xref: /linux/drivers/crypto/amcc/crypto4xx_core.c (revision c6fbb759)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * AMCC SoC PPC4xx Crypto Driver
4  *
5  * Copyright (c) 2008 Applied Micro Circuits Corporation.
6  * All rights reserved. James Hsiao <jhsiao@amcc.com>
7  *
8  * This file implements AMCC crypto offload Linux device driver for use with
9  * Linux CryptoAPI.
10  */
11 
12 #include <linux/kernel.h>
13 #include <linux/interrupt.h>
14 #include <linux/spinlock_types.h>
15 #include <linux/random.h>
16 #include <linux/scatterlist.h>
17 #include <linux/crypto.h>
18 #include <linux/dma-mapping.h>
19 #include <linux/platform_device.h>
20 #include <linux/init.h>
21 #include <linux/module.h>
22 #include <linux/of_address.h>
23 #include <linux/of_irq.h>
24 #include <linux/of_platform.h>
25 #include <linux/slab.h>
26 #include <asm/dcr.h>
27 #include <asm/dcr-regs.h>
28 #include <asm/cacheflush.h>
29 #include <crypto/aead.h>
30 #include <crypto/aes.h>
31 #include <crypto/ctr.h>
32 #include <crypto/gcm.h>
33 #include <crypto/sha1.h>
34 #include <crypto/rng.h>
35 #include <crypto/scatterwalk.h>
36 #include <crypto/skcipher.h>
37 #include <crypto/internal/aead.h>
38 #include <crypto/internal/rng.h>
39 #include <crypto/internal/skcipher.h>
40 #include "crypto4xx_reg_def.h"
41 #include "crypto4xx_core.h"
42 #include "crypto4xx_sa.h"
43 #include "crypto4xx_trng.h"
44 
45 #define PPC4XX_SEC_VERSION_STR			"0.5"
46 
47 /*
48  * PPC4xx Crypto Engine Initialization Routine
49  */
50 static void crypto4xx_hw_init(struct crypto4xx_device *dev)
51 {
52 	union ce_ring_size ring_size;
53 	union ce_ring_control ring_ctrl;
54 	union ce_part_ring_size part_ring_size;
55 	union ce_io_threshold io_threshold;
56 	u32 rand_num;
57 	union ce_pe_dma_cfg pe_dma_cfg;
58 	u32 device_ctrl;
59 
60 	writel(PPC4XX_BYTE_ORDER, dev->ce_base + CRYPTO4XX_BYTE_ORDER_CFG);
61 	/* setup pe dma, include reset sg, pdr and pe, then release reset */
62 	pe_dma_cfg.w = 0;
63 	pe_dma_cfg.bf.bo_sgpd_en = 1;
64 	pe_dma_cfg.bf.bo_data_en = 0;
65 	pe_dma_cfg.bf.bo_sa_en = 1;
66 	pe_dma_cfg.bf.bo_pd_en = 1;
67 	pe_dma_cfg.bf.dynamic_sa_en = 1;
68 	pe_dma_cfg.bf.reset_sg = 1;
69 	pe_dma_cfg.bf.reset_pdr = 1;
70 	pe_dma_cfg.bf.reset_pe = 1;
71 	writel(pe_dma_cfg.w, dev->ce_base + CRYPTO4XX_PE_DMA_CFG);
72 	/* un reset pe,sg and pdr */
73 	pe_dma_cfg.bf.pe_mode = 0;
74 	pe_dma_cfg.bf.reset_sg = 0;
75 	pe_dma_cfg.bf.reset_pdr = 0;
76 	pe_dma_cfg.bf.reset_pe = 0;
77 	pe_dma_cfg.bf.bo_td_en = 0;
78 	writel(pe_dma_cfg.w, dev->ce_base + CRYPTO4XX_PE_DMA_CFG);
79 	writel(dev->pdr_pa, dev->ce_base + CRYPTO4XX_PDR_BASE);
80 	writel(dev->pdr_pa, dev->ce_base + CRYPTO4XX_RDR_BASE);
81 	writel(PPC4XX_PRNG_CTRL_AUTO_EN, dev->ce_base + CRYPTO4XX_PRNG_CTRL);
82 	get_random_bytes(&rand_num, sizeof(rand_num));
83 	writel(rand_num, dev->ce_base + CRYPTO4XX_PRNG_SEED_L);
84 	get_random_bytes(&rand_num, sizeof(rand_num));
85 	writel(rand_num, dev->ce_base + CRYPTO4XX_PRNG_SEED_H);
86 	ring_size.w = 0;
87 	ring_size.bf.ring_offset = PPC4XX_PD_SIZE;
88 	ring_size.bf.ring_size   = PPC4XX_NUM_PD;
89 	writel(ring_size.w, dev->ce_base + CRYPTO4XX_RING_SIZE);
90 	ring_ctrl.w = 0;
91 	writel(ring_ctrl.w, dev->ce_base + CRYPTO4XX_RING_CTRL);
92 	device_ctrl = readl(dev->ce_base + CRYPTO4XX_DEVICE_CTRL);
93 	device_ctrl |= PPC4XX_DC_3DES_EN;
94 	writel(device_ctrl, dev->ce_base + CRYPTO4XX_DEVICE_CTRL);
95 	writel(dev->gdr_pa, dev->ce_base + CRYPTO4XX_GATH_RING_BASE);
96 	writel(dev->sdr_pa, dev->ce_base + CRYPTO4XX_SCAT_RING_BASE);
97 	part_ring_size.w = 0;
98 	part_ring_size.bf.sdr_size = PPC4XX_SDR_SIZE;
99 	part_ring_size.bf.gdr_size = PPC4XX_GDR_SIZE;
100 	writel(part_ring_size.w, dev->ce_base + CRYPTO4XX_PART_RING_SIZE);
101 	writel(PPC4XX_SD_BUFFER_SIZE, dev->ce_base + CRYPTO4XX_PART_RING_CFG);
102 	io_threshold.w = 0;
103 	io_threshold.bf.output_threshold = PPC4XX_OUTPUT_THRESHOLD;
104 	io_threshold.bf.input_threshold  = PPC4XX_INPUT_THRESHOLD;
105 	writel(io_threshold.w, dev->ce_base + CRYPTO4XX_IO_THRESHOLD);
106 	writel(0, dev->ce_base + CRYPTO4XX_PDR_BASE_UADDR);
107 	writel(0, dev->ce_base + CRYPTO4XX_RDR_BASE_UADDR);
108 	writel(0, dev->ce_base + CRYPTO4XX_PKT_SRC_UADDR);
109 	writel(0, dev->ce_base + CRYPTO4XX_PKT_DEST_UADDR);
110 	writel(0, dev->ce_base + CRYPTO4XX_SA_UADDR);
111 	writel(0, dev->ce_base + CRYPTO4XX_GATH_RING_BASE_UADDR);
112 	writel(0, dev->ce_base + CRYPTO4XX_SCAT_RING_BASE_UADDR);
113 	/* un reset pe,sg and pdr */
114 	pe_dma_cfg.bf.pe_mode = 1;
115 	pe_dma_cfg.bf.reset_sg = 0;
116 	pe_dma_cfg.bf.reset_pdr = 0;
117 	pe_dma_cfg.bf.reset_pe = 0;
118 	pe_dma_cfg.bf.bo_td_en = 0;
119 	writel(pe_dma_cfg.w, dev->ce_base + CRYPTO4XX_PE_DMA_CFG);
120 	/*clear all pending interrupt*/
121 	writel(PPC4XX_INTERRUPT_CLR, dev->ce_base + CRYPTO4XX_INT_CLR);
122 	writel(PPC4XX_INT_DESCR_CNT, dev->ce_base + CRYPTO4XX_INT_DESCR_CNT);
123 	writel(PPC4XX_INT_DESCR_CNT, dev->ce_base + CRYPTO4XX_INT_DESCR_CNT);
124 	writel(PPC4XX_INT_CFG, dev->ce_base + CRYPTO4XX_INT_CFG);
125 	if (dev->is_revb) {
126 		writel(PPC4XX_INT_TIMEOUT_CNT_REVB << 10,
127 		       dev->ce_base + CRYPTO4XX_INT_TIMEOUT_CNT);
128 		writel(PPC4XX_PD_DONE_INT | PPC4XX_TMO_ERR_INT,
129 		       dev->ce_base + CRYPTO4XX_INT_EN);
130 	} else {
131 		writel(PPC4XX_PD_DONE_INT, dev->ce_base + CRYPTO4XX_INT_EN);
132 	}
133 }
134 
135 int crypto4xx_alloc_sa(struct crypto4xx_ctx *ctx, u32 size)
136 {
137 	ctx->sa_in = kcalloc(size, 4, GFP_ATOMIC);
138 	if (ctx->sa_in == NULL)
139 		return -ENOMEM;
140 
141 	ctx->sa_out = kcalloc(size, 4, GFP_ATOMIC);
142 	if (ctx->sa_out == NULL) {
143 		kfree(ctx->sa_in);
144 		ctx->sa_in = NULL;
145 		return -ENOMEM;
146 	}
147 
148 	ctx->sa_len = size;
149 
150 	return 0;
151 }
152 
153 void crypto4xx_free_sa(struct crypto4xx_ctx *ctx)
154 {
155 	kfree(ctx->sa_in);
156 	ctx->sa_in = NULL;
157 	kfree(ctx->sa_out);
158 	ctx->sa_out = NULL;
159 	ctx->sa_len = 0;
160 }
161 
162 /*
163  * alloc memory for the gather ring
164  * no need to alloc buf for the ring
165  * gdr_tail, gdr_head and gdr_count are initialized by this function
166  */
167 static u32 crypto4xx_build_pdr(struct crypto4xx_device *dev)
168 {
169 	int i;
170 	dev->pdr = dma_alloc_coherent(dev->core_dev->device,
171 				      sizeof(struct ce_pd) * PPC4XX_NUM_PD,
172 				      &dev->pdr_pa, GFP_KERNEL);
173 	if (!dev->pdr)
174 		return -ENOMEM;
175 
176 	dev->pdr_uinfo = kcalloc(PPC4XX_NUM_PD, sizeof(struct pd_uinfo),
177 				 GFP_KERNEL);
178 	if (!dev->pdr_uinfo) {
179 		dma_free_coherent(dev->core_dev->device,
180 				  sizeof(struct ce_pd) * PPC4XX_NUM_PD,
181 				  dev->pdr,
182 				  dev->pdr_pa);
183 		return -ENOMEM;
184 	}
185 	dev->shadow_sa_pool = dma_alloc_coherent(dev->core_dev->device,
186 				   sizeof(union shadow_sa_buf) * PPC4XX_NUM_PD,
187 				   &dev->shadow_sa_pool_pa,
188 				   GFP_KERNEL);
189 	if (!dev->shadow_sa_pool)
190 		return -ENOMEM;
191 
192 	dev->shadow_sr_pool = dma_alloc_coherent(dev->core_dev->device,
193 			 sizeof(struct sa_state_record) * PPC4XX_NUM_PD,
194 			 &dev->shadow_sr_pool_pa, GFP_KERNEL);
195 	if (!dev->shadow_sr_pool)
196 		return -ENOMEM;
197 	for (i = 0; i < PPC4XX_NUM_PD; i++) {
198 		struct ce_pd *pd = &dev->pdr[i];
199 		struct pd_uinfo *pd_uinfo = &dev->pdr_uinfo[i];
200 
201 		pd->sa = dev->shadow_sa_pool_pa +
202 			sizeof(union shadow_sa_buf) * i;
203 
204 		/* alloc 256 bytes which is enough for any kind of dynamic sa */
205 		pd_uinfo->sa_va = &dev->shadow_sa_pool[i].sa;
206 
207 		/* alloc state record */
208 		pd_uinfo->sr_va = &dev->shadow_sr_pool[i];
209 		pd_uinfo->sr_pa = dev->shadow_sr_pool_pa +
210 		    sizeof(struct sa_state_record) * i;
211 	}
212 
213 	return 0;
214 }
215 
216 static void crypto4xx_destroy_pdr(struct crypto4xx_device *dev)
217 {
218 	if (dev->pdr)
219 		dma_free_coherent(dev->core_dev->device,
220 				  sizeof(struct ce_pd) * PPC4XX_NUM_PD,
221 				  dev->pdr, dev->pdr_pa);
222 
223 	if (dev->shadow_sa_pool)
224 		dma_free_coherent(dev->core_dev->device,
225 			sizeof(union shadow_sa_buf) * PPC4XX_NUM_PD,
226 			dev->shadow_sa_pool, dev->shadow_sa_pool_pa);
227 
228 	if (dev->shadow_sr_pool)
229 		dma_free_coherent(dev->core_dev->device,
230 			sizeof(struct sa_state_record) * PPC4XX_NUM_PD,
231 			dev->shadow_sr_pool, dev->shadow_sr_pool_pa);
232 
233 	kfree(dev->pdr_uinfo);
234 }
235 
236 static u32 crypto4xx_get_pd_from_pdr_nolock(struct crypto4xx_device *dev)
237 {
238 	u32 retval;
239 	u32 tmp;
240 
241 	retval = dev->pdr_head;
242 	tmp = (dev->pdr_head + 1) % PPC4XX_NUM_PD;
243 
244 	if (tmp == dev->pdr_tail)
245 		return ERING_WAS_FULL;
246 
247 	dev->pdr_head = tmp;
248 
249 	return retval;
250 }
251 
252 static u32 crypto4xx_put_pd_to_pdr(struct crypto4xx_device *dev, u32 idx)
253 {
254 	struct pd_uinfo *pd_uinfo = &dev->pdr_uinfo[idx];
255 	u32 tail;
256 	unsigned long flags;
257 
258 	spin_lock_irqsave(&dev->core_dev->lock, flags);
259 	pd_uinfo->state = PD_ENTRY_FREE;
260 
261 	if (dev->pdr_tail != PPC4XX_LAST_PD)
262 		dev->pdr_tail++;
263 	else
264 		dev->pdr_tail = 0;
265 	tail = dev->pdr_tail;
266 	spin_unlock_irqrestore(&dev->core_dev->lock, flags);
267 
268 	return tail;
269 }
270 
271 /*
272  * alloc memory for the gather ring
273  * no need to alloc buf for the ring
274  * gdr_tail, gdr_head and gdr_count are initialized by this function
275  */
276 static u32 crypto4xx_build_gdr(struct crypto4xx_device *dev)
277 {
278 	dev->gdr = dma_alloc_coherent(dev->core_dev->device,
279 				      sizeof(struct ce_gd) * PPC4XX_NUM_GD,
280 				      &dev->gdr_pa, GFP_KERNEL);
281 	if (!dev->gdr)
282 		return -ENOMEM;
283 
284 	return 0;
285 }
286 
287 static inline void crypto4xx_destroy_gdr(struct crypto4xx_device *dev)
288 {
289 	if (dev->gdr)
290 		dma_free_coherent(dev->core_dev->device,
291 			  sizeof(struct ce_gd) * PPC4XX_NUM_GD,
292 			  dev->gdr, dev->gdr_pa);
293 }
294 
295 /*
296  * when this function is called.
297  * preemption or interrupt must be disabled
298  */
299 static u32 crypto4xx_get_n_gd(struct crypto4xx_device *dev, int n)
300 {
301 	u32 retval;
302 	u32 tmp;
303 
304 	if (n >= PPC4XX_NUM_GD)
305 		return ERING_WAS_FULL;
306 
307 	retval = dev->gdr_head;
308 	tmp = (dev->gdr_head + n) % PPC4XX_NUM_GD;
309 	if (dev->gdr_head > dev->gdr_tail) {
310 		if (tmp < dev->gdr_head && tmp >= dev->gdr_tail)
311 			return ERING_WAS_FULL;
312 	} else if (dev->gdr_head < dev->gdr_tail) {
313 		if (tmp < dev->gdr_head || tmp >= dev->gdr_tail)
314 			return ERING_WAS_FULL;
315 	}
316 	dev->gdr_head = tmp;
317 
318 	return retval;
319 }
320 
321 static u32 crypto4xx_put_gd_to_gdr(struct crypto4xx_device *dev)
322 {
323 	unsigned long flags;
324 
325 	spin_lock_irqsave(&dev->core_dev->lock, flags);
326 	if (dev->gdr_tail == dev->gdr_head) {
327 		spin_unlock_irqrestore(&dev->core_dev->lock, flags);
328 		return 0;
329 	}
330 
331 	if (dev->gdr_tail != PPC4XX_LAST_GD)
332 		dev->gdr_tail++;
333 	else
334 		dev->gdr_tail = 0;
335 
336 	spin_unlock_irqrestore(&dev->core_dev->lock, flags);
337 
338 	return 0;
339 }
340 
341 static inline struct ce_gd *crypto4xx_get_gdp(struct crypto4xx_device *dev,
342 					      dma_addr_t *gd_dma, u32 idx)
343 {
344 	*gd_dma = dev->gdr_pa + sizeof(struct ce_gd) * idx;
345 
346 	return &dev->gdr[idx];
347 }
348 
349 /*
350  * alloc memory for the scatter ring
351  * need to alloc buf for the ring
352  * sdr_tail, sdr_head and sdr_count are initialized by this function
353  */
354 static u32 crypto4xx_build_sdr(struct crypto4xx_device *dev)
355 {
356 	int i;
357 
358 	dev->scatter_buffer_va =
359 		dma_alloc_coherent(dev->core_dev->device,
360 			PPC4XX_SD_BUFFER_SIZE * PPC4XX_NUM_SD,
361 			&dev->scatter_buffer_pa, GFP_KERNEL);
362 	if (!dev->scatter_buffer_va)
363 		return -ENOMEM;
364 
365 	/* alloc memory for scatter descriptor ring */
366 	dev->sdr = dma_alloc_coherent(dev->core_dev->device,
367 				      sizeof(struct ce_sd) * PPC4XX_NUM_SD,
368 				      &dev->sdr_pa, GFP_KERNEL);
369 	if (!dev->sdr)
370 		return -ENOMEM;
371 
372 	for (i = 0; i < PPC4XX_NUM_SD; i++) {
373 		dev->sdr[i].ptr = dev->scatter_buffer_pa +
374 				  PPC4XX_SD_BUFFER_SIZE * i;
375 	}
376 
377 	return 0;
378 }
379 
380 static void crypto4xx_destroy_sdr(struct crypto4xx_device *dev)
381 {
382 	if (dev->sdr)
383 		dma_free_coherent(dev->core_dev->device,
384 				  sizeof(struct ce_sd) * PPC4XX_NUM_SD,
385 				  dev->sdr, dev->sdr_pa);
386 
387 	if (dev->scatter_buffer_va)
388 		dma_free_coherent(dev->core_dev->device,
389 				  PPC4XX_SD_BUFFER_SIZE * PPC4XX_NUM_SD,
390 				  dev->scatter_buffer_va,
391 				  dev->scatter_buffer_pa);
392 }
393 
394 /*
395  * when this function is called.
396  * preemption or interrupt must be disabled
397  */
398 static u32 crypto4xx_get_n_sd(struct crypto4xx_device *dev, int n)
399 {
400 	u32 retval;
401 	u32 tmp;
402 
403 	if (n >= PPC4XX_NUM_SD)
404 		return ERING_WAS_FULL;
405 
406 	retval = dev->sdr_head;
407 	tmp = (dev->sdr_head + n) % PPC4XX_NUM_SD;
408 	if (dev->sdr_head > dev->gdr_tail) {
409 		if (tmp < dev->sdr_head && tmp >= dev->sdr_tail)
410 			return ERING_WAS_FULL;
411 	} else if (dev->sdr_head < dev->sdr_tail) {
412 		if (tmp < dev->sdr_head || tmp >= dev->sdr_tail)
413 			return ERING_WAS_FULL;
414 	} /* the head = tail, or empty case is already take cared */
415 	dev->sdr_head = tmp;
416 
417 	return retval;
418 }
419 
420 static u32 crypto4xx_put_sd_to_sdr(struct crypto4xx_device *dev)
421 {
422 	unsigned long flags;
423 
424 	spin_lock_irqsave(&dev->core_dev->lock, flags);
425 	if (dev->sdr_tail == dev->sdr_head) {
426 		spin_unlock_irqrestore(&dev->core_dev->lock, flags);
427 		return 0;
428 	}
429 	if (dev->sdr_tail != PPC4XX_LAST_SD)
430 		dev->sdr_tail++;
431 	else
432 		dev->sdr_tail = 0;
433 	spin_unlock_irqrestore(&dev->core_dev->lock, flags);
434 
435 	return 0;
436 }
437 
438 static inline struct ce_sd *crypto4xx_get_sdp(struct crypto4xx_device *dev,
439 					      dma_addr_t *sd_dma, u32 idx)
440 {
441 	*sd_dma = dev->sdr_pa + sizeof(struct ce_sd) * idx;
442 
443 	return &dev->sdr[idx];
444 }
445 
446 static void crypto4xx_copy_pkt_to_dst(struct crypto4xx_device *dev,
447 				      struct ce_pd *pd,
448 				      struct pd_uinfo *pd_uinfo,
449 				      u32 nbytes,
450 				      struct scatterlist *dst)
451 {
452 	unsigned int first_sd = pd_uinfo->first_sd;
453 	unsigned int last_sd;
454 	unsigned int overflow = 0;
455 	unsigned int to_copy;
456 	unsigned int dst_start = 0;
457 
458 	/*
459 	 * Because the scatter buffers are all neatly organized in one
460 	 * big continuous ringbuffer; scatterwalk_map_and_copy() can
461 	 * be instructed to copy a range of buffers in one go.
462 	 */
463 
464 	last_sd = (first_sd + pd_uinfo->num_sd);
465 	if (last_sd > PPC4XX_LAST_SD) {
466 		last_sd = PPC4XX_LAST_SD;
467 		overflow = last_sd % PPC4XX_NUM_SD;
468 	}
469 
470 	while (nbytes) {
471 		void *buf = dev->scatter_buffer_va +
472 			first_sd * PPC4XX_SD_BUFFER_SIZE;
473 
474 		to_copy = min(nbytes, PPC4XX_SD_BUFFER_SIZE *
475 				      (1 + last_sd - first_sd));
476 		scatterwalk_map_and_copy(buf, dst, dst_start, to_copy, 1);
477 		nbytes -= to_copy;
478 
479 		if (overflow) {
480 			first_sd = 0;
481 			last_sd = overflow;
482 			dst_start += to_copy;
483 			overflow = 0;
484 		}
485 	}
486 }
487 
488 static void crypto4xx_copy_digest_to_dst(void *dst,
489 					struct pd_uinfo *pd_uinfo,
490 					struct crypto4xx_ctx *ctx)
491 {
492 	struct dynamic_sa_ctl *sa = (struct dynamic_sa_ctl *) ctx->sa_in;
493 
494 	if (sa->sa_command_0.bf.hash_alg == SA_HASH_ALG_SHA1) {
495 		memcpy(dst, pd_uinfo->sr_va->save_digest,
496 		       SA_HASH_ALG_SHA1_DIGEST_SIZE);
497 	}
498 }
499 
500 static void crypto4xx_ret_sg_desc(struct crypto4xx_device *dev,
501 				  struct pd_uinfo *pd_uinfo)
502 {
503 	int i;
504 	if (pd_uinfo->num_gd) {
505 		for (i = 0; i < pd_uinfo->num_gd; i++)
506 			crypto4xx_put_gd_to_gdr(dev);
507 		pd_uinfo->first_gd = 0xffffffff;
508 		pd_uinfo->num_gd = 0;
509 	}
510 	if (pd_uinfo->num_sd) {
511 		for (i = 0; i < pd_uinfo->num_sd; i++)
512 			crypto4xx_put_sd_to_sdr(dev);
513 
514 		pd_uinfo->first_sd = 0xffffffff;
515 		pd_uinfo->num_sd = 0;
516 	}
517 }
518 
519 static void crypto4xx_cipher_done(struct crypto4xx_device *dev,
520 				     struct pd_uinfo *pd_uinfo,
521 				     struct ce_pd *pd)
522 {
523 	struct skcipher_request *req;
524 	struct scatterlist *dst;
525 	dma_addr_t addr;
526 
527 	req = skcipher_request_cast(pd_uinfo->async_req);
528 
529 	if (pd_uinfo->sa_va->sa_command_0.bf.scatter) {
530 		crypto4xx_copy_pkt_to_dst(dev, pd, pd_uinfo,
531 					  req->cryptlen, req->dst);
532 	} else {
533 		dst = pd_uinfo->dest_va;
534 		addr = dma_map_page(dev->core_dev->device, sg_page(dst),
535 				    dst->offset, dst->length, DMA_FROM_DEVICE);
536 	}
537 
538 	if (pd_uinfo->sa_va->sa_command_0.bf.save_iv == SA_SAVE_IV) {
539 		struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
540 
541 		crypto4xx_memcpy_from_le32((u32 *)req->iv,
542 			pd_uinfo->sr_va->save_iv,
543 			crypto_skcipher_ivsize(skcipher));
544 	}
545 
546 	crypto4xx_ret_sg_desc(dev, pd_uinfo);
547 
548 	if (pd_uinfo->state & PD_ENTRY_BUSY)
549 		skcipher_request_complete(req, -EINPROGRESS);
550 	skcipher_request_complete(req, 0);
551 }
552 
553 static void crypto4xx_ahash_done(struct crypto4xx_device *dev,
554 				struct pd_uinfo *pd_uinfo)
555 {
556 	struct crypto4xx_ctx *ctx;
557 	struct ahash_request *ahash_req;
558 
559 	ahash_req = ahash_request_cast(pd_uinfo->async_req);
560 	ctx  = crypto_tfm_ctx(ahash_req->base.tfm);
561 
562 	crypto4xx_copy_digest_to_dst(ahash_req->result, pd_uinfo,
563 				     crypto_tfm_ctx(ahash_req->base.tfm));
564 	crypto4xx_ret_sg_desc(dev, pd_uinfo);
565 
566 	if (pd_uinfo->state & PD_ENTRY_BUSY)
567 		ahash_request_complete(ahash_req, -EINPROGRESS);
568 	ahash_request_complete(ahash_req, 0);
569 }
570 
571 static void crypto4xx_aead_done(struct crypto4xx_device *dev,
572 				struct pd_uinfo *pd_uinfo,
573 				struct ce_pd *pd)
574 {
575 	struct aead_request *aead_req = container_of(pd_uinfo->async_req,
576 		struct aead_request, base);
577 	struct scatterlist *dst = pd_uinfo->dest_va;
578 	size_t cp_len = crypto_aead_authsize(
579 		crypto_aead_reqtfm(aead_req));
580 	u32 icv[AES_BLOCK_SIZE];
581 	int err = 0;
582 
583 	if (pd_uinfo->sa_va->sa_command_0.bf.scatter) {
584 		crypto4xx_copy_pkt_to_dst(dev, pd, pd_uinfo,
585 					  pd->pd_ctl_len.bf.pkt_len,
586 					  dst);
587 	} else {
588 		dma_unmap_page(dev->core_dev->device, pd->dest, dst->length,
589 				DMA_FROM_DEVICE);
590 	}
591 
592 	if (pd_uinfo->sa_va->sa_command_0.bf.dir == DIR_OUTBOUND) {
593 		/* append icv at the end */
594 		crypto4xx_memcpy_from_le32(icv, pd_uinfo->sr_va->save_digest,
595 					   sizeof(icv));
596 
597 		scatterwalk_map_and_copy(icv, dst, aead_req->cryptlen,
598 					 cp_len, 1);
599 	} else {
600 		/* check icv at the end */
601 		scatterwalk_map_and_copy(icv, aead_req->src,
602 			aead_req->assoclen + aead_req->cryptlen -
603 			cp_len, cp_len, 0);
604 
605 		crypto4xx_memcpy_from_le32(icv, icv, sizeof(icv));
606 
607 		if (crypto_memneq(icv, pd_uinfo->sr_va->save_digest, cp_len))
608 			err = -EBADMSG;
609 	}
610 
611 	crypto4xx_ret_sg_desc(dev, pd_uinfo);
612 
613 	if (pd->pd_ctl.bf.status & 0xff) {
614 		if (!__ratelimit(&dev->aead_ratelimit)) {
615 			if (pd->pd_ctl.bf.status & 2)
616 				pr_err("pad fail error\n");
617 			if (pd->pd_ctl.bf.status & 4)
618 				pr_err("seqnum fail\n");
619 			if (pd->pd_ctl.bf.status & 8)
620 				pr_err("error _notify\n");
621 			pr_err("aead return err status = 0x%02x\n",
622 				pd->pd_ctl.bf.status & 0xff);
623 			pr_err("pd pad_ctl = 0x%08x\n",
624 				pd->pd_ctl.bf.pd_pad_ctl);
625 		}
626 		err = -EINVAL;
627 	}
628 
629 	if (pd_uinfo->state & PD_ENTRY_BUSY)
630 		aead_request_complete(aead_req, -EINPROGRESS);
631 
632 	aead_request_complete(aead_req, err);
633 }
634 
635 static void crypto4xx_pd_done(struct crypto4xx_device *dev, u32 idx)
636 {
637 	struct ce_pd *pd = &dev->pdr[idx];
638 	struct pd_uinfo *pd_uinfo = &dev->pdr_uinfo[idx];
639 
640 	switch (crypto_tfm_alg_type(pd_uinfo->async_req->tfm)) {
641 	case CRYPTO_ALG_TYPE_SKCIPHER:
642 		crypto4xx_cipher_done(dev, pd_uinfo, pd);
643 		break;
644 	case CRYPTO_ALG_TYPE_AEAD:
645 		crypto4xx_aead_done(dev, pd_uinfo, pd);
646 		break;
647 	case CRYPTO_ALG_TYPE_AHASH:
648 		crypto4xx_ahash_done(dev, pd_uinfo);
649 		break;
650 	}
651 }
652 
653 static void crypto4xx_stop_all(struct crypto4xx_core_device *core_dev)
654 {
655 	crypto4xx_destroy_pdr(core_dev->dev);
656 	crypto4xx_destroy_gdr(core_dev->dev);
657 	crypto4xx_destroy_sdr(core_dev->dev);
658 	iounmap(core_dev->dev->ce_base);
659 	kfree(core_dev->dev);
660 	kfree(core_dev);
661 }
662 
663 static u32 get_next_gd(u32 current)
664 {
665 	if (current != PPC4XX_LAST_GD)
666 		return current + 1;
667 	else
668 		return 0;
669 }
670 
671 static u32 get_next_sd(u32 current)
672 {
673 	if (current != PPC4XX_LAST_SD)
674 		return current + 1;
675 	else
676 		return 0;
677 }
678 
679 int crypto4xx_build_pd(struct crypto_async_request *req,
680 		       struct crypto4xx_ctx *ctx,
681 		       struct scatterlist *src,
682 		       struct scatterlist *dst,
683 		       const unsigned int datalen,
684 		       const __le32 *iv, const u32 iv_len,
685 		       const struct dynamic_sa_ctl *req_sa,
686 		       const unsigned int sa_len,
687 		       const unsigned int assoclen,
688 		       struct scatterlist *_dst)
689 {
690 	struct crypto4xx_device *dev = ctx->dev;
691 	struct dynamic_sa_ctl *sa;
692 	struct ce_gd *gd;
693 	struct ce_pd *pd;
694 	u32 num_gd, num_sd;
695 	u32 fst_gd = 0xffffffff;
696 	u32 fst_sd = 0xffffffff;
697 	u32 pd_entry;
698 	unsigned long flags;
699 	struct pd_uinfo *pd_uinfo;
700 	unsigned int nbytes = datalen;
701 	size_t offset_to_sr_ptr;
702 	u32 gd_idx = 0;
703 	int tmp;
704 	bool is_busy, force_sd;
705 
706 	/*
707 	 * There's a very subtile/disguised "bug" in the hardware that
708 	 * gets indirectly mentioned in 18.1.3.5 Encryption/Decryption
709 	 * of the hardware spec:
710 	 * *drum roll* the AES/(T)DES OFB and CFB modes are listed as
711 	 * operation modes for >>> "Block ciphers" <<<.
712 	 *
713 	 * To workaround this issue and stop the hardware from causing
714 	 * "overran dst buffer" on crypttexts that are not a multiple
715 	 * of 16 (AES_BLOCK_SIZE), we force the driver to use the
716 	 * scatter buffers.
717 	 */
718 	force_sd = (req_sa->sa_command_1.bf.crypto_mode9_8 == CRYPTO_MODE_CFB
719 		|| req_sa->sa_command_1.bf.crypto_mode9_8 == CRYPTO_MODE_OFB)
720 		&& (datalen % AES_BLOCK_SIZE);
721 
722 	/* figure how many gd are needed */
723 	tmp = sg_nents_for_len(src, assoclen + datalen);
724 	if (tmp < 0) {
725 		dev_err(dev->core_dev->device, "Invalid number of src SG.\n");
726 		return tmp;
727 	}
728 	if (tmp == 1)
729 		tmp = 0;
730 	num_gd = tmp;
731 
732 	if (assoclen) {
733 		nbytes += assoclen;
734 		dst = scatterwalk_ffwd(_dst, dst, assoclen);
735 	}
736 
737 	/* figure how many sd are needed */
738 	if (sg_is_last(dst) && force_sd == false) {
739 		num_sd = 0;
740 	} else {
741 		if (datalen > PPC4XX_SD_BUFFER_SIZE) {
742 			num_sd = datalen / PPC4XX_SD_BUFFER_SIZE;
743 			if (datalen % PPC4XX_SD_BUFFER_SIZE)
744 				num_sd++;
745 		} else {
746 			num_sd = 1;
747 		}
748 	}
749 
750 	/*
751 	 * The follow section of code needs to be protected
752 	 * The gather ring and scatter ring needs to be consecutive
753 	 * In case of run out of any kind of descriptor, the descriptor
754 	 * already got must be return the original place.
755 	 */
756 	spin_lock_irqsave(&dev->core_dev->lock, flags);
757 	/*
758 	 * Let the caller know to slow down, once more than 13/16ths = 81%
759 	 * of the available data contexts are being used simultaneously.
760 	 *
761 	 * With PPC4XX_NUM_PD = 256, this will leave a "backlog queue" for
762 	 * 31 more contexts. Before new requests have to be rejected.
763 	 */
764 	if (req->flags & CRYPTO_TFM_REQ_MAY_BACKLOG) {
765 		is_busy = ((dev->pdr_head - dev->pdr_tail) % PPC4XX_NUM_PD) >=
766 			((PPC4XX_NUM_PD * 13) / 16);
767 	} else {
768 		/*
769 		 * To fix contention issues between ipsec (no blacklog) and
770 		 * dm-crypto (backlog) reserve 32 entries for "no backlog"
771 		 * data contexts.
772 		 */
773 		is_busy = ((dev->pdr_head - dev->pdr_tail) % PPC4XX_NUM_PD) >=
774 			((PPC4XX_NUM_PD * 15) / 16);
775 
776 		if (is_busy) {
777 			spin_unlock_irqrestore(&dev->core_dev->lock, flags);
778 			return -EBUSY;
779 		}
780 	}
781 
782 	if (num_gd) {
783 		fst_gd = crypto4xx_get_n_gd(dev, num_gd);
784 		if (fst_gd == ERING_WAS_FULL) {
785 			spin_unlock_irqrestore(&dev->core_dev->lock, flags);
786 			return -EAGAIN;
787 		}
788 	}
789 	if (num_sd) {
790 		fst_sd = crypto4xx_get_n_sd(dev, num_sd);
791 		if (fst_sd == ERING_WAS_FULL) {
792 			if (num_gd)
793 				dev->gdr_head = fst_gd;
794 			spin_unlock_irqrestore(&dev->core_dev->lock, flags);
795 			return -EAGAIN;
796 		}
797 	}
798 	pd_entry = crypto4xx_get_pd_from_pdr_nolock(dev);
799 	if (pd_entry == ERING_WAS_FULL) {
800 		if (num_gd)
801 			dev->gdr_head = fst_gd;
802 		if (num_sd)
803 			dev->sdr_head = fst_sd;
804 		spin_unlock_irqrestore(&dev->core_dev->lock, flags);
805 		return -EAGAIN;
806 	}
807 	spin_unlock_irqrestore(&dev->core_dev->lock, flags);
808 
809 	pd = &dev->pdr[pd_entry];
810 	pd->sa_len = sa_len;
811 
812 	pd_uinfo = &dev->pdr_uinfo[pd_entry];
813 	pd_uinfo->num_gd = num_gd;
814 	pd_uinfo->num_sd = num_sd;
815 	pd_uinfo->dest_va = dst;
816 	pd_uinfo->async_req = req;
817 
818 	if (iv_len)
819 		memcpy(pd_uinfo->sr_va->save_iv, iv, iv_len);
820 
821 	sa = pd_uinfo->sa_va;
822 	memcpy(sa, req_sa, sa_len * 4);
823 
824 	sa->sa_command_1.bf.hash_crypto_offset = (assoclen >> 2);
825 	offset_to_sr_ptr = get_dynamic_sa_offset_state_ptr_field(sa);
826 	*(u32 *)((unsigned long)sa + offset_to_sr_ptr) = pd_uinfo->sr_pa;
827 
828 	if (num_gd) {
829 		dma_addr_t gd_dma;
830 		struct scatterlist *sg;
831 
832 		/* get first gd we are going to use */
833 		gd_idx = fst_gd;
834 		pd_uinfo->first_gd = fst_gd;
835 		gd = crypto4xx_get_gdp(dev, &gd_dma, gd_idx);
836 		pd->src = gd_dma;
837 		/* enable gather */
838 		sa->sa_command_0.bf.gather = 1;
839 		/* walk the sg, and setup gather array */
840 
841 		sg = src;
842 		while (nbytes) {
843 			size_t len;
844 
845 			len = min(sg->length, nbytes);
846 			gd->ptr = dma_map_page(dev->core_dev->device,
847 				sg_page(sg), sg->offset, len, DMA_TO_DEVICE);
848 			gd->ctl_len.len = len;
849 			gd->ctl_len.done = 0;
850 			gd->ctl_len.ready = 1;
851 			if (len >= nbytes)
852 				break;
853 
854 			nbytes -= sg->length;
855 			gd_idx = get_next_gd(gd_idx);
856 			gd = crypto4xx_get_gdp(dev, &gd_dma, gd_idx);
857 			sg = sg_next(sg);
858 		}
859 	} else {
860 		pd->src = (u32)dma_map_page(dev->core_dev->device, sg_page(src),
861 				src->offset, min(nbytes, src->length),
862 				DMA_TO_DEVICE);
863 		/*
864 		 * Disable gather in sa command
865 		 */
866 		sa->sa_command_0.bf.gather = 0;
867 		/*
868 		 * Indicate gather array is not used
869 		 */
870 		pd_uinfo->first_gd = 0xffffffff;
871 	}
872 	if (!num_sd) {
873 		/*
874 		 * we know application give us dst a whole piece of memory
875 		 * no need to use scatter ring.
876 		 */
877 		pd_uinfo->first_sd = 0xffffffff;
878 		sa->sa_command_0.bf.scatter = 0;
879 		pd->dest = (u32)dma_map_page(dev->core_dev->device,
880 					     sg_page(dst), dst->offset,
881 					     min(datalen, dst->length),
882 					     DMA_TO_DEVICE);
883 	} else {
884 		dma_addr_t sd_dma;
885 		struct ce_sd *sd = NULL;
886 
887 		u32 sd_idx = fst_sd;
888 		nbytes = datalen;
889 		sa->sa_command_0.bf.scatter = 1;
890 		pd_uinfo->first_sd = fst_sd;
891 		sd = crypto4xx_get_sdp(dev, &sd_dma, sd_idx);
892 		pd->dest = sd_dma;
893 		/* setup scatter descriptor */
894 		sd->ctl.done = 0;
895 		sd->ctl.rdy = 1;
896 		/* sd->ptr should be setup by sd_init routine*/
897 		if (nbytes >= PPC4XX_SD_BUFFER_SIZE)
898 			nbytes -= PPC4XX_SD_BUFFER_SIZE;
899 		else
900 			nbytes = 0;
901 		while (nbytes) {
902 			sd_idx = get_next_sd(sd_idx);
903 			sd = crypto4xx_get_sdp(dev, &sd_dma, sd_idx);
904 			/* setup scatter descriptor */
905 			sd->ctl.done = 0;
906 			sd->ctl.rdy = 1;
907 			if (nbytes >= PPC4XX_SD_BUFFER_SIZE) {
908 				nbytes -= PPC4XX_SD_BUFFER_SIZE;
909 			} else {
910 				/*
911 				 * SD entry can hold PPC4XX_SD_BUFFER_SIZE,
912 				 * which is more than nbytes, so done.
913 				 */
914 				nbytes = 0;
915 			}
916 		}
917 	}
918 
919 	pd->pd_ctl.w = PD_CTL_HOST_READY |
920 		((crypto_tfm_alg_type(req->tfm) == CRYPTO_ALG_TYPE_AHASH) ||
921 		 (crypto_tfm_alg_type(req->tfm) == CRYPTO_ALG_TYPE_AEAD) ?
922 			PD_CTL_HASH_FINAL : 0);
923 	pd->pd_ctl_len.w = 0x00400000 | (assoclen + datalen);
924 	pd_uinfo->state = PD_ENTRY_INUSE | (is_busy ? PD_ENTRY_BUSY : 0);
925 
926 	wmb();
927 	/* write any value to push engine to read a pd */
928 	writel(0, dev->ce_base + CRYPTO4XX_INT_DESCR_RD);
929 	writel(1, dev->ce_base + CRYPTO4XX_INT_DESCR_RD);
930 	return is_busy ? -EBUSY : -EINPROGRESS;
931 }
932 
933 /*
934  * Algorithm Registration Functions
935  */
936 static void crypto4xx_ctx_init(struct crypto4xx_alg *amcc_alg,
937 			       struct crypto4xx_ctx *ctx)
938 {
939 	ctx->dev = amcc_alg->dev;
940 	ctx->sa_in = NULL;
941 	ctx->sa_out = NULL;
942 	ctx->sa_len = 0;
943 }
944 
945 static int crypto4xx_sk_init(struct crypto_skcipher *sk)
946 {
947 	struct skcipher_alg *alg = crypto_skcipher_alg(sk);
948 	struct crypto4xx_alg *amcc_alg;
949 	struct crypto4xx_ctx *ctx =  crypto_skcipher_ctx(sk);
950 
951 	if (alg->base.cra_flags & CRYPTO_ALG_NEED_FALLBACK) {
952 		ctx->sw_cipher.cipher =
953 			crypto_alloc_sync_skcipher(alg->base.cra_name, 0,
954 					      CRYPTO_ALG_NEED_FALLBACK);
955 		if (IS_ERR(ctx->sw_cipher.cipher))
956 			return PTR_ERR(ctx->sw_cipher.cipher);
957 	}
958 
959 	amcc_alg = container_of(alg, struct crypto4xx_alg, alg.u.cipher);
960 	crypto4xx_ctx_init(amcc_alg, ctx);
961 	return 0;
962 }
963 
964 static void crypto4xx_common_exit(struct crypto4xx_ctx *ctx)
965 {
966 	crypto4xx_free_sa(ctx);
967 }
968 
969 static void crypto4xx_sk_exit(struct crypto_skcipher *sk)
970 {
971 	struct crypto4xx_ctx *ctx =  crypto_skcipher_ctx(sk);
972 
973 	crypto4xx_common_exit(ctx);
974 	if (ctx->sw_cipher.cipher)
975 		crypto_free_sync_skcipher(ctx->sw_cipher.cipher);
976 }
977 
978 static int crypto4xx_aead_init(struct crypto_aead *tfm)
979 {
980 	struct aead_alg *alg = crypto_aead_alg(tfm);
981 	struct crypto4xx_ctx *ctx = crypto_aead_ctx(tfm);
982 	struct crypto4xx_alg *amcc_alg;
983 
984 	ctx->sw_cipher.aead = crypto_alloc_aead(alg->base.cra_name, 0,
985 						CRYPTO_ALG_NEED_FALLBACK |
986 						CRYPTO_ALG_ASYNC);
987 	if (IS_ERR(ctx->sw_cipher.aead))
988 		return PTR_ERR(ctx->sw_cipher.aead);
989 
990 	amcc_alg = container_of(alg, struct crypto4xx_alg, alg.u.aead);
991 	crypto4xx_ctx_init(amcc_alg, ctx);
992 	crypto_aead_set_reqsize(tfm, max(sizeof(struct aead_request) + 32 +
993 				crypto_aead_reqsize(ctx->sw_cipher.aead),
994 				sizeof(struct crypto4xx_aead_reqctx)));
995 	return 0;
996 }
997 
998 static void crypto4xx_aead_exit(struct crypto_aead *tfm)
999 {
1000 	struct crypto4xx_ctx *ctx = crypto_aead_ctx(tfm);
1001 
1002 	crypto4xx_common_exit(ctx);
1003 	crypto_free_aead(ctx->sw_cipher.aead);
1004 }
1005 
1006 static int crypto4xx_register_alg(struct crypto4xx_device *sec_dev,
1007 				  struct crypto4xx_alg_common *crypto_alg,
1008 				  int array_size)
1009 {
1010 	struct crypto4xx_alg *alg;
1011 	int i;
1012 	int rc = 0;
1013 
1014 	for (i = 0; i < array_size; i++) {
1015 		alg = kzalloc(sizeof(struct crypto4xx_alg), GFP_KERNEL);
1016 		if (!alg)
1017 			return -ENOMEM;
1018 
1019 		alg->alg = crypto_alg[i];
1020 		alg->dev = sec_dev;
1021 
1022 		switch (alg->alg.type) {
1023 		case CRYPTO_ALG_TYPE_AEAD:
1024 			rc = crypto_register_aead(&alg->alg.u.aead);
1025 			break;
1026 
1027 		case CRYPTO_ALG_TYPE_AHASH:
1028 			rc = crypto_register_ahash(&alg->alg.u.hash);
1029 			break;
1030 
1031 		case CRYPTO_ALG_TYPE_RNG:
1032 			rc = crypto_register_rng(&alg->alg.u.rng);
1033 			break;
1034 
1035 		default:
1036 			rc = crypto_register_skcipher(&alg->alg.u.cipher);
1037 			break;
1038 		}
1039 
1040 		if (rc)
1041 			kfree(alg);
1042 		else
1043 			list_add_tail(&alg->entry, &sec_dev->alg_list);
1044 	}
1045 
1046 	return 0;
1047 }
1048 
1049 static void crypto4xx_unregister_alg(struct crypto4xx_device *sec_dev)
1050 {
1051 	struct crypto4xx_alg *alg, *tmp;
1052 
1053 	list_for_each_entry_safe(alg, tmp, &sec_dev->alg_list, entry) {
1054 		list_del(&alg->entry);
1055 		switch (alg->alg.type) {
1056 		case CRYPTO_ALG_TYPE_AHASH:
1057 			crypto_unregister_ahash(&alg->alg.u.hash);
1058 			break;
1059 
1060 		case CRYPTO_ALG_TYPE_AEAD:
1061 			crypto_unregister_aead(&alg->alg.u.aead);
1062 			break;
1063 
1064 		case CRYPTO_ALG_TYPE_RNG:
1065 			crypto_unregister_rng(&alg->alg.u.rng);
1066 			break;
1067 
1068 		default:
1069 			crypto_unregister_skcipher(&alg->alg.u.cipher);
1070 		}
1071 		kfree(alg);
1072 	}
1073 }
1074 
1075 static void crypto4xx_bh_tasklet_cb(unsigned long data)
1076 {
1077 	struct device *dev = (struct device *)data;
1078 	struct crypto4xx_core_device *core_dev = dev_get_drvdata(dev);
1079 	struct pd_uinfo *pd_uinfo;
1080 	struct ce_pd *pd;
1081 	u32 tail = core_dev->dev->pdr_tail;
1082 	u32 head = core_dev->dev->pdr_head;
1083 
1084 	do {
1085 		pd_uinfo = &core_dev->dev->pdr_uinfo[tail];
1086 		pd = &core_dev->dev->pdr[tail];
1087 		if ((pd_uinfo->state & PD_ENTRY_INUSE) &&
1088 		     ((READ_ONCE(pd->pd_ctl.w) &
1089 		       (PD_CTL_PE_DONE | PD_CTL_HOST_READY)) ==
1090 		       PD_CTL_PE_DONE)) {
1091 			crypto4xx_pd_done(core_dev->dev, tail);
1092 			tail = crypto4xx_put_pd_to_pdr(core_dev->dev, tail);
1093 		} else {
1094 			/* if tail not done, break */
1095 			break;
1096 		}
1097 	} while (head != tail);
1098 }
1099 
1100 /*
1101  * Top Half of isr.
1102  */
1103 static inline irqreturn_t crypto4xx_interrupt_handler(int irq, void *data,
1104 						      u32 clr_val)
1105 {
1106 	struct device *dev = (struct device *)data;
1107 	struct crypto4xx_core_device *core_dev = dev_get_drvdata(dev);
1108 
1109 	writel(clr_val, core_dev->dev->ce_base + CRYPTO4XX_INT_CLR);
1110 	tasklet_schedule(&core_dev->tasklet);
1111 
1112 	return IRQ_HANDLED;
1113 }
1114 
1115 static irqreturn_t crypto4xx_ce_interrupt_handler(int irq, void *data)
1116 {
1117 	return crypto4xx_interrupt_handler(irq, data, PPC4XX_INTERRUPT_CLR);
1118 }
1119 
1120 static irqreturn_t crypto4xx_ce_interrupt_handler_revb(int irq, void *data)
1121 {
1122 	return crypto4xx_interrupt_handler(irq, data, PPC4XX_INTERRUPT_CLR |
1123 		PPC4XX_TMO_ERR_INT);
1124 }
1125 
1126 static int ppc4xx_prng_data_read(struct crypto4xx_device *dev,
1127 				 u8 *data, unsigned int max)
1128 {
1129 	unsigned int i, curr = 0;
1130 	u32 val[2];
1131 
1132 	do {
1133 		/* trigger PRN generation */
1134 		writel(PPC4XX_PRNG_CTRL_AUTO_EN,
1135 		       dev->ce_base + CRYPTO4XX_PRNG_CTRL);
1136 
1137 		for (i = 0; i < 1024; i++) {
1138 			/* usually 19 iterations are enough */
1139 			if ((readl(dev->ce_base + CRYPTO4XX_PRNG_STAT) &
1140 			     CRYPTO4XX_PRNG_STAT_BUSY))
1141 				continue;
1142 
1143 			val[0] = readl_be(dev->ce_base + CRYPTO4XX_PRNG_RES_0);
1144 			val[1] = readl_be(dev->ce_base + CRYPTO4XX_PRNG_RES_1);
1145 			break;
1146 		}
1147 		if (i == 1024)
1148 			return -ETIMEDOUT;
1149 
1150 		if ((max - curr) >= 8) {
1151 			memcpy(data, &val, 8);
1152 			data += 8;
1153 			curr += 8;
1154 		} else {
1155 			/* copy only remaining bytes */
1156 			memcpy(data, &val, max - curr);
1157 			break;
1158 		}
1159 	} while (curr < max);
1160 
1161 	return curr;
1162 }
1163 
1164 static int crypto4xx_prng_generate(struct crypto_rng *tfm,
1165 				   const u8 *src, unsigned int slen,
1166 				   u8 *dstn, unsigned int dlen)
1167 {
1168 	struct rng_alg *alg = crypto_rng_alg(tfm);
1169 	struct crypto4xx_alg *amcc_alg;
1170 	struct crypto4xx_device *dev;
1171 	int ret;
1172 
1173 	amcc_alg = container_of(alg, struct crypto4xx_alg, alg.u.rng);
1174 	dev = amcc_alg->dev;
1175 
1176 	mutex_lock(&dev->core_dev->rng_lock);
1177 	ret = ppc4xx_prng_data_read(dev, dstn, dlen);
1178 	mutex_unlock(&dev->core_dev->rng_lock);
1179 	return ret;
1180 }
1181 
1182 
1183 static int crypto4xx_prng_seed(struct crypto_rng *tfm, const u8 *seed,
1184 			unsigned int slen)
1185 {
1186 	return 0;
1187 }
1188 
1189 /*
1190  * Supported Crypto Algorithms
1191  */
1192 static struct crypto4xx_alg_common crypto4xx_alg[] = {
1193 	/* Crypto AES modes */
1194 	{ .type = CRYPTO_ALG_TYPE_SKCIPHER, .u.cipher = {
1195 		.base = {
1196 			.cra_name = "cbc(aes)",
1197 			.cra_driver_name = "cbc-aes-ppc4xx",
1198 			.cra_priority = CRYPTO4XX_CRYPTO_PRIORITY,
1199 			.cra_flags = CRYPTO_ALG_ASYNC |
1200 				CRYPTO_ALG_KERN_DRIVER_ONLY,
1201 			.cra_blocksize = AES_BLOCK_SIZE,
1202 			.cra_ctxsize = sizeof(struct crypto4xx_ctx),
1203 			.cra_module = THIS_MODULE,
1204 		},
1205 		.min_keysize = AES_MIN_KEY_SIZE,
1206 		.max_keysize = AES_MAX_KEY_SIZE,
1207 		.ivsize	= AES_IV_SIZE,
1208 		.setkey = crypto4xx_setkey_aes_cbc,
1209 		.encrypt = crypto4xx_encrypt_iv_block,
1210 		.decrypt = crypto4xx_decrypt_iv_block,
1211 		.init = crypto4xx_sk_init,
1212 		.exit = crypto4xx_sk_exit,
1213 	} },
1214 	{ .type = CRYPTO_ALG_TYPE_SKCIPHER, .u.cipher = {
1215 		.base = {
1216 			.cra_name = "cfb(aes)",
1217 			.cra_driver_name = "cfb-aes-ppc4xx",
1218 			.cra_priority = CRYPTO4XX_CRYPTO_PRIORITY,
1219 			.cra_flags = CRYPTO_ALG_ASYNC |
1220 				CRYPTO_ALG_KERN_DRIVER_ONLY,
1221 			.cra_blocksize = 1,
1222 			.cra_ctxsize = sizeof(struct crypto4xx_ctx),
1223 			.cra_module = THIS_MODULE,
1224 		},
1225 		.min_keysize = AES_MIN_KEY_SIZE,
1226 		.max_keysize = AES_MAX_KEY_SIZE,
1227 		.ivsize	= AES_IV_SIZE,
1228 		.setkey	= crypto4xx_setkey_aes_cfb,
1229 		.encrypt = crypto4xx_encrypt_iv_stream,
1230 		.decrypt = crypto4xx_decrypt_iv_stream,
1231 		.init = crypto4xx_sk_init,
1232 		.exit = crypto4xx_sk_exit,
1233 	} },
1234 	{ .type = CRYPTO_ALG_TYPE_SKCIPHER, .u.cipher = {
1235 		.base = {
1236 			.cra_name = "ctr(aes)",
1237 			.cra_driver_name = "ctr-aes-ppc4xx",
1238 			.cra_priority = CRYPTO4XX_CRYPTO_PRIORITY,
1239 			.cra_flags = CRYPTO_ALG_NEED_FALLBACK |
1240 				CRYPTO_ALG_ASYNC |
1241 				CRYPTO_ALG_KERN_DRIVER_ONLY,
1242 			.cra_blocksize = 1,
1243 			.cra_ctxsize = sizeof(struct crypto4xx_ctx),
1244 			.cra_module = THIS_MODULE,
1245 		},
1246 		.min_keysize = AES_MIN_KEY_SIZE,
1247 		.max_keysize = AES_MAX_KEY_SIZE,
1248 		.ivsize	= AES_IV_SIZE,
1249 		.setkey	= crypto4xx_setkey_aes_ctr,
1250 		.encrypt = crypto4xx_encrypt_ctr,
1251 		.decrypt = crypto4xx_decrypt_ctr,
1252 		.init = crypto4xx_sk_init,
1253 		.exit = crypto4xx_sk_exit,
1254 	} },
1255 	{ .type = CRYPTO_ALG_TYPE_SKCIPHER, .u.cipher = {
1256 		.base = {
1257 			.cra_name = "rfc3686(ctr(aes))",
1258 			.cra_driver_name = "rfc3686-ctr-aes-ppc4xx",
1259 			.cra_priority = CRYPTO4XX_CRYPTO_PRIORITY,
1260 			.cra_flags = CRYPTO_ALG_ASYNC |
1261 				CRYPTO_ALG_KERN_DRIVER_ONLY,
1262 			.cra_blocksize = 1,
1263 			.cra_ctxsize = sizeof(struct crypto4xx_ctx),
1264 			.cra_module = THIS_MODULE,
1265 		},
1266 		.min_keysize = AES_MIN_KEY_SIZE + CTR_RFC3686_NONCE_SIZE,
1267 		.max_keysize = AES_MAX_KEY_SIZE + CTR_RFC3686_NONCE_SIZE,
1268 		.ivsize	= CTR_RFC3686_IV_SIZE,
1269 		.setkey = crypto4xx_setkey_rfc3686,
1270 		.encrypt = crypto4xx_rfc3686_encrypt,
1271 		.decrypt = crypto4xx_rfc3686_decrypt,
1272 		.init = crypto4xx_sk_init,
1273 		.exit = crypto4xx_sk_exit,
1274 	} },
1275 	{ .type = CRYPTO_ALG_TYPE_SKCIPHER, .u.cipher = {
1276 		.base = {
1277 			.cra_name = "ecb(aes)",
1278 			.cra_driver_name = "ecb-aes-ppc4xx",
1279 			.cra_priority = CRYPTO4XX_CRYPTO_PRIORITY,
1280 			.cra_flags = CRYPTO_ALG_ASYNC |
1281 				CRYPTO_ALG_KERN_DRIVER_ONLY,
1282 			.cra_blocksize = AES_BLOCK_SIZE,
1283 			.cra_ctxsize = sizeof(struct crypto4xx_ctx),
1284 			.cra_module = THIS_MODULE,
1285 		},
1286 		.min_keysize = AES_MIN_KEY_SIZE,
1287 		.max_keysize = AES_MAX_KEY_SIZE,
1288 		.setkey	= crypto4xx_setkey_aes_ecb,
1289 		.encrypt = crypto4xx_encrypt_noiv_block,
1290 		.decrypt = crypto4xx_decrypt_noiv_block,
1291 		.init = crypto4xx_sk_init,
1292 		.exit = crypto4xx_sk_exit,
1293 	} },
1294 	{ .type = CRYPTO_ALG_TYPE_SKCIPHER, .u.cipher = {
1295 		.base = {
1296 			.cra_name = "ofb(aes)",
1297 			.cra_driver_name = "ofb-aes-ppc4xx",
1298 			.cra_priority = CRYPTO4XX_CRYPTO_PRIORITY,
1299 			.cra_flags = CRYPTO_ALG_ASYNC |
1300 				CRYPTO_ALG_KERN_DRIVER_ONLY,
1301 			.cra_blocksize = 1,
1302 			.cra_ctxsize = sizeof(struct crypto4xx_ctx),
1303 			.cra_module = THIS_MODULE,
1304 		},
1305 		.min_keysize = AES_MIN_KEY_SIZE,
1306 		.max_keysize = AES_MAX_KEY_SIZE,
1307 		.ivsize	= AES_IV_SIZE,
1308 		.setkey	= crypto4xx_setkey_aes_ofb,
1309 		.encrypt = crypto4xx_encrypt_iv_stream,
1310 		.decrypt = crypto4xx_decrypt_iv_stream,
1311 		.init = crypto4xx_sk_init,
1312 		.exit = crypto4xx_sk_exit,
1313 	} },
1314 
1315 	/* AEAD */
1316 	{ .type = CRYPTO_ALG_TYPE_AEAD, .u.aead = {
1317 		.setkey		= crypto4xx_setkey_aes_ccm,
1318 		.setauthsize	= crypto4xx_setauthsize_aead,
1319 		.encrypt	= crypto4xx_encrypt_aes_ccm,
1320 		.decrypt	= crypto4xx_decrypt_aes_ccm,
1321 		.init		= crypto4xx_aead_init,
1322 		.exit		= crypto4xx_aead_exit,
1323 		.ivsize		= AES_BLOCK_SIZE,
1324 		.maxauthsize    = 16,
1325 		.base = {
1326 			.cra_name	= "ccm(aes)",
1327 			.cra_driver_name = "ccm-aes-ppc4xx",
1328 			.cra_priority	= CRYPTO4XX_CRYPTO_PRIORITY,
1329 			.cra_flags	= CRYPTO_ALG_ASYNC |
1330 					  CRYPTO_ALG_NEED_FALLBACK |
1331 					  CRYPTO_ALG_KERN_DRIVER_ONLY,
1332 			.cra_blocksize	= 1,
1333 			.cra_ctxsize	= sizeof(struct crypto4xx_ctx),
1334 			.cra_module	= THIS_MODULE,
1335 		},
1336 	} },
1337 	{ .type = CRYPTO_ALG_TYPE_AEAD, .u.aead = {
1338 		.setkey		= crypto4xx_setkey_aes_gcm,
1339 		.setauthsize	= crypto4xx_setauthsize_aead,
1340 		.encrypt	= crypto4xx_encrypt_aes_gcm,
1341 		.decrypt	= crypto4xx_decrypt_aes_gcm,
1342 		.init		= crypto4xx_aead_init,
1343 		.exit		= crypto4xx_aead_exit,
1344 		.ivsize		= GCM_AES_IV_SIZE,
1345 		.maxauthsize	= 16,
1346 		.base = {
1347 			.cra_name	= "gcm(aes)",
1348 			.cra_driver_name = "gcm-aes-ppc4xx",
1349 			.cra_priority	= CRYPTO4XX_CRYPTO_PRIORITY,
1350 			.cra_flags	= CRYPTO_ALG_ASYNC |
1351 					  CRYPTO_ALG_NEED_FALLBACK |
1352 					  CRYPTO_ALG_KERN_DRIVER_ONLY,
1353 			.cra_blocksize	= 1,
1354 			.cra_ctxsize	= sizeof(struct crypto4xx_ctx),
1355 			.cra_module	= THIS_MODULE,
1356 		},
1357 	} },
1358 	{ .type = CRYPTO_ALG_TYPE_RNG, .u.rng = {
1359 		.base = {
1360 			.cra_name		= "stdrng",
1361 			.cra_driver_name        = "crypto4xx_rng",
1362 			.cra_priority		= 300,
1363 			.cra_ctxsize		= 0,
1364 			.cra_module		= THIS_MODULE,
1365 		},
1366 		.generate               = crypto4xx_prng_generate,
1367 		.seed                   = crypto4xx_prng_seed,
1368 		.seedsize               = 0,
1369 	} },
1370 };
1371 
1372 /*
1373  * Module Initialization Routine
1374  */
1375 static int crypto4xx_probe(struct platform_device *ofdev)
1376 {
1377 	int rc;
1378 	struct resource res;
1379 	struct device *dev = &ofdev->dev;
1380 	struct crypto4xx_core_device *core_dev;
1381 	struct device_node *np;
1382 	u32 pvr;
1383 	bool is_revb = true;
1384 
1385 	rc = of_address_to_resource(ofdev->dev.of_node, 0, &res);
1386 	if (rc)
1387 		return -ENODEV;
1388 
1389 	np = of_find_compatible_node(NULL, NULL, "amcc,ppc460ex-crypto");
1390 	if (np) {
1391 		mtdcri(SDR0, PPC460EX_SDR0_SRST,
1392 		       mfdcri(SDR0, PPC460EX_SDR0_SRST) | PPC460EX_CE_RESET);
1393 		mtdcri(SDR0, PPC460EX_SDR0_SRST,
1394 		       mfdcri(SDR0, PPC460EX_SDR0_SRST) & ~PPC460EX_CE_RESET);
1395 	} else {
1396 		np = of_find_compatible_node(NULL, NULL, "amcc,ppc405ex-crypto");
1397 		if (np) {
1398 			mtdcri(SDR0, PPC405EX_SDR0_SRST,
1399 				   mfdcri(SDR0, PPC405EX_SDR0_SRST) | PPC405EX_CE_RESET);
1400 			mtdcri(SDR0, PPC405EX_SDR0_SRST,
1401 				   mfdcri(SDR0, PPC405EX_SDR0_SRST) & ~PPC405EX_CE_RESET);
1402 			is_revb = false;
1403 		} else {
1404 			np = of_find_compatible_node(NULL, NULL, "amcc,ppc460sx-crypto");
1405 			if (np) {
1406 				mtdcri(SDR0, PPC460SX_SDR0_SRST,
1407 					mfdcri(SDR0, PPC460SX_SDR0_SRST) | PPC460SX_CE_RESET);
1408 				mtdcri(SDR0, PPC460SX_SDR0_SRST,
1409 					mfdcri(SDR0, PPC460SX_SDR0_SRST) & ~PPC460SX_CE_RESET);
1410 			} else {
1411 				printk(KERN_ERR "Crypto Function Not supported!\n");
1412 				return -EINVAL;
1413 			}
1414 		}
1415 	}
1416 
1417 	of_node_put(np);
1418 
1419 	core_dev = kzalloc(sizeof(struct crypto4xx_core_device), GFP_KERNEL);
1420 	if (!core_dev)
1421 		return -ENOMEM;
1422 
1423 	dev_set_drvdata(dev, core_dev);
1424 	core_dev->ofdev = ofdev;
1425 	core_dev->dev = kzalloc(sizeof(struct crypto4xx_device), GFP_KERNEL);
1426 	rc = -ENOMEM;
1427 	if (!core_dev->dev)
1428 		goto err_alloc_dev;
1429 
1430 	/*
1431 	 * Older version of 460EX/GT have a hardware bug.
1432 	 * Hence they do not support H/W based security intr coalescing
1433 	 */
1434 	pvr = mfspr(SPRN_PVR);
1435 	if (is_revb && ((pvr >> 4) == 0x130218A)) {
1436 		u32 min = PVR_MIN(pvr);
1437 
1438 		if (min < 4) {
1439 			dev_info(dev, "RevA detected - disable interrupt coalescing\n");
1440 			is_revb = false;
1441 		}
1442 	}
1443 
1444 	core_dev->dev->core_dev = core_dev;
1445 	core_dev->dev->is_revb = is_revb;
1446 	core_dev->device = dev;
1447 	mutex_init(&core_dev->rng_lock);
1448 	spin_lock_init(&core_dev->lock);
1449 	INIT_LIST_HEAD(&core_dev->dev->alg_list);
1450 	ratelimit_default_init(&core_dev->dev->aead_ratelimit);
1451 	rc = crypto4xx_build_sdr(core_dev->dev);
1452 	if (rc)
1453 		goto err_build_sdr;
1454 	rc = crypto4xx_build_pdr(core_dev->dev);
1455 	if (rc)
1456 		goto err_build_sdr;
1457 
1458 	rc = crypto4xx_build_gdr(core_dev->dev);
1459 	if (rc)
1460 		goto err_build_sdr;
1461 
1462 	/* Init tasklet for bottom half processing */
1463 	tasklet_init(&core_dev->tasklet, crypto4xx_bh_tasklet_cb,
1464 		     (unsigned long) dev);
1465 
1466 	core_dev->dev->ce_base = of_iomap(ofdev->dev.of_node, 0);
1467 	if (!core_dev->dev->ce_base) {
1468 		dev_err(dev, "failed to of_iomap\n");
1469 		rc = -ENOMEM;
1470 		goto err_iomap;
1471 	}
1472 
1473 	/* Register for Crypto isr, Crypto Engine IRQ */
1474 	core_dev->irq = irq_of_parse_and_map(ofdev->dev.of_node, 0);
1475 	rc = request_irq(core_dev->irq, is_revb ?
1476 			 crypto4xx_ce_interrupt_handler_revb :
1477 			 crypto4xx_ce_interrupt_handler, 0,
1478 			 KBUILD_MODNAME, dev);
1479 	if (rc)
1480 		goto err_request_irq;
1481 
1482 	/* need to setup pdr, rdr, gdr and sdr before this */
1483 	crypto4xx_hw_init(core_dev->dev);
1484 
1485 	/* Register security algorithms with Linux CryptoAPI */
1486 	rc = crypto4xx_register_alg(core_dev->dev, crypto4xx_alg,
1487 			       ARRAY_SIZE(crypto4xx_alg));
1488 	if (rc)
1489 		goto err_start_dev;
1490 
1491 	ppc4xx_trng_probe(core_dev);
1492 	return 0;
1493 
1494 err_start_dev:
1495 	free_irq(core_dev->irq, dev);
1496 err_request_irq:
1497 	irq_dispose_mapping(core_dev->irq);
1498 	iounmap(core_dev->dev->ce_base);
1499 err_iomap:
1500 	tasklet_kill(&core_dev->tasklet);
1501 err_build_sdr:
1502 	crypto4xx_destroy_sdr(core_dev->dev);
1503 	crypto4xx_destroy_gdr(core_dev->dev);
1504 	crypto4xx_destroy_pdr(core_dev->dev);
1505 	kfree(core_dev->dev);
1506 err_alloc_dev:
1507 	kfree(core_dev);
1508 
1509 	return rc;
1510 }
1511 
1512 static int crypto4xx_remove(struct platform_device *ofdev)
1513 {
1514 	struct device *dev = &ofdev->dev;
1515 	struct crypto4xx_core_device *core_dev = dev_get_drvdata(dev);
1516 
1517 	ppc4xx_trng_remove(core_dev);
1518 
1519 	free_irq(core_dev->irq, dev);
1520 	irq_dispose_mapping(core_dev->irq);
1521 
1522 	tasklet_kill(&core_dev->tasklet);
1523 	/* Un-register with Linux CryptoAPI */
1524 	crypto4xx_unregister_alg(core_dev->dev);
1525 	mutex_destroy(&core_dev->rng_lock);
1526 	/* Free all allocated memory */
1527 	crypto4xx_stop_all(core_dev);
1528 
1529 	return 0;
1530 }
1531 
1532 static const struct of_device_id crypto4xx_match[] = {
1533 	{ .compatible      = "amcc,ppc4xx-crypto",},
1534 	{ },
1535 };
1536 MODULE_DEVICE_TABLE(of, crypto4xx_match);
1537 
1538 static struct platform_driver crypto4xx_driver = {
1539 	.driver = {
1540 		.name = KBUILD_MODNAME,
1541 		.of_match_table = crypto4xx_match,
1542 	},
1543 	.probe		= crypto4xx_probe,
1544 	.remove		= crypto4xx_remove,
1545 };
1546 
1547 module_platform_driver(crypto4xx_driver);
1548 
1549 MODULE_LICENSE("GPL");
1550 MODULE_AUTHOR("James Hsiao <jhsiao@amcc.com>");
1551 MODULE_DESCRIPTION("Driver for AMCC PPC4xx crypto accelerator");
1552