xref: /linux/drivers/crypto/atmel-ecc.c (revision 44f57d78)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Microchip / Atmel ECC (I2C) driver.
4  *
5  * Copyright (c) 2017, Microchip Technology Inc.
6  * Author: Tudor Ambarus <tudor.ambarus@microchip.com>
7  */
8 
9 #include <linux/bitrev.h>
10 #include <linux/crc16.h>
11 #include <linux/delay.h>
12 #include <linux/device.h>
13 #include <linux/err.h>
14 #include <linux/errno.h>
15 #include <linux/i2c.h>
16 #include <linux/init.h>
17 #include <linux/kernel.h>
18 #include <linux/module.h>
19 #include <linux/of_device.h>
20 #include <linux/scatterlist.h>
21 #include <linux/slab.h>
22 #include <linux/workqueue.h>
23 #include <crypto/internal/kpp.h>
24 #include <crypto/ecdh.h>
25 #include <crypto/kpp.h>
26 #include "atmel-ecc.h"
27 
28 /* Used for binding tfm objects to i2c clients. */
29 struct atmel_ecc_driver_data {
30 	struct list_head i2c_client_list;
31 	spinlock_t i2c_list_lock;
32 } ____cacheline_aligned;
33 
34 static struct atmel_ecc_driver_data driver_data;
35 
36 /**
37  * atmel_ecc_i2c_client_priv - i2c_client private data
38  * @client              : pointer to i2c client device
39  * @i2c_client_list_node: part of i2c_client_list
40  * @lock                : lock for sending i2c commands
41  * @wake_token          : wake token array of zeros
42  * @wake_token_sz       : size in bytes of the wake_token
43  * @tfm_count           : number of active crypto transformations on i2c client
44  *
45  * Reads and writes from/to the i2c client are sequential. The first byte
46  * transmitted to the device is treated as the byte size. Any attempt to send
47  * more than this number of bytes will cause the device to not ACK those bytes.
48  * After the host writes a single command byte to the input buffer, reads are
49  * prohibited until after the device completes command execution. Use a mutex
50  * when sending i2c commands.
51  */
52 struct atmel_ecc_i2c_client_priv {
53 	struct i2c_client *client;
54 	struct list_head i2c_client_list_node;
55 	struct mutex lock;
56 	u8 wake_token[WAKE_TOKEN_MAX_SIZE];
57 	size_t wake_token_sz;
58 	atomic_t tfm_count ____cacheline_aligned;
59 };
60 
61 /**
62  * atmel_ecdh_ctx - transformation context
63  * @client     : pointer to i2c client device
64  * @fallback   : used for unsupported curves or when user wants to use its own
65  *               private key.
66  * @public_key : generated when calling set_secret(). It's the responsibility
67  *               of the user to not call set_secret() while
68  *               generate_public_key() or compute_shared_secret() are in flight.
69  * @curve_id   : elliptic curve id
70  * @n_sz       : size in bytes of the n prime
71  * @do_fallback: true when the device doesn't support the curve or when the user
72  *               wants to use its own private key.
73  */
74 struct atmel_ecdh_ctx {
75 	struct i2c_client *client;
76 	struct crypto_kpp *fallback;
77 	const u8 *public_key;
78 	unsigned int curve_id;
79 	size_t n_sz;
80 	bool do_fallback;
81 };
82 
83 /**
84  * atmel_ecc_work_data - data structure representing the work
85  * @ctx : transformation context.
86  * @cbk : pointer to a callback function to be invoked upon completion of this
87  *        request. This has the form:
88  *        callback(struct atmel_ecc_work_data *work_data, void *areq, u8 status)
89  *        where:
90  *        @work_data: data structure representing the work
91  *        @areq     : optional pointer to an argument passed with the original
92  *                    request.
93  *        @status   : status returned from the i2c client device or i2c error.
94  * @areq: optional pointer to a user argument for use at callback time.
95  * @work: describes the task to be executed.
96  * @cmd : structure used for communicating with the device.
97  */
98 struct atmel_ecc_work_data {
99 	struct atmel_ecdh_ctx *ctx;
100 	void (*cbk)(struct atmel_ecc_work_data *work_data, void *areq,
101 		    int status);
102 	void *areq;
103 	struct work_struct work;
104 	struct atmel_ecc_cmd cmd;
105 };
106 
107 static u16 atmel_ecc_crc16(u16 crc, const u8 *buffer, size_t len)
108 {
109 	return cpu_to_le16(bitrev16(crc16(crc, buffer, len)));
110 }
111 
112 /**
113  * atmel_ecc_checksum() - Generate 16-bit CRC as required by ATMEL ECC.
114  * CRC16 verification of the count, opcode, param1, param2 and data bytes.
115  * The checksum is saved in little-endian format in the least significant
116  * two bytes of the command. CRC polynomial is 0x8005 and the initial register
117  * value should be zero.
118  *
119  * @cmd : structure used for communicating with the device.
120  */
121 static void atmel_ecc_checksum(struct atmel_ecc_cmd *cmd)
122 {
123 	u8 *data = &cmd->count;
124 	size_t len = cmd->count - CRC_SIZE;
125 	u16 *crc16 = (u16 *)(data + len);
126 
127 	*crc16 = atmel_ecc_crc16(0, data, len);
128 }
129 
130 static void atmel_ecc_init_read_cmd(struct atmel_ecc_cmd *cmd)
131 {
132 	cmd->word_addr = COMMAND;
133 	cmd->opcode = OPCODE_READ;
134 	/*
135 	 * Read the word from Configuration zone that contains the lock bytes
136 	 * (UserExtra, Selector, LockValue, LockConfig).
137 	 */
138 	cmd->param1 = CONFIG_ZONE;
139 	cmd->param2 = DEVICE_LOCK_ADDR;
140 	cmd->count = READ_COUNT;
141 
142 	atmel_ecc_checksum(cmd);
143 
144 	cmd->msecs = MAX_EXEC_TIME_READ;
145 	cmd->rxsize = READ_RSP_SIZE;
146 }
147 
148 static void atmel_ecc_init_genkey_cmd(struct atmel_ecc_cmd *cmd, u16 keyid)
149 {
150 	cmd->word_addr = COMMAND;
151 	cmd->count = GENKEY_COUNT;
152 	cmd->opcode = OPCODE_GENKEY;
153 	cmd->param1 = GENKEY_MODE_PRIVATE;
154 	/* a random private key will be generated and stored in slot keyID */
155 	cmd->param2 = cpu_to_le16(keyid);
156 
157 	atmel_ecc_checksum(cmd);
158 
159 	cmd->msecs = MAX_EXEC_TIME_GENKEY;
160 	cmd->rxsize = GENKEY_RSP_SIZE;
161 }
162 
163 static int atmel_ecc_init_ecdh_cmd(struct atmel_ecc_cmd *cmd,
164 				   struct scatterlist *pubkey)
165 {
166 	size_t copied;
167 
168 	cmd->word_addr = COMMAND;
169 	cmd->count = ECDH_COUNT;
170 	cmd->opcode = OPCODE_ECDH;
171 	cmd->param1 = ECDH_PREFIX_MODE;
172 	/* private key slot */
173 	cmd->param2 = cpu_to_le16(DATA_SLOT_2);
174 
175 	/*
176 	 * The device only supports NIST P256 ECC keys. The public key size will
177 	 * always be the same. Use a macro for the key size to avoid unnecessary
178 	 * computations.
179 	 */
180 	copied = sg_copy_to_buffer(pubkey,
181 				   sg_nents_for_len(pubkey,
182 						    ATMEL_ECC_PUBKEY_SIZE),
183 				   cmd->data, ATMEL_ECC_PUBKEY_SIZE);
184 	if (copied != ATMEL_ECC_PUBKEY_SIZE)
185 		return -EINVAL;
186 
187 	atmel_ecc_checksum(cmd);
188 
189 	cmd->msecs = MAX_EXEC_TIME_ECDH;
190 	cmd->rxsize = ECDH_RSP_SIZE;
191 
192 	return 0;
193 }
194 
195 /*
196  * After wake and after execution of a command, there will be error, status, or
197  * result bytes in the device's output register that can be retrieved by the
198  * system. When the length of that group is four bytes, the codes returned are
199  * detailed in error_list.
200  */
201 static int atmel_ecc_status(struct device *dev, u8 *status)
202 {
203 	size_t err_list_len = ARRAY_SIZE(error_list);
204 	int i;
205 	u8 err_id = status[1];
206 
207 	if (*status != STATUS_SIZE)
208 		return 0;
209 
210 	if (err_id == STATUS_WAKE_SUCCESSFUL || err_id == STATUS_NOERR)
211 		return 0;
212 
213 	for (i = 0; i < err_list_len; i++)
214 		if (error_list[i].value == err_id)
215 			break;
216 
217 	/* if err_id is not in the error_list then ignore it */
218 	if (i != err_list_len) {
219 		dev_err(dev, "%02x: %s:\n", err_id, error_list[i].error_text);
220 		return err_id;
221 	}
222 
223 	return 0;
224 }
225 
226 static int atmel_ecc_wakeup(struct i2c_client *client)
227 {
228 	struct atmel_ecc_i2c_client_priv *i2c_priv = i2c_get_clientdata(client);
229 	u8 status[STATUS_RSP_SIZE];
230 	int ret;
231 
232 	/*
233 	 * The device ignores any levels or transitions on the SCL pin when the
234 	 * device is idle, asleep or during waking up. Don't check for error
235 	 * when waking up the device.
236 	 */
237 	i2c_master_send(client, i2c_priv->wake_token, i2c_priv->wake_token_sz);
238 
239 	/*
240 	 * Wait to wake the device. Typical execution times for ecdh and genkey
241 	 * are around tens of milliseconds. Delta is chosen to 50 microseconds.
242 	 */
243 	usleep_range(TWHI_MIN, TWHI_MAX);
244 
245 	ret = i2c_master_recv(client, status, STATUS_SIZE);
246 	if (ret < 0)
247 		return ret;
248 
249 	return atmel_ecc_status(&client->dev, status);
250 }
251 
252 static int atmel_ecc_sleep(struct i2c_client *client)
253 {
254 	u8 sleep = SLEEP_TOKEN;
255 
256 	return i2c_master_send(client, &sleep, 1);
257 }
258 
259 static void atmel_ecdh_done(struct atmel_ecc_work_data *work_data, void *areq,
260 			    int status)
261 {
262 	struct kpp_request *req = areq;
263 	struct atmel_ecdh_ctx *ctx = work_data->ctx;
264 	struct atmel_ecc_cmd *cmd = &work_data->cmd;
265 	size_t copied, n_sz;
266 
267 	if (status)
268 		goto free_work_data;
269 
270 	/* might want less than we've got */
271 	n_sz = min_t(size_t, ctx->n_sz, req->dst_len);
272 
273 	/* copy the shared secret */
274 	copied = sg_copy_from_buffer(req->dst, sg_nents_for_len(req->dst, n_sz),
275 				     &cmd->data[RSP_DATA_IDX], n_sz);
276 	if (copied != n_sz)
277 		status = -EINVAL;
278 
279 	/* fall through */
280 free_work_data:
281 	kzfree(work_data);
282 	kpp_request_complete(req, status);
283 }
284 
285 /*
286  * atmel_ecc_send_receive() - send a command to the device and receive its
287  *                            response.
288  * @client: i2c client device
289  * @cmd   : structure used to communicate with the device
290  *
291  * After the device receives a Wake token, a watchdog counter starts within the
292  * device. After the watchdog timer expires, the device enters sleep mode
293  * regardless of whether some I/O transmission or command execution is in
294  * progress. If a command is attempted when insufficient time remains prior to
295  * watchdog timer execution, the device will return the watchdog timeout error
296  * code without attempting to execute the command. There is no way to reset the
297  * counter other than to put the device into sleep or idle mode and then
298  * wake it up again.
299  */
300 static int atmel_ecc_send_receive(struct i2c_client *client,
301 				  struct atmel_ecc_cmd *cmd)
302 {
303 	struct atmel_ecc_i2c_client_priv *i2c_priv = i2c_get_clientdata(client);
304 	int ret;
305 
306 	mutex_lock(&i2c_priv->lock);
307 
308 	ret = atmel_ecc_wakeup(client);
309 	if (ret)
310 		goto err;
311 
312 	/* send the command */
313 	ret = i2c_master_send(client, (u8 *)cmd, cmd->count + WORD_ADDR_SIZE);
314 	if (ret < 0)
315 		goto err;
316 
317 	/* delay the appropriate amount of time for command to execute */
318 	msleep(cmd->msecs);
319 
320 	/* receive the response */
321 	ret = i2c_master_recv(client, cmd->data, cmd->rxsize);
322 	if (ret < 0)
323 		goto err;
324 
325 	/* put the device into low-power mode */
326 	ret = atmel_ecc_sleep(client);
327 	if (ret < 0)
328 		goto err;
329 
330 	mutex_unlock(&i2c_priv->lock);
331 	return atmel_ecc_status(&client->dev, cmd->data);
332 err:
333 	mutex_unlock(&i2c_priv->lock);
334 	return ret;
335 }
336 
337 static void atmel_ecc_work_handler(struct work_struct *work)
338 {
339 	struct atmel_ecc_work_data *work_data =
340 			container_of(work, struct atmel_ecc_work_data, work);
341 	struct atmel_ecc_cmd *cmd = &work_data->cmd;
342 	struct i2c_client *client = work_data->ctx->client;
343 	int status;
344 
345 	status = atmel_ecc_send_receive(client, cmd);
346 	work_data->cbk(work_data, work_data->areq, status);
347 }
348 
349 static void atmel_ecc_enqueue(struct atmel_ecc_work_data *work_data,
350 			      void (*cbk)(struct atmel_ecc_work_data *work_data,
351 					  void *areq, int status),
352 			      void *areq)
353 {
354 	work_data->cbk = (void *)cbk;
355 	work_data->areq = areq;
356 
357 	INIT_WORK(&work_data->work, atmel_ecc_work_handler);
358 	schedule_work(&work_data->work);
359 }
360 
361 static unsigned int atmel_ecdh_supported_curve(unsigned int curve_id)
362 {
363 	if (curve_id == ECC_CURVE_NIST_P256)
364 		return ATMEL_ECC_NIST_P256_N_SIZE;
365 
366 	return 0;
367 }
368 
369 /*
370  * A random private key is generated and stored in the device. The device
371  * returns the pair public key.
372  */
373 static int atmel_ecdh_set_secret(struct crypto_kpp *tfm, const void *buf,
374 				 unsigned int len)
375 {
376 	struct atmel_ecdh_ctx *ctx = kpp_tfm_ctx(tfm);
377 	struct atmel_ecc_cmd *cmd;
378 	void *public_key;
379 	struct ecdh params;
380 	int ret = -ENOMEM;
381 
382 	/* free the old public key, if any */
383 	kfree(ctx->public_key);
384 	/* make sure you don't free the old public key twice */
385 	ctx->public_key = NULL;
386 
387 	if (crypto_ecdh_decode_key(buf, len, &params) < 0) {
388 		dev_err(&ctx->client->dev, "crypto_ecdh_decode_key failed\n");
389 		return -EINVAL;
390 	}
391 
392 	ctx->n_sz = atmel_ecdh_supported_curve(params.curve_id);
393 	if (!ctx->n_sz || params.key_size) {
394 		/* fallback to ecdh software implementation */
395 		ctx->do_fallback = true;
396 		return crypto_kpp_set_secret(ctx->fallback, buf, len);
397 	}
398 
399 	cmd = kmalloc(sizeof(*cmd), GFP_KERNEL);
400 	if (!cmd)
401 		return -ENOMEM;
402 
403 	/*
404 	 * The device only supports NIST P256 ECC keys. The public key size will
405 	 * always be the same. Use a macro for the key size to avoid unnecessary
406 	 * computations.
407 	 */
408 	public_key = kmalloc(ATMEL_ECC_PUBKEY_SIZE, GFP_KERNEL);
409 	if (!public_key)
410 		goto free_cmd;
411 
412 	ctx->do_fallback = false;
413 	ctx->curve_id = params.curve_id;
414 
415 	atmel_ecc_init_genkey_cmd(cmd, DATA_SLOT_2);
416 
417 	ret = atmel_ecc_send_receive(ctx->client, cmd);
418 	if (ret)
419 		goto free_public_key;
420 
421 	/* save the public key */
422 	memcpy(public_key, &cmd->data[RSP_DATA_IDX], ATMEL_ECC_PUBKEY_SIZE);
423 	ctx->public_key = public_key;
424 
425 	kfree(cmd);
426 	return 0;
427 
428 free_public_key:
429 	kfree(public_key);
430 free_cmd:
431 	kfree(cmd);
432 	return ret;
433 }
434 
435 static int atmel_ecdh_generate_public_key(struct kpp_request *req)
436 {
437 	struct crypto_kpp *tfm = crypto_kpp_reqtfm(req);
438 	struct atmel_ecdh_ctx *ctx = kpp_tfm_ctx(tfm);
439 	size_t copied, nbytes;
440 	int ret = 0;
441 
442 	if (ctx->do_fallback) {
443 		kpp_request_set_tfm(req, ctx->fallback);
444 		return crypto_kpp_generate_public_key(req);
445 	}
446 
447 	/* might want less than we've got */
448 	nbytes = min_t(size_t, ATMEL_ECC_PUBKEY_SIZE, req->dst_len);
449 
450 	/* public key was saved at private key generation */
451 	copied = sg_copy_from_buffer(req->dst,
452 				     sg_nents_for_len(req->dst, nbytes),
453 				     ctx->public_key, nbytes);
454 	if (copied != nbytes)
455 		ret = -EINVAL;
456 
457 	return ret;
458 }
459 
460 static int atmel_ecdh_compute_shared_secret(struct kpp_request *req)
461 {
462 	struct crypto_kpp *tfm = crypto_kpp_reqtfm(req);
463 	struct atmel_ecdh_ctx *ctx = kpp_tfm_ctx(tfm);
464 	struct atmel_ecc_work_data *work_data;
465 	gfp_t gfp;
466 	int ret;
467 
468 	if (ctx->do_fallback) {
469 		kpp_request_set_tfm(req, ctx->fallback);
470 		return crypto_kpp_compute_shared_secret(req);
471 	}
472 
473 	/* must have exactly two points to be on the curve */
474 	if (req->src_len != ATMEL_ECC_PUBKEY_SIZE)
475 		return -EINVAL;
476 
477 	gfp = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ? GFP_KERNEL :
478 							     GFP_ATOMIC;
479 
480 	work_data = kmalloc(sizeof(*work_data), gfp);
481 	if (!work_data)
482 		return -ENOMEM;
483 
484 	work_data->ctx = ctx;
485 
486 	ret = atmel_ecc_init_ecdh_cmd(&work_data->cmd, req->src);
487 	if (ret)
488 		goto free_work_data;
489 
490 	atmel_ecc_enqueue(work_data, atmel_ecdh_done, req);
491 
492 	return -EINPROGRESS;
493 
494 free_work_data:
495 	kfree(work_data);
496 	return ret;
497 }
498 
499 static struct i2c_client *atmel_ecc_i2c_client_alloc(void)
500 {
501 	struct atmel_ecc_i2c_client_priv *i2c_priv, *min_i2c_priv = NULL;
502 	struct i2c_client *client = ERR_PTR(-ENODEV);
503 	int min_tfm_cnt = INT_MAX;
504 	int tfm_cnt;
505 
506 	spin_lock(&driver_data.i2c_list_lock);
507 
508 	if (list_empty(&driver_data.i2c_client_list)) {
509 		spin_unlock(&driver_data.i2c_list_lock);
510 		return ERR_PTR(-ENODEV);
511 	}
512 
513 	list_for_each_entry(i2c_priv, &driver_data.i2c_client_list,
514 			    i2c_client_list_node) {
515 		tfm_cnt = atomic_read(&i2c_priv->tfm_count);
516 		if (tfm_cnt < min_tfm_cnt) {
517 			min_tfm_cnt = tfm_cnt;
518 			min_i2c_priv = i2c_priv;
519 		}
520 		if (!min_tfm_cnt)
521 			break;
522 	}
523 
524 	if (min_i2c_priv) {
525 		atomic_inc(&min_i2c_priv->tfm_count);
526 		client = min_i2c_priv->client;
527 	}
528 
529 	spin_unlock(&driver_data.i2c_list_lock);
530 
531 	return client;
532 }
533 
534 static void atmel_ecc_i2c_client_free(struct i2c_client *client)
535 {
536 	struct atmel_ecc_i2c_client_priv *i2c_priv = i2c_get_clientdata(client);
537 
538 	atomic_dec(&i2c_priv->tfm_count);
539 }
540 
541 static int atmel_ecdh_init_tfm(struct crypto_kpp *tfm)
542 {
543 	const char *alg = kpp_alg_name(tfm);
544 	struct crypto_kpp *fallback;
545 	struct atmel_ecdh_ctx *ctx = kpp_tfm_ctx(tfm);
546 
547 	ctx->client = atmel_ecc_i2c_client_alloc();
548 	if (IS_ERR(ctx->client)) {
549 		pr_err("tfm - i2c_client binding failed\n");
550 		return PTR_ERR(ctx->client);
551 	}
552 
553 	fallback = crypto_alloc_kpp(alg, 0, CRYPTO_ALG_NEED_FALLBACK);
554 	if (IS_ERR(fallback)) {
555 		dev_err(&ctx->client->dev, "Failed to allocate transformation for '%s': %ld\n",
556 			alg, PTR_ERR(fallback));
557 		return PTR_ERR(fallback);
558 	}
559 
560 	crypto_kpp_set_flags(fallback, crypto_kpp_get_flags(tfm));
561 	ctx->fallback = fallback;
562 
563 	return 0;
564 }
565 
566 static void atmel_ecdh_exit_tfm(struct crypto_kpp *tfm)
567 {
568 	struct atmel_ecdh_ctx *ctx = kpp_tfm_ctx(tfm);
569 
570 	kfree(ctx->public_key);
571 	crypto_free_kpp(ctx->fallback);
572 	atmel_ecc_i2c_client_free(ctx->client);
573 }
574 
575 static unsigned int atmel_ecdh_max_size(struct crypto_kpp *tfm)
576 {
577 	struct atmel_ecdh_ctx *ctx = kpp_tfm_ctx(tfm);
578 
579 	if (ctx->fallback)
580 		return crypto_kpp_maxsize(ctx->fallback);
581 
582 	/*
583 	 * The device only supports NIST P256 ECC keys. The public key size will
584 	 * always be the same. Use a macro for the key size to avoid unnecessary
585 	 * computations.
586 	 */
587 	return ATMEL_ECC_PUBKEY_SIZE;
588 }
589 
590 static struct kpp_alg atmel_ecdh = {
591 	.set_secret = atmel_ecdh_set_secret,
592 	.generate_public_key = atmel_ecdh_generate_public_key,
593 	.compute_shared_secret = atmel_ecdh_compute_shared_secret,
594 	.init = atmel_ecdh_init_tfm,
595 	.exit = atmel_ecdh_exit_tfm,
596 	.max_size = atmel_ecdh_max_size,
597 	.base = {
598 		.cra_flags = CRYPTO_ALG_NEED_FALLBACK,
599 		.cra_name = "ecdh",
600 		.cra_driver_name = "atmel-ecdh",
601 		.cra_priority = ATMEL_ECC_PRIORITY,
602 		.cra_module = THIS_MODULE,
603 		.cra_ctxsize = sizeof(struct atmel_ecdh_ctx),
604 	},
605 };
606 
607 static inline size_t atmel_ecc_wake_token_sz(u32 bus_clk_rate)
608 {
609 	u32 no_of_bits = DIV_ROUND_UP(TWLO_USEC * bus_clk_rate, USEC_PER_SEC);
610 
611 	/* return the size of the wake_token in bytes */
612 	return DIV_ROUND_UP(no_of_bits, 8);
613 }
614 
615 static int device_sanity_check(struct i2c_client *client)
616 {
617 	struct atmel_ecc_cmd *cmd;
618 	int ret;
619 
620 	cmd = kmalloc(sizeof(*cmd), GFP_KERNEL);
621 	if (!cmd)
622 		return -ENOMEM;
623 
624 	atmel_ecc_init_read_cmd(cmd);
625 
626 	ret = atmel_ecc_send_receive(client, cmd);
627 	if (ret)
628 		goto free_cmd;
629 
630 	/*
631 	 * It is vital that the Configuration, Data and OTP zones be locked
632 	 * prior to release into the field of the system containing the device.
633 	 * Failure to lock these zones may permit modification of any secret
634 	 * keys and may lead to other security problems.
635 	 */
636 	if (cmd->data[LOCK_CONFIG_IDX] || cmd->data[LOCK_VALUE_IDX]) {
637 		dev_err(&client->dev, "Configuration or Data and OTP zones are unlocked!\n");
638 		ret = -ENOTSUPP;
639 	}
640 
641 	/* fall through */
642 free_cmd:
643 	kfree(cmd);
644 	return ret;
645 }
646 
647 static int atmel_ecc_probe(struct i2c_client *client,
648 			   const struct i2c_device_id *id)
649 {
650 	struct atmel_ecc_i2c_client_priv *i2c_priv;
651 	struct device *dev = &client->dev;
652 	int ret;
653 	u32 bus_clk_rate;
654 
655 	if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) {
656 		dev_err(dev, "I2C_FUNC_I2C not supported\n");
657 		return -ENODEV;
658 	}
659 
660 	ret = of_property_read_u32(client->adapter->dev.of_node,
661 				   "clock-frequency", &bus_clk_rate);
662 	if (ret) {
663 		dev_err(dev, "of: failed to read clock-frequency property\n");
664 		return ret;
665 	}
666 
667 	if (bus_clk_rate > 1000000L) {
668 		dev_err(dev, "%d exceeds maximum supported clock frequency (1MHz)\n",
669 			bus_clk_rate);
670 		return -EINVAL;
671 	}
672 
673 	i2c_priv = devm_kmalloc(dev, sizeof(*i2c_priv), GFP_KERNEL);
674 	if (!i2c_priv)
675 		return -ENOMEM;
676 
677 	i2c_priv->client = client;
678 	mutex_init(&i2c_priv->lock);
679 
680 	/*
681 	 * WAKE_TOKEN_MAX_SIZE was calculated for the maximum bus_clk_rate -
682 	 * 1MHz. The previous bus_clk_rate check ensures us that wake_token_sz
683 	 * will always be smaller than or equal to WAKE_TOKEN_MAX_SIZE.
684 	 */
685 	i2c_priv->wake_token_sz = atmel_ecc_wake_token_sz(bus_clk_rate);
686 
687 	memset(i2c_priv->wake_token, 0, sizeof(i2c_priv->wake_token));
688 
689 	atomic_set(&i2c_priv->tfm_count, 0);
690 
691 	i2c_set_clientdata(client, i2c_priv);
692 
693 	ret = device_sanity_check(client);
694 	if (ret)
695 		return ret;
696 
697 	spin_lock(&driver_data.i2c_list_lock);
698 	list_add_tail(&i2c_priv->i2c_client_list_node,
699 		      &driver_data.i2c_client_list);
700 	spin_unlock(&driver_data.i2c_list_lock);
701 
702 	ret = crypto_register_kpp(&atmel_ecdh);
703 	if (ret) {
704 		spin_lock(&driver_data.i2c_list_lock);
705 		list_del(&i2c_priv->i2c_client_list_node);
706 		spin_unlock(&driver_data.i2c_list_lock);
707 
708 		dev_err(dev, "%s alg registration failed\n",
709 			atmel_ecdh.base.cra_driver_name);
710 	} else {
711 		dev_info(dev, "atmel ecc algorithms registered in /proc/crypto\n");
712 	}
713 
714 	return ret;
715 }
716 
717 static int atmel_ecc_remove(struct i2c_client *client)
718 {
719 	struct atmel_ecc_i2c_client_priv *i2c_priv = i2c_get_clientdata(client);
720 
721 	/* Return EBUSY if i2c client already allocated. */
722 	if (atomic_read(&i2c_priv->tfm_count)) {
723 		dev_err(&client->dev, "Device is busy\n");
724 		return -EBUSY;
725 	}
726 
727 	crypto_unregister_kpp(&atmel_ecdh);
728 
729 	spin_lock(&driver_data.i2c_list_lock);
730 	list_del(&i2c_priv->i2c_client_list_node);
731 	spin_unlock(&driver_data.i2c_list_lock);
732 
733 	return 0;
734 }
735 
736 #ifdef CONFIG_OF
737 static const struct of_device_id atmel_ecc_dt_ids[] = {
738 	{
739 		.compatible = "atmel,atecc508a",
740 	}, {
741 		/* sentinel */
742 	}
743 };
744 MODULE_DEVICE_TABLE(of, atmel_ecc_dt_ids);
745 #endif
746 
747 static const struct i2c_device_id atmel_ecc_id[] = {
748 	{ "atecc508a", 0 },
749 	{ }
750 };
751 MODULE_DEVICE_TABLE(i2c, atmel_ecc_id);
752 
753 static struct i2c_driver atmel_ecc_driver = {
754 	.driver = {
755 		.name	= "atmel-ecc",
756 		.of_match_table = of_match_ptr(atmel_ecc_dt_ids),
757 	},
758 	.probe		= atmel_ecc_probe,
759 	.remove		= atmel_ecc_remove,
760 	.id_table	= atmel_ecc_id,
761 };
762 
763 static int __init atmel_ecc_init(void)
764 {
765 	spin_lock_init(&driver_data.i2c_list_lock);
766 	INIT_LIST_HEAD(&driver_data.i2c_client_list);
767 	return i2c_add_driver(&atmel_ecc_driver);
768 }
769 
770 static void __exit atmel_ecc_exit(void)
771 {
772 	flush_scheduled_work();
773 	i2c_del_driver(&atmel_ecc_driver);
774 }
775 
776 module_init(atmel_ecc_init);
777 module_exit(atmel_ecc_exit);
778 
779 MODULE_AUTHOR("Tudor Ambarus <tudor.ambarus@microchip.com>");
780 MODULE_DESCRIPTION("Microchip / Atmel ECC (I2C) driver");
781 MODULE_LICENSE("GPL v2");
782