			.cra_priority	= CRYPTO4XX_CRYPTO_PRIORITY,
1328 			.cra_flags	= CRYPTO_ALG_ASYNC |
1329 					  CRYPTO_ALG_NEED_FALLBACK |
1330 					  CRYPTO_ALG_KERN_DRIVER_ONLY,
1331 			.cra_blocksize	= 1,
1332 			.cra_ctxsize	= sizeof(struct crypto4xx_ctx),
1333 			.cra_module	= THIS_MODULE,
1334 		},
1335 	} },
1336 	{ .type = CRYPTO_ALG_TYPE_AEAD, .u.aead = {
1337 		.setkey		= crypto4xx_setkey_aes_gcm,
1338 		.setauthsize	= crypto4xx_setauthsize_aead,
1339 		.encrypt	= crypto4xx_encrypt_aes_gcm,
1340 		.decrypt	= crypto4xx_decrypt_aes_gcm,
1341 		.init		= crypto4xx_aead_init,
1342 		.exit		= crypto4xx_aead_exit,
1343 		.ivsize		= GCM_AES_IV_SIZE,
1344 		.maxauthsize	= 16,
1345 		.base = {
1346 			.cra_name	= "gcm(aes)",
1347 			.cra_driver_name = "gcm-aes-ppc4xx",
1348 			.cra_priority	= CRYPTO4XX_CRYPTO_PRIORITY,
1349 			.cra_flags	= CRYPTO_ALG_ASYNC |
1350 					  CRYPTO_ALG_NEED_FALLBACK |
1351 					  CRYPTO_ALG_KERN_DRIVER_ONLY,
1352 			.cra_blocksize	= 1,
1353 			.cra_ctxsize	= sizeof(struct crypto4xx_ctx),
1354 			.cra_module	= THIS_MODULE,
1355 		},
1356 	} },
1357 	{ .type = CRYPTO_ALG_TYPE_RNG, .u.rng = {
1358 		.base = {
1359 			.cra_name		= "stdrng",
1360 			.cra_driver_name        = "crypto4xx_rng",
1361 			.cra_priority		= 300,
1362 			.cra_ctxsize		= 0,
1363 			.cra_module		= THIS_MODULE,
1364 		},
1365 		.generate               = crypto4xx_prng_generate,
1366 		.seed                   = crypto4xx_prng_seed,
1367 		.seedsize               = 0,
1368 	} },
1369 };
1370 
1371 /**
1372  * Module Initialization Routine
1373  */
1374 static int crypto4xx_probe(struct platform_device *ofdev)
1375 {
1376 	int rc;
1377 	struct resource res;
1378 	struct device *dev = &ofdev->dev;
1379 	struct crypto4xx_core_device *core_dev;
1380 	u32 pvr;
1381 	bool is_revb = true;
1382 
1383 	rc = of_address_to_resource(ofdev->dev.of_node, 0, &res);
1384 	if (rc)
1385 		return -ENODEV;
1386 
1387 	if (of_find_compatible_node(NULL, NULL, "amcc,ppc460ex-crypto")) {
1388 		mtdcri(SDR0, PPC460EX_SDR0_SRST,
1389 		       mfdcri(SDR0, PPC460EX_SDR0_SRST) | PPC460EX_CE_RESET);
1390 		mtdcri(SDR0, PPC460EX_SDR0_SRST,
1391 		       mfdcri(SDR0, PPC460EX_SDR0_SRST) & ~PPC460EX_CE_RESET);
1392 	} else if (of_find_compatible_node(NULL, NULL,
1393 			"amcc,ppc405ex-crypto")) {
1394 		mtdcri(SDR0, PPC405EX_SDR0_SRST,
1395 		       mfdcri(SDR0, PPC405EX_SDR0_SRST) | PPC405EX_CE_RESET);
1396 		mtdcri(SDR0, PPC405EX_SDR0_SRST,
1397 		       mfdcri(SDR0, PPC405EX_SDR0_SRST) & ~PPC405EX_CE_RESET);
1398 		is_revb = false;
1399 	} else if (of_find_compatible_node(NULL, NULL,
1400 			"amcc,ppc460sx-crypto")) {
1401 		mtdcri(SDR0, PPC460SX_SDR0_SRST,
1402 		       mfdcri(SDR0, PPC460SX_SDR0_SRST) | PPC460SX_CE_RESET);
1403 		mtdcri(SDR0, PPC460SX_SDR0_SRST,
1404 		       mfdcri(SDR0, PPC460SX_SDR0_SRST) & ~PPC460SX_CE_RESET);
1405 	} else {
1406 		printk(KERN_ERR "Crypto Function Not supported!\n");
1407 		return -EINVAL;
1408 	}
1409 
1410 	core_dev = kzalloc(sizeof(struct crypto4xx_core_device), GFP_KERNEL);
1411 	if (!core_dev)
1412 		return -ENOMEM;
1413 
1414 	dev_set_drvdata(dev, core_dev);
1415 	core_dev->ofdev = ofdev;
1416 	core_dev->dev = kzalloc(sizeof(struct crypto4xx_device), GFP_KERNEL);
1417 	rc = -ENOMEM;
1418 	if (!core_dev->dev)
1419 		goto err_alloc_dev;
1420 
1421 	/*
1422 	 * Older version of 460EX/GT have a hardware bug.
1423 	 * Hence they do not support H/W based security intr coalescing
1424 	 */
1425 	pvr = mfspr(SPRN_PVR);
1426 	if (is_revb && ((pvr >> 4) == 0x130218A)) {
1427 		u32 min = PVR_MIN(pvr);
1428 
1429 		if (min < 4) {
1430 			dev_info(dev, "RevA detected - disable interrupt coalescing\n");
1431 			is_revb = false;
1432 		}
1433 	}
1434 
1435 	core_dev->dev->core_dev = core_dev;
1436 	core_dev->dev->is_revb = is_revb;
1437 	core_dev->device = dev;
1438 	mutex_init(&core_dev->rng_lock);
1439 	spin_lock_init(&core_dev->lock);
1440 	INIT_LIST_HEAD(&core_dev->dev->alg_list);
1441 	ratelimit_default_init(&core_dev->dev->aead_ratelimit);
1442 	rc = crypto4xx_build_pdr(core_dev->dev);
1443 	if (rc)
1444 		goto err_build_pdr;
1445 
1446 	rc = crypto4xx_build_gdr(core_dev->dev);
1447 	if (rc)
1448 		goto err_build_pdr;
1449 
1450 	rc = crypto4xx_build_sdr(core_dev->dev);
1451 	if (rc)
1452 		goto err_build_sdr;
1453 
1454 	/* Init tasklet for bottom half processing */
1455 	tasklet_init(&core_dev->tasklet, crypto4xx_bh_tasklet_cb,
1456 		     (unsigned long) dev);
1457 
1458 	core_dev->dev->ce_base = of_iomap(ofdev->dev.of_node, 0);
1459 	if (!core_dev->dev->ce_base) {
1460 		dev_err(dev, "failed to of_iomap\n");
1461 		rc = -ENOMEM;
1462 		goto err_iomap;
1463 	}
1464 
1465 	/* Register for Crypto isr, Crypto Engine IRQ */
1466 	core_dev->irq = irq_of_parse_and_map(ofdev->dev.of_node, 0);
1467 	rc = request_irq(core_dev->irq, is_revb ?
1468 			 crypto4xx_ce_interrupt_handler_revb :
1469 			 crypto4xx_ce_interrupt_handler, 0,
1470 			 KBUILD_MODNAME, dev);
1471 	if (rc)
1472 		goto err_request_irq;
1473 
1474 	/* need to setup pdr, rdr, gdr and sdr before this */
1475 	crypto4xx_hw_init(core_dev->dev);
1476 
1477 	/* Register security algorithms with Linux CryptoAPI */
1478 	rc = crypto4xx_register_alg(core_dev->dev, crypto4xx_alg,
1479 			       ARRAY_SIZE(crypto4xx_alg));
1480 	if (rc)
1481 		goto err_start_dev;
1482 
1483 	ppc4xx_trng_probe(core_dev);
1484 	return 0;
1485 
1486 err_start_dev:
1487 	free_irq(core_dev->irq, dev);
1488 err_request_irq:
1489 	irq_dispose_mapping(core_dev->irq);
1490 	iounmap(core_dev->dev->ce_base);
1491 err_iomap:
1492 	tasklet_kill(&core_dev->tasklet);
1493 err_build_sdr:
1494 	crypto4xx_destroy_sdr(core_dev->dev);
1495 	crypto4xx_destroy_gdr(core_dev->dev);
1496 err_build_pdr:
1497 	crypto4xx_destroy_pdr(core_dev->dev);
1498 	kfree(core_dev->dev);
1499 err_alloc_dev:
1500 	kfree(core_dev);
1501 
1502 	return rc;
1503 }
1504 
1505 static int crypto4xx_remove(struct platform_device *ofdev)
1506 {
1507 	struct device *dev = &ofdev->dev;
1508 	struct crypto4xx_core_device *core_dev = dev_get_drvdata(dev);
1509 
1510 	ppc4xx_trng_remove(core_dev);
1511 
1512 	free_irq(core_dev->irq, dev);
1513 	irq_dispose_mapping(core_dev->irq);
1514 
1515 	tasklet_kill(&core_dev->tasklet);
1516 	/* Un-register with Linux CryptoAPI */
1517 	crypto4xx_unregister_alg(core_dev->dev);
1518 	mutex_destroy(&core_dev->rng_lock);
1519 	/* Free all allocated memory */
1520 	crypto4xx_stop_all(core_dev);
1521 
1522 	return 0;
1523 }
1524 
1525 static const struct of_device_id crypto4xx_match[] = {
1526 	{ .compatible      = "amcc,ppc4xx-crypto",},
1527 	{ },
1528 };
1529 MODULE_DEVICE_TABLE(of, crypto4xx_match);
1530 
1531 static struct platform_driver crypto4xx_driver = {
1532 	.driver = {
1533 		.name = KBUILD_MODNAME,
1534 		.of_match_table = crypto4xx_match,
1535 	},
1536 	.probe		= crypto4xx_probe,
1537 	.remove		= crypto4xx_remove,
1538 };
1539 
1540 module_platform_driver(crypto4xx_driver);
1541 
1542 MODULE_LICENSE("GPL");
1543 MODULE_AUTHOR("James Hsiao <jhsiao@amcc.com>");
1544 MODULE_DESCRIPTION("Driver for AMCC PPC4xx crypto accelerator");
1545