xref: /linux/drivers/crypto/bcm/cipher.c (revision f86fd32d)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright 2016 Broadcom
4  */
5 
6 #include <linux/err.h>
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/errno.h>
10 #include <linux/kernel.h>
11 #include <linux/interrupt.h>
12 #include <linux/platform_device.h>
13 #include <linux/scatterlist.h>
14 #include <linux/crypto.h>
15 #include <linux/kthread.h>
16 #include <linux/rtnetlink.h>
17 #include <linux/sched.h>
18 #include <linux/of_address.h>
19 #include <linux/of_device.h>
20 #include <linux/io.h>
21 #include <linux/bitops.h>
22 
23 #include <crypto/algapi.h>
24 #include <crypto/aead.h>
25 #include <crypto/internal/aead.h>
26 #include <crypto/aes.h>
27 #include <crypto/internal/des.h>
28 #include <crypto/hmac.h>
29 #include <crypto/sha.h>
30 #include <crypto/md5.h>
31 #include <crypto/authenc.h>
32 #include <crypto/skcipher.h>
33 #include <crypto/hash.h>
34 #include <crypto/sha3.h>
35 
36 #include "util.h"
37 #include "cipher.h"
38 #include "spu.h"
39 #include "spum.h"
40 #include "spu2.h"
41 
42 /* ================= Device Structure ================== */
43 
44 struct device_private iproc_priv;
45 
46 /* ==================== Parameters ===================== */
47 
48 int flow_debug_logging;
49 module_param(flow_debug_logging, int, 0644);
50 MODULE_PARM_DESC(flow_debug_logging, "Enable Flow Debug Logging");
51 
52 int packet_debug_logging;
53 module_param(packet_debug_logging, int, 0644);
54 MODULE_PARM_DESC(packet_debug_logging, "Enable Packet Debug Logging");
55 
56 int debug_logging_sleep;
57 module_param(debug_logging_sleep, int, 0644);
58 MODULE_PARM_DESC(debug_logging_sleep, "Packet Debug Logging Sleep");
59 
60 /*
61  * The value of these module parameters is used to set the priority for each
62  * algo type when this driver registers algos with the kernel crypto API.
63  * To use a priority other than the default, set the priority in the insmod or
64  * modprobe. Changing the module priority after init time has no effect.
65  *
66  * The default priorities are chosen to be lower (less preferred) than ARMv8 CE
67  * algos, but more preferred than generic software algos.
68  */
69 static int cipher_pri = 150;
70 module_param(cipher_pri, int, 0644);
71 MODULE_PARM_DESC(cipher_pri, "Priority for cipher algos");
72 
73 static int hash_pri = 100;
74 module_param(hash_pri, int, 0644);
75 MODULE_PARM_DESC(hash_pri, "Priority for hash algos");
76 
77 static int aead_pri = 150;
78 module_param(aead_pri, int, 0644);
79 MODULE_PARM_DESC(aead_pri, "Priority for AEAD algos");
80 
81 /* A type 3 BCM header, expected to precede the SPU header for SPU-M.
82  * Bits 3 and 4 in the first byte encode the channel number (the dma ringset).
83  * 0x60 - ring 0
84  * 0x68 - ring 1
85  * 0x70 - ring 2
86  * 0x78 - ring 3
87  */
88 static char BCMHEADER[] = { 0x60, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x28 };
89 /*
90  * Some SPU hw does not use BCM header on SPU messages. So BCM_HDR_LEN
91  * is set dynamically after reading SPU type from device tree.
92  */
93 #define BCM_HDR_LEN  iproc_priv.bcm_hdr_len
94 
95 /* min and max time to sleep before retrying when mbox queue is full. usec */
96 #define MBOX_SLEEP_MIN  800
97 #define MBOX_SLEEP_MAX 1000
98 
99 /**
100  * select_channel() - Select a SPU channel to handle a crypto request. Selects
101  * channel in round robin order.
102  *
103  * Return:  channel index
104  */
105 static u8 select_channel(void)
106 {
107 	u8 chan_idx = atomic_inc_return(&iproc_priv.next_chan);
108 
109 	return chan_idx % iproc_priv.spu.num_chan;
110 }
111 
112 /**
113  * spu_skcipher_rx_sg_create() - Build up the scatterlist of buffers used to
114  * receive a SPU response message for an skcipher request. Includes buffers to
115  * catch SPU message headers and the response data.
116  * @mssg:	mailbox message containing the receive sg
117  * @rctx:	crypto request context
118  * @rx_frag_num: number of scatterlist elements required to hold the
119  *		SPU response message
120  * @chunksize:	Number of bytes of response data expected
121  * @stat_pad_len: Number of bytes required to pad the STAT field to
122  *		a 4-byte boundary
123  *
124  * The scatterlist that gets allocated here is freed in spu_chunk_cleanup()
125  * when the request completes, whether the request is handled successfully or
126  * there is an error.
127  *
128  * Returns:
129  *   0 if successful
130  *   < 0 if an error
131  */
132 static int
133 spu_skcipher_rx_sg_create(struct brcm_message *mssg,
134 			    struct iproc_reqctx_s *rctx,
135 			    u8 rx_frag_num,
136 			    unsigned int chunksize, u32 stat_pad_len)
137 {
138 	struct spu_hw *spu = &iproc_priv.spu;
139 	struct scatterlist *sg;	/* used to build sgs in mbox message */
140 	struct iproc_ctx_s *ctx = rctx->ctx;
141 	u32 datalen;		/* Number of bytes of response data expected */
142 
143 	mssg->spu.dst = kcalloc(rx_frag_num, sizeof(struct scatterlist),
144 				rctx->gfp);
145 	if (!mssg->spu.dst)
146 		return -ENOMEM;
147 
148 	sg = mssg->spu.dst;
149 	sg_init_table(sg, rx_frag_num);
150 	/* Space for SPU message header */
151 	sg_set_buf(sg++, rctx->msg_buf.spu_resp_hdr, ctx->spu_resp_hdr_len);
152 
153 	/* If XTS tweak in payload, add buffer to receive encrypted tweak */
154 	if ((ctx->cipher.mode == CIPHER_MODE_XTS) &&
155 	    spu->spu_xts_tweak_in_payload())
156 		sg_set_buf(sg++, rctx->msg_buf.c.supdt_tweak,
157 			   SPU_XTS_TWEAK_SIZE);
158 
159 	/* Copy in each dst sg entry from request, up to chunksize */
160 	datalen = spu_msg_sg_add(&sg, &rctx->dst_sg, &rctx->dst_skip,
161 				 rctx->dst_nents, chunksize);
162 	if (datalen < chunksize) {
163 		pr_err("%s(): failed to copy dst sg to mbox msg. chunksize %u, datalen %u",
164 		       __func__, chunksize, datalen);
165 		return -EFAULT;
166 	}
167 
168 	if (ctx->cipher.alg == CIPHER_ALG_RC4)
169 		/* Add buffer to catch 260-byte SUPDT field for RC4 */
170 		sg_set_buf(sg++, rctx->msg_buf.c.supdt_tweak, SPU_SUPDT_LEN);
171 
172 	if (stat_pad_len)
173 		sg_set_buf(sg++, rctx->msg_buf.rx_stat_pad, stat_pad_len);
174 
175 	memset(rctx->msg_buf.rx_stat, 0, SPU_RX_STATUS_LEN);
176 	sg_set_buf(sg, rctx->msg_buf.rx_stat, spu->spu_rx_status_len());
177 
178 	return 0;
179 }
180 
181 /**
182  * spu_skcipher_tx_sg_create() - Build up the scatterlist of buffers used to
183  * send a SPU request message for an skcipher request. Includes SPU message
184  * headers and the request data.
185  * @mssg:	mailbox message containing the transmit sg
186  * @rctx:	crypto request context
187  * @tx_frag_num: number of scatterlist elements required to construct the
188  *		SPU request message
189  * @chunksize:	Number of bytes of request data
190  * @pad_len:	Number of pad bytes
191  *
192  * The scatterlist that gets allocated here is freed in spu_chunk_cleanup()
193  * when the request completes, whether the request is handled successfully or
194  * there is an error.
195  *
196  * Returns:
197  *   0 if successful
198  *   < 0 if an error
199  */
200 static int
201 spu_skcipher_tx_sg_create(struct brcm_message *mssg,
202 			    struct iproc_reqctx_s *rctx,
203 			    u8 tx_frag_num, unsigned int chunksize, u32 pad_len)
204 {
205 	struct spu_hw *spu = &iproc_priv.spu;
206 	struct scatterlist *sg;	/* used to build sgs in mbox message */
207 	struct iproc_ctx_s *ctx = rctx->ctx;
208 	u32 datalen;		/* Number of bytes of response data expected */
209 	u32 stat_len;
210 
211 	mssg->spu.src = kcalloc(tx_frag_num, sizeof(struct scatterlist),
212 				rctx->gfp);
213 	if (unlikely(!mssg->spu.src))
214 		return -ENOMEM;
215 
216 	sg = mssg->spu.src;
217 	sg_init_table(sg, tx_frag_num);
218 
219 	sg_set_buf(sg++, rctx->msg_buf.bcm_spu_req_hdr,
220 		   BCM_HDR_LEN + ctx->spu_req_hdr_len);
221 
222 	/* if XTS tweak in payload, copy from IV (where crypto API puts it) */
223 	if ((ctx->cipher.mode == CIPHER_MODE_XTS) &&
224 	    spu->spu_xts_tweak_in_payload())
225 		sg_set_buf(sg++, rctx->msg_buf.iv_ctr, SPU_XTS_TWEAK_SIZE);
226 
227 	/* Copy in each src sg entry from request, up to chunksize */
228 	datalen = spu_msg_sg_add(&sg, &rctx->src_sg, &rctx->src_skip,
229 				 rctx->src_nents, chunksize);
230 	if (unlikely(datalen < chunksize)) {
231 		pr_err("%s(): failed to copy src sg to mbox msg",
232 		       __func__);
233 		return -EFAULT;
234 	}
235 
236 	if (pad_len)
237 		sg_set_buf(sg++, rctx->msg_buf.spu_req_pad, pad_len);
238 
239 	stat_len = spu->spu_tx_status_len();
240 	if (stat_len) {
241 		memset(rctx->msg_buf.tx_stat, 0, stat_len);
242 		sg_set_buf(sg, rctx->msg_buf.tx_stat, stat_len);
243 	}
244 	return 0;
245 }
246 
247 static int mailbox_send_message(struct brcm_message *mssg, u32 flags,
248 				u8 chan_idx)
249 {
250 	int err;
251 	int retry_cnt = 0;
252 	struct device *dev = &(iproc_priv.pdev->dev);
253 
254 	err = mbox_send_message(iproc_priv.mbox[chan_idx], mssg);
255 	if (flags & CRYPTO_TFM_REQ_MAY_SLEEP) {
256 		while ((err == -ENOBUFS) && (retry_cnt < SPU_MB_RETRY_MAX)) {
257 			/*
258 			 * Mailbox queue is full. Since MAY_SLEEP is set, assume
259 			 * not in atomic context and we can wait and try again.
260 			 */
261 			retry_cnt++;
262 			usleep_range(MBOX_SLEEP_MIN, MBOX_SLEEP_MAX);
263 			err = mbox_send_message(iproc_priv.mbox[chan_idx],
264 						mssg);
265 			atomic_inc(&iproc_priv.mb_no_spc);
266 		}
267 	}
268 	if (err < 0) {
269 		atomic_inc(&iproc_priv.mb_send_fail);
270 		return err;
271 	}
272 
273 	/* Check error returned by mailbox controller */
274 	err = mssg->error;
275 	if (unlikely(err < 0)) {
276 		dev_err(dev, "message error %d", err);
277 		/* Signal txdone for mailbox channel */
278 	}
279 
280 	/* Signal txdone for mailbox channel */
281 	mbox_client_txdone(iproc_priv.mbox[chan_idx], err);
282 	return err;
283 }
284 
285 /**
286  * handle_skcipher_req() - Submit as much of a block cipher request as fits in
287  * a single SPU request message, starting at the current position in the request
288  * data.
289  * @rctx:	Crypto request context
290  *
291  * This may be called on the crypto API thread, or, when a request is so large
292  * it must be broken into multiple SPU messages, on the thread used to invoke
293  * the response callback. When requests are broken into multiple SPU
294  * messages, we assume subsequent messages depend on previous results, and
295  * thus always wait for previous results before submitting the next message.
296  * Because requests are submitted in lock step like this, there is no need
297  * to synchronize access to request data structures.
298  *
299  * Return: -EINPROGRESS: request has been accepted and result will be returned
300  *			 asynchronously
301  *         Any other value indicates an error
302  */
303 static int handle_skcipher_req(struct iproc_reqctx_s *rctx)
304 {
305 	struct spu_hw *spu = &iproc_priv.spu;
306 	struct crypto_async_request *areq = rctx->parent;
307 	struct skcipher_request *req =
308 	    container_of(areq, struct skcipher_request, base);
309 	struct iproc_ctx_s *ctx = rctx->ctx;
310 	struct spu_cipher_parms cipher_parms;
311 	int err = 0;
312 	unsigned int chunksize = 0;	/* Num bytes of request to submit */
313 	int remaining = 0;	/* Bytes of request still to process */
314 	int chunk_start;	/* Beginning of data for current SPU msg */
315 
316 	/* IV or ctr value to use in this SPU msg */
317 	u8 local_iv_ctr[MAX_IV_SIZE];
318 	u32 stat_pad_len;	/* num bytes to align status field */
319 	u32 pad_len;		/* total length of all padding */
320 	bool update_key = false;
321 	struct brcm_message *mssg;	/* mailbox message */
322 
323 	/* number of entries in src and dst sg in mailbox message. */
324 	u8 rx_frag_num = 2;	/* response header and STATUS */
325 	u8 tx_frag_num = 1;	/* request header */
326 
327 	flow_log("%s\n", __func__);
328 
329 	cipher_parms.alg = ctx->cipher.alg;
330 	cipher_parms.mode = ctx->cipher.mode;
331 	cipher_parms.type = ctx->cipher_type;
332 	cipher_parms.key_len = ctx->enckeylen;
333 	cipher_parms.key_buf = ctx->enckey;
334 	cipher_parms.iv_buf = local_iv_ctr;
335 	cipher_parms.iv_len = rctx->iv_ctr_len;
336 
337 	mssg = &rctx->mb_mssg;
338 	chunk_start = rctx->src_sent;
339 	remaining = rctx->total_todo - chunk_start;
340 
341 	/* determine the chunk we are breaking off and update the indexes */
342 	if ((ctx->max_payload != SPU_MAX_PAYLOAD_INF) &&
343 	    (remaining > ctx->max_payload))
344 		chunksize = ctx->max_payload;
345 	else
346 		chunksize = remaining;
347 
348 	rctx->src_sent += chunksize;
349 	rctx->total_sent = rctx->src_sent;
350 
351 	/* Count number of sg entries to be included in this request */
352 	rctx->src_nents = spu_sg_count(rctx->src_sg, rctx->src_skip, chunksize);
353 	rctx->dst_nents = spu_sg_count(rctx->dst_sg, rctx->dst_skip, chunksize);
354 
355 	if ((ctx->cipher.mode == CIPHER_MODE_CBC) &&
356 	    rctx->is_encrypt && chunk_start)
357 		/*
358 		 * Encrypting non-first first chunk. Copy last block of
359 		 * previous result to IV for this chunk.
360 		 */
361 		sg_copy_part_to_buf(req->dst, rctx->msg_buf.iv_ctr,
362 				    rctx->iv_ctr_len,
363 				    chunk_start - rctx->iv_ctr_len);
364 
365 	if (rctx->iv_ctr_len) {
366 		/* get our local copy of the iv */
367 		__builtin_memcpy(local_iv_ctr, rctx->msg_buf.iv_ctr,
368 				 rctx->iv_ctr_len);
369 
370 		/* generate the next IV if possible */
371 		if ((ctx->cipher.mode == CIPHER_MODE_CBC) &&
372 		    !rctx->is_encrypt) {
373 			/*
374 			 * CBC Decrypt: next IV is the last ciphertext block in
375 			 * this chunk
376 			 */
377 			sg_copy_part_to_buf(req->src, rctx->msg_buf.iv_ctr,
378 					    rctx->iv_ctr_len,
379 					    rctx->src_sent - rctx->iv_ctr_len);
380 		} else if (ctx->cipher.mode == CIPHER_MODE_CTR) {
381 			/*
382 			 * The SPU hardware increments the counter once for
383 			 * each AES block of 16 bytes. So update the counter
384 			 * for the next chunk, if there is one. Note that for
385 			 * this chunk, the counter has already been copied to
386 			 * local_iv_ctr. We can assume a block size of 16,
387 			 * because we only support CTR mode for AES, not for
388 			 * any other cipher alg.
389 			 */
390 			add_to_ctr(rctx->msg_buf.iv_ctr, chunksize >> 4);
391 		}
392 	}
393 
394 	if (ctx->cipher.alg == CIPHER_ALG_RC4) {
395 		rx_frag_num++;
396 		if (chunk_start) {
397 			/*
398 			 * for non-first RC4 chunks, use SUPDT from previous
399 			 * response as key for this chunk.
400 			 */
401 			cipher_parms.key_buf = rctx->msg_buf.c.supdt_tweak;
402 			update_key = true;
403 			cipher_parms.type = CIPHER_TYPE_UPDT;
404 		} else if (!rctx->is_encrypt) {
405 			/*
406 			 * First RC4 chunk. For decrypt, key in pre-built msg
407 			 * header may have been changed if encrypt required
408 			 * multiple chunks. So revert the key to the
409 			 * ctx->enckey value.
410 			 */
411 			update_key = true;
412 			cipher_parms.type = CIPHER_TYPE_INIT;
413 		}
414 	}
415 
416 	if (ctx->max_payload == SPU_MAX_PAYLOAD_INF)
417 		flow_log("max_payload infinite\n");
418 	else
419 		flow_log("max_payload %u\n", ctx->max_payload);
420 
421 	flow_log("sent:%u start:%u remains:%u size:%u\n",
422 		 rctx->src_sent, chunk_start, remaining, chunksize);
423 
424 	/* Copy SPU header template created at setkey time */
425 	memcpy(rctx->msg_buf.bcm_spu_req_hdr, ctx->bcm_spu_req_hdr,
426 	       sizeof(rctx->msg_buf.bcm_spu_req_hdr));
427 
428 	/*
429 	 * Pass SUPDT field as key. Key field in finish() call is only used
430 	 * when update_key has been set above for RC4. Will be ignored in
431 	 * all other cases.
432 	 */
433 	spu->spu_cipher_req_finish(rctx->msg_buf.bcm_spu_req_hdr + BCM_HDR_LEN,
434 				   ctx->spu_req_hdr_len, !(rctx->is_encrypt),
435 				   &cipher_parms, update_key, chunksize);
436 
437 	atomic64_add(chunksize, &iproc_priv.bytes_out);
438 
439 	stat_pad_len = spu->spu_wordalign_padlen(chunksize);
440 	if (stat_pad_len)
441 		rx_frag_num++;
442 	pad_len = stat_pad_len;
443 	if (pad_len) {
444 		tx_frag_num++;
445 		spu->spu_request_pad(rctx->msg_buf.spu_req_pad, 0,
446 				     0, ctx->auth.alg, ctx->auth.mode,
447 				     rctx->total_sent, stat_pad_len);
448 	}
449 
450 	spu->spu_dump_msg_hdr(rctx->msg_buf.bcm_spu_req_hdr + BCM_HDR_LEN,
451 			      ctx->spu_req_hdr_len);
452 	packet_log("payload:\n");
453 	dump_sg(rctx->src_sg, rctx->src_skip, chunksize);
454 	packet_dump("   pad: ", rctx->msg_buf.spu_req_pad, pad_len);
455 
456 	/*
457 	 * Build mailbox message containing SPU request msg and rx buffers
458 	 * to catch response message
459 	 */
460 	memset(mssg, 0, sizeof(*mssg));
461 	mssg->type = BRCM_MESSAGE_SPU;
462 	mssg->ctx = rctx;	/* Will be returned in response */
463 
464 	/* Create rx scatterlist to catch result */
465 	rx_frag_num += rctx->dst_nents;
466 
467 	if ((ctx->cipher.mode == CIPHER_MODE_XTS) &&
468 	    spu->spu_xts_tweak_in_payload())
469 		rx_frag_num++;	/* extra sg to insert tweak */
470 
471 	err = spu_skcipher_rx_sg_create(mssg, rctx, rx_frag_num, chunksize,
472 					  stat_pad_len);
473 	if (err)
474 		return err;
475 
476 	/* Create tx scatterlist containing SPU request message */
477 	tx_frag_num += rctx->src_nents;
478 	if (spu->spu_tx_status_len())
479 		tx_frag_num++;
480 
481 	if ((ctx->cipher.mode == CIPHER_MODE_XTS) &&
482 	    spu->spu_xts_tweak_in_payload())
483 		tx_frag_num++;	/* extra sg to insert tweak */
484 
485 	err = spu_skcipher_tx_sg_create(mssg, rctx, tx_frag_num, chunksize,
486 					  pad_len);
487 	if (err)
488 		return err;
489 
490 	err = mailbox_send_message(mssg, req->base.flags, rctx->chan_idx);
491 	if (unlikely(err < 0))
492 		return err;
493 
494 	return -EINPROGRESS;
495 }
496 
497 /**
498  * handle_skcipher_resp() - Process a block cipher SPU response. Updates the
499  * total received count for the request and updates global stats.
500  * @rctx:	Crypto request context
501  */
502 static void handle_skcipher_resp(struct iproc_reqctx_s *rctx)
503 {
504 	struct spu_hw *spu = &iproc_priv.spu;
505 #ifdef DEBUG
506 	struct crypto_async_request *areq = rctx->parent;
507 	struct skcipher_request *req = skcipher_request_cast(areq);
508 #endif
509 	struct iproc_ctx_s *ctx = rctx->ctx;
510 	u32 payload_len;
511 
512 	/* See how much data was returned */
513 	payload_len = spu->spu_payload_length(rctx->msg_buf.spu_resp_hdr);
514 
515 	/*
516 	 * In XTS mode, the first SPU_XTS_TWEAK_SIZE bytes may be the
517 	 * encrypted tweak ("i") value; we don't count those.
518 	 */
519 	if ((ctx->cipher.mode == CIPHER_MODE_XTS) &&
520 	    spu->spu_xts_tweak_in_payload() &&
521 	    (payload_len >= SPU_XTS_TWEAK_SIZE))
522 		payload_len -= SPU_XTS_TWEAK_SIZE;
523 
524 	atomic64_add(payload_len, &iproc_priv.bytes_in);
525 
526 	flow_log("%s() offset: %u, bd_len: %u BD:\n",
527 		 __func__, rctx->total_received, payload_len);
528 
529 	dump_sg(req->dst, rctx->total_received, payload_len);
530 	if (ctx->cipher.alg == CIPHER_ALG_RC4)
531 		packet_dump("  supdt ", rctx->msg_buf.c.supdt_tweak,
532 			    SPU_SUPDT_LEN);
533 
534 	rctx->total_received += payload_len;
535 	if (rctx->total_received == rctx->total_todo) {
536 		atomic_inc(&iproc_priv.op_counts[SPU_OP_CIPHER]);
537 		atomic_inc(
538 		   &iproc_priv.cipher_cnt[ctx->cipher.alg][ctx->cipher.mode]);
539 	}
540 }
541 
542 /**
543  * spu_ahash_rx_sg_create() - Build up the scatterlist of buffers used to
544  * receive a SPU response message for an ahash request.
545  * @mssg:	mailbox message containing the receive sg
546  * @rctx:	crypto request context
547  * @rx_frag_num: number of scatterlist elements required to hold the
548  *		SPU response message
549  * @digestsize: length of hash digest, in bytes
550  * @stat_pad_len: Number of bytes required to pad the STAT field to
551  *		a 4-byte boundary
552  *
553  * The scatterlist that gets allocated here is freed in spu_chunk_cleanup()
554  * when the request completes, whether the request is handled successfully or
555  * there is an error.
556  *
557  * Return:
558  *   0 if successful
559  *   < 0 if an error
560  */
561 static int
562 spu_ahash_rx_sg_create(struct brcm_message *mssg,
563 		       struct iproc_reqctx_s *rctx,
564 		       u8 rx_frag_num, unsigned int digestsize,
565 		       u32 stat_pad_len)
566 {
567 	struct spu_hw *spu = &iproc_priv.spu;
568 	struct scatterlist *sg;	/* used to build sgs in mbox message */
569 	struct iproc_ctx_s *ctx = rctx->ctx;
570 
571 	mssg->spu.dst = kcalloc(rx_frag_num, sizeof(struct scatterlist),
572 				rctx->gfp);
573 	if (!mssg->spu.dst)
574 		return -ENOMEM;
575 
576 	sg = mssg->spu.dst;
577 	sg_init_table(sg, rx_frag_num);
578 	/* Space for SPU message header */
579 	sg_set_buf(sg++, rctx->msg_buf.spu_resp_hdr, ctx->spu_resp_hdr_len);
580 
581 	/* Space for digest */
582 	sg_set_buf(sg++, rctx->msg_buf.digest, digestsize);
583 
584 	if (stat_pad_len)
585 		sg_set_buf(sg++, rctx->msg_buf.rx_stat_pad, stat_pad_len);
586 
587 	memset(rctx->msg_buf.rx_stat, 0, SPU_RX_STATUS_LEN);
588 	sg_set_buf(sg, rctx->msg_buf.rx_stat, spu->spu_rx_status_len());
589 	return 0;
590 }
591 
592 /**
593  * spu_ahash_tx_sg_create() -  Build up the scatterlist of buffers used to send
594  * a SPU request message for an ahash request. Includes SPU message headers and
595  * the request data.
596  * @mssg:	mailbox message containing the transmit sg
597  * @rctx:	crypto request context
598  * @tx_frag_num: number of scatterlist elements required to construct the
599  *		SPU request message
600  * @spu_hdr_len: length in bytes of SPU message header
601  * @hash_carry_len: Number of bytes of data carried over from previous req
602  * @new_data_len: Number of bytes of new request data
603  * @pad_len:	Number of pad bytes
604  *
605  * The scatterlist that gets allocated here is freed in spu_chunk_cleanup()
606  * when the request completes, whether the request is handled successfully or
607  * there is an error.
608  *
609  * Return:
610  *   0 if successful
611  *   < 0 if an error
612  */
613 static int
614 spu_ahash_tx_sg_create(struct brcm_message *mssg,
615 		       struct iproc_reqctx_s *rctx,
616 		       u8 tx_frag_num,
617 		       u32 spu_hdr_len,
618 		       unsigned int hash_carry_len,
619 		       unsigned int new_data_len, u32 pad_len)
620 {
621 	struct spu_hw *spu = &iproc_priv.spu;
622 	struct scatterlist *sg;	/* used to build sgs in mbox message */
623 	u32 datalen;		/* Number of bytes of response data expected */
624 	u32 stat_len;
625 
626 	mssg->spu.src = kcalloc(tx_frag_num, sizeof(struct scatterlist),
627 				rctx->gfp);
628 	if (!mssg->spu.src)
629 		return -ENOMEM;
630 
631 	sg = mssg->spu.src;
632 	sg_init_table(sg, tx_frag_num);
633 
634 	sg_set_buf(sg++, rctx->msg_buf.bcm_spu_req_hdr,
635 		   BCM_HDR_LEN + spu_hdr_len);
636 
637 	if (hash_carry_len)
638 		sg_set_buf(sg++, rctx->hash_carry, hash_carry_len);
639 
640 	if (new_data_len) {
641 		/* Copy in each src sg entry from request, up to chunksize */
642 		datalen = spu_msg_sg_add(&sg, &rctx->src_sg, &rctx->src_skip,
643 					 rctx->src_nents, new_data_len);
644 		if (datalen < new_data_len) {
645 			pr_err("%s(): failed to copy src sg to mbox msg",
646 			       __func__);
647 			return -EFAULT;
648 		}
649 	}
650 
651 	if (pad_len)
652 		sg_set_buf(sg++, rctx->msg_buf.spu_req_pad, pad_len);
653 
654 	stat_len = spu->spu_tx_status_len();
655 	if (stat_len) {
656 		memset(rctx->msg_buf.tx_stat, 0, stat_len);
657 		sg_set_buf(sg, rctx->msg_buf.tx_stat, stat_len);
658 	}
659 
660 	return 0;
661 }
662 
663 /**
664  * handle_ahash_req() - Process an asynchronous hash request from the crypto
665  * API.
666  * @rctx:  Crypto request context
667  *
668  * Builds a SPU request message embedded in a mailbox message and submits the
669  * mailbox message on a selected mailbox channel. The SPU request message is
670  * constructed as a scatterlist, including entries from the crypto API's
671  * src scatterlist to avoid copying the data to be hashed. This function is
672  * called either on the thread from the crypto API, or, in the case that the
673  * crypto API request is too large to fit in a single SPU request message,
674  * on the thread that invokes the receive callback with a response message.
675  * Because some operations require the response from one chunk before the next
676  * chunk can be submitted, we always wait for the response for the previous
677  * chunk before submitting the next chunk. Because requests are submitted in
678  * lock step like this, there is no need to synchronize access to request data
679  * structures.
680  *
681  * Return:
682  *   -EINPROGRESS: request has been submitted to SPU and response will be
683  *		   returned asynchronously
684  *   -EAGAIN:      non-final request included a small amount of data, which for
685  *		   efficiency we did not submit to the SPU, but instead stored
686  *		   to be submitted to the SPU with the next part of the request
687  *   other:        an error code
688  */
689 static int handle_ahash_req(struct iproc_reqctx_s *rctx)
690 {
691 	struct spu_hw *spu = &iproc_priv.spu;
692 	struct crypto_async_request *areq = rctx->parent;
693 	struct ahash_request *req = ahash_request_cast(areq);
694 	struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
695 	struct crypto_tfm *tfm = crypto_ahash_tfm(ahash);
696 	unsigned int blocksize = crypto_tfm_alg_blocksize(tfm);
697 	struct iproc_ctx_s *ctx = rctx->ctx;
698 
699 	/* number of bytes still to be hashed in this req */
700 	unsigned int nbytes_to_hash = 0;
701 	int err = 0;
702 	unsigned int chunksize = 0;	/* length of hash carry + new data */
703 	/*
704 	 * length of new data, not from hash carry, to be submitted in
705 	 * this hw request
706 	 */
707 	unsigned int new_data_len;
708 
709 	unsigned int __maybe_unused chunk_start = 0;
710 	u32 db_size;	 /* Length of data field, incl gcm and hash padding */
711 	int pad_len = 0; /* total pad len, including gcm, hash, stat padding */
712 	u32 data_pad_len = 0;	/* length of GCM/CCM padding */
713 	u32 stat_pad_len = 0;	/* length of padding to align STATUS word */
714 	struct brcm_message *mssg;	/* mailbox message */
715 	struct spu_request_opts req_opts;
716 	struct spu_cipher_parms cipher_parms;
717 	struct spu_hash_parms hash_parms;
718 	struct spu_aead_parms aead_parms;
719 	unsigned int local_nbuf;
720 	u32 spu_hdr_len;
721 	unsigned int digestsize;
722 	u16 rem = 0;
723 
724 	/*
725 	 * number of entries in src and dst sg. Always includes SPU msg header.
726 	 * rx always includes a buffer to catch digest and STATUS.
727 	 */
728 	u8 rx_frag_num = 3;
729 	u8 tx_frag_num = 1;
730 
731 	flow_log("total_todo %u, total_sent %u\n",
732 		 rctx->total_todo, rctx->total_sent);
733 
734 	memset(&req_opts, 0, sizeof(req_opts));
735 	memset(&cipher_parms, 0, sizeof(cipher_parms));
736 	memset(&hash_parms, 0, sizeof(hash_parms));
737 	memset(&aead_parms, 0, sizeof(aead_parms));
738 
739 	req_opts.bd_suppress = true;
740 	hash_parms.alg = ctx->auth.alg;
741 	hash_parms.mode = ctx->auth.mode;
742 	hash_parms.type = HASH_TYPE_NONE;
743 	hash_parms.key_buf = (u8 *)ctx->authkey;
744 	hash_parms.key_len = ctx->authkeylen;
745 
746 	/*
747 	 * For hash algorithms below assignment looks bit odd but
748 	 * it's needed for AES-XCBC and AES-CMAC hash algorithms
749 	 * to differentiate between 128, 192, 256 bit key values.
750 	 * Based on the key values, hash algorithm is selected.
751 	 * For example for 128 bit key, hash algorithm is AES-128.
752 	 */
753 	cipher_parms.type = ctx->cipher_type;
754 
755 	mssg = &rctx->mb_mssg;
756 	chunk_start = rctx->src_sent;
757 
758 	/*
759 	 * Compute the amount remaining to hash. This may include data
760 	 * carried over from previous requests.
761 	 */
762 	nbytes_to_hash = rctx->total_todo - rctx->total_sent;
763 	chunksize = nbytes_to_hash;
764 	if ((ctx->max_payload != SPU_MAX_PAYLOAD_INF) &&
765 	    (chunksize > ctx->max_payload))
766 		chunksize = ctx->max_payload;
767 
768 	/*
769 	 * If this is not a final request and the request data is not a multiple
770 	 * of a full block, then simply park the extra data and prefix it to the
771 	 * data for the next request.
772 	 */
773 	if (!rctx->is_final) {
774 		u8 *dest = rctx->hash_carry + rctx->hash_carry_len;
775 		u16 new_len;  /* len of data to add to hash carry */
776 
777 		rem = chunksize % blocksize;   /* remainder */
778 		if (rem) {
779 			/* chunksize not a multiple of blocksize */
780 			chunksize -= rem;
781 			if (chunksize == 0) {
782 				/* Don't have a full block to submit to hw */
783 				new_len = rem - rctx->hash_carry_len;
784 				sg_copy_part_to_buf(req->src, dest, new_len,
785 						    rctx->src_sent);
786 				rctx->hash_carry_len = rem;
787 				flow_log("Exiting with hash carry len: %u\n",
788 					 rctx->hash_carry_len);
789 				packet_dump("  buf: ",
790 					    rctx->hash_carry,
791 					    rctx->hash_carry_len);
792 				return -EAGAIN;
793 			}
794 		}
795 	}
796 
797 	/* if we have hash carry, then prefix it to the data in this request */
798 	local_nbuf = rctx->hash_carry_len;
799 	rctx->hash_carry_len = 0;
800 	if (local_nbuf)
801 		tx_frag_num++;
802 	new_data_len = chunksize - local_nbuf;
803 
804 	/* Count number of sg entries to be used in this request */
805 	rctx->src_nents = spu_sg_count(rctx->src_sg, rctx->src_skip,
806 				       new_data_len);
807 
808 	/* AES hashing keeps key size in type field, so need to copy it here */
809 	if (hash_parms.alg == HASH_ALG_AES)
810 		hash_parms.type = (enum hash_type)cipher_parms.type;
811 	else
812 		hash_parms.type = spu->spu_hash_type(rctx->total_sent);
813 
814 	digestsize = spu->spu_digest_size(ctx->digestsize, ctx->auth.alg,
815 					  hash_parms.type);
816 	hash_parms.digestsize =	digestsize;
817 
818 	/* update the indexes */
819 	rctx->total_sent += chunksize;
820 	/* if you sent a prebuf then that wasn't from this req->src */
821 	rctx->src_sent += new_data_len;
822 
823 	if ((rctx->total_sent == rctx->total_todo) && rctx->is_final)
824 		hash_parms.pad_len = spu->spu_hash_pad_len(hash_parms.alg,
825 							   hash_parms.mode,
826 							   chunksize,
827 							   blocksize);
828 
829 	/*
830 	 * If a non-first chunk, then include the digest returned from the
831 	 * previous chunk so that hw can add to it (except for AES types).
832 	 */
833 	if ((hash_parms.type == HASH_TYPE_UPDT) &&
834 	    (hash_parms.alg != HASH_ALG_AES)) {
835 		hash_parms.key_buf = rctx->incr_hash;
836 		hash_parms.key_len = digestsize;
837 	}
838 
839 	atomic64_add(chunksize, &iproc_priv.bytes_out);
840 
841 	flow_log("%s() final: %u nbuf: %u ",
842 		 __func__, rctx->is_final, local_nbuf);
843 
844 	if (ctx->max_payload == SPU_MAX_PAYLOAD_INF)
845 		flow_log("max_payload infinite\n");
846 	else
847 		flow_log("max_payload %u\n", ctx->max_payload);
848 
849 	flow_log("chunk_start: %u chunk_size: %u\n", chunk_start, chunksize);
850 
851 	/* Prepend SPU header with type 3 BCM header */
852 	memcpy(rctx->msg_buf.bcm_spu_req_hdr, BCMHEADER, BCM_HDR_LEN);
853 
854 	hash_parms.prebuf_len = local_nbuf;
855 	spu_hdr_len = spu->spu_create_request(rctx->msg_buf.bcm_spu_req_hdr +
856 					      BCM_HDR_LEN,
857 					      &req_opts, &cipher_parms,
858 					      &hash_parms, &aead_parms,
859 					      new_data_len);
860 
861 	if (spu_hdr_len == 0) {
862 		pr_err("Failed to create SPU request header\n");
863 		return -EFAULT;
864 	}
865 
866 	/*
867 	 * Determine total length of padding required. Put all padding in one
868 	 * buffer.
869 	 */
870 	data_pad_len = spu->spu_gcm_ccm_pad_len(ctx->cipher.mode, chunksize);
871 	db_size = spu_real_db_size(0, 0, local_nbuf, new_data_len,
872 				   0, 0, hash_parms.pad_len);
873 	if (spu->spu_tx_status_len())
874 		stat_pad_len = spu->spu_wordalign_padlen(db_size);
875 	if (stat_pad_len)
876 		rx_frag_num++;
877 	pad_len = hash_parms.pad_len + data_pad_len + stat_pad_len;
878 	if (pad_len) {
879 		tx_frag_num++;
880 		spu->spu_request_pad(rctx->msg_buf.spu_req_pad, data_pad_len,
881 				     hash_parms.pad_len, ctx->auth.alg,
882 				     ctx->auth.mode, rctx->total_sent,
883 				     stat_pad_len);
884 	}
885 
886 	spu->spu_dump_msg_hdr(rctx->msg_buf.bcm_spu_req_hdr + BCM_HDR_LEN,
887 			      spu_hdr_len);
888 	packet_dump("    prebuf: ", rctx->hash_carry, local_nbuf);
889 	flow_log("Data:\n");
890 	dump_sg(rctx->src_sg, rctx->src_skip, new_data_len);
891 	packet_dump("   pad: ", rctx->msg_buf.spu_req_pad, pad_len);
892 
893 	/*
894 	 * Build mailbox message containing SPU request msg and rx buffers
895 	 * to catch response message
896 	 */
897 	memset(mssg, 0, sizeof(*mssg));
898 	mssg->type = BRCM_MESSAGE_SPU;
899 	mssg->ctx = rctx;	/* Will be returned in response */
900 
901 	/* Create rx scatterlist to catch result */
902 	err = spu_ahash_rx_sg_create(mssg, rctx, rx_frag_num, digestsize,
903 				     stat_pad_len);
904 	if (err)
905 		return err;
906 
907 	/* Create tx scatterlist containing SPU request message */
908 	tx_frag_num += rctx->src_nents;
909 	if (spu->spu_tx_status_len())
910 		tx_frag_num++;
911 	err = spu_ahash_tx_sg_create(mssg, rctx, tx_frag_num, spu_hdr_len,
912 				     local_nbuf, new_data_len, pad_len);
913 	if (err)
914 		return err;
915 
916 	err = mailbox_send_message(mssg, req->base.flags, rctx->chan_idx);
917 	if (unlikely(err < 0))
918 		return err;
919 
920 	return -EINPROGRESS;
921 }
922 
923 /**
924  * spu_hmac_outer_hash() - Request synchonous software compute of the outer hash
925  * for an HMAC request.
926  * @req:  The HMAC request from the crypto API
927  * @ctx:  The session context
928  *
929  * Return: 0 if synchronous hash operation successful
930  *         -EINVAL if the hash algo is unrecognized
931  *         any other value indicates an error
932  */
933 static int spu_hmac_outer_hash(struct ahash_request *req,
934 			       struct iproc_ctx_s *ctx)
935 {
936 	struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
937 	unsigned int blocksize =
938 		crypto_tfm_alg_blocksize(crypto_ahash_tfm(ahash));
939 	int rc;
940 
941 	switch (ctx->auth.alg) {
942 	case HASH_ALG_MD5:
943 		rc = do_shash("md5", req->result, ctx->opad, blocksize,
944 			      req->result, ctx->digestsize, NULL, 0);
945 		break;
946 	case HASH_ALG_SHA1:
947 		rc = do_shash("sha1", req->result, ctx->opad, blocksize,
948 			      req->result, ctx->digestsize, NULL, 0);
949 		break;
950 	case HASH_ALG_SHA224:
951 		rc = do_shash("sha224", req->result, ctx->opad, blocksize,
952 			      req->result, ctx->digestsize, NULL, 0);
953 		break;
954 	case HASH_ALG_SHA256:
955 		rc = do_shash("sha256", req->result, ctx->opad, blocksize,
956 			      req->result, ctx->digestsize, NULL, 0);
957 		break;
958 	case HASH_ALG_SHA384:
959 		rc = do_shash("sha384", req->result, ctx->opad, blocksize,
960 			      req->result, ctx->digestsize, NULL, 0);
961 		break;
962 	case HASH_ALG_SHA512:
963 		rc = do_shash("sha512", req->result, ctx->opad, blocksize,
964 			      req->result, ctx->digestsize, NULL, 0);
965 		break;
966 	default:
967 		pr_err("%s() Error : unknown hmac type\n", __func__);
968 		rc = -EINVAL;
969 	}
970 	return rc;
971 }
972 
973 /**
974  * ahash_req_done() - Process a hash result from the SPU hardware.
975  * @rctx: Crypto request context
976  *
977  * Return: 0 if successful
978  *         < 0 if an error
979  */
980 static int ahash_req_done(struct iproc_reqctx_s *rctx)
981 {
982 	struct spu_hw *spu = &iproc_priv.spu;
983 	struct crypto_async_request *areq = rctx->parent;
984 	struct ahash_request *req = ahash_request_cast(areq);
985 	struct iproc_ctx_s *ctx = rctx->ctx;
986 	int err;
987 
988 	memcpy(req->result, rctx->msg_buf.digest, ctx->digestsize);
989 
990 	if (spu->spu_type == SPU_TYPE_SPUM) {
991 		/* byte swap the output from the UPDT function to network byte
992 		 * order
993 		 */
994 		if (ctx->auth.alg == HASH_ALG_MD5) {
995 			__swab32s((u32 *)req->result);
996 			__swab32s(((u32 *)req->result) + 1);
997 			__swab32s(((u32 *)req->result) + 2);
998 			__swab32s(((u32 *)req->result) + 3);
999 			__swab32s(((u32 *)req->result) + 4);
1000 		}
1001 	}
1002 
1003 	flow_dump("  digest ", req->result, ctx->digestsize);
1004 
1005 	/* if this an HMAC then do the outer hash */
1006 	if (rctx->is_sw_hmac) {
1007 		err = spu_hmac_outer_hash(req, ctx);
1008 		if (err < 0)
1009 			return err;
1010 		flow_dump("  hmac: ", req->result, ctx->digestsize);
1011 	}
1012 
1013 	if (rctx->is_sw_hmac || ctx->auth.mode == HASH_MODE_HMAC) {
1014 		atomic_inc(&iproc_priv.op_counts[SPU_OP_HMAC]);
1015 		atomic_inc(&iproc_priv.hmac_cnt[ctx->auth.alg]);
1016 	} else {
1017 		atomic_inc(&iproc_priv.op_counts[SPU_OP_HASH]);
1018 		atomic_inc(&iproc_priv.hash_cnt[ctx->auth.alg]);
1019 	}
1020 
1021 	return 0;
1022 }
1023 
1024 /**
1025  * handle_ahash_resp() - Process a SPU response message for a hash request.
1026  * Checks if the entire crypto API request has been processed, and if so,
1027  * invokes post processing on the result.
1028  * @rctx: Crypto request context
1029  */
1030 static void handle_ahash_resp(struct iproc_reqctx_s *rctx)
1031 {
1032 	struct iproc_ctx_s *ctx = rctx->ctx;
1033 #ifdef DEBUG
1034 	struct crypto_async_request *areq = rctx->parent;
1035 	struct ahash_request *req = ahash_request_cast(areq);
1036 	struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
1037 	unsigned int blocksize =
1038 		crypto_tfm_alg_blocksize(crypto_ahash_tfm(ahash));
1039 #endif
1040 	/*
1041 	 * Save hash to use as input to next op if incremental. Might be copying
1042 	 * too much, but that's easier than figuring out actual digest size here
1043 	 */
1044 	memcpy(rctx->incr_hash, rctx->msg_buf.digest, MAX_DIGEST_SIZE);
1045 
1046 	flow_log("%s() blocksize:%u digestsize:%u\n",
1047 		 __func__, blocksize, ctx->digestsize);
1048 
1049 	atomic64_add(ctx->digestsize, &iproc_priv.bytes_in);
1050 
1051 	if (rctx->is_final && (rctx->total_sent == rctx->total_todo))
1052 		ahash_req_done(rctx);
1053 }
1054 
1055 /**
1056  * spu_aead_rx_sg_create() - Build up the scatterlist of buffers used to receive
1057  * a SPU response message for an AEAD request. Includes buffers to catch SPU
1058  * message headers and the response data.
1059  * @mssg:	mailbox message containing the receive sg
1060  * @rctx:	crypto request context
1061  * @rx_frag_num: number of scatterlist elements required to hold the
1062  *		SPU response message
1063  * @assoc_len:	Length of associated data included in the crypto request
1064  * @ret_iv_len: Length of IV returned in response
1065  * @resp_len:	Number of bytes of response data expected to be written to
1066  *              dst buffer from crypto API
1067  * @digestsize: Length of hash digest, in bytes
1068  * @stat_pad_len: Number of bytes required to pad the STAT field to
1069  *		a 4-byte boundary
1070  *
1071  * The scatterlist that gets allocated here is freed in spu_chunk_cleanup()
1072  * when the request completes, whether the request is handled successfully or
1073  * there is an error.
1074  *
1075  * Returns:
1076  *   0 if successful
1077  *   < 0 if an error
1078  */
1079 static int spu_aead_rx_sg_create(struct brcm_message *mssg,
1080 				 struct aead_request *req,
1081 				 struct iproc_reqctx_s *rctx,
1082 				 u8 rx_frag_num,
1083 				 unsigned int assoc_len,
1084 				 u32 ret_iv_len, unsigned int resp_len,
1085 				 unsigned int digestsize, u32 stat_pad_len)
1086 {
1087 	struct spu_hw *spu = &iproc_priv.spu;
1088 	struct scatterlist *sg;	/* used to build sgs in mbox message */
1089 	struct iproc_ctx_s *ctx = rctx->ctx;
1090 	u32 datalen;		/* Number of bytes of response data expected */
1091 	u32 assoc_buf_len;
1092 	u8 data_padlen = 0;
1093 
1094 	if (ctx->is_rfc4543) {
1095 		/* RFC4543: only pad after data, not after AAD */
1096 		data_padlen = spu->spu_gcm_ccm_pad_len(ctx->cipher.mode,
1097 							  assoc_len + resp_len);
1098 		assoc_buf_len = assoc_len;
1099 	} else {
1100 		data_padlen = spu->spu_gcm_ccm_pad_len(ctx->cipher.mode,
1101 							  resp_len);
1102 		assoc_buf_len = spu->spu_assoc_resp_len(ctx->cipher.mode,
1103 						assoc_len, ret_iv_len,
1104 						rctx->is_encrypt);
1105 	}
1106 
1107 	if (ctx->cipher.mode == CIPHER_MODE_CCM)
1108 		/* ICV (after data) must be in the next 32-bit word for CCM */
1109 		data_padlen += spu->spu_wordalign_padlen(assoc_buf_len +
1110 							 resp_len +
1111 							 data_padlen);
1112 
1113 	if (data_padlen)
1114 		/* have to catch gcm pad in separate buffer */
1115 		rx_frag_num++;
1116 
1117 	mssg->spu.dst = kcalloc(rx_frag_num, sizeof(struct scatterlist),
1118 				rctx->gfp);
1119 	if (!mssg->spu.dst)
1120 		return -ENOMEM;
1121 
1122 	sg = mssg->spu.dst;
1123 	sg_init_table(sg, rx_frag_num);
1124 
1125 	/* Space for SPU message header */
1126 	sg_set_buf(sg++, rctx->msg_buf.spu_resp_hdr, ctx->spu_resp_hdr_len);
1127 
1128 	if (assoc_buf_len) {
1129 		/*
1130 		 * Don't write directly to req->dst, because SPU may pad the
1131 		 * assoc data in the response
1132 		 */
1133 		memset(rctx->msg_buf.a.resp_aad, 0, assoc_buf_len);
1134 		sg_set_buf(sg++, rctx->msg_buf.a.resp_aad, assoc_buf_len);
1135 	}
1136 
1137 	if (resp_len) {
1138 		/*
1139 		 * Copy in each dst sg entry from request, up to chunksize.
1140 		 * dst sg catches just the data. digest caught in separate buf.
1141 		 */
1142 		datalen = spu_msg_sg_add(&sg, &rctx->dst_sg, &rctx->dst_skip,
1143 					 rctx->dst_nents, resp_len);
1144 		if (datalen < (resp_len)) {
1145 			pr_err("%s(): failed to copy dst sg to mbox msg. expected len %u, datalen %u",
1146 			       __func__, resp_len, datalen);
1147 			return -EFAULT;
1148 		}
1149 	}
1150 
1151 	/* If GCM/CCM data is padded, catch padding in separate buffer */
1152 	if (data_padlen) {
1153 		memset(rctx->msg_buf.a.gcmpad, 0, data_padlen);
1154 		sg_set_buf(sg++, rctx->msg_buf.a.gcmpad, data_padlen);
1155 	}
1156 
1157 	/* Always catch ICV in separate buffer */
1158 	sg_set_buf(sg++, rctx->msg_buf.digest, digestsize);
1159 
1160 	flow_log("stat_pad_len %u\n", stat_pad_len);
1161 	if (stat_pad_len) {
1162 		memset(rctx->msg_buf.rx_stat_pad, 0, stat_pad_len);
1163 		sg_set_buf(sg++, rctx->msg_buf.rx_stat_pad, stat_pad_len);
1164 	}
1165 
1166 	memset(rctx->msg_buf.rx_stat, 0, SPU_RX_STATUS_LEN);
1167 	sg_set_buf(sg, rctx->msg_buf.rx_stat, spu->spu_rx_status_len());
1168 
1169 	return 0;
1170 }
1171 
1172 /**
1173  * spu_aead_tx_sg_create() - Build up the scatterlist of buffers used to send a
1174  * SPU request message for an AEAD request. Includes SPU message headers and the
1175  * request data.
1176  * @mssg:	mailbox message containing the transmit sg
1177  * @rctx:	crypto request context
1178  * @tx_frag_num: number of scatterlist elements required to construct the
1179  *		SPU request message
1180  * @spu_hdr_len: length of SPU message header in bytes
1181  * @assoc:	crypto API associated data scatterlist
1182  * @assoc_len:	length of associated data
1183  * @assoc_nents: number of scatterlist entries containing assoc data
1184  * @aead_iv_len: length of AEAD IV, if included
1185  * @chunksize:	Number of bytes of request data
1186  * @aad_pad_len: Number of bytes of padding at end of AAD. For GCM/CCM.
1187  * @pad_len:	Number of pad bytes
1188  * @incl_icv:	If true, write separate ICV buffer after data and
1189  *              any padding
1190  *
1191  * The scatterlist that gets allocated here is freed in spu_chunk_cleanup()
1192  * when the request completes, whether the request is handled successfully or
1193  * there is an error.
1194  *
1195  * Return:
1196  *   0 if successful
1197  *   < 0 if an error
1198  */
1199 static int spu_aead_tx_sg_create(struct brcm_message *mssg,
1200 				 struct iproc_reqctx_s *rctx,
1201 				 u8 tx_frag_num,
1202 				 u32 spu_hdr_len,
1203 				 struct scatterlist *assoc,
1204 				 unsigned int assoc_len,
1205 				 int assoc_nents,
1206 				 unsigned int aead_iv_len,
1207 				 unsigned int chunksize,
1208 				 u32 aad_pad_len, u32 pad_len, bool incl_icv)
1209 {
1210 	struct spu_hw *spu = &iproc_priv.spu;
1211 	struct scatterlist *sg;	/* used to build sgs in mbox message */
1212 	struct scatterlist *assoc_sg = assoc;
1213 	struct iproc_ctx_s *ctx = rctx->ctx;
1214 	u32 datalen;		/* Number of bytes of data to write */
1215 	u32 written;		/* Number of bytes of data written */
1216 	u32 assoc_offset = 0;
1217 	u32 stat_len;
1218 
1219 	mssg->spu.src = kcalloc(tx_frag_num, sizeof(struct scatterlist),
1220 				rctx->gfp);
1221 	if (!mssg->spu.src)
1222 		return -ENOMEM;
1223 
1224 	sg = mssg->spu.src;
1225 	sg_init_table(sg, tx_frag_num);
1226 
1227 	sg_set_buf(sg++, rctx->msg_buf.bcm_spu_req_hdr,
1228 		   BCM_HDR_LEN + spu_hdr_len);
1229 
1230 	if (assoc_len) {
1231 		/* Copy in each associated data sg entry from request */
1232 		written = spu_msg_sg_add(&sg, &assoc_sg, &assoc_offset,
1233 					 assoc_nents, assoc_len);
1234 		if (written < assoc_len) {
1235 			pr_err("%s(): failed to copy assoc sg to mbox msg",
1236 			       __func__);
1237 			return -EFAULT;
1238 		}
1239 	}
1240 
1241 	if (aead_iv_len)
1242 		sg_set_buf(sg++, rctx->msg_buf.iv_ctr, aead_iv_len);
1243 
1244 	if (aad_pad_len) {
1245 		memset(rctx->msg_buf.a.req_aad_pad, 0, aad_pad_len);
1246 		sg_set_buf(sg++, rctx->msg_buf.a.req_aad_pad, aad_pad_len);
1247 	}
1248 
1249 	datalen = chunksize;
1250 	if ((chunksize > ctx->digestsize) && incl_icv)
1251 		datalen -= ctx->digestsize;
1252 	if (datalen) {
1253 		/* For aead, a single msg should consume the entire src sg */
1254 		written = spu_msg_sg_add(&sg, &rctx->src_sg, &rctx->src_skip,
1255 					 rctx->src_nents, datalen);
1256 		if (written < datalen) {
1257 			pr_err("%s(): failed to copy src sg to mbox msg",
1258 			       __func__);
1259 			return -EFAULT;
1260 		}
1261 	}
1262 
1263 	if (pad_len) {
1264 		memset(rctx->msg_buf.spu_req_pad, 0, pad_len);
1265 		sg_set_buf(sg++, rctx->msg_buf.spu_req_pad, pad_len);
1266 	}
1267 
1268 	if (incl_icv)
1269 		sg_set_buf(sg++, rctx->msg_buf.digest, ctx->digestsize);
1270 
1271 	stat_len = spu->spu_tx_status_len();
1272 	if (stat_len) {
1273 		memset(rctx->msg_buf.tx_stat, 0, stat_len);
1274 		sg_set_buf(sg, rctx->msg_buf.tx_stat, stat_len);
1275 	}
1276 	return 0;
1277 }
1278 
1279 /**
1280  * handle_aead_req() - Submit a SPU request message for the next chunk of the
1281  * current AEAD request.
1282  * @rctx:  Crypto request context
1283  *
1284  * Unlike other operation types, we assume the length of the request fits in
1285  * a single SPU request message. aead_enqueue() makes sure this is true.
1286  * Comments for other op types regarding threads applies here as well.
1287  *
1288  * Unlike incremental hash ops, where the spu returns the entire hash for
1289  * truncated algs like sha-224, the SPU returns just the truncated hash in
1290  * response to aead requests. So digestsize is always ctx->digestsize here.
1291  *
1292  * Return: -EINPROGRESS: crypto request has been accepted and result will be
1293  *			 returned asynchronously
1294  *         Any other value indicates an error
1295  */
1296 static int handle_aead_req(struct iproc_reqctx_s *rctx)
1297 {
1298 	struct spu_hw *spu = &iproc_priv.spu;
1299 	struct crypto_async_request *areq = rctx->parent;
1300 	struct aead_request *req = container_of(areq,
1301 						struct aead_request, base);
1302 	struct iproc_ctx_s *ctx = rctx->ctx;
1303 	int err;
1304 	unsigned int chunksize;
1305 	unsigned int resp_len;
1306 	u32 spu_hdr_len;
1307 	u32 db_size;
1308 	u32 stat_pad_len;
1309 	u32 pad_len;
1310 	struct brcm_message *mssg;	/* mailbox message */
1311 	struct spu_request_opts req_opts;
1312 	struct spu_cipher_parms cipher_parms;
1313 	struct spu_hash_parms hash_parms;
1314 	struct spu_aead_parms aead_parms;
1315 	int assoc_nents = 0;
1316 	bool incl_icv = false;
1317 	unsigned int digestsize = ctx->digestsize;
1318 
1319 	/* number of entries in src and dst sg. Always includes SPU msg header.
1320 	 */
1321 	u8 rx_frag_num = 2;	/* and STATUS */
1322 	u8 tx_frag_num = 1;
1323 
1324 	/* doing the whole thing at once */
1325 	chunksize = rctx->total_todo;
1326 
1327 	flow_log("%s: chunksize %u\n", __func__, chunksize);
1328 
1329 	memset(&req_opts, 0, sizeof(req_opts));
1330 	memset(&hash_parms, 0, sizeof(hash_parms));
1331 	memset(&aead_parms, 0, sizeof(aead_parms));
1332 
1333 	req_opts.is_inbound = !(rctx->is_encrypt);
1334 	req_opts.auth_first = ctx->auth_first;
1335 	req_opts.is_aead = true;
1336 	req_opts.is_esp = ctx->is_esp;
1337 
1338 	cipher_parms.alg = ctx->cipher.alg;
1339 	cipher_parms.mode = ctx->cipher.mode;
1340 	cipher_parms.type = ctx->cipher_type;
1341 	cipher_parms.key_buf = ctx->enckey;
1342 	cipher_parms.key_len = ctx->enckeylen;
1343 	cipher_parms.iv_buf = rctx->msg_buf.iv_ctr;
1344 	cipher_parms.iv_len = rctx->iv_ctr_len;
1345 
1346 	hash_parms.alg = ctx->auth.alg;
1347 	hash_parms.mode = ctx->auth.mode;
1348 	hash_parms.type = HASH_TYPE_NONE;
1349 	hash_parms.key_buf = (u8 *)ctx->authkey;
1350 	hash_parms.key_len = ctx->authkeylen;
1351 	hash_parms.digestsize = digestsize;
1352 
1353 	if ((ctx->auth.alg == HASH_ALG_SHA224) &&
1354 	    (ctx->authkeylen < SHA224_DIGEST_SIZE))
1355 		hash_parms.key_len = SHA224_DIGEST_SIZE;
1356 
1357 	aead_parms.assoc_size = req->assoclen;
1358 	if (ctx->is_esp && !ctx->is_rfc4543) {
1359 		/*
1360 		 * 8-byte IV is included assoc data in request. SPU2
1361 		 * expects AAD to include just SPI and seqno. So
1362 		 * subtract off the IV len.
1363 		 */
1364 		aead_parms.assoc_size -= GCM_RFC4106_IV_SIZE;
1365 
1366 		if (rctx->is_encrypt) {
1367 			aead_parms.return_iv = true;
1368 			aead_parms.ret_iv_len = GCM_RFC4106_IV_SIZE;
1369 			aead_parms.ret_iv_off = GCM_ESP_SALT_SIZE;
1370 		}
1371 	} else {
1372 		aead_parms.ret_iv_len = 0;
1373 	}
1374 
1375 	/*
1376 	 * Count number of sg entries from the crypto API request that are to
1377 	 * be included in this mailbox message. For dst sg, don't count space
1378 	 * for digest. Digest gets caught in a separate buffer and copied back
1379 	 * to dst sg when processing response.
1380 	 */
1381 	rctx->src_nents = spu_sg_count(rctx->src_sg, rctx->src_skip, chunksize);
1382 	rctx->dst_nents = spu_sg_count(rctx->dst_sg, rctx->dst_skip, chunksize);
1383 	if (aead_parms.assoc_size)
1384 		assoc_nents = spu_sg_count(rctx->assoc, 0,
1385 					   aead_parms.assoc_size);
1386 
1387 	mssg = &rctx->mb_mssg;
1388 
1389 	rctx->total_sent = chunksize;
1390 	rctx->src_sent = chunksize;
1391 	if (spu->spu_assoc_resp_len(ctx->cipher.mode,
1392 				    aead_parms.assoc_size,
1393 				    aead_parms.ret_iv_len,
1394 				    rctx->is_encrypt))
1395 		rx_frag_num++;
1396 
1397 	aead_parms.iv_len = spu->spu_aead_ivlen(ctx->cipher.mode,
1398 						rctx->iv_ctr_len);
1399 
1400 	if (ctx->auth.alg == HASH_ALG_AES)
1401 		hash_parms.type = (enum hash_type)ctx->cipher_type;
1402 
1403 	/* General case AAD padding (CCM and RFC4543 special cases below) */
1404 	aead_parms.aad_pad_len = spu->spu_gcm_ccm_pad_len(ctx->cipher.mode,
1405 						 aead_parms.assoc_size);
1406 
1407 	/* General case data padding (CCM decrypt special case below) */
1408 	aead_parms.data_pad_len = spu->spu_gcm_ccm_pad_len(ctx->cipher.mode,
1409 							   chunksize);
1410 
1411 	if (ctx->cipher.mode == CIPHER_MODE_CCM) {
1412 		/*
1413 		 * for CCM, AAD len + 2 (rather than AAD len) needs to be
1414 		 * 128-bit aligned
1415 		 */
1416 		aead_parms.aad_pad_len = spu->spu_gcm_ccm_pad_len(
1417 					 ctx->cipher.mode,
1418 					 aead_parms.assoc_size + 2);
1419 
1420 		/*
1421 		 * And when decrypting CCM, need to pad without including
1422 		 * size of ICV which is tacked on to end of chunk
1423 		 */
1424 		if (!rctx->is_encrypt)
1425 			aead_parms.data_pad_len =
1426 				spu->spu_gcm_ccm_pad_len(ctx->cipher.mode,
1427 							chunksize - digestsize);
1428 
1429 		/* CCM also requires software to rewrite portions of IV: */
1430 		spu->spu_ccm_update_iv(digestsize, &cipher_parms, req->assoclen,
1431 				       chunksize, rctx->is_encrypt,
1432 				       ctx->is_esp);
1433 	}
1434 
1435 	if (ctx->is_rfc4543) {
1436 		/*
1437 		 * RFC4543: data is included in AAD, so don't pad after AAD
1438 		 * and pad data based on both AAD + data size
1439 		 */
1440 		aead_parms.aad_pad_len = 0;
1441 		if (!rctx->is_encrypt)
1442 			aead_parms.data_pad_len = spu->spu_gcm_ccm_pad_len(
1443 					ctx->cipher.mode,
1444 					aead_parms.assoc_size + chunksize -
1445 					digestsize);
1446 		else
1447 			aead_parms.data_pad_len = spu->spu_gcm_ccm_pad_len(
1448 					ctx->cipher.mode,
1449 					aead_parms.assoc_size + chunksize);
1450 
1451 		req_opts.is_rfc4543 = true;
1452 	}
1453 
1454 	if (spu_req_incl_icv(ctx->cipher.mode, rctx->is_encrypt)) {
1455 		incl_icv = true;
1456 		tx_frag_num++;
1457 		/* Copy ICV from end of src scatterlist to digest buf */
1458 		sg_copy_part_to_buf(req->src, rctx->msg_buf.digest, digestsize,
1459 				    req->assoclen + rctx->total_sent -
1460 				    digestsize);
1461 	}
1462 
1463 	atomic64_add(chunksize, &iproc_priv.bytes_out);
1464 
1465 	flow_log("%s()-sent chunksize:%u\n", __func__, chunksize);
1466 
1467 	/* Prepend SPU header with type 3 BCM header */
1468 	memcpy(rctx->msg_buf.bcm_spu_req_hdr, BCMHEADER, BCM_HDR_LEN);
1469 
1470 	spu_hdr_len = spu->spu_create_request(rctx->msg_buf.bcm_spu_req_hdr +
1471 					      BCM_HDR_LEN, &req_opts,
1472 					      &cipher_parms, &hash_parms,
1473 					      &aead_parms, chunksize);
1474 
1475 	/* Determine total length of padding. Put all padding in one buffer. */
1476 	db_size = spu_real_db_size(aead_parms.assoc_size, aead_parms.iv_len, 0,
1477 				   chunksize, aead_parms.aad_pad_len,
1478 				   aead_parms.data_pad_len, 0);
1479 
1480 	stat_pad_len = spu->spu_wordalign_padlen(db_size);
1481 
1482 	if (stat_pad_len)
1483 		rx_frag_num++;
1484 	pad_len = aead_parms.data_pad_len + stat_pad_len;
1485 	if (pad_len) {
1486 		tx_frag_num++;
1487 		spu->spu_request_pad(rctx->msg_buf.spu_req_pad,
1488 				     aead_parms.data_pad_len, 0,
1489 				     ctx->auth.alg, ctx->auth.mode,
1490 				     rctx->total_sent, stat_pad_len);
1491 	}
1492 
1493 	spu->spu_dump_msg_hdr(rctx->msg_buf.bcm_spu_req_hdr + BCM_HDR_LEN,
1494 			      spu_hdr_len);
1495 	dump_sg(rctx->assoc, 0, aead_parms.assoc_size);
1496 	packet_dump("    aead iv: ", rctx->msg_buf.iv_ctr, aead_parms.iv_len);
1497 	packet_log("BD:\n");
1498 	dump_sg(rctx->src_sg, rctx->src_skip, chunksize);
1499 	packet_dump("   pad: ", rctx->msg_buf.spu_req_pad, pad_len);
1500 
1501 	/*
1502 	 * Build mailbox message containing SPU request msg and rx buffers
1503 	 * to catch response message
1504 	 */
1505 	memset(mssg, 0, sizeof(*mssg));
1506 	mssg->type = BRCM_MESSAGE_SPU;
1507 	mssg->ctx = rctx;	/* Will be returned in response */
1508 
1509 	/* Create rx scatterlist to catch result */
1510 	rx_frag_num += rctx->dst_nents;
1511 	resp_len = chunksize;
1512 
1513 	/*
1514 	 * Always catch ICV in separate buffer. Have to for GCM/CCM because of
1515 	 * padding. Have to for SHA-224 and other truncated SHAs because SPU
1516 	 * sends entire digest back.
1517 	 */
1518 	rx_frag_num++;
1519 
1520 	if (((ctx->cipher.mode == CIPHER_MODE_GCM) ||
1521 	     (ctx->cipher.mode == CIPHER_MODE_CCM)) && !rctx->is_encrypt) {
1522 		/*
1523 		 * Input is ciphertxt plus ICV, but ICV not incl
1524 		 * in output.
1525 		 */
1526 		resp_len -= ctx->digestsize;
1527 		if (resp_len == 0)
1528 			/* no rx frags to catch output data */
1529 			rx_frag_num -= rctx->dst_nents;
1530 	}
1531 
1532 	err = spu_aead_rx_sg_create(mssg, req, rctx, rx_frag_num,
1533 				    aead_parms.assoc_size,
1534 				    aead_parms.ret_iv_len, resp_len, digestsize,
1535 				    stat_pad_len);
1536 	if (err)
1537 		return err;
1538 
1539 	/* Create tx scatterlist containing SPU request message */
1540 	tx_frag_num += rctx->src_nents;
1541 	tx_frag_num += assoc_nents;
1542 	if (aead_parms.aad_pad_len)
1543 		tx_frag_num++;
1544 	if (aead_parms.iv_len)
1545 		tx_frag_num++;
1546 	if (spu->spu_tx_status_len())
1547 		tx_frag_num++;
1548 	err = spu_aead_tx_sg_create(mssg, rctx, tx_frag_num, spu_hdr_len,
1549 				    rctx->assoc, aead_parms.assoc_size,
1550 				    assoc_nents, aead_parms.iv_len, chunksize,
1551 				    aead_parms.aad_pad_len, pad_len, incl_icv);
1552 	if (err)
1553 		return err;
1554 
1555 	err = mailbox_send_message(mssg, req->base.flags, rctx->chan_idx);
1556 	if (unlikely(err < 0))
1557 		return err;
1558 
1559 	return -EINPROGRESS;
1560 }
1561 
1562 /**
1563  * handle_aead_resp() - Process a SPU response message for an AEAD request.
1564  * @rctx:  Crypto request context
1565  */
1566 static void handle_aead_resp(struct iproc_reqctx_s *rctx)
1567 {
1568 	struct spu_hw *spu = &iproc_priv.spu;
1569 	struct crypto_async_request *areq = rctx->parent;
1570 	struct aead_request *req = container_of(areq,
1571 						struct aead_request, base);
1572 	struct iproc_ctx_s *ctx = rctx->ctx;
1573 	u32 payload_len;
1574 	unsigned int icv_offset;
1575 	u32 result_len;
1576 
1577 	/* See how much data was returned */
1578 	payload_len = spu->spu_payload_length(rctx->msg_buf.spu_resp_hdr);
1579 	flow_log("payload_len %u\n", payload_len);
1580 
1581 	/* only count payload */
1582 	atomic64_add(payload_len, &iproc_priv.bytes_in);
1583 
1584 	if (req->assoclen)
1585 		packet_dump("  assoc_data ", rctx->msg_buf.a.resp_aad,
1586 			    req->assoclen);
1587 
1588 	/*
1589 	 * Copy the ICV back to the destination
1590 	 * buffer. In decrypt case, SPU gives us back the digest, but crypto
1591 	 * API doesn't expect ICV in dst buffer.
1592 	 */
1593 	result_len = req->cryptlen;
1594 	if (rctx->is_encrypt) {
1595 		icv_offset = req->assoclen + rctx->total_sent;
1596 		packet_dump("  ICV: ", rctx->msg_buf.digest, ctx->digestsize);
1597 		flow_log("copying ICV to dst sg at offset %u\n", icv_offset);
1598 		sg_copy_part_from_buf(req->dst, rctx->msg_buf.digest,
1599 				      ctx->digestsize, icv_offset);
1600 		result_len += ctx->digestsize;
1601 	}
1602 
1603 	packet_log("response data:  ");
1604 	dump_sg(req->dst, req->assoclen, result_len);
1605 
1606 	atomic_inc(&iproc_priv.op_counts[SPU_OP_AEAD]);
1607 	if (ctx->cipher.alg == CIPHER_ALG_AES) {
1608 		if (ctx->cipher.mode == CIPHER_MODE_CCM)
1609 			atomic_inc(&iproc_priv.aead_cnt[AES_CCM]);
1610 		else if (ctx->cipher.mode == CIPHER_MODE_GCM)
1611 			atomic_inc(&iproc_priv.aead_cnt[AES_GCM]);
1612 		else
1613 			atomic_inc(&iproc_priv.aead_cnt[AUTHENC]);
1614 	} else {
1615 		atomic_inc(&iproc_priv.aead_cnt[AUTHENC]);
1616 	}
1617 }
1618 
1619 /**
1620  * spu_chunk_cleanup() - Do cleanup after processing one chunk of a request
1621  * @rctx:  request context
1622  *
1623  * Mailbox scatterlists are allocated for each chunk. So free them after
1624  * processing each chunk.
1625  */
1626 static void spu_chunk_cleanup(struct iproc_reqctx_s *rctx)
1627 {
1628 	/* mailbox message used to tx request */
1629 	struct brcm_message *mssg = &rctx->mb_mssg;
1630 
1631 	kfree(mssg->spu.src);
1632 	kfree(mssg->spu.dst);
1633 	memset(mssg, 0, sizeof(struct brcm_message));
1634 }
1635 
1636 /**
1637  * finish_req() - Used to invoke the complete callback from the requester when
1638  * a request has been handled asynchronously.
1639  * @rctx:  Request context
1640  * @err:   Indicates whether the request was successful or not
1641  *
1642  * Ensures that cleanup has been done for request
1643  */
1644 static void finish_req(struct iproc_reqctx_s *rctx, int err)
1645 {
1646 	struct crypto_async_request *areq = rctx->parent;
1647 
1648 	flow_log("%s() err:%d\n\n", __func__, err);
1649 
1650 	/* No harm done if already called */
1651 	spu_chunk_cleanup(rctx);
1652 
1653 	if (areq)
1654 		areq->complete(areq, err);
1655 }
1656 
1657 /**
1658  * spu_rx_callback() - Callback from mailbox framework with a SPU response.
1659  * @cl:		mailbox client structure for SPU driver
1660  * @msg:	mailbox message containing SPU response
1661  */
1662 static void spu_rx_callback(struct mbox_client *cl, void *msg)
1663 {
1664 	struct spu_hw *spu = &iproc_priv.spu;
1665 	struct brcm_message *mssg = msg;
1666 	struct iproc_reqctx_s *rctx;
1667 	int err = 0;
1668 
1669 	rctx = mssg->ctx;
1670 	if (unlikely(!rctx)) {
1671 		/* This is fatal */
1672 		pr_err("%s(): no request context", __func__);
1673 		err = -EFAULT;
1674 		goto cb_finish;
1675 	}
1676 
1677 	/* process the SPU status */
1678 	err = spu->spu_status_process(rctx->msg_buf.rx_stat);
1679 	if (err != 0) {
1680 		if (err == SPU_INVALID_ICV)
1681 			atomic_inc(&iproc_priv.bad_icv);
1682 		err = -EBADMSG;
1683 		goto cb_finish;
1684 	}
1685 
1686 	/* Process the SPU response message */
1687 	switch (rctx->ctx->alg->type) {
1688 	case CRYPTO_ALG_TYPE_SKCIPHER:
1689 		handle_skcipher_resp(rctx);
1690 		break;
1691 	case CRYPTO_ALG_TYPE_AHASH:
1692 		handle_ahash_resp(rctx);
1693 		break;
1694 	case CRYPTO_ALG_TYPE_AEAD:
1695 		handle_aead_resp(rctx);
1696 		break;
1697 	default:
1698 		err = -EINVAL;
1699 		goto cb_finish;
1700 	}
1701 
1702 	/*
1703 	 * If this response does not complete the request, then send the next
1704 	 * request chunk.
1705 	 */
1706 	if (rctx->total_sent < rctx->total_todo) {
1707 		/* Deallocate anything specific to previous chunk */
1708 		spu_chunk_cleanup(rctx);
1709 
1710 		switch (rctx->ctx->alg->type) {
1711 		case CRYPTO_ALG_TYPE_SKCIPHER:
1712 			err = handle_skcipher_req(rctx);
1713 			break;
1714 		case CRYPTO_ALG_TYPE_AHASH:
1715 			err = handle_ahash_req(rctx);
1716 			if (err == -EAGAIN)
1717 				/*
1718 				 * we saved data in hash carry, but tell crypto
1719 				 * API we successfully completed request.
1720 				 */
1721 				err = 0;
1722 			break;
1723 		case CRYPTO_ALG_TYPE_AEAD:
1724 			err = handle_aead_req(rctx);
1725 			break;
1726 		default:
1727 			err = -EINVAL;
1728 		}
1729 
1730 		if (err == -EINPROGRESS)
1731 			/* Successfully submitted request for next chunk */
1732 			return;
1733 	}
1734 
1735 cb_finish:
1736 	finish_req(rctx, err);
1737 }
1738 
1739 /* ==================== Kernel Cryptographic API ==================== */
1740 
1741 /**
1742  * skcipher_enqueue() - Handle skcipher encrypt or decrypt request.
1743  * @req:	Crypto API request
1744  * @encrypt:	true if encrypting; false if decrypting
1745  *
1746  * Return: -EINPROGRESS if request accepted and result will be returned
1747  *			asynchronously
1748  *	   < 0 if an error
1749  */
1750 static int skcipher_enqueue(struct skcipher_request *req, bool encrypt)
1751 {
1752 	struct iproc_reqctx_s *rctx = skcipher_request_ctx(req);
1753 	struct iproc_ctx_s *ctx =
1754 	    crypto_skcipher_ctx(crypto_skcipher_reqtfm(req));
1755 	int err;
1756 
1757 	flow_log("%s() enc:%u\n", __func__, encrypt);
1758 
1759 	rctx->gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
1760 		       CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
1761 	rctx->parent = &req->base;
1762 	rctx->is_encrypt = encrypt;
1763 	rctx->bd_suppress = false;
1764 	rctx->total_todo = req->cryptlen;
1765 	rctx->src_sent = 0;
1766 	rctx->total_sent = 0;
1767 	rctx->total_received = 0;
1768 	rctx->ctx = ctx;
1769 
1770 	/* Initialize current position in src and dst scatterlists */
1771 	rctx->src_sg = req->src;
1772 	rctx->src_nents = 0;
1773 	rctx->src_skip = 0;
1774 	rctx->dst_sg = req->dst;
1775 	rctx->dst_nents = 0;
1776 	rctx->dst_skip = 0;
1777 
1778 	if (ctx->cipher.mode == CIPHER_MODE_CBC ||
1779 	    ctx->cipher.mode == CIPHER_MODE_CTR ||
1780 	    ctx->cipher.mode == CIPHER_MODE_OFB ||
1781 	    ctx->cipher.mode == CIPHER_MODE_XTS ||
1782 	    ctx->cipher.mode == CIPHER_MODE_GCM ||
1783 	    ctx->cipher.mode == CIPHER_MODE_CCM) {
1784 		rctx->iv_ctr_len =
1785 		    crypto_skcipher_ivsize(crypto_skcipher_reqtfm(req));
1786 		memcpy(rctx->msg_buf.iv_ctr, req->iv, rctx->iv_ctr_len);
1787 	} else {
1788 		rctx->iv_ctr_len = 0;
1789 	}
1790 
1791 	/* Choose a SPU to process this request */
1792 	rctx->chan_idx = select_channel();
1793 	err = handle_skcipher_req(rctx);
1794 	if (err != -EINPROGRESS)
1795 		/* synchronous result */
1796 		spu_chunk_cleanup(rctx);
1797 
1798 	return err;
1799 }
1800 
1801 static int des_setkey(struct crypto_skcipher *cipher, const u8 *key,
1802 		      unsigned int keylen)
1803 {
1804 	struct iproc_ctx_s *ctx = crypto_skcipher_ctx(cipher);
1805 	int err;
1806 
1807 	err = verify_skcipher_des_key(cipher, key);
1808 	if (err)
1809 		return err;
1810 
1811 	ctx->cipher_type = CIPHER_TYPE_DES;
1812 	return 0;
1813 }
1814 
1815 static int threedes_setkey(struct crypto_skcipher *cipher, const u8 *key,
1816 			   unsigned int keylen)
1817 {
1818 	struct iproc_ctx_s *ctx = crypto_skcipher_ctx(cipher);
1819 	int err;
1820 
1821 	err = verify_skcipher_des3_key(cipher, key);
1822 	if (err)
1823 		return err;
1824 
1825 	ctx->cipher_type = CIPHER_TYPE_3DES;
1826 	return 0;
1827 }
1828 
1829 static int aes_setkey(struct crypto_skcipher *cipher, const u8 *key,
1830 		      unsigned int keylen)
1831 {
1832 	struct iproc_ctx_s *ctx = crypto_skcipher_ctx(cipher);
1833 
1834 	if (ctx->cipher.mode == CIPHER_MODE_XTS)
1835 		/* XTS includes two keys of equal length */
1836 		keylen = keylen / 2;
1837 
1838 	switch (keylen) {
1839 	case AES_KEYSIZE_128:
1840 		ctx->cipher_type = CIPHER_TYPE_AES128;
1841 		break;
1842 	case AES_KEYSIZE_192:
1843 		ctx->cipher_type = CIPHER_TYPE_AES192;
1844 		break;
1845 	case AES_KEYSIZE_256:
1846 		ctx->cipher_type = CIPHER_TYPE_AES256;
1847 		break;
1848 	default:
1849 		return -EINVAL;
1850 	}
1851 	WARN_ON((ctx->max_payload != SPU_MAX_PAYLOAD_INF) &&
1852 		((ctx->max_payload % AES_BLOCK_SIZE) != 0));
1853 	return 0;
1854 }
1855 
1856 static int rc4_setkey(struct crypto_skcipher *cipher, const u8 *key,
1857 		      unsigned int keylen)
1858 {
1859 	struct iproc_ctx_s *ctx = crypto_skcipher_ctx(cipher);
1860 	int i;
1861 
1862 	ctx->enckeylen = ARC4_MAX_KEY_SIZE + ARC4_STATE_SIZE;
1863 
1864 	ctx->enckey[0] = 0x00;	/* 0x00 */
1865 	ctx->enckey[1] = 0x00;	/* i    */
1866 	ctx->enckey[2] = 0x00;	/* 0x00 */
1867 	ctx->enckey[3] = 0x00;	/* j    */
1868 	for (i = 0; i < ARC4_MAX_KEY_SIZE; i++)
1869 		ctx->enckey[i + ARC4_STATE_SIZE] = key[i % keylen];
1870 
1871 	ctx->cipher_type = CIPHER_TYPE_INIT;
1872 
1873 	return 0;
1874 }
1875 
1876 static int skcipher_setkey(struct crypto_skcipher *cipher, const u8 *key,
1877 			     unsigned int keylen)
1878 {
1879 	struct spu_hw *spu = &iproc_priv.spu;
1880 	struct iproc_ctx_s *ctx = crypto_skcipher_ctx(cipher);
1881 	struct spu_cipher_parms cipher_parms;
1882 	u32 alloc_len = 0;
1883 	int err;
1884 
1885 	flow_log("skcipher_setkey() keylen: %d\n", keylen);
1886 	flow_dump("  key: ", key, keylen);
1887 
1888 	switch (ctx->cipher.alg) {
1889 	case CIPHER_ALG_DES:
1890 		err = des_setkey(cipher, key, keylen);
1891 		break;
1892 	case CIPHER_ALG_3DES:
1893 		err = threedes_setkey(cipher, key, keylen);
1894 		break;
1895 	case CIPHER_ALG_AES:
1896 		err = aes_setkey(cipher, key, keylen);
1897 		break;
1898 	case CIPHER_ALG_RC4:
1899 		err = rc4_setkey(cipher, key, keylen);
1900 		break;
1901 	default:
1902 		pr_err("%s() Error: unknown cipher alg\n", __func__);
1903 		err = -EINVAL;
1904 	}
1905 	if (err)
1906 		return err;
1907 
1908 	/* RC4 already populated ctx->enkey */
1909 	if (ctx->cipher.alg != CIPHER_ALG_RC4) {
1910 		memcpy(ctx->enckey, key, keylen);
1911 		ctx->enckeylen = keylen;
1912 	}
1913 	/* SPU needs XTS keys in the reverse order the crypto API presents */
1914 	if ((ctx->cipher.alg == CIPHER_ALG_AES) &&
1915 	    (ctx->cipher.mode == CIPHER_MODE_XTS)) {
1916 		unsigned int xts_keylen = keylen / 2;
1917 
1918 		memcpy(ctx->enckey, key + xts_keylen, xts_keylen);
1919 		memcpy(ctx->enckey + xts_keylen, key, xts_keylen);
1920 	}
1921 
1922 	if (spu->spu_type == SPU_TYPE_SPUM)
1923 		alloc_len = BCM_HDR_LEN + SPU_HEADER_ALLOC_LEN;
1924 	else if (spu->spu_type == SPU_TYPE_SPU2)
1925 		alloc_len = BCM_HDR_LEN + SPU2_HEADER_ALLOC_LEN;
1926 	memset(ctx->bcm_spu_req_hdr, 0, alloc_len);
1927 	cipher_parms.iv_buf = NULL;
1928 	cipher_parms.iv_len = crypto_skcipher_ivsize(cipher);
1929 	flow_log("%s: iv_len %u\n", __func__, cipher_parms.iv_len);
1930 
1931 	cipher_parms.alg = ctx->cipher.alg;
1932 	cipher_parms.mode = ctx->cipher.mode;
1933 	cipher_parms.type = ctx->cipher_type;
1934 	cipher_parms.key_buf = ctx->enckey;
1935 	cipher_parms.key_len = ctx->enckeylen;
1936 
1937 	/* Prepend SPU request message with BCM header */
1938 	memcpy(ctx->bcm_spu_req_hdr, BCMHEADER, BCM_HDR_LEN);
1939 	ctx->spu_req_hdr_len =
1940 	    spu->spu_cipher_req_init(ctx->bcm_spu_req_hdr + BCM_HDR_LEN,
1941 				     &cipher_parms);
1942 
1943 	ctx->spu_resp_hdr_len = spu->spu_response_hdr_len(ctx->authkeylen,
1944 							  ctx->enckeylen,
1945 							  false);
1946 
1947 	atomic_inc(&iproc_priv.setkey_cnt[SPU_OP_CIPHER]);
1948 
1949 	return 0;
1950 }
1951 
1952 static int skcipher_encrypt(struct skcipher_request *req)
1953 {
1954 	flow_log("skcipher_encrypt() nbytes:%u\n", req->cryptlen);
1955 
1956 	return skcipher_enqueue(req, true);
1957 }
1958 
1959 static int skcipher_decrypt(struct skcipher_request *req)
1960 {
1961 	flow_log("skcipher_decrypt() nbytes:%u\n", req->cryptlen);
1962 	return skcipher_enqueue(req, false);
1963 }
1964 
1965 static int ahash_enqueue(struct ahash_request *req)
1966 {
1967 	struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
1968 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1969 	struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
1970 	int err = 0;
1971 	const char *alg_name;
1972 
1973 	flow_log("ahash_enqueue() nbytes:%u\n", req->nbytes);
1974 
1975 	rctx->gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
1976 		       CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
1977 	rctx->parent = &req->base;
1978 	rctx->ctx = ctx;
1979 	rctx->bd_suppress = true;
1980 	memset(&rctx->mb_mssg, 0, sizeof(struct brcm_message));
1981 
1982 	/* Initialize position in src scatterlist */
1983 	rctx->src_sg = req->src;
1984 	rctx->src_skip = 0;
1985 	rctx->src_nents = 0;
1986 	rctx->dst_sg = NULL;
1987 	rctx->dst_skip = 0;
1988 	rctx->dst_nents = 0;
1989 
1990 	/* SPU2 hardware does not compute hash of zero length data */
1991 	if ((rctx->is_final == 1) && (rctx->total_todo == 0) &&
1992 	    (iproc_priv.spu.spu_type == SPU_TYPE_SPU2)) {
1993 		alg_name = crypto_tfm_alg_name(crypto_ahash_tfm(tfm));
1994 		flow_log("Doing %sfinal %s zero-len hash request in software\n",
1995 			 rctx->is_final ? "" : "non-", alg_name);
1996 		err = do_shash((unsigned char *)alg_name, req->result,
1997 			       NULL, 0, NULL, 0, ctx->authkey,
1998 			       ctx->authkeylen);
1999 		if (err < 0)
2000 			flow_log("Hash request failed with error %d\n", err);
2001 		return err;
2002 	}
2003 	/* Choose a SPU to process this request */
2004 	rctx->chan_idx = select_channel();
2005 
2006 	err = handle_ahash_req(rctx);
2007 	if (err != -EINPROGRESS)
2008 		/* synchronous result */
2009 		spu_chunk_cleanup(rctx);
2010 
2011 	if (err == -EAGAIN)
2012 		/*
2013 		 * we saved data in hash carry, but tell crypto API
2014 		 * we successfully completed request.
2015 		 */
2016 		err = 0;
2017 
2018 	return err;
2019 }
2020 
2021 static int __ahash_init(struct ahash_request *req)
2022 {
2023 	struct spu_hw *spu = &iproc_priv.spu;
2024 	struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2025 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2026 	struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
2027 
2028 	flow_log("%s()\n", __func__);
2029 
2030 	/* Initialize the context */
2031 	rctx->hash_carry_len = 0;
2032 	rctx->is_final = 0;
2033 
2034 	rctx->total_todo = 0;
2035 	rctx->src_sent = 0;
2036 	rctx->total_sent = 0;
2037 	rctx->total_received = 0;
2038 
2039 	ctx->digestsize = crypto_ahash_digestsize(tfm);
2040 	/* If we add a hash whose digest is larger, catch it here. */
2041 	WARN_ON(ctx->digestsize > MAX_DIGEST_SIZE);
2042 
2043 	rctx->is_sw_hmac = false;
2044 
2045 	ctx->spu_resp_hdr_len = spu->spu_response_hdr_len(ctx->authkeylen, 0,
2046 							  true);
2047 
2048 	return 0;
2049 }
2050 
2051 /**
2052  * spu_no_incr_hash() - Determine whether incremental hashing is supported.
2053  * @ctx:  Crypto session context
2054  *
2055  * SPU-2 does not support incremental hashing (we'll have to revisit and
2056  * condition based on chip revision or device tree entry if future versions do
2057  * support incremental hash)
2058  *
2059  * SPU-M also doesn't support incremental hashing of AES-XCBC
2060  *
2061  * Return: true if incremental hashing is not supported
2062  *         false otherwise
2063  */
2064 static bool spu_no_incr_hash(struct iproc_ctx_s *ctx)
2065 {
2066 	struct spu_hw *spu = &iproc_priv.spu;
2067 
2068 	if (spu->spu_type == SPU_TYPE_SPU2)
2069 		return true;
2070 
2071 	if ((ctx->auth.alg == HASH_ALG_AES) &&
2072 	    (ctx->auth.mode == HASH_MODE_XCBC))
2073 		return true;
2074 
2075 	/* Otherwise, incremental hashing is supported */
2076 	return false;
2077 }
2078 
2079 static int ahash_init(struct ahash_request *req)
2080 {
2081 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2082 	struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
2083 	const char *alg_name;
2084 	struct crypto_shash *hash;
2085 	int ret;
2086 	gfp_t gfp;
2087 
2088 	if (spu_no_incr_hash(ctx)) {
2089 		/*
2090 		 * If we get an incremental hashing request and it's not
2091 		 * supported by the hardware, we need to handle it in software
2092 		 * by calling synchronous hash functions.
2093 		 */
2094 		alg_name = crypto_tfm_alg_name(crypto_ahash_tfm(tfm));
2095 		hash = crypto_alloc_shash(alg_name, 0, 0);
2096 		if (IS_ERR(hash)) {
2097 			ret = PTR_ERR(hash);
2098 			goto err;
2099 		}
2100 
2101 		gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
2102 		       CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
2103 		ctx->shash = kmalloc(sizeof(*ctx->shash) +
2104 				     crypto_shash_descsize(hash), gfp);
2105 		if (!ctx->shash) {
2106 			ret = -ENOMEM;
2107 			goto err_hash;
2108 		}
2109 		ctx->shash->tfm = hash;
2110 
2111 		/* Set the key using data we already have from setkey */
2112 		if (ctx->authkeylen > 0) {
2113 			ret = crypto_shash_setkey(hash, ctx->authkey,
2114 						  ctx->authkeylen);
2115 			if (ret)
2116 				goto err_shash;
2117 		}
2118 
2119 		/* Initialize hash w/ this key and other params */
2120 		ret = crypto_shash_init(ctx->shash);
2121 		if (ret)
2122 			goto err_shash;
2123 	} else {
2124 		/* Otherwise call the internal function which uses SPU hw */
2125 		ret = __ahash_init(req);
2126 	}
2127 
2128 	return ret;
2129 
2130 err_shash:
2131 	kfree(ctx->shash);
2132 err_hash:
2133 	crypto_free_shash(hash);
2134 err:
2135 	return ret;
2136 }
2137 
2138 static int __ahash_update(struct ahash_request *req)
2139 {
2140 	struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2141 
2142 	flow_log("ahash_update() nbytes:%u\n", req->nbytes);
2143 
2144 	if (!req->nbytes)
2145 		return 0;
2146 	rctx->total_todo += req->nbytes;
2147 	rctx->src_sent = 0;
2148 
2149 	return ahash_enqueue(req);
2150 }
2151 
2152 static int ahash_update(struct ahash_request *req)
2153 {
2154 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2155 	struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
2156 	u8 *tmpbuf;
2157 	int ret;
2158 	int nents;
2159 	gfp_t gfp;
2160 
2161 	if (spu_no_incr_hash(ctx)) {
2162 		/*
2163 		 * If we get an incremental hashing request and it's not
2164 		 * supported by the hardware, we need to handle it in software
2165 		 * by calling synchronous hash functions.
2166 		 */
2167 		if (req->src)
2168 			nents = sg_nents(req->src);
2169 		else
2170 			return -EINVAL;
2171 
2172 		/* Copy data from req scatterlist to tmp buffer */
2173 		gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
2174 		       CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
2175 		tmpbuf = kmalloc(req->nbytes, gfp);
2176 		if (!tmpbuf)
2177 			return -ENOMEM;
2178 
2179 		if (sg_copy_to_buffer(req->src, nents, tmpbuf, req->nbytes) !=
2180 				req->nbytes) {
2181 			kfree(tmpbuf);
2182 			return -EINVAL;
2183 		}
2184 
2185 		/* Call synchronous update */
2186 		ret = crypto_shash_update(ctx->shash, tmpbuf, req->nbytes);
2187 		kfree(tmpbuf);
2188 	} else {
2189 		/* Otherwise call the internal function which uses SPU hw */
2190 		ret = __ahash_update(req);
2191 	}
2192 
2193 	return ret;
2194 }
2195 
2196 static int __ahash_final(struct ahash_request *req)
2197 {
2198 	struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2199 
2200 	flow_log("ahash_final() nbytes:%u\n", req->nbytes);
2201 
2202 	rctx->is_final = 1;
2203 
2204 	return ahash_enqueue(req);
2205 }
2206 
2207 static int ahash_final(struct ahash_request *req)
2208 {
2209 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2210 	struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
2211 	int ret;
2212 
2213 	if (spu_no_incr_hash(ctx)) {
2214 		/*
2215 		 * If we get an incremental hashing request and it's not
2216 		 * supported by the hardware, we need to handle it in software
2217 		 * by calling synchronous hash functions.
2218 		 */
2219 		ret = crypto_shash_final(ctx->shash, req->result);
2220 
2221 		/* Done with hash, can deallocate it now */
2222 		crypto_free_shash(ctx->shash->tfm);
2223 		kfree(ctx->shash);
2224 
2225 	} else {
2226 		/* Otherwise call the internal function which uses SPU hw */
2227 		ret = __ahash_final(req);
2228 	}
2229 
2230 	return ret;
2231 }
2232 
2233 static int __ahash_finup(struct ahash_request *req)
2234 {
2235 	struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2236 
2237 	flow_log("ahash_finup() nbytes:%u\n", req->nbytes);
2238 
2239 	rctx->total_todo += req->nbytes;
2240 	rctx->src_sent = 0;
2241 	rctx->is_final = 1;
2242 
2243 	return ahash_enqueue(req);
2244 }
2245 
2246 static int ahash_finup(struct ahash_request *req)
2247 {
2248 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2249 	struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
2250 	u8 *tmpbuf;
2251 	int ret;
2252 	int nents;
2253 	gfp_t gfp;
2254 
2255 	if (spu_no_incr_hash(ctx)) {
2256 		/*
2257 		 * If we get an incremental hashing request and it's not
2258 		 * supported by the hardware, we need to handle it in software
2259 		 * by calling synchronous hash functions.
2260 		 */
2261 		if (req->src) {
2262 			nents = sg_nents(req->src);
2263 		} else {
2264 			ret = -EINVAL;
2265 			goto ahash_finup_exit;
2266 		}
2267 
2268 		/* Copy data from req scatterlist to tmp buffer */
2269 		gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
2270 		       CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
2271 		tmpbuf = kmalloc(req->nbytes, gfp);
2272 		if (!tmpbuf) {
2273 			ret = -ENOMEM;
2274 			goto ahash_finup_exit;
2275 		}
2276 
2277 		if (sg_copy_to_buffer(req->src, nents, tmpbuf, req->nbytes) !=
2278 				req->nbytes) {
2279 			ret = -EINVAL;
2280 			goto ahash_finup_free;
2281 		}
2282 
2283 		/* Call synchronous update */
2284 		ret = crypto_shash_finup(ctx->shash, tmpbuf, req->nbytes,
2285 					 req->result);
2286 	} else {
2287 		/* Otherwise call the internal function which uses SPU hw */
2288 		return __ahash_finup(req);
2289 	}
2290 ahash_finup_free:
2291 	kfree(tmpbuf);
2292 
2293 ahash_finup_exit:
2294 	/* Done with hash, can deallocate it now */
2295 	crypto_free_shash(ctx->shash->tfm);
2296 	kfree(ctx->shash);
2297 	return ret;
2298 }
2299 
2300 static int ahash_digest(struct ahash_request *req)
2301 {
2302 	int err = 0;
2303 
2304 	flow_log("ahash_digest() nbytes:%u\n", req->nbytes);
2305 
2306 	/* whole thing at once */
2307 	err = __ahash_init(req);
2308 	if (!err)
2309 		err = __ahash_finup(req);
2310 
2311 	return err;
2312 }
2313 
2314 static int ahash_setkey(struct crypto_ahash *ahash, const u8 *key,
2315 			unsigned int keylen)
2316 {
2317 	struct iproc_ctx_s *ctx = crypto_ahash_ctx(ahash);
2318 
2319 	flow_log("%s() ahash:%p key:%p keylen:%u\n",
2320 		 __func__, ahash, key, keylen);
2321 	flow_dump("  key: ", key, keylen);
2322 
2323 	if (ctx->auth.alg == HASH_ALG_AES) {
2324 		switch (keylen) {
2325 		case AES_KEYSIZE_128:
2326 			ctx->cipher_type = CIPHER_TYPE_AES128;
2327 			break;
2328 		case AES_KEYSIZE_192:
2329 			ctx->cipher_type = CIPHER_TYPE_AES192;
2330 			break;
2331 		case AES_KEYSIZE_256:
2332 			ctx->cipher_type = CIPHER_TYPE_AES256;
2333 			break;
2334 		default:
2335 			pr_err("%s() Error: Invalid key length\n", __func__);
2336 			return -EINVAL;
2337 		}
2338 	} else {
2339 		pr_err("%s() Error: unknown hash alg\n", __func__);
2340 		return -EINVAL;
2341 	}
2342 	memcpy(ctx->authkey, key, keylen);
2343 	ctx->authkeylen = keylen;
2344 
2345 	return 0;
2346 }
2347 
2348 static int ahash_export(struct ahash_request *req, void *out)
2349 {
2350 	const struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2351 	struct spu_hash_export_s *spu_exp = (struct spu_hash_export_s *)out;
2352 
2353 	spu_exp->total_todo = rctx->total_todo;
2354 	spu_exp->total_sent = rctx->total_sent;
2355 	spu_exp->is_sw_hmac = rctx->is_sw_hmac;
2356 	memcpy(spu_exp->hash_carry, rctx->hash_carry, sizeof(rctx->hash_carry));
2357 	spu_exp->hash_carry_len = rctx->hash_carry_len;
2358 	memcpy(spu_exp->incr_hash, rctx->incr_hash, sizeof(rctx->incr_hash));
2359 
2360 	return 0;
2361 }
2362 
2363 static int ahash_import(struct ahash_request *req, const void *in)
2364 {
2365 	struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2366 	struct spu_hash_export_s *spu_exp = (struct spu_hash_export_s *)in;
2367 
2368 	rctx->total_todo = spu_exp->total_todo;
2369 	rctx->total_sent = spu_exp->total_sent;
2370 	rctx->is_sw_hmac = spu_exp->is_sw_hmac;
2371 	memcpy(rctx->hash_carry, spu_exp->hash_carry, sizeof(rctx->hash_carry));
2372 	rctx->hash_carry_len = spu_exp->hash_carry_len;
2373 	memcpy(rctx->incr_hash, spu_exp->incr_hash, sizeof(rctx->incr_hash));
2374 
2375 	return 0;
2376 }
2377 
2378 static int ahash_hmac_setkey(struct crypto_ahash *ahash, const u8 *key,
2379 			     unsigned int keylen)
2380 {
2381 	struct iproc_ctx_s *ctx = crypto_ahash_ctx(ahash);
2382 	unsigned int blocksize =
2383 		crypto_tfm_alg_blocksize(crypto_ahash_tfm(ahash));
2384 	unsigned int digestsize = crypto_ahash_digestsize(ahash);
2385 	unsigned int index;
2386 	int rc;
2387 
2388 	flow_log("%s() ahash:%p key:%p keylen:%u blksz:%u digestsz:%u\n",
2389 		 __func__, ahash, key, keylen, blocksize, digestsize);
2390 	flow_dump("  key: ", key, keylen);
2391 
2392 	if (keylen > blocksize) {
2393 		switch (ctx->auth.alg) {
2394 		case HASH_ALG_MD5:
2395 			rc = do_shash("md5", ctx->authkey, key, keylen, NULL,
2396 				      0, NULL, 0);
2397 			break;
2398 		case HASH_ALG_SHA1:
2399 			rc = do_shash("sha1", ctx->authkey, key, keylen, NULL,
2400 				      0, NULL, 0);
2401 			break;
2402 		case HASH_ALG_SHA224:
2403 			rc = do_shash("sha224", ctx->authkey, key, keylen, NULL,
2404 				      0, NULL, 0);
2405 			break;
2406 		case HASH_ALG_SHA256:
2407 			rc = do_shash("sha256", ctx->authkey, key, keylen, NULL,
2408 				      0, NULL, 0);
2409 			break;
2410 		case HASH_ALG_SHA384:
2411 			rc = do_shash("sha384", ctx->authkey, key, keylen, NULL,
2412 				      0, NULL, 0);
2413 			break;
2414 		case HASH_ALG_SHA512:
2415 			rc = do_shash("sha512", ctx->authkey, key, keylen, NULL,
2416 				      0, NULL, 0);
2417 			break;
2418 		case HASH_ALG_SHA3_224:
2419 			rc = do_shash("sha3-224", ctx->authkey, key, keylen,
2420 				      NULL, 0, NULL, 0);
2421 			break;
2422 		case HASH_ALG_SHA3_256:
2423 			rc = do_shash("sha3-256", ctx->authkey, key, keylen,
2424 				      NULL, 0, NULL, 0);
2425 			break;
2426 		case HASH_ALG_SHA3_384:
2427 			rc = do_shash("sha3-384", ctx->authkey, key, keylen,
2428 				      NULL, 0, NULL, 0);
2429 			break;
2430 		case HASH_ALG_SHA3_512:
2431 			rc = do_shash("sha3-512", ctx->authkey, key, keylen,
2432 				      NULL, 0, NULL, 0);
2433 			break;
2434 		default:
2435 			pr_err("%s() Error: unknown hash alg\n", __func__);
2436 			return -EINVAL;
2437 		}
2438 		if (rc < 0) {
2439 			pr_err("%s() Error %d computing shash for %s\n",
2440 			       __func__, rc, hash_alg_name[ctx->auth.alg]);
2441 			return rc;
2442 		}
2443 		ctx->authkeylen = digestsize;
2444 
2445 		flow_log("  keylen > digestsize... hashed\n");
2446 		flow_dump("  newkey: ", ctx->authkey, ctx->authkeylen);
2447 	} else {
2448 		memcpy(ctx->authkey, key, keylen);
2449 		ctx->authkeylen = keylen;
2450 	}
2451 
2452 	/*
2453 	 * Full HMAC operation in SPUM is not verified,
2454 	 * So keeping the generation of IPAD, OPAD and
2455 	 * outer hashing in software.
2456 	 */
2457 	if (iproc_priv.spu.spu_type == SPU_TYPE_SPUM) {
2458 		memcpy(ctx->ipad, ctx->authkey, ctx->authkeylen);
2459 		memset(ctx->ipad + ctx->authkeylen, 0,
2460 		       blocksize - ctx->authkeylen);
2461 		ctx->authkeylen = 0;
2462 		memcpy(ctx->opad, ctx->ipad, blocksize);
2463 
2464 		for (index = 0; index < blocksize; index++) {
2465 			ctx->ipad[index] ^= HMAC_IPAD_VALUE;
2466 			ctx->opad[index] ^= HMAC_OPAD_VALUE;
2467 		}
2468 
2469 		flow_dump("  ipad: ", ctx->ipad, blocksize);
2470 		flow_dump("  opad: ", ctx->opad, blocksize);
2471 	}
2472 	ctx->digestsize = digestsize;
2473 	atomic_inc(&iproc_priv.setkey_cnt[SPU_OP_HMAC]);
2474 
2475 	return 0;
2476 }
2477 
2478 static int ahash_hmac_init(struct ahash_request *req)
2479 {
2480 	struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2481 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2482 	struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
2483 	unsigned int blocksize =
2484 			crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
2485 
2486 	flow_log("ahash_hmac_init()\n");
2487 
2488 	/* init the context as a hash */
2489 	ahash_init(req);
2490 
2491 	if (!spu_no_incr_hash(ctx)) {
2492 		/* SPU-M can do incr hashing but needs sw for outer HMAC */
2493 		rctx->is_sw_hmac = true;
2494 		ctx->auth.mode = HASH_MODE_HASH;
2495 		/* start with a prepended ipad */
2496 		memcpy(rctx->hash_carry, ctx->ipad, blocksize);
2497 		rctx->hash_carry_len = blocksize;
2498 		rctx->total_todo += blocksize;
2499 	}
2500 
2501 	return 0;
2502 }
2503 
2504 static int ahash_hmac_update(struct ahash_request *req)
2505 {
2506 	flow_log("ahash_hmac_update() nbytes:%u\n", req->nbytes);
2507 
2508 	if (!req->nbytes)
2509 		return 0;
2510 
2511 	return ahash_update(req);
2512 }
2513 
2514 static int ahash_hmac_final(struct ahash_request *req)
2515 {
2516 	flow_log("ahash_hmac_final() nbytes:%u\n", req->nbytes);
2517 
2518 	return ahash_final(req);
2519 }
2520 
2521 static int ahash_hmac_finup(struct ahash_request *req)
2522 {
2523 	flow_log("ahash_hmac_finupl() nbytes:%u\n", req->nbytes);
2524 
2525 	return ahash_finup(req);
2526 }
2527 
2528 static int ahash_hmac_digest(struct ahash_request *req)
2529 {
2530 	struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2531 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2532 	struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
2533 	unsigned int blocksize =
2534 			crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
2535 
2536 	flow_log("ahash_hmac_digest() nbytes:%u\n", req->nbytes);
2537 
2538 	/* Perform initialization and then call finup */
2539 	__ahash_init(req);
2540 
2541 	if (iproc_priv.spu.spu_type == SPU_TYPE_SPU2) {
2542 		/*
2543 		 * SPU2 supports full HMAC implementation in the
2544 		 * hardware, need not to generate IPAD, OPAD and
2545 		 * outer hash in software.
2546 		 * Only for hash key len > hash block size, SPU2
2547 		 * expects to perform hashing on the key, shorten
2548 		 * it to digest size and feed it as hash key.
2549 		 */
2550 		rctx->is_sw_hmac = false;
2551 		ctx->auth.mode = HASH_MODE_HMAC;
2552 	} else {
2553 		rctx->is_sw_hmac = true;
2554 		ctx->auth.mode = HASH_MODE_HASH;
2555 		/* start with a prepended ipad */
2556 		memcpy(rctx->hash_carry, ctx->ipad, blocksize);
2557 		rctx->hash_carry_len = blocksize;
2558 		rctx->total_todo += blocksize;
2559 	}
2560 
2561 	return __ahash_finup(req);
2562 }
2563 
2564 /* aead helpers */
2565 
2566 static int aead_need_fallback(struct aead_request *req)
2567 {
2568 	struct iproc_reqctx_s *rctx = aead_request_ctx(req);
2569 	struct spu_hw *spu = &iproc_priv.spu;
2570 	struct crypto_aead *aead = crypto_aead_reqtfm(req);
2571 	struct iproc_ctx_s *ctx = crypto_aead_ctx(aead);
2572 	u32 payload_len;
2573 
2574 	/*
2575 	 * SPU hardware cannot handle the AES-GCM/CCM case where plaintext
2576 	 * and AAD are both 0 bytes long. So use fallback in this case.
2577 	 */
2578 	if (((ctx->cipher.mode == CIPHER_MODE_GCM) ||
2579 	     (ctx->cipher.mode == CIPHER_MODE_CCM)) &&
2580 	    (req->assoclen == 0)) {
2581 		if ((rctx->is_encrypt && (req->cryptlen == 0)) ||
2582 		    (!rctx->is_encrypt && (req->cryptlen == ctx->digestsize))) {
2583 			flow_log("AES GCM/CCM needs fallback for 0 len req\n");
2584 			return 1;
2585 		}
2586 	}
2587 
2588 	/* SPU-M hardware only supports CCM digest size of 8, 12, or 16 bytes */
2589 	if ((ctx->cipher.mode == CIPHER_MODE_CCM) &&
2590 	    (spu->spu_type == SPU_TYPE_SPUM) &&
2591 	    (ctx->digestsize != 8) && (ctx->digestsize != 12) &&
2592 	    (ctx->digestsize != 16)) {
2593 		flow_log("%s() AES CCM needs fallback for digest size %d\n",
2594 			 __func__, ctx->digestsize);
2595 		return 1;
2596 	}
2597 
2598 	/*
2599 	 * SPU-M on NSP has an issue where AES-CCM hash is not correct
2600 	 * when AAD size is 0
2601 	 */
2602 	if ((ctx->cipher.mode == CIPHER_MODE_CCM) &&
2603 	    (spu->spu_subtype == SPU_SUBTYPE_SPUM_NSP) &&
2604 	    (req->assoclen == 0)) {
2605 		flow_log("%s() AES_CCM needs fallback for 0 len AAD on NSP\n",
2606 			 __func__);
2607 		return 1;
2608 	}
2609 
2610 	/*
2611 	 * RFC4106 and RFC4543 cannot handle the case where AAD is other than
2612 	 * 16 or 20 bytes long. So use fallback in this case.
2613 	 */
2614 	if (ctx->cipher.mode == CIPHER_MODE_GCM &&
2615 	    ctx->cipher.alg == CIPHER_ALG_AES &&
2616 	    rctx->iv_ctr_len == GCM_RFC4106_IV_SIZE &&
2617 	    req->assoclen != 16 && req->assoclen != 20) {
2618 		flow_log("RFC4106/RFC4543 needs fallback for assoclen"
2619 			 " other than 16 or 20 bytes\n");
2620 		return 1;
2621 	}
2622 
2623 	payload_len = req->cryptlen;
2624 	if (spu->spu_type == SPU_TYPE_SPUM)
2625 		payload_len += req->assoclen;
2626 
2627 	flow_log("%s() payload len: %u\n", __func__, payload_len);
2628 
2629 	if (ctx->max_payload == SPU_MAX_PAYLOAD_INF)
2630 		return 0;
2631 	else
2632 		return payload_len > ctx->max_payload;
2633 }
2634 
2635 static void aead_complete(struct crypto_async_request *areq, int err)
2636 {
2637 	struct aead_request *req =
2638 	    container_of(areq, struct aead_request, base);
2639 	struct iproc_reqctx_s *rctx = aead_request_ctx(req);
2640 	struct crypto_aead *aead = crypto_aead_reqtfm(req);
2641 
2642 	flow_log("%s() err:%d\n", __func__, err);
2643 
2644 	areq->tfm = crypto_aead_tfm(aead);
2645 
2646 	areq->complete = rctx->old_complete;
2647 	areq->data = rctx->old_data;
2648 
2649 	areq->complete(areq, err);
2650 }
2651 
2652 static int aead_do_fallback(struct aead_request *req, bool is_encrypt)
2653 {
2654 	struct crypto_aead *aead = crypto_aead_reqtfm(req);
2655 	struct crypto_tfm *tfm = crypto_aead_tfm(aead);
2656 	struct iproc_reqctx_s *rctx = aead_request_ctx(req);
2657 	struct iproc_ctx_s *ctx = crypto_tfm_ctx(tfm);
2658 	int err;
2659 	u32 req_flags;
2660 
2661 	flow_log("%s() enc:%u\n", __func__, is_encrypt);
2662 
2663 	if (ctx->fallback_cipher) {
2664 		/* Store the cipher tfm and then use the fallback tfm */
2665 		rctx->old_tfm = tfm;
2666 		aead_request_set_tfm(req, ctx->fallback_cipher);
2667 		/*
2668 		 * Save the callback and chain ourselves in, so we can restore
2669 		 * the tfm
2670 		 */
2671 		rctx->old_complete = req->base.complete;
2672 		rctx->old_data = req->base.data;
2673 		req_flags = aead_request_flags(req);
2674 		aead_request_set_callback(req, req_flags, aead_complete, req);
2675 		err = is_encrypt ? crypto_aead_encrypt(req) :
2676 		    crypto_aead_decrypt(req);
2677 
2678 		if (err == 0) {
2679 			/*
2680 			 * fallback was synchronous (did not return
2681 			 * -EINPROGRESS). So restore request state here.
2682 			 */
2683 			aead_request_set_callback(req, req_flags,
2684 						  rctx->old_complete, req);
2685 			req->base.data = rctx->old_data;
2686 			aead_request_set_tfm(req, aead);
2687 			flow_log("%s() fallback completed successfully\n\n",
2688 				 __func__);
2689 		}
2690 	} else {
2691 		err = -EINVAL;
2692 	}
2693 
2694 	return err;
2695 }
2696 
2697 static int aead_enqueue(struct aead_request *req, bool is_encrypt)
2698 {
2699 	struct iproc_reqctx_s *rctx = aead_request_ctx(req);
2700 	struct crypto_aead *aead = crypto_aead_reqtfm(req);
2701 	struct iproc_ctx_s *ctx = crypto_aead_ctx(aead);
2702 	int err;
2703 
2704 	flow_log("%s() enc:%u\n", __func__, is_encrypt);
2705 
2706 	if (req->assoclen > MAX_ASSOC_SIZE) {
2707 		pr_err
2708 		    ("%s() Error: associated data too long. (%u > %u bytes)\n",
2709 		     __func__, req->assoclen, MAX_ASSOC_SIZE);
2710 		return -EINVAL;
2711 	}
2712 
2713 	rctx->gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
2714 		       CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
2715 	rctx->parent = &req->base;
2716 	rctx->is_encrypt = is_encrypt;
2717 	rctx->bd_suppress = false;
2718 	rctx->total_todo = req->cryptlen;
2719 	rctx->src_sent = 0;
2720 	rctx->total_sent = 0;
2721 	rctx->total_received = 0;
2722 	rctx->is_sw_hmac = false;
2723 	rctx->ctx = ctx;
2724 	memset(&rctx->mb_mssg, 0, sizeof(struct brcm_message));
2725 
2726 	/* assoc data is at start of src sg */
2727 	rctx->assoc = req->src;
2728 
2729 	/*
2730 	 * Init current position in src scatterlist to be after assoc data.
2731 	 * src_skip set to buffer offset where data begins. (Assoc data could
2732 	 * end in the middle of a buffer.)
2733 	 */
2734 	if (spu_sg_at_offset(req->src, req->assoclen, &rctx->src_sg,
2735 			     &rctx->src_skip) < 0) {
2736 		pr_err("%s() Error: Unable to find start of src data\n",
2737 		       __func__);
2738 		return -EINVAL;
2739 	}
2740 
2741 	rctx->src_nents = 0;
2742 	rctx->dst_nents = 0;
2743 	if (req->dst == req->src) {
2744 		rctx->dst_sg = rctx->src_sg;
2745 		rctx->dst_skip = rctx->src_skip;
2746 	} else {
2747 		/*
2748 		 * Expect req->dst to have room for assoc data followed by
2749 		 * output data and ICV, if encrypt. So initialize dst_sg
2750 		 * to point beyond assoc len offset.
2751 		 */
2752 		if (spu_sg_at_offset(req->dst, req->assoclen, &rctx->dst_sg,
2753 				     &rctx->dst_skip) < 0) {
2754 			pr_err("%s() Error: Unable to find start of dst data\n",
2755 			       __func__);
2756 			return -EINVAL;
2757 		}
2758 	}
2759 
2760 	if (ctx->cipher.mode == CIPHER_MODE_CBC ||
2761 	    ctx->cipher.mode == CIPHER_MODE_CTR ||
2762 	    ctx->cipher.mode == CIPHER_MODE_OFB ||
2763 	    ctx->cipher.mode == CIPHER_MODE_XTS ||
2764 	    ctx->cipher.mode == CIPHER_MODE_GCM) {
2765 		rctx->iv_ctr_len =
2766 			ctx->salt_len +
2767 			crypto_aead_ivsize(crypto_aead_reqtfm(req));
2768 	} else if (ctx->cipher.mode == CIPHER_MODE_CCM) {
2769 		rctx->iv_ctr_len = CCM_AES_IV_SIZE;
2770 	} else {
2771 		rctx->iv_ctr_len = 0;
2772 	}
2773 
2774 	rctx->hash_carry_len = 0;
2775 
2776 	flow_log("  src sg: %p\n", req->src);
2777 	flow_log("  rctx->src_sg: %p, src_skip %u\n",
2778 		 rctx->src_sg, rctx->src_skip);
2779 	flow_log("  assoc:  %p, assoclen %u\n", rctx->assoc, req->assoclen);
2780 	flow_log("  dst sg: %p\n", req->dst);
2781 	flow_log("  rctx->dst_sg: %p, dst_skip %u\n",
2782 		 rctx->dst_sg, rctx->dst_skip);
2783 	flow_log("  iv_ctr_len:%u\n", rctx->iv_ctr_len);
2784 	flow_dump("  iv: ", req->iv, rctx->iv_ctr_len);
2785 	flow_log("  authkeylen:%u\n", ctx->authkeylen);
2786 	flow_log("  is_esp: %s\n", ctx->is_esp ? "yes" : "no");
2787 
2788 	if (ctx->max_payload == SPU_MAX_PAYLOAD_INF)
2789 		flow_log("  max_payload infinite");
2790 	else
2791 		flow_log("  max_payload: %u\n", ctx->max_payload);
2792 
2793 	if (unlikely(aead_need_fallback(req)))
2794 		return aead_do_fallback(req, is_encrypt);
2795 
2796 	/*
2797 	 * Do memory allocations for request after fallback check, because if we
2798 	 * do fallback, we won't call finish_req() to dealloc.
2799 	 */
2800 	if (rctx->iv_ctr_len) {
2801 		if (ctx->salt_len)
2802 			memcpy(rctx->msg_buf.iv_ctr + ctx->salt_offset,
2803 			       ctx->salt, ctx->salt_len);
2804 		memcpy(rctx->msg_buf.iv_ctr + ctx->salt_offset + ctx->salt_len,
2805 		       req->iv,
2806 		       rctx->iv_ctr_len - ctx->salt_len - ctx->salt_offset);
2807 	}
2808 
2809 	rctx->chan_idx = select_channel();
2810 	err = handle_aead_req(rctx);
2811 	if (err != -EINPROGRESS)
2812 		/* synchronous result */
2813 		spu_chunk_cleanup(rctx);
2814 
2815 	return err;
2816 }
2817 
2818 static int aead_authenc_setkey(struct crypto_aead *cipher,
2819 			       const u8 *key, unsigned int keylen)
2820 {
2821 	struct spu_hw *spu = &iproc_priv.spu;
2822 	struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher);
2823 	struct crypto_tfm *tfm = crypto_aead_tfm(cipher);
2824 	struct crypto_authenc_keys keys;
2825 	int ret;
2826 
2827 	flow_log("%s() aead:%p key:%p keylen:%u\n", __func__, cipher, key,
2828 		 keylen);
2829 	flow_dump("  key: ", key, keylen);
2830 
2831 	ret = crypto_authenc_extractkeys(&keys, key, keylen);
2832 	if (ret)
2833 		goto badkey;
2834 
2835 	if (keys.enckeylen > MAX_KEY_SIZE ||
2836 	    keys.authkeylen > MAX_KEY_SIZE)
2837 		goto badkey;
2838 
2839 	ctx->enckeylen = keys.enckeylen;
2840 	ctx->authkeylen = keys.authkeylen;
2841 
2842 	memcpy(ctx->enckey, keys.enckey, keys.enckeylen);
2843 	/* May end up padding auth key. So make sure it's zeroed. */
2844 	memset(ctx->authkey, 0, sizeof(ctx->authkey));
2845 	memcpy(ctx->authkey, keys.authkey, keys.authkeylen);
2846 
2847 	switch (ctx->alg->cipher_info.alg) {
2848 	case CIPHER_ALG_DES:
2849 		if (verify_aead_des_key(cipher, keys.enckey, keys.enckeylen))
2850 			return -EINVAL;
2851 
2852 		ctx->cipher_type = CIPHER_TYPE_DES;
2853 		break;
2854 	case CIPHER_ALG_3DES:
2855 		if (verify_aead_des3_key(cipher, keys.enckey, keys.enckeylen))
2856 			return -EINVAL;
2857 
2858 		ctx->cipher_type = CIPHER_TYPE_3DES;
2859 		break;
2860 	case CIPHER_ALG_AES:
2861 		switch (ctx->enckeylen) {
2862 		case AES_KEYSIZE_128:
2863 			ctx->cipher_type = CIPHER_TYPE_AES128;
2864 			break;
2865 		case AES_KEYSIZE_192:
2866 			ctx->cipher_type = CIPHER_TYPE_AES192;
2867 			break;
2868 		case AES_KEYSIZE_256:
2869 			ctx->cipher_type = CIPHER_TYPE_AES256;
2870 			break;
2871 		default:
2872 			goto badkey;
2873 		}
2874 		break;
2875 	case CIPHER_ALG_RC4:
2876 		ctx->cipher_type = CIPHER_TYPE_INIT;
2877 		break;
2878 	default:
2879 		pr_err("%s() Error: Unknown cipher alg\n", __func__);
2880 		return -EINVAL;
2881 	}
2882 
2883 	flow_log("  enckeylen:%u authkeylen:%u\n", ctx->enckeylen,
2884 		 ctx->authkeylen);
2885 	flow_dump("  enc: ", ctx->enckey, ctx->enckeylen);
2886 	flow_dump("  auth: ", ctx->authkey, ctx->authkeylen);
2887 
2888 	/* setkey the fallback just in case we needto use it */
2889 	if (ctx->fallback_cipher) {
2890 		flow_log("  running fallback setkey()\n");
2891 
2892 		ctx->fallback_cipher->base.crt_flags &= ~CRYPTO_TFM_REQ_MASK;
2893 		ctx->fallback_cipher->base.crt_flags |=
2894 		    tfm->crt_flags & CRYPTO_TFM_REQ_MASK;
2895 		ret = crypto_aead_setkey(ctx->fallback_cipher, key, keylen);
2896 		if (ret)
2897 			flow_log("  fallback setkey() returned:%d\n", ret);
2898 	}
2899 
2900 	ctx->spu_resp_hdr_len = spu->spu_response_hdr_len(ctx->authkeylen,
2901 							  ctx->enckeylen,
2902 							  false);
2903 
2904 	atomic_inc(&iproc_priv.setkey_cnt[SPU_OP_AEAD]);
2905 
2906 	return ret;
2907 
2908 badkey:
2909 	ctx->enckeylen = 0;
2910 	ctx->authkeylen = 0;
2911 	ctx->digestsize = 0;
2912 
2913 	return -EINVAL;
2914 }
2915 
2916 static int aead_gcm_ccm_setkey(struct crypto_aead *cipher,
2917 			       const u8 *key, unsigned int keylen)
2918 {
2919 	struct spu_hw *spu = &iproc_priv.spu;
2920 	struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher);
2921 	struct crypto_tfm *tfm = crypto_aead_tfm(cipher);
2922 
2923 	int ret = 0;
2924 
2925 	flow_log("%s() keylen:%u\n", __func__, keylen);
2926 	flow_dump("  key: ", key, keylen);
2927 
2928 	if (!ctx->is_esp)
2929 		ctx->digestsize = keylen;
2930 
2931 	ctx->enckeylen = keylen;
2932 	ctx->authkeylen = 0;
2933 	memcpy(ctx->enckey, key, ctx->enckeylen);
2934 
2935 	switch (ctx->enckeylen) {
2936 	case AES_KEYSIZE_128:
2937 		ctx->cipher_type = CIPHER_TYPE_AES128;
2938 		break;
2939 	case AES_KEYSIZE_192:
2940 		ctx->cipher_type = CIPHER_TYPE_AES192;
2941 		break;
2942 	case AES_KEYSIZE_256:
2943 		ctx->cipher_type = CIPHER_TYPE_AES256;
2944 		break;
2945 	default:
2946 		goto badkey;
2947 	}
2948 
2949 	flow_log("  enckeylen:%u authkeylen:%u\n", ctx->enckeylen,
2950 		 ctx->authkeylen);
2951 	flow_dump("  enc: ", ctx->enckey, ctx->enckeylen);
2952 	flow_dump("  auth: ", ctx->authkey, ctx->authkeylen);
2953 
2954 	/* setkey the fallback just in case we need to use it */
2955 	if (ctx->fallback_cipher) {
2956 		flow_log("  running fallback setkey()\n");
2957 
2958 		ctx->fallback_cipher->base.crt_flags &= ~CRYPTO_TFM_REQ_MASK;
2959 		ctx->fallback_cipher->base.crt_flags |=
2960 		    tfm->crt_flags & CRYPTO_TFM_REQ_MASK;
2961 		ret = crypto_aead_setkey(ctx->fallback_cipher, key,
2962 					 keylen + ctx->salt_len);
2963 		if (ret)
2964 			flow_log("  fallback setkey() returned:%d\n", ret);
2965 	}
2966 
2967 	ctx->spu_resp_hdr_len = spu->spu_response_hdr_len(ctx->authkeylen,
2968 							  ctx->enckeylen,
2969 							  false);
2970 
2971 	atomic_inc(&iproc_priv.setkey_cnt[SPU_OP_AEAD]);
2972 
2973 	flow_log("  enckeylen:%u authkeylen:%u\n", ctx->enckeylen,
2974 		 ctx->authkeylen);
2975 
2976 	return ret;
2977 
2978 badkey:
2979 	ctx->enckeylen = 0;
2980 	ctx->authkeylen = 0;
2981 	ctx->digestsize = 0;
2982 
2983 	return -EINVAL;
2984 }
2985 
2986 /**
2987  * aead_gcm_esp_setkey() - setkey() operation for ESP variant of GCM AES.
2988  * @cipher: AEAD structure
2989  * @key:    Key followed by 4 bytes of salt
2990  * @keylen: Length of key plus salt, in bytes
2991  *
2992  * Extracts salt from key and stores it to be prepended to IV on each request.
2993  * Digest is always 16 bytes
2994  *
2995  * Return: Value from generic gcm setkey.
2996  */
2997 static int aead_gcm_esp_setkey(struct crypto_aead *cipher,
2998 			       const u8 *key, unsigned int keylen)
2999 {
3000 	struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher);
3001 
3002 	flow_log("%s\n", __func__);
3003 	ctx->salt_len = GCM_ESP_SALT_SIZE;
3004 	ctx->salt_offset = GCM_ESP_SALT_OFFSET;
3005 	memcpy(ctx->salt, key + keylen - GCM_ESP_SALT_SIZE, GCM_ESP_SALT_SIZE);
3006 	keylen -= GCM_ESP_SALT_SIZE;
3007 	ctx->digestsize = GCM_ESP_DIGESTSIZE;
3008 	ctx->is_esp = true;
3009 	flow_dump("salt: ", ctx->salt, GCM_ESP_SALT_SIZE);
3010 
3011 	return aead_gcm_ccm_setkey(cipher, key, keylen);
3012 }
3013 
3014 /**
3015  * rfc4543_gcm_esp_setkey() - setkey operation for RFC4543 variant of GCM/GMAC.
3016  * cipher: AEAD structure
3017  * key:    Key followed by 4 bytes of salt
3018  * keylen: Length of key plus salt, in bytes
3019  *
3020  * Extracts salt from key and stores it to be prepended to IV on each request.
3021  * Digest is always 16 bytes
3022  *
3023  * Return: Value from generic gcm setkey.
3024  */
3025 static int rfc4543_gcm_esp_setkey(struct crypto_aead *cipher,
3026 				  const u8 *key, unsigned int keylen)
3027 {
3028 	struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher);
3029 
3030 	flow_log("%s\n", __func__);
3031 	ctx->salt_len = GCM_ESP_SALT_SIZE;
3032 	ctx->salt_offset = GCM_ESP_SALT_OFFSET;
3033 	memcpy(ctx->salt, key + keylen - GCM_ESP_SALT_SIZE, GCM_ESP_SALT_SIZE);
3034 	keylen -= GCM_ESP_SALT_SIZE;
3035 	ctx->digestsize = GCM_ESP_DIGESTSIZE;
3036 	ctx->is_esp = true;
3037 	ctx->is_rfc4543 = true;
3038 	flow_dump("salt: ", ctx->salt, GCM_ESP_SALT_SIZE);
3039 
3040 	return aead_gcm_ccm_setkey(cipher, key, keylen);
3041 }
3042 
3043 /**
3044  * aead_ccm_esp_setkey() - setkey() operation for ESP variant of CCM AES.
3045  * @cipher: AEAD structure
3046  * @key:    Key followed by 4 bytes of salt
3047  * @keylen: Length of key plus salt, in bytes
3048  *
3049  * Extracts salt from key and stores it to be prepended to IV on each request.
3050  * Digest is always 16 bytes
3051  *
3052  * Return: Value from generic ccm setkey.
3053  */
3054 static int aead_ccm_esp_setkey(struct crypto_aead *cipher,
3055 			       const u8 *key, unsigned int keylen)
3056 {
3057 	struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher);
3058 
3059 	flow_log("%s\n", __func__);
3060 	ctx->salt_len = CCM_ESP_SALT_SIZE;
3061 	ctx->salt_offset = CCM_ESP_SALT_OFFSET;
3062 	memcpy(ctx->salt, key + keylen - CCM_ESP_SALT_SIZE, CCM_ESP_SALT_SIZE);
3063 	keylen -= CCM_ESP_SALT_SIZE;
3064 	ctx->is_esp = true;
3065 	flow_dump("salt: ", ctx->salt, CCM_ESP_SALT_SIZE);
3066 
3067 	return aead_gcm_ccm_setkey(cipher, key, keylen);
3068 }
3069 
3070 static int aead_setauthsize(struct crypto_aead *cipher, unsigned int authsize)
3071 {
3072 	struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher);
3073 	int ret = 0;
3074 
3075 	flow_log("%s() authkeylen:%u authsize:%u\n",
3076 		 __func__, ctx->authkeylen, authsize);
3077 
3078 	ctx->digestsize = authsize;
3079 
3080 	/* setkey the fallback just in case we needto use it */
3081 	if (ctx->fallback_cipher) {
3082 		flow_log("  running fallback setauth()\n");
3083 
3084 		ret = crypto_aead_setauthsize(ctx->fallback_cipher, authsize);
3085 		if (ret)
3086 			flow_log("  fallback setauth() returned:%d\n", ret);
3087 	}
3088 
3089 	return ret;
3090 }
3091 
3092 static int aead_encrypt(struct aead_request *req)
3093 {
3094 	flow_log("%s() cryptlen:%u %08x\n", __func__, req->cryptlen,
3095 		 req->cryptlen);
3096 	dump_sg(req->src, 0, req->cryptlen + req->assoclen);
3097 	flow_log("  assoc_len:%u\n", req->assoclen);
3098 
3099 	return aead_enqueue(req, true);
3100 }
3101 
3102 static int aead_decrypt(struct aead_request *req)
3103 {
3104 	flow_log("%s() cryptlen:%u\n", __func__, req->cryptlen);
3105 	dump_sg(req->src, 0, req->cryptlen + req->assoclen);
3106 	flow_log("  assoc_len:%u\n", req->assoclen);
3107 
3108 	return aead_enqueue(req, false);
3109 }
3110 
3111 /* ==================== Supported Cipher Algorithms ==================== */
3112 
3113 static struct iproc_alg_s driver_algs[] = {
3114 	{
3115 	 .type = CRYPTO_ALG_TYPE_AEAD,
3116 	 .alg.aead = {
3117 		 .base = {
3118 			.cra_name = "gcm(aes)",
3119 			.cra_driver_name = "gcm-aes-iproc",
3120 			.cra_blocksize = AES_BLOCK_SIZE,
3121 			.cra_flags = CRYPTO_ALG_NEED_FALLBACK
3122 		 },
3123 		 .setkey = aead_gcm_ccm_setkey,
3124 		 .ivsize = GCM_AES_IV_SIZE,
3125 		.maxauthsize = AES_BLOCK_SIZE,
3126 	 },
3127 	 .cipher_info = {
3128 			 .alg = CIPHER_ALG_AES,
3129 			 .mode = CIPHER_MODE_GCM,
3130 			 },
3131 	 .auth_info = {
3132 		       .alg = HASH_ALG_AES,
3133 		       .mode = HASH_MODE_GCM,
3134 		       },
3135 	 .auth_first = 0,
3136 	 },
3137 	{
3138 	 .type = CRYPTO_ALG_TYPE_AEAD,
3139 	 .alg.aead = {
3140 		 .base = {
3141 			.cra_name = "ccm(aes)",
3142 			.cra_driver_name = "ccm-aes-iproc",
3143 			.cra_blocksize = AES_BLOCK_SIZE,
3144 			.cra_flags = CRYPTO_ALG_NEED_FALLBACK
3145 		 },
3146 		 .setkey = aead_gcm_ccm_setkey,
3147 		 .ivsize = CCM_AES_IV_SIZE,
3148 		.maxauthsize = AES_BLOCK_SIZE,
3149 	 },
3150 	 .cipher_info = {
3151 			 .alg = CIPHER_ALG_AES,
3152 			 .mode = CIPHER_MODE_CCM,
3153 			 },
3154 	 .auth_info = {
3155 		       .alg = HASH_ALG_AES,
3156 		       .mode = HASH_MODE_CCM,
3157 		       },
3158 	 .auth_first = 0,
3159 	 },
3160 	{
3161 	 .type = CRYPTO_ALG_TYPE_AEAD,
3162 	 .alg.aead = {
3163 		 .base = {
3164 			.cra_name = "rfc4106(gcm(aes))",
3165 			.cra_driver_name = "gcm-aes-esp-iproc",
3166 			.cra_blocksize = AES_BLOCK_SIZE,
3167 			.cra_flags = CRYPTO_ALG_NEED_FALLBACK
3168 		 },
3169 		 .setkey = aead_gcm_esp_setkey,
3170 		 .ivsize = GCM_RFC4106_IV_SIZE,
3171 		 .maxauthsize = AES_BLOCK_SIZE,
3172 	 },
3173 	 .cipher_info = {
3174 			 .alg = CIPHER_ALG_AES,
3175 			 .mode = CIPHER_MODE_GCM,
3176 			 },
3177 	 .auth_info = {
3178 		       .alg = HASH_ALG_AES,
3179 		       .mode = HASH_MODE_GCM,
3180 		       },
3181 	 .auth_first = 0,
3182 	 },
3183 	{
3184 	 .type = CRYPTO_ALG_TYPE_AEAD,
3185 	 .alg.aead = {
3186 		 .base = {
3187 			.cra_name = "rfc4309(ccm(aes))",
3188 			.cra_driver_name = "ccm-aes-esp-iproc",
3189 			.cra_blocksize = AES_BLOCK_SIZE,
3190 			.cra_flags = CRYPTO_ALG_NEED_FALLBACK
3191 		 },
3192 		 .setkey = aead_ccm_esp_setkey,
3193 		 .ivsize = CCM_AES_IV_SIZE,
3194 		 .maxauthsize = AES_BLOCK_SIZE,
3195 	 },
3196 	 .cipher_info = {
3197 			 .alg = CIPHER_ALG_AES,
3198 			 .mode = CIPHER_MODE_CCM,
3199 			 },
3200 	 .auth_info = {
3201 		       .alg = HASH_ALG_AES,
3202 		       .mode = HASH_MODE_CCM,
3203 		       },
3204 	 .auth_first = 0,
3205 	 },
3206 	{
3207 	 .type = CRYPTO_ALG_TYPE_AEAD,
3208 	 .alg.aead = {
3209 		 .base = {
3210 			.cra_name = "rfc4543(gcm(aes))",
3211 			.cra_driver_name = "gmac-aes-esp-iproc",
3212 			.cra_blocksize = AES_BLOCK_SIZE,
3213 			.cra_flags = CRYPTO_ALG_NEED_FALLBACK
3214 		 },
3215 		 .setkey = rfc4543_gcm_esp_setkey,
3216 		 .ivsize = GCM_RFC4106_IV_SIZE,
3217 		 .maxauthsize = AES_BLOCK_SIZE,
3218 	 },
3219 	 .cipher_info = {
3220 			 .alg = CIPHER_ALG_AES,
3221 			 .mode = CIPHER_MODE_GCM,
3222 			 },
3223 	 .auth_info = {
3224 		       .alg = HASH_ALG_AES,
3225 		       .mode = HASH_MODE_GCM,
3226 		       },
3227 	 .auth_first = 0,
3228 	 },
3229 	{
3230 	 .type = CRYPTO_ALG_TYPE_AEAD,
3231 	 .alg.aead = {
3232 		 .base = {
3233 			.cra_name = "authenc(hmac(md5),cbc(aes))",
3234 			.cra_driver_name = "authenc-hmac-md5-cbc-aes-iproc",
3235 			.cra_blocksize = AES_BLOCK_SIZE,
3236 			.cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
3237 		 },
3238 		 .setkey = aead_authenc_setkey,
3239 		.ivsize = AES_BLOCK_SIZE,
3240 		.maxauthsize = MD5_DIGEST_SIZE,
3241 	 },
3242 	 .cipher_info = {
3243 			 .alg = CIPHER_ALG_AES,
3244 			 .mode = CIPHER_MODE_CBC,
3245 			 },
3246 	 .auth_info = {
3247 		       .alg = HASH_ALG_MD5,
3248 		       .mode = HASH_MODE_HMAC,
3249 		       },
3250 	 .auth_first = 0,
3251 	 },
3252 	{
3253 	 .type = CRYPTO_ALG_TYPE_AEAD,
3254 	 .alg.aead = {
3255 		 .base = {
3256 			.cra_name = "authenc(hmac(sha1),cbc(aes))",
3257 			.cra_driver_name = "authenc-hmac-sha1-cbc-aes-iproc",
3258 			.cra_blocksize = AES_BLOCK_SIZE,
3259 			.cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
3260 		 },
3261 		 .setkey = aead_authenc_setkey,
3262 		 .ivsize = AES_BLOCK_SIZE,
3263 		 .maxauthsize = SHA1_DIGEST_SIZE,
3264 	 },
3265 	 .cipher_info = {
3266 			 .alg = CIPHER_ALG_AES,
3267 			 .mode = CIPHER_MODE_CBC,
3268 			 },
3269 	 .auth_info = {
3270 		       .alg = HASH_ALG_SHA1,
3271 		       .mode = HASH_MODE_HMAC,
3272 		       },
3273 	 .auth_first = 0,
3274 	 },
3275 	{
3276 	 .type = CRYPTO_ALG_TYPE_AEAD,
3277 	 .alg.aead = {
3278 		 .base = {
3279 			.cra_name = "authenc(hmac(sha256),cbc(aes))",
3280 			.cra_driver_name = "authenc-hmac-sha256-cbc-aes-iproc",
3281 			.cra_blocksize = AES_BLOCK_SIZE,
3282 			.cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
3283 		 },
3284 		 .setkey = aead_authenc_setkey,
3285 		 .ivsize = AES_BLOCK_SIZE,
3286 		 .maxauthsize = SHA256_DIGEST_SIZE,
3287 	 },
3288 	 .cipher_info = {
3289 			 .alg = CIPHER_ALG_AES,
3290 			 .mode = CIPHER_MODE_CBC,
3291 			 },
3292 	 .auth_info = {
3293 		       .alg = HASH_ALG_SHA256,
3294 		       .mode = HASH_MODE_HMAC,
3295 		       },
3296 	 .auth_first = 0,
3297 	 },
3298 	{
3299 	 .type = CRYPTO_ALG_TYPE_AEAD,
3300 	 .alg.aead = {
3301 		 .base = {
3302 			.cra_name = "authenc(hmac(md5),cbc(des))",
3303 			.cra_driver_name = "authenc-hmac-md5-cbc-des-iproc",
3304 			.cra_blocksize = DES_BLOCK_SIZE,
3305 			.cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
3306 		 },
3307 		 .setkey = aead_authenc_setkey,
3308 		 .ivsize = DES_BLOCK_SIZE,
3309 		 .maxauthsize = MD5_DIGEST_SIZE,
3310 	 },
3311 	 .cipher_info = {
3312 			 .alg = CIPHER_ALG_DES,
3313 			 .mode = CIPHER_MODE_CBC,
3314 			 },
3315 	 .auth_info = {
3316 		       .alg = HASH_ALG_MD5,
3317 		       .mode = HASH_MODE_HMAC,
3318 		       },
3319 	 .auth_first = 0,
3320 	 },
3321 	{
3322 	 .type = CRYPTO_ALG_TYPE_AEAD,
3323 	 .alg.aead = {
3324 		 .base = {
3325 			.cra_name = "authenc(hmac(sha1),cbc(des))",
3326 			.cra_driver_name = "authenc-hmac-sha1-cbc-des-iproc",
3327 			.cra_blocksize = DES_BLOCK_SIZE,
3328 			.cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
3329 		 },
3330 		 .setkey = aead_authenc_setkey,
3331 		 .ivsize = DES_BLOCK_SIZE,
3332 		 .maxauthsize = SHA1_DIGEST_SIZE,
3333 	 },
3334 	 .cipher_info = {
3335 			 .alg = CIPHER_ALG_DES,
3336 			 .mode = CIPHER_MODE_CBC,
3337 			 },
3338 	 .auth_info = {
3339 		       .alg = HASH_ALG_SHA1,
3340 		       .mode = HASH_MODE_HMAC,
3341 		       },
3342 	 .auth_first = 0,
3343 	 },
3344 	{
3345 	 .type = CRYPTO_ALG_TYPE_AEAD,
3346 	 .alg.aead = {
3347 		 .base = {
3348 			.cra_name = "authenc(hmac(sha224),cbc(des))",
3349 			.cra_driver_name = "authenc-hmac-sha224-cbc-des-iproc",
3350 			.cra_blocksize = DES_BLOCK_SIZE,
3351 			.cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
3352 		 },
3353 		 .setkey = aead_authenc_setkey,
3354 		 .ivsize = DES_BLOCK_SIZE,
3355 		 .maxauthsize = SHA224_DIGEST_SIZE,
3356 	 },
3357 	 .cipher_info = {
3358 			 .alg = CIPHER_ALG_DES,
3359 			 .mode = CIPHER_MODE_CBC,
3360 			 },
3361 	 .auth_info = {
3362 		       .alg = HASH_ALG_SHA224,
3363 		       .mode = HASH_MODE_HMAC,
3364 		       },
3365 	 .auth_first = 0,
3366 	 },
3367 	{
3368 	 .type = CRYPTO_ALG_TYPE_AEAD,
3369 	 .alg.aead = {
3370 		 .base = {
3371 			.cra_name = "authenc(hmac(sha256),cbc(des))",
3372 			.cra_driver_name = "authenc-hmac-sha256-cbc-des-iproc",
3373 			.cra_blocksize = DES_BLOCK_SIZE,
3374 			.cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
3375 		 },
3376 		 .setkey = aead_authenc_setkey,
3377 		 .ivsize = DES_BLOCK_SIZE,
3378 		 .maxauthsize = SHA256_DIGEST_SIZE,
3379 	 },
3380 	 .cipher_info = {
3381 			 .alg = CIPHER_ALG_DES,
3382 			 .mode = CIPHER_MODE_CBC,
3383 			 },
3384 	 .auth_info = {
3385 		       .alg = HASH_ALG_SHA256,
3386 		       .mode = HASH_MODE_HMAC,
3387 		       },
3388 	 .auth_first = 0,
3389 	 },
3390 	{
3391 	 .type = CRYPTO_ALG_TYPE_AEAD,
3392 	 .alg.aead = {
3393 		 .base = {
3394 			.cra_name = "authenc(hmac(sha384),cbc(des))",
3395 			.cra_driver_name = "authenc-hmac-sha384-cbc-des-iproc",
3396 			.cra_blocksize = DES_BLOCK_SIZE,
3397 			.cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
3398 		 },
3399 		 .setkey = aead_authenc_setkey,
3400 		 .ivsize = DES_BLOCK_SIZE,
3401 		 .maxauthsize = SHA384_DIGEST_SIZE,
3402 	 },
3403 	 .cipher_info = {
3404 			 .alg = CIPHER_ALG_DES,
3405 			 .mode = CIPHER_MODE_CBC,
3406 			 },
3407 	 .auth_info = {
3408 		       .alg = HASH_ALG_SHA384,
3409 		       .mode = HASH_MODE_HMAC,
3410 		       },
3411 	 .auth_first = 0,
3412 	 },
3413 	{
3414 	 .type = CRYPTO_ALG_TYPE_AEAD,
3415 	 .alg.aead = {
3416 		 .base = {
3417 			.cra_name = "authenc(hmac(sha512),cbc(des))",
3418 			.cra_driver_name = "authenc-hmac-sha512-cbc-des-iproc",
3419 			.cra_blocksize = DES_BLOCK_SIZE,
3420 			.cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
3421 		 },
3422 		 .setkey = aead_authenc_setkey,
3423 		 .ivsize = DES_BLOCK_SIZE,
3424 		 .maxauthsize = SHA512_DIGEST_SIZE,
3425 	 },
3426 	 .cipher_info = {
3427 			 .alg = CIPHER_ALG_DES,
3428 			 .mode = CIPHER_MODE_CBC,
3429 			 },
3430 	 .auth_info = {
3431 		       .alg = HASH_ALG_SHA512,
3432 		       .mode = HASH_MODE_HMAC,
3433 		       },
3434 	 .auth_first = 0,
3435 	 },
3436 	{
3437 	 .type = CRYPTO_ALG_TYPE_AEAD,
3438 	 .alg.aead = {
3439 		 .base = {
3440 			.cra_name = "authenc(hmac(md5),cbc(des3_ede))",
3441 			.cra_driver_name = "authenc-hmac-md5-cbc-des3-iproc",
3442 			.cra_blocksize = DES3_EDE_BLOCK_SIZE,
3443 			.cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
3444 		 },
3445 		 .setkey = aead_authenc_setkey,
3446 		 .ivsize = DES3_EDE_BLOCK_SIZE,
3447 		 .maxauthsize = MD5_DIGEST_SIZE,
3448 	 },
3449 	 .cipher_info = {
3450 			 .alg = CIPHER_ALG_3DES,
3451 			 .mode = CIPHER_MODE_CBC,
3452 			 },
3453 	 .auth_info = {
3454 		       .alg = HASH_ALG_MD5,
3455 		       .mode = HASH_MODE_HMAC,
3456 		       },
3457 	 .auth_first = 0,
3458 	 },
3459 	{
3460 	 .type = CRYPTO_ALG_TYPE_AEAD,
3461 	 .alg.aead = {
3462 		 .base = {
3463 			.cra_name = "authenc(hmac(sha1),cbc(des3_ede))",
3464 			.cra_driver_name = "authenc-hmac-sha1-cbc-des3-iproc",
3465 			.cra_blocksize = DES3_EDE_BLOCK_SIZE,
3466 			.cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
3467 		 },
3468 		 .setkey = aead_authenc_setkey,
3469 		 .ivsize = DES3_EDE_BLOCK_SIZE,
3470 		 .maxauthsize = SHA1_DIGEST_SIZE,
3471 	 },
3472 	 .cipher_info = {
3473 			 .alg = CIPHER_ALG_3DES,
3474 			 .mode = CIPHER_MODE_CBC,
3475 			 },
3476 	 .auth_info = {
3477 		       .alg = HASH_ALG_SHA1,
3478 		       .mode = HASH_MODE_HMAC,
3479 		       },
3480 	 .auth_first = 0,
3481 	 },
3482 	{
3483 	 .type = CRYPTO_ALG_TYPE_AEAD,
3484 	 .alg.aead = {
3485 		 .base = {
3486 			.cra_name = "authenc(hmac(sha224),cbc(des3_ede))",
3487 			.cra_driver_name = "authenc-hmac-sha224-cbc-des3-iproc",
3488 			.cra_blocksize = DES3_EDE_BLOCK_SIZE,
3489 			.cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
3490 		 },
3491 		 .setkey = aead_authenc_setkey,
3492 		 .ivsize = DES3_EDE_BLOCK_SIZE,
3493 		 .maxauthsize = SHA224_DIGEST_SIZE,
3494 	 },
3495 	 .cipher_info = {
3496 			 .alg = CIPHER_ALG_3DES,
3497 			 .mode = CIPHER_MODE_CBC,
3498 			 },
3499 	 .auth_info = {
3500 		       .alg = HASH_ALG_SHA224,
3501 		       .mode = HASH_MODE_HMAC,
3502 		       },
3503 	 .auth_first = 0,
3504 	 },
3505 	{
3506 	 .type = CRYPTO_ALG_TYPE_AEAD,
3507 	 .alg.aead = {
3508 		 .base = {
3509 			.cra_name = "authenc(hmac(sha256),cbc(des3_ede))",
3510 			.cra_driver_name = "authenc-hmac-sha256-cbc-des3-iproc",
3511 			.cra_blocksize = DES3_EDE_BLOCK_SIZE,
3512 			.cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
3513 		 },
3514 		 .setkey = aead_authenc_setkey,
3515 		 .ivsize = DES3_EDE_BLOCK_SIZE,
3516 		 .maxauthsize = SHA256_DIGEST_SIZE,
3517 	 },
3518 	 .cipher_info = {
3519 			 .alg = CIPHER_ALG_3DES,
3520 			 .mode = CIPHER_MODE_CBC,
3521 			 },
3522 	 .auth_info = {
3523 		       .alg = HASH_ALG_SHA256,
3524 		       .mode = HASH_MODE_HMAC,
3525 		       },
3526 	 .auth_first = 0,
3527 	 },
3528 	{
3529 	 .type = CRYPTO_ALG_TYPE_AEAD,
3530 	 .alg.aead = {
3531 		 .base = {
3532 			.cra_name = "authenc(hmac(sha384),cbc(des3_ede))",
3533 			.cra_driver_name = "authenc-hmac-sha384-cbc-des3-iproc",
3534 			.cra_blocksize = DES3_EDE_BLOCK_SIZE,
3535 			.cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
3536 		 },
3537 		 .setkey = aead_authenc_setkey,
3538 		 .ivsize = DES3_EDE_BLOCK_SIZE,
3539 		 .maxauthsize = SHA384_DIGEST_SIZE,
3540 	 },
3541 	 .cipher_info = {
3542 			 .alg = CIPHER_ALG_3DES,
3543 			 .mode = CIPHER_MODE_CBC,
3544 			 },
3545 	 .auth_info = {
3546 		       .alg = HASH_ALG_SHA384,
3547 		       .mode = HASH_MODE_HMAC,
3548 		       },
3549 	 .auth_first = 0,
3550 	 },
3551 	{
3552 	 .type = CRYPTO_ALG_TYPE_AEAD,
3553 	 .alg.aead = {
3554 		 .base = {
3555 			.cra_name = "authenc(hmac(sha512),cbc(des3_ede))",
3556 			.cra_driver_name = "authenc-hmac-sha512-cbc-des3-iproc",
3557 			.cra_blocksize = DES3_EDE_BLOCK_SIZE,
3558 			.cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
3559 		 },
3560 		 .setkey = aead_authenc_setkey,
3561 		 .ivsize = DES3_EDE_BLOCK_SIZE,
3562 		 .maxauthsize = SHA512_DIGEST_SIZE,
3563 	 },
3564 	 .cipher_info = {
3565 			 .alg = CIPHER_ALG_3DES,
3566 			 .mode = CIPHER_MODE_CBC,
3567 			 },
3568 	 .auth_info = {
3569 		       .alg = HASH_ALG_SHA512,
3570 		       .mode = HASH_MODE_HMAC,
3571 		       },
3572 	 .auth_first = 0,
3573 	 },
3574 
3575 /* SKCIPHER algorithms. */
3576 	{
3577 	 .type = CRYPTO_ALG_TYPE_SKCIPHER,
3578 	 .alg.skcipher = {
3579 			.base.cra_name = "ecb(arc4)",
3580 			.base.cra_driver_name = "ecb-arc4-iproc",
3581 			.base.cra_blocksize = ARC4_BLOCK_SIZE,
3582 			.min_keysize = ARC4_MIN_KEY_SIZE,
3583 			.max_keysize = ARC4_MAX_KEY_SIZE,
3584 			.ivsize = 0,
3585 			},
3586 	 .cipher_info = {
3587 			 .alg = CIPHER_ALG_RC4,
3588 			 .mode = CIPHER_MODE_NONE,
3589 			 },
3590 	 .auth_info = {
3591 		       .alg = HASH_ALG_NONE,
3592 		       .mode = HASH_MODE_NONE,
3593 		       },
3594 	 },
3595 	{
3596 	 .type = CRYPTO_ALG_TYPE_SKCIPHER,
3597 	 .alg.skcipher = {
3598 			.base.cra_name = "ofb(des)",
3599 			.base.cra_driver_name = "ofb-des-iproc",
3600 			.base.cra_blocksize = DES_BLOCK_SIZE,
3601 			.min_keysize = DES_KEY_SIZE,
3602 			.max_keysize = DES_KEY_SIZE,
3603 			.ivsize = DES_BLOCK_SIZE,
3604 			},
3605 	 .cipher_info = {
3606 			 .alg = CIPHER_ALG_DES,
3607 			 .mode = CIPHER_MODE_OFB,
3608 			 },
3609 	 .auth_info = {
3610 		       .alg = HASH_ALG_NONE,
3611 		       .mode = HASH_MODE_NONE,
3612 		       },
3613 	 },
3614 	{
3615 	 .type = CRYPTO_ALG_TYPE_SKCIPHER,
3616 	 .alg.skcipher = {
3617 			.base.cra_name = "cbc(des)",
3618 			.base.cra_driver_name = "cbc-des-iproc",
3619 			.base.cra_blocksize = DES_BLOCK_SIZE,
3620 			.min_keysize = DES_KEY_SIZE,
3621 			.max_keysize = DES_KEY_SIZE,
3622 			.ivsize = DES_BLOCK_SIZE,
3623 			},
3624 	 .cipher_info = {
3625 			 .alg = CIPHER_ALG_DES,
3626 			 .mode = CIPHER_MODE_CBC,
3627 			 },
3628 	 .auth_info = {
3629 		       .alg = HASH_ALG_NONE,
3630 		       .mode = HASH_MODE_NONE,
3631 		       },
3632 	 },
3633 	{
3634 	 .type = CRYPTO_ALG_TYPE_SKCIPHER,
3635 	 .alg.skcipher = {
3636 			.base.cra_name = "ecb(des)",
3637 			.base.cra_driver_name = "ecb-des-iproc",
3638 			.base.cra_blocksize = DES_BLOCK_SIZE,
3639 			.min_keysize = DES_KEY_SIZE,
3640 			.max_keysize = DES_KEY_SIZE,
3641 			.ivsize = 0,
3642 			},
3643 	 .cipher_info = {
3644 			 .alg = CIPHER_ALG_DES,
3645 			 .mode = CIPHER_MODE_ECB,
3646 			 },
3647 	 .auth_info = {
3648 		       .alg = HASH_ALG_NONE,
3649 		       .mode = HASH_MODE_NONE,
3650 		       },
3651 	 },
3652 	{
3653 	 .type = CRYPTO_ALG_TYPE_SKCIPHER,
3654 	 .alg.skcipher = {
3655 			.base.cra_name = "ofb(des3_ede)",
3656 			.base.cra_driver_name = "ofb-des3-iproc",
3657 			.base.cra_blocksize = DES3_EDE_BLOCK_SIZE,
3658 			.min_keysize = DES3_EDE_KEY_SIZE,
3659 			.max_keysize = DES3_EDE_KEY_SIZE,
3660 			.ivsize = DES3_EDE_BLOCK_SIZE,
3661 			},
3662 	 .cipher_info = {
3663 			 .alg = CIPHER_ALG_3DES,
3664 			 .mode = CIPHER_MODE_OFB,
3665 			 },
3666 	 .auth_info = {
3667 		       .alg = HASH_ALG_NONE,
3668 		       .mode = HASH_MODE_NONE,
3669 		       },
3670 	 },
3671 	{
3672 	 .type = CRYPTO_ALG_TYPE_SKCIPHER,
3673 	 .alg.skcipher = {
3674 			.base.cra_name = "cbc(des3_ede)",
3675 			.base.cra_driver_name = "cbc-des3-iproc",
3676 			.base.cra_blocksize = DES3_EDE_BLOCK_SIZE,
3677 			.min_keysize = DES3_EDE_KEY_SIZE,
3678 			.max_keysize = DES3_EDE_KEY_SIZE,
3679 			.ivsize = DES3_EDE_BLOCK_SIZE,
3680 			},
3681 	 .cipher_info = {
3682 			 .alg = CIPHER_ALG_3DES,
3683 			 .mode = CIPHER_MODE_CBC,
3684 			 },
3685 	 .auth_info = {
3686 		       .alg = HASH_ALG_NONE,
3687 		       .mode = HASH_MODE_NONE,
3688 		       },
3689 	 },
3690 	{
3691 	 .type = CRYPTO_ALG_TYPE_SKCIPHER,
3692 	 .alg.skcipher = {
3693 			.base.cra_name = "ecb(des3_ede)",
3694 			.base.cra_driver_name = "ecb-des3-iproc",
3695 			.base.cra_blocksize = DES3_EDE_BLOCK_SIZE,
3696 			.min_keysize = DES3_EDE_KEY_SIZE,
3697 			.max_keysize = DES3_EDE_KEY_SIZE,
3698 			.ivsize = 0,
3699 			},
3700 	 .cipher_info = {
3701 			 .alg = CIPHER_ALG_3DES,
3702 			 .mode = CIPHER_MODE_ECB,
3703 			 },
3704 	 .auth_info = {
3705 		       .alg = HASH_ALG_NONE,
3706 		       .mode = HASH_MODE_NONE,
3707 		       },
3708 	 },
3709 	{
3710 	 .type = CRYPTO_ALG_TYPE_SKCIPHER,
3711 	 .alg.skcipher = {
3712 			.base.cra_name = "ofb(aes)",
3713 			.base.cra_driver_name = "ofb-aes-iproc",
3714 			.base.cra_blocksize = AES_BLOCK_SIZE,
3715 			.min_keysize = AES_MIN_KEY_SIZE,
3716 			.max_keysize = AES_MAX_KEY_SIZE,
3717 			.ivsize = AES_BLOCK_SIZE,
3718 			},
3719 	 .cipher_info = {
3720 			 .alg = CIPHER_ALG_AES,
3721 			 .mode = CIPHER_MODE_OFB,
3722 			 },
3723 	 .auth_info = {
3724 		       .alg = HASH_ALG_NONE,
3725 		       .mode = HASH_MODE_NONE,
3726 		       },
3727 	 },
3728 	{
3729 	 .type = CRYPTO_ALG_TYPE_SKCIPHER,
3730 	 .alg.skcipher = {
3731 			.base.cra_name = "cbc(aes)",
3732 			.base.cra_driver_name = "cbc-aes-iproc",
3733 			.base.cra_blocksize = AES_BLOCK_SIZE,
3734 			.min_keysize = AES_MIN_KEY_SIZE,
3735 			.max_keysize = AES_MAX_KEY_SIZE,
3736 			.ivsize = AES_BLOCK_SIZE,
3737 			},
3738 	 .cipher_info = {
3739 			 .alg = CIPHER_ALG_AES,
3740 			 .mode = CIPHER_MODE_CBC,
3741 			 },
3742 	 .auth_info = {
3743 		       .alg = HASH_ALG_NONE,
3744 		       .mode = HASH_MODE_NONE,
3745 		       },
3746 	 },
3747 	{
3748 	 .type = CRYPTO_ALG_TYPE_SKCIPHER,
3749 	 .alg.skcipher = {
3750 			.base.cra_name = "ecb(aes)",
3751 			.base.cra_driver_name = "ecb-aes-iproc",
3752 			.base.cra_blocksize = AES_BLOCK_SIZE,
3753 			.min_keysize = AES_MIN_KEY_SIZE,
3754 			.max_keysize = AES_MAX_KEY_SIZE,
3755 			.ivsize = 0,
3756 			},
3757 	 .cipher_info = {
3758 			 .alg = CIPHER_ALG_AES,
3759 			 .mode = CIPHER_MODE_ECB,
3760 			 },
3761 	 .auth_info = {
3762 		       .alg = HASH_ALG_NONE,
3763 		       .mode = HASH_MODE_NONE,
3764 		       },
3765 	 },
3766 	{
3767 	 .type = CRYPTO_ALG_TYPE_SKCIPHER,
3768 	 .alg.skcipher = {
3769 			.base.cra_name = "ctr(aes)",
3770 			.base.cra_driver_name = "ctr-aes-iproc",
3771 			.base.cra_blocksize = AES_BLOCK_SIZE,
3772 			.min_keysize = AES_MIN_KEY_SIZE,
3773 			.max_keysize = AES_MAX_KEY_SIZE,
3774 			.ivsize = AES_BLOCK_SIZE,
3775 			},
3776 	 .cipher_info = {
3777 			 .alg = CIPHER_ALG_AES,
3778 			 .mode = CIPHER_MODE_CTR,
3779 			 },
3780 	 .auth_info = {
3781 		       .alg = HASH_ALG_NONE,
3782 		       .mode = HASH_MODE_NONE,
3783 		       },
3784 	 },
3785 {
3786 	 .type = CRYPTO_ALG_TYPE_SKCIPHER,
3787 	 .alg.skcipher = {
3788 			.base.cra_name = "xts(aes)",
3789 			.base.cra_driver_name = "xts-aes-iproc",
3790 			.base.cra_blocksize = AES_BLOCK_SIZE,
3791 			.min_keysize = 2 * AES_MIN_KEY_SIZE,
3792 			.max_keysize = 2 * AES_MAX_KEY_SIZE,
3793 			.ivsize = AES_BLOCK_SIZE,
3794 			},
3795 	 .cipher_info = {
3796 			 .alg = CIPHER_ALG_AES,
3797 			 .mode = CIPHER_MODE_XTS,
3798 			 },
3799 	 .auth_info = {
3800 		       .alg = HASH_ALG_NONE,
3801 		       .mode = HASH_MODE_NONE,
3802 		       },
3803 	 },
3804 
3805 /* AHASH algorithms. */
3806 	{
3807 	 .type = CRYPTO_ALG_TYPE_AHASH,
3808 	 .alg.hash = {
3809 		      .halg.digestsize = MD5_DIGEST_SIZE,
3810 		      .halg.base = {
3811 				    .cra_name = "md5",
3812 				    .cra_driver_name = "md5-iproc",
3813 				    .cra_blocksize = MD5_BLOCK_WORDS * 4,
3814 				    .cra_flags = CRYPTO_ALG_ASYNC,
3815 				}
3816 		      },
3817 	 .cipher_info = {
3818 			 .alg = CIPHER_ALG_NONE,
3819 			 .mode = CIPHER_MODE_NONE,
3820 			 },
3821 	 .auth_info = {
3822 		       .alg = HASH_ALG_MD5,
3823 		       .mode = HASH_MODE_HASH,
3824 		       },
3825 	 },
3826 	{
3827 	 .type = CRYPTO_ALG_TYPE_AHASH,
3828 	 .alg.hash = {
3829 		      .halg.digestsize = MD5_DIGEST_SIZE,
3830 		      .halg.base = {
3831 				    .cra_name = "hmac(md5)",
3832 				    .cra_driver_name = "hmac-md5-iproc",
3833 				    .cra_blocksize = MD5_BLOCK_WORDS * 4,
3834 				}
3835 		      },
3836 	 .cipher_info = {
3837 			 .alg = CIPHER_ALG_NONE,
3838 			 .mode = CIPHER_MODE_NONE,
3839 			 },
3840 	 .auth_info = {
3841 		       .alg = HASH_ALG_MD5,
3842 		       .mode = HASH_MODE_HMAC,
3843 		       },
3844 	 },
3845 	{.type = CRYPTO_ALG_TYPE_AHASH,
3846 	 .alg.hash = {
3847 		      .halg.digestsize = SHA1_DIGEST_SIZE,
3848 		      .halg.base = {
3849 				    .cra_name = "sha1",
3850 				    .cra_driver_name = "sha1-iproc",
3851 				    .cra_blocksize = SHA1_BLOCK_SIZE,
3852 				}
3853 		      },
3854 	 .cipher_info = {
3855 			 .alg = CIPHER_ALG_NONE,
3856 			 .mode = CIPHER_MODE_NONE,
3857 			 },
3858 	 .auth_info = {
3859 		       .alg = HASH_ALG_SHA1,
3860 		       .mode = HASH_MODE_HASH,
3861 		       },
3862 	 },
3863 	{.type = CRYPTO_ALG_TYPE_AHASH,
3864 	 .alg.hash = {
3865 		      .halg.digestsize = SHA1_DIGEST_SIZE,
3866 		      .halg.base = {
3867 				    .cra_name = "hmac(sha1)",
3868 				    .cra_driver_name = "hmac-sha1-iproc",
3869 				    .cra_blocksize = SHA1_BLOCK_SIZE,
3870 				}
3871 		      },
3872 	 .cipher_info = {
3873 			 .alg = CIPHER_ALG_NONE,
3874 			 .mode = CIPHER_MODE_NONE,
3875 			 },
3876 	 .auth_info = {
3877 		       .alg = HASH_ALG_SHA1,
3878 		       .mode = HASH_MODE_HMAC,
3879 		       },
3880 	 },
3881 	{.type = CRYPTO_ALG_TYPE_AHASH,
3882 	 .alg.hash = {
3883 			.halg.digestsize = SHA224_DIGEST_SIZE,
3884 			.halg.base = {
3885 				    .cra_name = "sha224",
3886 				    .cra_driver_name = "sha224-iproc",
3887 				    .cra_blocksize = SHA224_BLOCK_SIZE,
3888 			}
3889 		      },
3890 	 .cipher_info = {
3891 			 .alg = CIPHER_ALG_NONE,
3892 			 .mode = CIPHER_MODE_NONE,
3893 			 },
3894 	 .auth_info = {
3895 		       .alg = HASH_ALG_SHA224,
3896 		       .mode = HASH_MODE_HASH,
3897 		       },
3898 	 },
3899 	{.type = CRYPTO_ALG_TYPE_AHASH,
3900 	 .alg.hash = {
3901 		      .halg.digestsize = SHA224_DIGEST_SIZE,
3902 		      .halg.base = {
3903 				    .cra_name = "hmac(sha224)",
3904 				    .cra_driver_name = "hmac-sha224-iproc",
3905 				    .cra_blocksize = SHA224_BLOCK_SIZE,
3906 				}
3907 		      },
3908 	 .cipher_info = {
3909 			 .alg = CIPHER_ALG_NONE,
3910 			 .mode = CIPHER_MODE_NONE,
3911 			 },
3912 	 .auth_info = {
3913 		       .alg = HASH_ALG_SHA224,
3914 		       .mode = HASH_MODE_HMAC,
3915 		       },
3916 	 },
3917 	{.type = CRYPTO_ALG_TYPE_AHASH,
3918 	 .alg.hash = {
3919 		      .halg.digestsize = SHA256_DIGEST_SIZE,
3920 		      .halg.base = {
3921 				    .cra_name = "sha256",
3922 				    .cra_driver_name = "sha256-iproc",
3923 				    .cra_blocksize = SHA256_BLOCK_SIZE,
3924 				}
3925 		      },
3926 	 .cipher_info = {
3927 			 .alg = CIPHER_ALG_NONE,
3928 			 .mode = CIPHER_MODE_NONE,
3929 			 },
3930 	 .auth_info = {
3931 		       .alg = HASH_ALG_SHA256,
3932 		       .mode = HASH_MODE_HASH,
3933 		       },
3934 	 },
3935 	{.type = CRYPTO_ALG_TYPE_AHASH,
3936 	 .alg.hash = {
3937 		      .halg.digestsize = SHA256_DIGEST_SIZE,
3938 		      .halg.base = {
3939 				    .cra_name = "hmac(sha256)",
3940 				    .cra_driver_name = "hmac-sha256-iproc",
3941 				    .cra_blocksize = SHA256_BLOCK_SIZE,
3942 				}
3943 		      },
3944 	 .cipher_info = {
3945 			 .alg = CIPHER_ALG_NONE,
3946 			 .mode = CIPHER_MODE_NONE,
3947 			 },
3948 	 .auth_info = {
3949 		       .alg = HASH_ALG_SHA256,
3950 		       .mode = HASH_MODE_HMAC,
3951 		       },
3952 	 },
3953 	{
3954 	.type = CRYPTO_ALG_TYPE_AHASH,
3955 	 .alg.hash = {
3956 		      .halg.digestsize = SHA384_DIGEST_SIZE,
3957 		      .halg.base = {
3958 				    .cra_name = "sha384",
3959 				    .cra_driver_name = "sha384-iproc",
3960 				    .cra_blocksize = SHA384_BLOCK_SIZE,
3961 				}
3962 		      },
3963 	 .cipher_info = {
3964 			 .alg = CIPHER_ALG_NONE,
3965 			 .mode = CIPHER_MODE_NONE,
3966 			 },
3967 	 .auth_info = {
3968 		       .alg = HASH_ALG_SHA384,
3969 		       .mode = HASH_MODE_HASH,
3970 		       },
3971 	 },
3972 	{
3973 	 .type = CRYPTO_ALG_TYPE_AHASH,
3974 	 .alg.hash = {
3975 		      .halg.digestsize = SHA384_DIGEST_SIZE,
3976 		      .halg.base = {
3977 				    .cra_name = "hmac(sha384)",
3978 				    .cra_driver_name = "hmac-sha384-iproc",
3979 				    .cra_blocksize = SHA384_BLOCK_SIZE,
3980 				}
3981 		      },
3982 	 .cipher_info = {
3983 			 .alg = CIPHER_ALG_NONE,
3984 			 .mode = CIPHER_MODE_NONE,
3985 			 },
3986 	 .auth_info = {
3987 		       .alg = HASH_ALG_SHA384,
3988 		       .mode = HASH_MODE_HMAC,
3989 		       },
3990 	 },
3991 	{
3992 	 .type = CRYPTO_ALG_TYPE_AHASH,
3993 	 .alg.hash = {
3994 		      .halg.digestsize = SHA512_DIGEST_SIZE,
3995 		      .halg.base = {
3996 				    .cra_name = "sha512",
3997 				    .cra_driver_name = "sha512-iproc",
3998 				    .cra_blocksize = SHA512_BLOCK_SIZE,
3999 				}
4000 		      },
4001 	 .cipher_info = {
4002 			 .alg = CIPHER_ALG_NONE,
4003 			 .mode = CIPHER_MODE_NONE,
4004 			 },
4005 	 .auth_info = {
4006 		       .alg = HASH_ALG_SHA512,
4007 		       .mode = HASH_MODE_HASH,
4008 		       },
4009 	 },
4010 	{
4011 	 .type = CRYPTO_ALG_TYPE_AHASH,
4012 	 .alg.hash = {
4013 		      .halg.digestsize = SHA512_DIGEST_SIZE,
4014 		      .halg.base = {
4015 				    .cra_name = "hmac(sha512)",
4016 				    .cra_driver_name = "hmac-sha512-iproc",
4017 				    .cra_blocksize = SHA512_BLOCK_SIZE,
4018 				}
4019 		      },
4020 	 .cipher_info = {
4021 			 .alg = CIPHER_ALG_NONE,
4022 			 .mode = CIPHER_MODE_NONE,
4023 			 },
4024 	 .auth_info = {
4025 		       .alg = HASH_ALG_SHA512,
4026 		       .mode = HASH_MODE_HMAC,
4027 		       },
4028 	 },
4029 	{
4030 	 .type = CRYPTO_ALG_TYPE_AHASH,
4031 	 .alg.hash = {
4032 		      .halg.digestsize = SHA3_224_DIGEST_SIZE,
4033 		      .halg.base = {
4034 				    .cra_name = "sha3-224",
4035 				    .cra_driver_name = "sha3-224-iproc",
4036 				    .cra_blocksize = SHA3_224_BLOCK_SIZE,
4037 				}
4038 		      },
4039 	 .cipher_info = {
4040 			 .alg = CIPHER_ALG_NONE,
4041 			 .mode = CIPHER_MODE_NONE,
4042 			 },
4043 	 .auth_info = {
4044 		       .alg = HASH_ALG_SHA3_224,
4045 		       .mode = HASH_MODE_HASH,
4046 		       },
4047 	 },
4048 	{
4049 	 .type = CRYPTO_ALG_TYPE_AHASH,
4050 	 .alg.hash = {
4051 		      .halg.digestsize = SHA3_224_DIGEST_SIZE,
4052 		      .halg.base = {
4053 				    .cra_name = "hmac(sha3-224)",
4054 				    .cra_driver_name = "hmac-sha3-224-iproc",
4055 				    .cra_blocksize = SHA3_224_BLOCK_SIZE,
4056 				}
4057 		      },
4058 	 .cipher_info = {
4059 			 .alg = CIPHER_ALG_NONE,
4060 			 .mode = CIPHER_MODE_NONE,
4061 			 },
4062 	 .auth_info = {
4063 		       .alg = HASH_ALG_SHA3_224,
4064 		       .mode = HASH_MODE_HMAC
4065 		       },
4066 	 },
4067 	{
4068 	 .type = CRYPTO_ALG_TYPE_AHASH,
4069 	 .alg.hash = {
4070 		      .halg.digestsize = SHA3_256_DIGEST_SIZE,
4071 		      .halg.base = {
4072 				    .cra_name = "sha3-256",
4073 				    .cra_driver_name = "sha3-256-iproc",
4074 				    .cra_blocksize = SHA3_256_BLOCK_SIZE,
4075 				}
4076 		      },
4077 	 .cipher_info = {
4078 			 .alg = CIPHER_ALG_NONE,
4079 			 .mode = CIPHER_MODE_NONE,
4080 			 },
4081 	 .auth_info = {
4082 		       .alg = HASH_ALG_SHA3_256,
4083 		       .mode = HASH_MODE_HASH,
4084 		       },
4085 	 },
4086 	{
4087 	 .type = CRYPTO_ALG_TYPE_AHASH,
4088 	 .alg.hash = {
4089 		      .halg.digestsize = SHA3_256_DIGEST_SIZE,
4090 		      .halg.base = {
4091 				    .cra_name = "hmac(sha3-256)",
4092 				    .cra_driver_name = "hmac-sha3-256-iproc",
4093 				    .cra_blocksize = SHA3_256_BLOCK_SIZE,
4094 				}
4095 		      },
4096 	 .cipher_info = {
4097 			 .alg = CIPHER_ALG_NONE,
4098 			 .mode = CIPHER_MODE_NONE,
4099 			 },
4100 	 .auth_info = {
4101 		       .alg = HASH_ALG_SHA3_256,
4102 		       .mode = HASH_MODE_HMAC,
4103 		       },
4104 	 },
4105 	{
4106 	 .type = CRYPTO_ALG_TYPE_AHASH,
4107 	 .alg.hash = {
4108 		      .halg.digestsize = SHA3_384_DIGEST_SIZE,
4109 		      .halg.base = {
4110 				    .cra_name = "sha3-384",
4111 				    .cra_driver_name = "sha3-384-iproc",
4112 				    .cra_blocksize = SHA3_224_BLOCK_SIZE,
4113 				}
4114 		      },
4115 	 .cipher_info = {
4116 			 .alg = CIPHER_ALG_NONE,
4117 			 .mode = CIPHER_MODE_NONE,
4118 			 },
4119 	 .auth_info = {
4120 		       .alg = HASH_ALG_SHA3_384,
4121 		       .mode = HASH_MODE_HASH,
4122 		       },
4123 	 },
4124 	{
4125 	 .type = CRYPTO_ALG_TYPE_AHASH,
4126 	 .alg.hash = {
4127 		      .halg.digestsize = SHA3_384_DIGEST_SIZE,
4128 		      .halg.base = {
4129 				    .cra_name = "hmac(sha3-384)",
4130 				    .cra_driver_name = "hmac-sha3-384-iproc",
4131 				    .cra_blocksize = SHA3_384_BLOCK_SIZE,
4132 				}
4133 		      },
4134 	 .cipher_info = {
4135 			 .alg = CIPHER_ALG_NONE,
4136 			 .mode = CIPHER_MODE_NONE,
4137 			 },
4138 	 .auth_info = {
4139 		       .alg = HASH_ALG_SHA3_384,
4140 		       .mode = HASH_MODE_HMAC,
4141 		       },
4142 	 },
4143 	{
4144 	 .type = CRYPTO_ALG_TYPE_AHASH,
4145 	 .alg.hash = {
4146 		      .halg.digestsize = SHA3_512_DIGEST_SIZE,
4147 		      .halg.base = {
4148 				    .cra_name = "sha3-512",
4149 				    .cra_driver_name = "sha3-512-iproc",
4150 				    .cra_blocksize = SHA3_512_BLOCK_SIZE,
4151 				}
4152 		      },
4153 	 .cipher_info = {
4154 			 .alg = CIPHER_ALG_NONE,
4155 			 .mode = CIPHER_MODE_NONE,
4156 			 },
4157 	 .auth_info = {
4158 		       .alg = HASH_ALG_SHA3_512,
4159 		       .mode = HASH_MODE_HASH,
4160 		       },
4161 	 },
4162 	{
4163 	 .type = CRYPTO_ALG_TYPE_AHASH,
4164 	 .alg.hash = {
4165 		      .halg.digestsize = SHA3_512_DIGEST_SIZE,
4166 		      .halg.base = {
4167 				    .cra_name = "hmac(sha3-512)",
4168 				    .cra_driver_name = "hmac-sha3-512-iproc",
4169 				    .cra_blocksize = SHA3_512_BLOCK_SIZE,
4170 				}
4171 		      },
4172 	 .cipher_info = {
4173 			 .alg = CIPHER_ALG_NONE,
4174 			 .mode = CIPHER_MODE_NONE,
4175 			 },
4176 	 .auth_info = {
4177 		       .alg = HASH_ALG_SHA3_512,
4178 		       .mode = HASH_MODE_HMAC,
4179 		       },
4180 	 },
4181 	{
4182 	 .type = CRYPTO_ALG_TYPE_AHASH,
4183 	 .alg.hash = {
4184 		      .halg.digestsize = AES_BLOCK_SIZE,
4185 		      .halg.base = {
4186 				    .cra_name = "xcbc(aes)",
4187 				    .cra_driver_name = "xcbc-aes-iproc",
4188 				    .cra_blocksize = AES_BLOCK_SIZE,
4189 				}
4190 		      },
4191 	 .cipher_info = {
4192 			 .alg = CIPHER_ALG_NONE,
4193 			 .mode = CIPHER_MODE_NONE,
4194 			 },
4195 	 .auth_info = {
4196 		       .alg = HASH_ALG_AES,
4197 		       .mode = HASH_MODE_XCBC,
4198 		       },
4199 	 },
4200 	{
4201 	 .type = CRYPTO_ALG_TYPE_AHASH,
4202 	 .alg.hash = {
4203 		      .halg.digestsize = AES_BLOCK_SIZE,
4204 		      .halg.base = {
4205 				    .cra_name = "cmac(aes)",
4206 				    .cra_driver_name = "cmac-aes-iproc",
4207 				    .cra_blocksize = AES_BLOCK_SIZE,
4208 				}
4209 		      },
4210 	 .cipher_info = {
4211 			 .alg = CIPHER_ALG_NONE,
4212 			 .mode = CIPHER_MODE_NONE,
4213 			 },
4214 	 .auth_info = {
4215 		       .alg = HASH_ALG_AES,
4216 		       .mode = HASH_MODE_CMAC,
4217 		       },
4218 	 },
4219 };
4220 
4221 static int generic_cra_init(struct crypto_tfm *tfm,
4222 			    struct iproc_alg_s *cipher_alg)
4223 {
4224 	struct spu_hw *spu = &iproc_priv.spu;
4225 	struct iproc_ctx_s *ctx = crypto_tfm_ctx(tfm);
4226 	unsigned int blocksize = crypto_tfm_alg_blocksize(tfm);
4227 
4228 	flow_log("%s()\n", __func__);
4229 
4230 	ctx->alg = cipher_alg;
4231 	ctx->cipher = cipher_alg->cipher_info;
4232 	ctx->auth = cipher_alg->auth_info;
4233 	ctx->auth_first = cipher_alg->auth_first;
4234 	ctx->max_payload = spu->spu_ctx_max_payload(ctx->cipher.alg,
4235 						    ctx->cipher.mode,
4236 						    blocksize);
4237 	ctx->fallback_cipher = NULL;
4238 
4239 	ctx->enckeylen = 0;
4240 	ctx->authkeylen = 0;
4241 
4242 	atomic_inc(&iproc_priv.stream_count);
4243 	atomic_inc(&iproc_priv.session_count);
4244 
4245 	return 0;
4246 }
4247 
4248 static int skcipher_init_tfm(struct crypto_skcipher *skcipher)
4249 {
4250 	struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher);
4251 	struct skcipher_alg *alg = crypto_skcipher_alg(skcipher);
4252 	struct iproc_alg_s *cipher_alg;
4253 
4254 	flow_log("%s()\n", __func__);
4255 
4256 	crypto_skcipher_set_reqsize(skcipher, sizeof(struct iproc_reqctx_s));
4257 
4258 	cipher_alg = container_of(alg, struct iproc_alg_s, alg.skcipher);
4259 	return generic_cra_init(tfm, cipher_alg);
4260 }
4261 
4262 static int ahash_cra_init(struct crypto_tfm *tfm)
4263 {
4264 	int err;
4265 	struct crypto_alg *alg = tfm->__crt_alg;
4266 	struct iproc_alg_s *cipher_alg;
4267 
4268 	cipher_alg = container_of(__crypto_ahash_alg(alg), struct iproc_alg_s,
4269 				  alg.hash);
4270 
4271 	err = generic_cra_init(tfm, cipher_alg);
4272 	flow_log("%s()\n", __func__);
4273 
4274 	/*
4275 	 * export state size has to be < 512 bytes. So don't include msg bufs
4276 	 * in state size.
4277 	 */
4278 	crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
4279 				 sizeof(struct iproc_reqctx_s));
4280 
4281 	return err;
4282 }
4283 
4284 static int aead_cra_init(struct crypto_aead *aead)
4285 {
4286 	struct crypto_tfm *tfm = crypto_aead_tfm(aead);
4287 	struct iproc_ctx_s *ctx = crypto_tfm_ctx(tfm);
4288 	struct crypto_alg *alg = tfm->__crt_alg;
4289 	struct aead_alg *aalg = container_of(alg, struct aead_alg, base);
4290 	struct iproc_alg_s *cipher_alg = container_of(aalg, struct iproc_alg_s,
4291 						      alg.aead);
4292 
4293 	int err = generic_cra_init(tfm, cipher_alg);
4294 
4295 	flow_log("%s()\n", __func__);
4296 
4297 	crypto_aead_set_reqsize(aead, sizeof(struct iproc_reqctx_s));
4298 	ctx->is_esp = false;
4299 	ctx->salt_len = 0;
4300 	ctx->salt_offset = 0;
4301 
4302 	/* random first IV */
4303 	get_random_bytes(ctx->iv, MAX_IV_SIZE);
4304 	flow_dump("  iv: ", ctx->iv, MAX_IV_SIZE);
4305 
4306 	if (!err) {
4307 		if (alg->cra_flags & CRYPTO_ALG_NEED_FALLBACK) {
4308 			flow_log("%s() creating fallback cipher\n", __func__);
4309 
4310 			ctx->fallback_cipher =
4311 			    crypto_alloc_aead(alg->cra_name, 0,
4312 					      CRYPTO_ALG_ASYNC |
4313 					      CRYPTO_ALG_NEED_FALLBACK);
4314 			if (IS_ERR(ctx->fallback_cipher)) {
4315 				pr_err("%s() Error: failed to allocate fallback for %s\n",
4316 				       __func__, alg->cra_name);
4317 				return PTR_ERR(ctx->fallback_cipher);
4318 			}
4319 		}
4320 	}
4321 
4322 	return err;
4323 }
4324 
4325 static void generic_cra_exit(struct crypto_tfm *tfm)
4326 {
4327 	atomic_dec(&iproc_priv.session_count);
4328 }
4329 
4330 static void skcipher_exit_tfm(struct crypto_skcipher *tfm)
4331 {
4332 	generic_cra_exit(crypto_skcipher_tfm(tfm));
4333 }
4334 
4335 static void aead_cra_exit(struct crypto_aead *aead)
4336 {
4337 	struct crypto_tfm *tfm = crypto_aead_tfm(aead);
4338 	struct iproc_ctx_s *ctx = crypto_tfm_ctx(tfm);
4339 
4340 	generic_cra_exit(tfm);
4341 
4342 	if (ctx->fallback_cipher) {
4343 		crypto_free_aead(ctx->fallback_cipher);
4344 		ctx->fallback_cipher = NULL;
4345 	}
4346 }
4347 
4348 /**
4349  * spu_functions_register() - Specify hardware-specific SPU functions based on
4350  * SPU type read from device tree.
4351  * @dev:	device structure
4352  * @spu_type:	SPU hardware generation
4353  * @spu_subtype: SPU hardware version
4354  */
4355 static void spu_functions_register(struct device *dev,
4356 				   enum spu_spu_type spu_type,
4357 				   enum spu_spu_subtype spu_subtype)
4358 {
4359 	struct spu_hw *spu = &iproc_priv.spu;
4360 
4361 	if (spu_type == SPU_TYPE_SPUM) {
4362 		dev_dbg(dev, "Registering SPUM functions");
4363 		spu->spu_dump_msg_hdr = spum_dump_msg_hdr;
4364 		spu->spu_payload_length = spum_payload_length;
4365 		spu->spu_response_hdr_len = spum_response_hdr_len;
4366 		spu->spu_hash_pad_len = spum_hash_pad_len;
4367 		spu->spu_gcm_ccm_pad_len = spum_gcm_ccm_pad_len;
4368 		spu->spu_assoc_resp_len = spum_assoc_resp_len;
4369 		spu->spu_aead_ivlen = spum_aead_ivlen;
4370 		spu->spu_hash_type = spum_hash_type;
4371 		spu->spu_digest_size = spum_digest_size;
4372 		spu->spu_create_request = spum_create_request;
4373 		spu->spu_cipher_req_init = spum_cipher_req_init;
4374 		spu->spu_cipher_req_finish = spum_cipher_req_finish;
4375 		spu->spu_request_pad = spum_request_pad;
4376 		spu->spu_tx_status_len = spum_tx_status_len;
4377 		spu->spu_rx_status_len = spum_rx_status_len;
4378 		spu->spu_status_process = spum_status_process;
4379 		spu->spu_xts_tweak_in_payload = spum_xts_tweak_in_payload;
4380 		spu->spu_ccm_update_iv = spum_ccm_update_iv;
4381 		spu->spu_wordalign_padlen = spum_wordalign_padlen;
4382 		if (spu_subtype == SPU_SUBTYPE_SPUM_NS2)
4383 			spu->spu_ctx_max_payload = spum_ns2_ctx_max_payload;
4384 		else
4385 			spu->spu_ctx_max_payload = spum_nsp_ctx_max_payload;
4386 	} else {
4387 		dev_dbg(dev, "Registering SPU2 functions");
4388 		spu->spu_dump_msg_hdr = spu2_dump_msg_hdr;
4389 		spu->spu_ctx_max_payload = spu2_ctx_max_payload;
4390 		spu->spu_payload_length = spu2_payload_length;
4391 		spu->spu_response_hdr_len = spu2_response_hdr_len;
4392 		spu->spu_hash_pad_len = spu2_hash_pad_len;
4393 		spu->spu_gcm_ccm_pad_len = spu2_gcm_ccm_pad_len;
4394 		spu->spu_assoc_resp_len = spu2_assoc_resp_len;
4395 		spu->spu_aead_ivlen = spu2_aead_ivlen;
4396 		spu->spu_hash_type = spu2_hash_type;
4397 		spu->spu_digest_size = spu2_digest_size;
4398 		spu->spu_create_request = spu2_create_request;
4399 		spu->spu_cipher_req_init = spu2_cipher_req_init;
4400 		spu->spu_cipher_req_finish = spu2_cipher_req_finish;
4401 		spu->spu_request_pad = spu2_request_pad;
4402 		spu->spu_tx_status_len = spu2_tx_status_len;
4403 		spu->spu_rx_status_len = spu2_rx_status_len;
4404 		spu->spu_status_process = spu2_status_process;
4405 		spu->spu_xts_tweak_in_payload = spu2_xts_tweak_in_payload;
4406 		spu->spu_ccm_update_iv = spu2_ccm_update_iv;
4407 		spu->spu_wordalign_padlen = spu2_wordalign_padlen;
4408 	}
4409 }
4410 
4411 /**
4412  * spu_mb_init() - Initialize mailbox client. Request ownership of a mailbox
4413  * channel for the SPU being probed.
4414  * @dev:  SPU driver device structure
4415  *
4416  * Return: 0 if successful
4417  *	   < 0 otherwise
4418  */
4419 static int spu_mb_init(struct device *dev)
4420 {
4421 	struct mbox_client *mcl = &iproc_priv.mcl;
4422 	int err, i;
4423 
4424 	iproc_priv.mbox = devm_kcalloc(dev, iproc_priv.spu.num_chan,
4425 				  sizeof(struct mbox_chan *), GFP_KERNEL);
4426 	if (!iproc_priv.mbox)
4427 		return -ENOMEM;
4428 
4429 	mcl->dev = dev;
4430 	mcl->tx_block = false;
4431 	mcl->tx_tout = 0;
4432 	mcl->knows_txdone = true;
4433 	mcl->rx_callback = spu_rx_callback;
4434 	mcl->tx_done = NULL;
4435 
4436 	for (i = 0; i < iproc_priv.spu.num_chan; i++) {
4437 		iproc_priv.mbox[i] = mbox_request_channel(mcl, i);
4438 		if (IS_ERR(iproc_priv.mbox[i])) {
4439 			err = (int)PTR_ERR(iproc_priv.mbox[i]);
4440 			dev_err(dev,
4441 				"Mbox channel %d request failed with err %d",
4442 				i, err);
4443 			iproc_priv.mbox[i] = NULL;
4444 			goto free_channels;
4445 		}
4446 	}
4447 
4448 	return 0;
4449 free_channels:
4450 	for (i = 0; i < iproc_priv.spu.num_chan; i++) {
4451 		if (iproc_priv.mbox[i])
4452 			mbox_free_channel(iproc_priv.mbox[i]);
4453 	}
4454 
4455 	return err;
4456 }
4457 
4458 static void spu_mb_release(struct platform_device *pdev)
4459 {
4460 	int i;
4461 
4462 	for (i = 0; i < iproc_priv.spu.num_chan; i++)
4463 		mbox_free_channel(iproc_priv.mbox[i]);
4464 }
4465 
4466 static void spu_counters_init(void)
4467 {
4468 	int i;
4469 	int j;
4470 
4471 	atomic_set(&iproc_priv.session_count, 0);
4472 	atomic_set(&iproc_priv.stream_count, 0);
4473 	atomic_set(&iproc_priv.next_chan, (int)iproc_priv.spu.num_chan);
4474 	atomic64_set(&iproc_priv.bytes_in, 0);
4475 	atomic64_set(&iproc_priv.bytes_out, 0);
4476 	for (i = 0; i < SPU_OP_NUM; i++) {
4477 		atomic_set(&iproc_priv.op_counts[i], 0);
4478 		atomic_set(&iproc_priv.setkey_cnt[i], 0);
4479 	}
4480 	for (i = 0; i < CIPHER_ALG_LAST; i++)
4481 		for (j = 0; j < CIPHER_MODE_LAST; j++)
4482 			atomic_set(&iproc_priv.cipher_cnt[i][j], 0);
4483 
4484 	for (i = 0; i < HASH_ALG_LAST; i++) {
4485 		atomic_set(&iproc_priv.hash_cnt[i], 0);
4486 		atomic_set(&iproc_priv.hmac_cnt[i], 0);
4487 	}
4488 	for (i = 0; i < AEAD_TYPE_LAST; i++)
4489 		atomic_set(&iproc_priv.aead_cnt[i], 0);
4490 
4491 	atomic_set(&iproc_priv.mb_no_spc, 0);
4492 	atomic_set(&iproc_priv.mb_send_fail, 0);
4493 	atomic_set(&iproc_priv.bad_icv, 0);
4494 }
4495 
4496 static int spu_register_skcipher(struct iproc_alg_s *driver_alg)
4497 {
4498 	struct spu_hw *spu = &iproc_priv.spu;
4499 	struct skcipher_alg *crypto = &driver_alg->alg.skcipher;
4500 	int err;
4501 
4502 	/* SPU2 does not support RC4 */
4503 	if ((driver_alg->cipher_info.alg == CIPHER_ALG_RC4) &&
4504 	    (spu->spu_type == SPU_TYPE_SPU2))
4505 		return 0;
4506 
4507 	crypto->base.cra_module = THIS_MODULE;
4508 	crypto->base.cra_priority = cipher_pri;
4509 	crypto->base.cra_alignmask = 0;
4510 	crypto->base.cra_ctxsize = sizeof(struct iproc_ctx_s);
4511 	crypto->base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY;
4512 
4513 	crypto->init = skcipher_init_tfm;
4514 	crypto->exit = skcipher_exit_tfm;
4515 	crypto->setkey = skcipher_setkey;
4516 	crypto->encrypt = skcipher_encrypt;
4517 	crypto->decrypt = skcipher_decrypt;
4518 
4519 	err = crypto_register_skcipher(crypto);
4520 	/* Mark alg as having been registered, if successful */
4521 	if (err == 0)
4522 		driver_alg->registered = true;
4523 	pr_debug("  registered skcipher %s\n", crypto->base.cra_driver_name);
4524 	return err;
4525 }
4526 
4527 static int spu_register_ahash(struct iproc_alg_s *driver_alg)
4528 {
4529 	struct spu_hw *spu = &iproc_priv.spu;
4530 	struct ahash_alg *hash = &driver_alg->alg.hash;
4531 	int err;
4532 
4533 	/* AES-XCBC is the only AES hash type currently supported on SPU-M */
4534 	if ((driver_alg->auth_info.alg == HASH_ALG_AES) &&
4535 	    (driver_alg->auth_info.mode != HASH_MODE_XCBC) &&
4536 	    (spu->spu_type == SPU_TYPE_SPUM))
4537 		return 0;
4538 
4539 	/* SHA3 algorithm variants are not registered for SPU-M or SPU2. */
4540 	if ((driver_alg->auth_info.alg >= HASH_ALG_SHA3_224) &&
4541 	    (spu->spu_subtype != SPU_SUBTYPE_SPU2_V2))
4542 		return 0;
4543 
4544 	hash->halg.base.cra_module = THIS_MODULE;
4545 	hash->halg.base.cra_priority = hash_pri;
4546 	hash->halg.base.cra_alignmask = 0;
4547 	hash->halg.base.cra_ctxsize = sizeof(struct iproc_ctx_s);
4548 	hash->halg.base.cra_init = ahash_cra_init;
4549 	hash->halg.base.cra_exit = generic_cra_exit;
4550 	hash->halg.base.cra_flags = CRYPTO_ALG_ASYNC;
4551 	hash->halg.statesize = sizeof(struct spu_hash_export_s);
4552 
4553 	if (driver_alg->auth_info.mode != HASH_MODE_HMAC) {
4554 		hash->init = ahash_init;
4555 		hash->update = ahash_update;
4556 		hash->final = ahash_final;
4557 		hash->finup = ahash_finup;
4558 		hash->digest = ahash_digest;
4559 		if ((driver_alg->auth_info.alg == HASH_ALG_AES) &&
4560 		    ((driver_alg->auth_info.mode == HASH_MODE_XCBC) ||
4561 		    (driver_alg->auth_info.mode == HASH_MODE_CMAC))) {
4562 			hash->setkey = ahash_setkey;
4563 		}
4564 	} else {
4565 		hash->setkey = ahash_hmac_setkey;
4566 		hash->init = ahash_hmac_init;
4567 		hash->update = ahash_hmac_update;
4568 		hash->final = ahash_hmac_final;
4569 		hash->finup = ahash_hmac_finup;
4570 		hash->digest = ahash_hmac_digest;
4571 	}
4572 	hash->export = ahash_export;
4573 	hash->import = ahash_import;
4574 
4575 	err = crypto_register_ahash(hash);
4576 	/* Mark alg as having been registered, if successful */
4577 	if (err == 0)
4578 		driver_alg->registered = true;
4579 	pr_debug("  registered ahash %s\n",
4580 		 hash->halg.base.cra_driver_name);
4581 	return err;
4582 }
4583 
4584 static int spu_register_aead(struct iproc_alg_s *driver_alg)
4585 {
4586 	struct aead_alg *aead = &driver_alg->alg.aead;
4587 	int err;
4588 
4589 	aead->base.cra_module = THIS_MODULE;
4590 	aead->base.cra_priority = aead_pri;
4591 	aead->base.cra_alignmask = 0;
4592 	aead->base.cra_ctxsize = sizeof(struct iproc_ctx_s);
4593 
4594 	aead->base.cra_flags |= CRYPTO_ALG_ASYNC;
4595 	/* setkey set in alg initialization */
4596 	aead->setauthsize = aead_setauthsize;
4597 	aead->encrypt = aead_encrypt;
4598 	aead->decrypt = aead_decrypt;
4599 	aead->init = aead_cra_init;
4600 	aead->exit = aead_cra_exit;
4601 
4602 	err = crypto_register_aead(aead);
4603 	/* Mark alg as having been registered, if successful */
4604 	if (err == 0)
4605 		driver_alg->registered = true;
4606 	pr_debug("  registered aead %s\n", aead->base.cra_driver_name);
4607 	return err;
4608 }
4609 
4610 /* register crypto algorithms the device supports */
4611 static int spu_algs_register(struct device *dev)
4612 {
4613 	int i, j;
4614 	int err;
4615 
4616 	for (i = 0; i < ARRAY_SIZE(driver_algs); i++) {
4617 		switch (driver_algs[i].type) {
4618 		case CRYPTO_ALG_TYPE_SKCIPHER:
4619 			err = spu_register_skcipher(&driver_algs[i]);
4620 			break;
4621 		case CRYPTO_ALG_TYPE_AHASH:
4622 			err = spu_register_ahash(&driver_algs[i]);
4623 			break;
4624 		case CRYPTO_ALG_TYPE_AEAD:
4625 			err = spu_register_aead(&driver_algs[i]);
4626 			break;
4627 		default:
4628 			dev_err(dev,
4629 				"iproc-crypto: unknown alg type: %d",
4630 				driver_algs[i].type);
4631 			err = -EINVAL;
4632 		}
4633 
4634 		if (err) {
4635 			dev_err(dev, "alg registration failed with error %d\n",
4636 				err);
4637 			goto err_algs;
4638 		}
4639 	}
4640 
4641 	return 0;
4642 
4643 err_algs:
4644 	for (j = 0; j < i; j++) {
4645 		/* Skip any algorithm not registered */
4646 		if (!driver_algs[j].registered)
4647 			continue;
4648 		switch (driver_algs[j].type) {
4649 		case CRYPTO_ALG_TYPE_SKCIPHER:
4650 			crypto_unregister_skcipher(&driver_algs[j].alg.skcipher);
4651 			driver_algs[j].registered = false;
4652 			break;
4653 		case CRYPTO_ALG_TYPE_AHASH:
4654 			crypto_unregister_ahash(&driver_algs[j].alg.hash);
4655 			driver_algs[j].registered = false;
4656 			break;
4657 		case CRYPTO_ALG_TYPE_AEAD:
4658 			crypto_unregister_aead(&driver_algs[j].alg.aead);
4659 			driver_algs[j].registered = false;
4660 			break;
4661 		}
4662 	}
4663 	return err;
4664 }
4665 
4666 /* ==================== Kernel Platform API ==================== */
4667 
4668 static struct spu_type_subtype spum_ns2_types = {
4669 	SPU_TYPE_SPUM, SPU_SUBTYPE_SPUM_NS2
4670 };
4671 
4672 static struct spu_type_subtype spum_nsp_types = {
4673 	SPU_TYPE_SPUM, SPU_SUBTYPE_SPUM_NSP
4674 };
4675 
4676 static struct spu_type_subtype spu2_types = {
4677 	SPU_TYPE_SPU2, SPU_SUBTYPE_SPU2_V1
4678 };
4679 
4680 static struct spu_type_subtype spu2_v2_types = {
4681 	SPU_TYPE_SPU2, SPU_SUBTYPE_SPU2_V2
4682 };
4683 
4684 static const struct of_device_id bcm_spu_dt_ids[] = {
4685 	{
4686 		.compatible = "brcm,spum-crypto",
4687 		.data = &spum_ns2_types,
4688 	},
4689 	{
4690 		.compatible = "brcm,spum-nsp-crypto",
4691 		.data = &spum_nsp_types,
4692 	},
4693 	{
4694 		.compatible = "brcm,spu2-crypto",
4695 		.data = &spu2_types,
4696 	},
4697 	{
4698 		.compatible = "brcm,spu2-v2-crypto",
4699 		.data = &spu2_v2_types,
4700 	},
4701 	{ /* sentinel */ }
4702 };
4703 
4704 MODULE_DEVICE_TABLE(of, bcm_spu_dt_ids);
4705 
4706 static int spu_dt_read(struct platform_device *pdev)
4707 {
4708 	struct device *dev = &pdev->dev;
4709 	struct spu_hw *spu = &iproc_priv.spu;
4710 	struct resource *spu_ctrl_regs;
4711 	const struct spu_type_subtype *matched_spu_type;
4712 	struct device_node *dn = pdev->dev.of_node;
4713 	int err, i;
4714 
4715 	/* Count number of mailbox channels */
4716 	spu->num_chan = of_count_phandle_with_args(dn, "mboxes", "#mbox-cells");
4717 
4718 	matched_spu_type = of_device_get_match_data(dev);
4719 	if (!matched_spu_type) {
4720 		dev_err(&pdev->dev, "Failed to match device\n");
4721 		return -ENODEV;
4722 	}
4723 
4724 	spu->spu_type = matched_spu_type->type;
4725 	spu->spu_subtype = matched_spu_type->subtype;
4726 
4727 	i = 0;
4728 	for (i = 0; (i < MAX_SPUS) && ((spu_ctrl_regs =
4729 		platform_get_resource(pdev, IORESOURCE_MEM, i)) != NULL); i++) {
4730 
4731 		spu->reg_vbase[i] = devm_ioremap_resource(dev, spu_ctrl_regs);
4732 		if (IS_ERR(spu->reg_vbase[i])) {
4733 			err = PTR_ERR(spu->reg_vbase[i]);
4734 			dev_err(&pdev->dev, "Failed to map registers: %d\n",
4735 				err);
4736 			spu->reg_vbase[i] = NULL;
4737 			return err;
4738 		}
4739 	}
4740 	spu->num_spu = i;
4741 	dev_dbg(dev, "Device has %d SPUs", spu->num_spu);
4742 
4743 	return 0;
4744 }
4745 
4746 static int bcm_spu_probe(struct platform_device *pdev)
4747 {
4748 	struct device *dev = &pdev->dev;
4749 	struct spu_hw *spu = &iproc_priv.spu;
4750 	int err = 0;
4751 
4752 	iproc_priv.pdev  = pdev;
4753 	platform_set_drvdata(iproc_priv.pdev,
4754 			     &iproc_priv);
4755 
4756 	err = spu_dt_read(pdev);
4757 	if (err < 0)
4758 		goto failure;
4759 
4760 	err = spu_mb_init(&pdev->dev);
4761 	if (err < 0)
4762 		goto failure;
4763 
4764 	if (spu->spu_type == SPU_TYPE_SPUM)
4765 		iproc_priv.bcm_hdr_len = 8;
4766 	else if (spu->spu_type == SPU_TYPE_SPU2)
4767 		iproc_priv.bcm_hdr_len = 0;
4768 
4769 	spu_functions_register(&pdev->dev, spu->spu_type, spu->spu_subtype);
4770 
4771 	spu_counters_init();
4772 
4773 	spu_setup_debugfs();
4774 
4775 	err = spu_algs_register(dev);
4776 	if (err < 0)
4777 		goto fail_reg;
4778 
4779 	return 0;
4780 
4781 fail_reg:
4782 	spu_free_debugfs();
4783 failure:
4784 	spu_mb_release(pdev);
4785 	dev_err(dev, "%s failed with error %d.\n", __func__, err);
4786 
4787 	return err;
4788 }
4789 
4790 static int bcm_spu_remove(struct platform_device *pdev)
4791 {
4792 	int i;
4793 	struct device *dev = &pdev->dev;
4794 	char *cdn;
4795 
4796 	for (i = 0; i < ARRAY_SIZE(driver_algs); i++) {
4797 		/*
4798 		 * Not all algorithms were registered, depending on whether
4799 		 * hardware is SPU or SPU2.  So here we make sure to skip
4800 		 * those algorithms that were not previously registered.
4801 		 */
4802 		if (!driver_algs[i].registered)
4803 			continue;
4804 
4805 		switch (driver_algs[i].type) {
4806 		case CRYPTO_ALG_TYPE_SKCIPHER:
4807 			crypto_unregister_skcipher(&driver_algs[i].alg.skcipher);
4808 			dev_dbg(dev, "  unregistered cipher %s\n",
4809 				driver_algs[i].alg.skcipher.base.cra_driver_name);
4810 			driver_algs[i].registered = false;
4811 			break;
4812 		case CRYPTO_ALG_TYPE_AHASH:
4813 			crypto_unregister_ahash(&driver_algs[i].alg.hash);
4814 			cdn = driver_algs[i].alg.hash.halg.base.cra_driver_name;
4815 			dev_dbg(dev, "  unregistered hash %s\n", cdn);
4816 			driver_algs[i].registered = false;
4817 			break;
4818 		case CRYPTO_ALG_TYPE_AEAD:
4819 			crypto_unregister_aead(&driver_algs[i].alg.aead);
4820 			dev_dbg(dev, "  unregistered aead %s\n",
4821 				driver_algs[i].alg.aead.base.cra_driver_name);
4822 			driver_algs[i].registered = false;
4823 			break;
4824 		}
4825 	}
4826 	spu_free_debugfs();
4827 	spu_mb_release(pdev);
4828 	return 0;
4829 }
4830 
4831 /* ===== Kernel Module API ===== */
4832 
4833 static struct platform_driver bcm_spu_pdriver = {
4834 	.driver = {
4835 		   .name = "brcm-spu-crypto",
4836 		   .of_match_table = of_match_ptr(bcm_spu_dt_ids),
4837 		   },
4838 	.probe = bcm_spu_probe,
4839 	.remove = bcm_spu_remove,
4840 };
4841 module_platform_driver(bcm_spu_pdriver);
4842 
4843 MODULE_AUTHOR("Rob Rice <rob.rice@broadcom.com>");
4844 MODULE_DESCRIPTION("Broadcom symmetric crypto offload driver");
4845 MODULE_LICENSE("GPL v2");
4846