xref: /linux/drivers/crypto/ccree/cc_aead.c (revision 9a6b55ac)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (C) 2012-2019 ARM Limited (or its affiliates). */
3 
4 #include <linux/kernel.h>
5 #include <linux/module.h>
6 #include <crypto/algapi.h>
7 #include <crypto/internal/aead.h>
8 #include <crypto/authenc.h>
9 #include <crypto/internal/des.h>
10 #include <linux/rtnetlink.h>
11 #include "cc_driver.h"
12 #include "cc_buffer_mgr.h"
13 #include "cc_aead.h"
14 #include "cc_request_mgr.h"
15 #include "cc_hash.h"
16 #include "cc_sram_mgr.h"
17 
18 #define template_aead	template_u.aead
19 
20 #define MAX_AEAD_SETKEY_SEQ 12
21 #define MAX_AEAD_PROCESS_SEQ 23
22 
23 #define MAX_HMAC_DIGEST_SIZE (SHA256_DIGEST_SIZE)
24 #define MAX_HMAC_BLOCK_SIZE (SHA256_BLOCK_SIZE)
25 
26 #define MAX_NONCE_SIZE CTR_RFC3686_NONCE_SIZE
27 
28 struct cc_aead_handle {
29 	cc_sram_addr_t sram_workspace_addr;
30 	struct list_head aead_list;
31 };
32 
33 struct cc_hmac_s {
34 	u8 *padded_authkey;
35 	u8 *ipad_opad; /* IPAD, OPAD*/
36 	dma_addr_t padded_authkey_dma_addr;
37 	dma_addr_t ipad_opad_dma_addr;
38 };
39 
40 struct cc_xcbc_s {
41 	u8 *xcbc_keys; /* K1,K2,K3 */
42 	dma_addr_t xcbc_keys_dma_addr;
43 };
44 
45 struct cc_aead_ctx {
46 	struct cc_drvdata *drvdata;
47 	u8 ctr_nonce[MAX_NONCE_SIZE]; /* used for ctr3686 iv and aes ccm */
48 	u8 *enckey;
49 	dma_addr_t enckey_dma_addr;
50 	union {
51 		struct cc_hmac_s hmac;
52 		struct cc_xcbc_s xcbc;
53 	} auth_state;
54 	unsigned int enc_keylen;
55 	unsigned int auth_keylen;
56 	unsigned int authsize; /* Actual (reduced?) size of the MAC/ICv */
57 	unsigned int hash_len;
58 	enum drv_cipher_mode cipher_mode;
59 	enum cc_flow_mode flow_mode;
60 	enum drv_hash_mode auth_mode;
61 };
62 
63 static inline bool valid_assoclen(struct aead_request *req)
64 {
65 	return ((req->assoclen == 16) || (req->assoclen == 20));
66 }
67 
68 static void cc_aead_exit(struct crypto_aead *tfm)
69 {
70 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
71 	struct device *dev = drvdata_to_dev(ctx->drvdata);
72 
73 	dev_dbg(dev, "Clearing context @%p for %s\n", crypto_aead_ctx(tfm),
74 		crypto_tfm_alg_name(&tfm->base));
75 
76 	/* Unmap enckey buffer */
77 	if (ctx->enckey) {
78 		dma_free_coherent(dev, AES_MAX_KEY_SIZE, ctx->enckey,
79 				  ctx->enckey_dma_addr);
80 		dev_dbg(dev, "Freed enckey DMA buffer enckey_dma_addr=%pad\n",
81 			&ctx->enckey_dma_addr);
82 		ctx->enckey_dma_addr = 0;
83 		ctx->enckey = NULL;
84 	}
85 
86 	if (ctx->auth_mode == DRV_HASH_XCBC_MAC) { /* XCBC authetication */
87 		struct cc_xcbc_s *xcbc = &ctx->auth_state.xcbc;
88 
89 		if (xcbc->xcbc_keys) {
90 			dma_free_coherent(dev, CC_AES_128_BIT_KEY_SIZE * 3,
91 					  xcbc->xcbc_keys,
92 					  xcbc->xcbc_keys_dma_addr);
93 		}
94 		dev_dbg(dev, "Freed xcbc_keys DMA buffer xcbc_keys_dma_addr=%pad\n",
95 			&xcbc->xcbc_keys_dma_addr);
96 		xcbc->xcbc_keys_dma_addr = 0;
97 		xcbc->xcbc_keys = NULL;
98 	} else if (ctx->auth_mode != DRV_HASH_NULL) { /* HMAC auth. */
99 		struct cc_hmac_s *hmac = &ctx->auth_state.hmac;
100 
101 		if (hmac->ipad_opad) {
102 			dma_free_coherent(dev, 2 * MAX_HMAC_DIGEST_SIZE,
103 					  hmac->ipad_opad,
104 					  hmac->ipad_opad_dma_addr);
105 			dev_dbg(dev, "Freed ipad_opad DMA buffer ipad_opad_dma_addr=%pad\n",
106 				&hmac->ipad_opad_dma_addr);
107 			hmac->ipad_opad_dma_addr = 0;
108 			hmac->ipad_opad = NULL;
109 		}
110 		if (hmac->padded_authkey) {
111 			dma_free_coherent(dev, MAX_HMAC_BLOCK_SIZE,
112 					  hmac->padded_authkey,
113 					  hmac->padded_authkey_dma_addr);
114 			dev_dbg(dev, "Freed padded_authkey DMA buffer padded_authkey_dma_addr=%pad\n",
115 				&hmac->padded_authkey_dma_addr);
116 			hmac->padded_authkey_dma_addr = 0;
117 			hmac->padded_authkey = NULL;
118 		}
119 	}
120 }
121 
122 static unsigned int cc_get_aead_hash_len(struct crypto_aead *tfm)
123 {
124 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
125 
126 	return cc_get_default_hash_len(ctx->drvdata);
127 }
128 
129 static int cc_aead_init(struct crypto_aead *tfm)
130 {
131 	struct aead_alg *alg = crypto_aead_alg(tfm);
132 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
133 	struct cc_crypto_alg *cc_alg =
134 			container_of(alg, struct cc_crypto_alg, aead_alg);
135 	struct device *dev = drvdata_to_dev(cc_alg->drvdata);
136 
137 	dev_dbg(dev, "Initializing context @%p for %s\n", ctx,
138 		crypto_tfm_alg_name(&tfm->base));
139 
140 	/* Initialize modes in instance */
141 	ctx->cipher_mode = cc_alg->cipher_mode;
142 	ctx->flow_mode = cc_alg->flow_mode;
143 	ctx->auth_mode = cc_alg->auth_mode;
144 	ctx->drvdata = cc_alg->drvdata;
145 	crypto_aead_set_reqsize(tfm, sizeof(struct aead_req_ctx));
146 
147 	/* Allocate key buffer, cache line aligned */
148 	ctx->enckey = dma_alloc_coherent(dev, AES_MAX_KEY_SIZE,
149 					 &ctx->enckey_dma_addr, GFP_KERNEL);
150 	if (!ctx->enckey) {
151 		dev_err(dev, "Failed allocating key buffer\n");
152 		goto init_failed;
153 	}
154 	dev_dbg(dev, "Allocated enckey buffer in context ctx->enckey=@%p\n",
155 		ctx->enckey);
156 
157 	/* Set default authlen value */
158 
159 	if (ctx->auth_mode == DRV_HASH_XCBC_MAC) { /* XCBC authetication */
160 		struct cc_xcbc_s *xcbc = &ctx->auth_state.xcbc;
161 		const unsigned int key_size = CC_AES_128_BIT_KEY_SIZE * 3;
162 
163 		/* Allocate dma-coherent buffer for XCBC's K1+K2+K3 */
164 		/* (and temporary for user key - up to 256b) */
165 		xcbc->xcbc_keys = dma_alloc_coherent(dev, key_size,
166 						     &xcbc->xcbc_keys_dma_addr,
167 						     GFP_KERNEL);
168 		if (!xcbc->xcbc_keys) {
169 			dev_err(dev, "Failed allocating buffer for XCBC keys\n");
170 			goto init_failed;
171 		}
172 	} else if (ctx->auth_mode != DRV_HASH_NULL) { /* HMAC authentication */
173 		struct cc_hmac_s *hmac = &ctx->auth_state.hmac;
174 		const unsigned int digest_size = 2 * MAX_HMAC_DIGEST_SIZE;
175 		dma_addr_t *pkey_dma = &hmac->padded_authkey_dma_addr;
176 
177 		/* Allocate dma-coherent buffer for IPAD + OPAD */
178 		hmac->ipad_opad = dma_alloc_coherent(dev, digest_size,
179 						     &hmac->ipad_opad_dma_addr,
180 						     GFP_KERNEL);
181 
182 		if (!hmac->ipad_opad) {
183 			dev_err(dev, "Failed allocating IPAD/OPAD buffer\n");
184 			goto init_failed;
185 		}
186 
187 		dev_dbg(dev, "Allocated authkey buffer in context ctx->authkey=@%p\n",
188 			hmac->ipad_opad);
189 
190 		hmac->padded_authkey = dma_alloc_coherent(dev,
191 							  MAX_HMAC_BLOCK_SIZE,
192 							  pkey_dma,
193 							  GFP_KERNEL);
194 
195 		if (!hmac->padded_authkey) {
196 			dev_err(dev, "failed to allocate padded_authkey\n");
197 			goto init_failed;
198 		}
199 	} else {
200 		ctx->auth_state.hmac.ipad_opad = NULL;
201 		ctx->auth_state.hmac.padded_authkey = NULL;
202 	}
203 	ctx->hash_len = cc_get_aead_hash_len(tfm);
204 
205 	return 0;
206 
207 init_failed:
208 	cc_aead_exit(tfm);
209 	return -ENOMEM;
210 }
211 
212 static void cc_aead_complete(struct device *dev, void *cc_req, int err)
213 {
214 	struct aead_request *areq = (struct aead_request *)cc_req;
215 	struct aead_req_ctx *areq_ctx = aead_request_ctx(areq);
216 	struct crypto_aead *tfm = crypto_aead_reqtfm(cc_req);
217 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
218 
219 	/* BACKLOG notification */
220 	if (err == -EINPROGRESS)
221 		goto done;
222 
223 	cc_unmap_aead_request(dev, areq);
224 
225 	/* Restore ordinary iv pointer */
226 	areq->iv = areq_ctx->backup_iv;
227 
228 	if (err)
229 		goto done;
230 
231 	if (areq_ctx->gen_ctx.op_type == DRV_CRYPTO_DIRECTION_DECRYPT) {
232 		if (memcmp(areq_ctx->mac_buf, areq_ctx->icv_virt_addr,
233 			   ctx->authsize) != 0) {
234 			dev_dbg(dev, "Payload authentication failure, (auth-size=%d, cipher=%d)\n",
235 				ctx->authsize, ctx->cipher_mode);
236 			/* In case of payload authentication failure, MUST NOT
237 			 * revealed the decrypted message --> zero its memory.
238 			 */
239 			sg_zero_buffer(areq->dst, sg_nents(areq->dst),
240 				       areq->cryptlen, 0);
241 			err = -EBADMSG;
242 		}
243 	/*ENCRYPT*/
244 	} else if (areq_ctx->is_icv_fragmented) {
245 		u32 skip = areq->cryptlen + areq_ctx->dst_offset;
246 
247 		cc_copy_sg_portion(dev, areq_ctx->mac_buf, areq_ctx->dst_sgl,
248 				   skip, (skip + ctx->authsize),
249 				   CC_SG_FROM_BUF);
250 	}
251 done:
252 	aead_request_complete(areq, err);
253 }
254 
255 static unsigned int xcbc_setkey(struct cc_hw_desc *desc,
256 				struct cc_aead_ctx *ctx)
257 {
258 	/* Load the AES key */
259 	hw_desc_init(&desc[0]);
260 	/* We are using for the source/user key the same buffer
261 	 * as for the output keys, * because after this key loading it
262 	 * is not needed anymore
263 	 */
264 	set_din_type(&desc[0], DMA_DLLI,
265 		     ctx->auth_state.xcbc.xcbc_keys_dma_addr, ctx->auth_keylen,
266 		     NS_BIT);
267 	set_cipher_mode(&desc[0], DRV_CIPHER_ECB);
268 	set_cipher_config0(&desc[0], DRV_CRYPTO_DIRECTION_ENCRYPT);
269 	set_key_size_aes(&desc[0], ctx->auth_keylen);
270 	set_flow_mode(&desc[0], S_DIN_to_AES);
271 	set_setup_mode(&desc[0], SETUP_LOAD_KEY0);
272 
273 	hw_desc_init(&desc[1]);
274 	set_din_const(&desc[1], 0x01010101, CC_AES_128_BIT_KEY_SIZE);
275 	set_flow_mode(&desc[1], DIN_AES_DOUT);
276 	set_dout_dlli(&desc[1], ctx->auth_state.xcbc.xcbc_keys_dma_addr,
277 		      AES_KEYSIZE_128, NS_BIT, 0);
278 
279 	hw_desc_init(&desc[2]);
280 	set_din_const(&desc[2], 0x02020202, CC_AES_128_BIT_KEY_SIZE);
281 	set_flow_mode(&desc[2], DIN_AES_DOUT);
282 	set_dout_dlli(&desc[2], (ctx->auth_state.xcbc.xcbc_keys_dma_addr
283 					 + AES_KEYSIZE_128),
284 			      AES_KEYSIZE_128, NS_BIT, 0);
285 
286 	hw_desc_init(&desc[3]);
287 	set_din_const(&desc[3], 0x03030303, CC_AES_128_BIT_KEY_SIZE);
288 	set_flow_mode(&desc[3], DIN_AES_DOUT);
289 	set_dout_dlli(&desc[3], (ctx->auth_state.xcbc.xcbc_keys_dma_addr
290 					  + 2 * AES_KEYSIZE_128),
291 			      AES_KEYSIZE_128, NS_BIT, 0);
292 
293 	return 4;
294 }
295 
296 static unsigned int hmac_setkey(struct cc_hw_desc *desc,
297 				struct cc_aead_ctx *ctx)
298 {
299 	unsigned int hmac_pad_const[2] = { HMAC_IPAD_CONST, HMAC_OPAD_CONST };
300 	unsigned int digest_ofs = 0;
301 	unsigned int hash_mode = (ctx->auth_mode == DRV_HASH_SHA1) ?
302 			DRV_HASH_HW_SHA1 : DRV_HASH_HW_SHA256;
303 	unsigned int digest_size = (ctx->auth_mode == DRV_HASH_SHA1) ?
304 			CC_SHA1_DIGEST_SIZE : CC_SHA256_DIGEST_SIZE;
305 	struct cc_hmac_s *hmac = &ctx->auth_state.hmac;
306 
307 	unsigned int idx = 0;
308 	int i;
309 
310 	/* calc derived HMAC key */
311 	for (i = 0; i < 2; i++) {
312 		/* Load hash initial state */
313 		hw_desc_init(&desc[idx]);
314 		set_cipher_mode(&desc[idx], hash_mode);
315 		set_din_sram(&desc[idx],
316 			     cc_larval_digest_addr(ctx->drvdata,
317 						   ctx->auth_mode),
318 			     digest_size);
319 		set_flow_mode(&desc[idx], S_DIN_to_HASH);
320 		set_setup_mode(&desc[idx], SETUP_LOAD_STATE0);
321 		idx++;
322 
323 		/* Load the hash current length*/
324 		hw_desc_init(&desc[idx]);
325 		set_cipher_mode(&desc[idx], hash_mode);
326 		set_din_const(&desc[idx], 0, ctx->hash_len);
327 		set_flow_mode(&desc[idx], S_DIN_to_HASH);
328 		set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
329 		idx++;
330 
331 		/* Prepare ipad key */
332 		hw_desc_init(&desc[idx]);
333 		set_xor_val(&desc[idx], hmac_pad_const[i]);
334 		set_cipher_mode(&desc[idx], hash_mode);
335 		set_flow_mode(&desc[idx], S_DIN_to_HASH);
336 		set_setup_mode(&desc[idx], SETUP_LOAD_STATE1);
337 		idx++;
338 
339 		/* Perform HASH update */
340 		hw_desc_init(&desc[idx]);
341 		set_din_type(&desc[idx], DMA_DLLI,
342 			     hmac->padded_authkey_dma_addr,
343 			     SHA256_BLOCK_SIZE, NS_BIT);
344 		set_cipher_mode(&desc[idx], hash_mode);
345 		set_xor_active(&desc[idx]);
346 		set_flow_mode(&desc[idx], DIN_HASH);
347 		idx++;
348 
349 		/* Get the digset */
350 		hw_desc_init(&desc[idx]);
351 		set_cipher_mode(&desc[idx], hash_mode);
352 		set_dout_dlli(&desc[idx],
353 			      (hmac->ipad_opad_dma_addr + digest_ofs),
354 			      digest_size, NS_BIT, 0);
355 		set_flow_mode(&desc[idx], S_HASH_to_DOUT);
356 		set_setup_mode(&desc[idx], SETUP_WRITE_STATE0);
357 		set_cipher_config1(&desc[idx], HASH_PADDING_DISABLED);
358 		idx++;
359 
360 		digest_ofs += digest_size;
361 	}
362 
363 	return idx;
364 }
365 
366 static int validate_keys_sizes(struct cc_aead_ctx *ctx)
367 {
368 	struct device *dev = drvdata_to_dev(ctx->drvdata);
369 
370 	dev_dbg(dev, "enc_keylen=%u  authkeylen=%u\n",
371 		ctx->enc_keylen, ctx->auth_keylen);
372 
373 	switch (ctx->auth_mode) {
374 	case DRV_HASH_SHA1:
375 	case DRV_HASH_SHA256:
376 		break;
377 	case DRV_HASH_XCBC_MAC:
378 		if (ctx->auth_keylen != AES_KEYSIZE_128 &&
379 		    ctx->auth_keylen != AES_KEYSIZE_192 &&
380 		    ctx->auth_keylen != AES_KEYSIZE_256)
381 			return -ENOTSUPP;
382 		break;
383 	case DRV_HASH_NULL: /* Not authenc (e.g., CCM) - no auth_key) */
384 		if (ctx->auth_keylen > 0)
385 			return -EINVAL;
386 		break;
387 	default:
388 		dev_err(dev, "Invalid auth_mode=%d\n", ctx->auth_mode);
389 		return -EINVAL;
390 	}
391 	/* Check cipher key size */
392 	if (ctx->flow_mode == S_DIN_to_DES) {
393 		if (ctx->enc_keylen != DES3_EDE_KEY_SIZE) {
394 			dev_err(dev, "Invalid cipher(3DES) key size: %u\n",
395 				ctx->enc_keylen);
396 			return -EINVAL;
397 		}
398 	} else { /* Default assumed to be AES ciphers */
399 		if (ctx->enc_keylen != AES_KEYSIZE_128 &&
400 		    ctx->enc_keylen != AES_KEYSIZE_192 &&
401 		    ctx->enc_keylen != AES_KEYSIZE_256) {
402 			dev_err(dev, "Invalid cipher(AES) key size: %u\n",
403 				ctx->enc_keylen);
404 			return -EINVAL;
405 		}
406 	}
407 
408 	return 0; /* All tests of keys sizes passed */
409 }
410 
411 /* This function prepers the user key so it can pass to the hmac processing
412  * (copy to intenral buffer or hash in case of key longer than block
413  */
414 static int cc_get_plain_hmac_key(struct crypto_aead *tfm, const u8 *authkey,
415 				 unsigned int keylen)
416 {
417 	dma_addr_t key_dma_addr = 0;
418 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
419 	struct device *dev = drvdata_to_dev(ctx->drvdata);
420 	u32 larval_addr = cc_larval_digest_addr(ctx->drvdata, ctx->auth_mode);
421 	struct cc_crypto_req cc_req = {};
422 	unsigned int blocksize;
423 	unsigned int digestsize;
424 	unsigned int hashmode;
425 	unsigned int idx = 0;
426 	int rc = 0;
427 	u8 *key = NULL;
428 	struct cc_hw_desc desc[MAX_AEAD_SETKEY_SEQ];
429 	dma_addr_t padded_authkey_dma_addr =
430 		ctx->auth_state.hmac.padded_authkey_dma_addr;
431 
432 	switch (ctx->auth_mode) { /* auth_key required and >0 */
433 	case DRV_HASH_SHA1:
434 		blocksize = SHA1_BLOCK_SIZE;
435 		digestsize = SHA1_DIGEST_SIZE;
436 		hashmode = DRV_HASH_HW_SHA1;
437 		break;
438 	case DRV_HASH_SHA256:
439 	default:
440 		blocksize = SHA256_BLOCK_SIZE;
441 		digestsize = SHA256_DIGEST_SIZE;
442 		hashmode = DRV_HASH_HW_SHA256;
443 	}
444 
445 	if (keylen != 0) {
446 
447 		key = kmemdup(authkey, keylen, GFP_KERNEL);
448 		if (!key)
449 			return -ENOMEM;
450 
451 		key_dma_addr = dma_map_single(dev, (void *)key, keylen,
452 					      DMA_TO_DEVICE);
453 		if (dma_mapping_error(dev, key_dma_addr)) {
454 			dev_err(dev, "Mapping key va=0x%p len=%u for DMA failed\n",
455 				key, keylen);
456 			kzfree(key);
457 			return -ENOMEM;
458 		}
459 		if (keylen > blocksize) {
460 			/* Load hash initial state */
461 			hw_desc_init(&desc[idx]);
462 			set_cipher_mode(&desc[idx], hashmode);
463 			set_din_sram(&desc[idx], larval_addr, digestsize);
464 			set_flow_mode(&desc[idx], S_DIN_to_HASH);
465 			set_setup_mode(&desc[idx], SETUP_LOAD_STATE0);
466 			idx++;
467 
468 			/* Load the hash current length*/
469 			hw_desc_init(&desc[idx]);
470 			set_cipher_mode(&desc[idx], hashmode);
471 			set_din_const(&desc[idx], 0, ctx->hash_len);
472 			set_cipher_config1(&desc[idx], HASH_PADDING_ENABLED);
473 			set_flow_mode(&desc[idx], S_DIN_to_HASH);
474 			set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
475 			idx++;
476 
477 			hw_desc_init(&desc[idx]);
478 			set_din_type(&desc[idx], DMA_DLLI,
479 				     key_dma_addr, keylen, NS_BIT);
480 			set_flow_mode(&desc[idx], DIN_HASH);
481 			idx++;
482 
483 			/* Get hashed key */
484 			hw_desc_init(&desc[idx]);
485 			set_cipher_mode(&desc[idx], hashmode);
486 			set_dout_dlli(&desc[idx], padded_authkey_dma_addr,
487 				      digestsize, NS_BIT, 0);
488 			set_flow_mode(&desc[idx], S_HASH_to_DOUT);
489 			set_setup_mode(&desc[idx], SETUP_WRITE_STATE0);
490 			set_cipher_config1(&desc[idx], HASH_PADDING_DISABLED);
491 			set_cipher_config0(&desc[idx],
492 					   HASH_DIGEST_RESULT_LITTLE_ENDIAN);
493 			idx++;
494 
495 			hw_desc_init(&desc[idx]);
496 			set_din_const(&desc[idx], 0, (blocksize - digestsize));
497 			set_flow_mode(&desc[idx], BYPASS);
498 			set_dout_dlli(&desc[idx], (padded_authkey_dma_addr +
499 				      digestsize), (blocksize - digestsize),
500 				      NS_BIT, 0);
501 			idx++;
502 		} else {
503 			hw_desc_init(&desc[idx]);
504 			set_din_type(&desc[idx], DMA_DLLI, key_dma_addr,
505 				     keylen, NS_BIT);
506 			set_flow_mode(&desc[idx], BYPASS);
507 			set_dout_dlli(&desc[idx], padded_authkey_dma_addr,
508 				      keylen, NS_BIT, 0);
509 			idx++;
510 
511 			if ((blocksize - keylen) != 0) {
512 				hw_desc_init(&desc[idx]);
513 				set_din_const(&desc[idx], 0,
514 					      (blocksize - keylen));
515 				set_flow_mode(&desc[idx], BYPASS);
516 				set_dout_dlli(&desc[idx],
517 					      (padded_authkey_dma_addr +
518 					       keylen),
519 					      (blocksize - keylen), NS_BIT, 0);
520 				idx++;
521 			}
522 		}
523 	} else {
524 		hw_desc_init(&desc[idx]);
525 		set_din_const(&desc[idx], 0, (blocksize - keylen));
526 		set_flow_mode(&desc[idx], BYPASS);
527 		set_dout_dlli(&desc[idx], padded_authkey_dma_addr,
528 			      blocksize, NS_BIT, 0);
529 		idx++;
530 	}
531 
532 	rc = cc_send_sync_request(ctx->drvdata, &cc_req, desc, idx);
533 	if (rc)
534 		dev_err(dev, "send_request() failed (rc=%d)\n", rc);
535 
536 	if (key_dma_addr)
537 		dma_unmap_single(dev, key_dma_addr, keylen, DMA_TO_DEVICE);
538 
539 	kzfree(key);
540 
541 	return rc;
542 }
543 
544 static int cc_aead_setkey(struct crypto_aead *tfm, const u8 *key,
545 			  unsigned int keylen)
546 {
547 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
548 	struct cc_crypto_req cc_req = {};
549 	struct cc_hw_desc desc[MAX_AEAD_SETKEY_SEQ];
550 	unsigned int seq_len = 0;
551 	struct device *dev = drvdata_to_dev(ctx->drvdata);
552 	const u8 *enckey, *authkey;
553 	int rc;
554 
555 	dev_dbg(dev, "Setting key in context @%p for %s. key=%p keylen=%u\n",
556 		ctx, crypto_tfm_alg_name(crypto_aead_tfm(tfm)), key, keylen);
557 
558 	/* STAT_PHASE_0: Init and sanity checks */
559 
560 	if (ctx->auth_mode != DRV_HASH_NULL) { /* authenc() alg. */
561 		struct crypto_authenc_keys keys;
562 
563 		rc = crypto_authenc_extractkeys(&keys, key, keylen);
564 		if (rc)
565 			goto badkey;
566 		enckey = keys.enckey;
567 		authkey = keys.authkey;
568 		ctx->enc_keylen = keys.enckeylen;
569 		ctx->auth_keylen = keys.authkeylen;
570 
571 		if (ctx->cipher_mode == DRV_CIPHER_CTR) {
572 			/* the nonce is stored in bytes at end of key */
573 			rc = -EINVAL;
574 			if (ctx->enc_keylen <
575 			    (AES_MIN_KEY_SIZE + CTR_RFC3686_NONCE_SIZE))
576 				goto badkey;
577 			/* Copy nonce from last 4 bytes in CTR key to
578 			 *  first 4 bytes in CTR IV
579 			 */
580 			memcpy(ctx->ctr_nonce, enckey + ctx->enc_keylen -
581 			       CTR_RFC3686_NONCE_SIZE, CTR_RFC3686_NONCE_SIZE);
582 			/* Set CTR key size */
583 			ctx->enc_keylen -= CTR_RFC3686_NONCE_SIZE;
584 		}
585 	} else { /* non-authenc - has just one key */
586 		enckey = key;
587 		authkey = NULL;
588 		ctx->enc_keylen = keylen;
589 		ctx->auth_keylen = 0;
590 	}
591 
592 	rc = validate_keys_sizes(ctx);
593 	if (rc)
594 		goto badkey;
595 
596 	/* STAT_PHASE_1: Copy key to ctx */
597 
598 	/* Get key material */
599 	memcpy(ctx->enckey, enckey, ctx->enc_keylen);
600 	if (ctx->enc_keylen == 24)
601 		memset(ctx->enckey + 24, 0, CC_AES_KEY_SIZE_MAX - 24);
602 	if (ctx->auth_mode == DRV_HASH_XCBC_MAC) {
603 		memcpy(ctx->auth_state.xcbc.xcbc_keys, authkey,
604 		       ctx->auth_keylen);
605 	} else if (ctx->auth_mode != DRV_HASH_NULL) { /* HMAC */
606 		rc = cc_get_plain_hmac_key(tfm, authkey, ctx->auth_keylen);
607 		if (rc)
608 			goto badkey;
609 	}
610 
611 	/* STAT_PHASE_2: Create sequence */
612 
613 	switch (ctx->auth_mode) {
614 	case DRV_HASH_SHA1:
615 	case DRV_HASH_SHA256:
616 		seq_len = hmac_setkey(desc, ctx);
617 		break;
618 	case DRV_HASH_XCBC_MAC:
619 		seq_len = xcbc_setkey(desc, ctx);
620 		break;
621 	case DRV_HASH_NULL: /* non-authenc modes, e.g., CCM */
622 		break; /* No auth. key setup */
623 	default:
624 		dev_err(dev, "Unsupported authenc (%d)\n", ctx->auth_mode);
625 		rc = -ENOTSUPP;
626 		goto badkey;
627 	}
628 
629 	/* STAT_PHASE_3: Submit sequence to HW */
630 
631 	if (seq_len > 0) { /* For CCM there is no sequence to setup the key */
632 		rc = cc_send_sync_request(ctx->drvdata, &cc_req, desc, seq_len);
633 		if (rc) {
634 			dev_err(dev, "send_request() failed (rc=%d)\n", rc);
635 			goto setkey_error;
636 		}
637 	}
638 
639 	/* Update STAT_PHASE_3 */
640 	return rc;
641 
642 badkey:
643 	crypto_aead_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
644 
645 setkey_error:
646 	return rc;
647 }
648 
649 static int cc_des3_aead_setkey(struct crypto_aead *aead, const u8 *key,
650 			       unsigned int keylen)
651 {
652 	struct crypto_authenc_keys keys;
653 	int err;
654 
655 	err = crypto_authenc_extractkeys(&keys, key, keylen);
656 	if (unlikely(err))
657 		return err;
658 
659 	err = verify_aead_des3_key(aead, keys.enckey, keys.enckeylen) ?:
660 	      cc_aead_setkey(aead, key, keylen);
661 
662 	memzero_explicit(&keys, sizeof(keys));
663 	return err;
664 }
665 
666 static int cc_rfc4309_ccm_setkey(struct crypto_aead *tfm, const u8 *key,
667 				 unsigned int keylen)
668 {
669 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
670 
671 	if (keylen < 3)
672 		return -EINVAL;
673 
674 	keylen -= 3;
675 	memcpy(ctx->ctr_nonce, key + keylen, 3);
676 
677 	return cc_aead_setkey(tfm, key, keylen);
678 }
679 
680 static int cc_aead_setauthsize(struct crypto_aead *authenc,
681 			       unsigned int authsize)
682 {
683 	struct cc_aead_ctx *ctx = crypto_aead_ctx(authenc);
684 	struct device *dev = drvdata_to_dev(ctx->drvdata);
685 
686 	/* Unsupported auth. sizes */
687 	if (authsize == 0 ||
688 	    authsize > crypto_aead_maxauthsize(authenc)) {
689 		return -ENOTSUPP;
690 	}
691 
692 	ctx->authsize = authsize;
693 	dev_dbg(dev, "authlen=%d\n", ctx->authsize);
694 
695 	return 0;
696 }
697 
698 static int cc_rfc4309_ccm_setauthsize(struct crypto_aead *authenc,
699 				      unsigned int authsize)
700 {
701 	switch (authsize) {
702 	case 8:
703 	case 12:
704 	case 16:
705 		break;
706 	default:
707 		return -EINVAL;
708 	}
709 
710 	return cc_aead_setauthsize(authenc, authsize);
711 }
712 
713 static int cc_ccm_setauthsize(struct crypto_aead *authenc,
714 			      unsigned int authsize)
715 {
716 	switch (authsize) {
717 	case 4:
718 	case 6:
719 	case 8:
720 	case 10:
721 	case 12:
722 	case 14:
723 	case 16:
724 		break;
725 	default:
726 		return -EINVAL;
727 	}
728 
729 	return cc_aead_setauthsize(authenc, authsize);
730 }
731 
732 static void cc_set_assoc_desc(struct aead_request *areq, unsigned int flow_mode,
733 			      struct cc_hw_desc desc[], unsigned int *seq_size)
734 {
735 	struct crypto_aead *tfm = crypto_aead_reqtfm(areq);
736 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
737 	struct aead_req_ctx *areq_ctx = aead_request_ctx(areq);
738 	enum cc_req_dma_buf_type assoc_dma_type = areq_ctx->assoc_buff_type;
739 	unsigned int idx = *seq_size;
740 	struct device *dev = drvdata_to_dev(ctx->drvdata);
741 
742 	switch (assoc_dma_type) {
743 	case CC_DMA_BUF_DLLI:
744 		dev_dbg(dev, "ASSOC buffer type DLLI\n");
745 		hw_desc_init(&desc[idx]);
746 		set_din_type(&desc[idx], DMA_DLLI, sg_dma_address(areq->src),
747 			     areq_ctx->assoclen, NS_BIT);
748 		set_flow_mode(&desc[idx], flow_mode);
749 		if (ctx->auth_mode == DRV_HASH_XCBC_MAC &&
750 		    areq_ctx->cryptlen > 0)
751 			set_din_not_last_indication(&desc[idx]);
752 		break;
753 	case CC_DMA_BUF_MLLI:
754 		dev_dbg(dev, "ASSOC buffer type MLLI\n");
755 		hw_desc_init(&desc[idx]);
756 		set_din_type(&desc[idx], DMA_MLLI, areq_ctx->assoc.sram_addr,
757 			     areq_ctx->assoc.mlli_nents, NS_BIT);
758 		set_flow_mode(&desc[idx], flow_mode);
759 		if (ctx->auth_mode == DRV_HASH_XCBC_MAC &&
760 		    areq_ctx->cryptlen > 0)
761 			set_din_not_last_indication(&desc[idx]);
762 		break;
763 	case CC_DMA_BUF_NULL:
764 	default:
765 		dev_err(dev, "Invalid ASSOC buffer type\n");
766 	}
767 
768 	*seq_size = (++idx);
769 }
770 
771 static void cc_proc_authen_desc(struct aead_request *areq,
772 				unsigned int flow_mode,
773 				struct cc_hw_desc desc[],
774 				unsigned int *seq_size, int direct)
775 {
776 	struct aead_req_ctx *areq_ctx = aead_request_ctx(areq);
777 	enum cc_req_dma_buf_type data_dma_type = areq_ctx->data_buff_type;
778 	unsigned int idx = *seq_size;
779 	struct crypto_aead *tfm = crypto_aead_reqtfm(areq);
780 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
781 	struct device *dev = drvdata_to_dev(ctx->drvdata);
782 
783 	switch (data_dma_type) {
784 	case CC_DMA_BUF_DLLI:
785 	{
786 		struct scatterlist *cipher =
787 			(direct == DRV_CRYPTO_DIRECTION_ENCRYPT) ?
788 			areq_ctx->dst_sgl : areq_ctx->src_sgl;
789 
790 		unsigned int offset =
791 			(direct == DRV_CRYPTO_DIRECTION_ENCRYPT) ?
792 			areq_ctx->dst_offset : areq_ctx->src_offset;
793 		dev_dbg(dev, "AUTHENC: SRC/DST buffer type DLLI\n");
794 		hw_desc_init(&desc[idx]);
795 		set_din_type(&desc[idx], DMA_DLLI,
796 			     (sg_dma_address(cipher) + offset),
797 			     areq_ctx->cryptlen, NS_BIT);
798 		set_flow_mode(&desc[idx], flow_mode);
799 		break;
800 	}
801 	case CC_DMA_BUF_MLLI:
802 	{
803 		/* DOUBLE-PASS flow (as default)
804 		 * assoc. + iv + data -compact in one table
805 		 * if assoclen is ZERO only IV perform
806 		 */
807 		cc_sram_addr_t mlli_addr = areq_ctx->assoc.sram_addr;
808 		u32 mlli_nents = areq_ctx->assoc.mlli_nents;
809 
810 		if (areq_ctx->is_single_pass) {
811 			if (direct == DRV_CRYPTO_DIRECTION_ENCRYPT) {
812 				mlli_addr = areq_ctx->dst.sram_addr;
813 				mlli_nents = areq_ctx->dst.mlli_nents;
814 			} else {
815 				mlli_addr = areq_ctx->src.sram_addr;
816 				mlli_nents = areq_ctx->src.mlli_nents;
817 			}
818 		}
819 
820 		dev_dbg(dev, "AUTHENC: SRC/DST buffer type MLLI\n");
821 		hw_desc_init(&desc[idx]);
822 		set_din_type(&desc[idx], DMA_MLLI, mlli_addr, mlli_nents,
823 			     NS_BIT);
824 		set_flow_mode(&desc[idx], flow_mode);
825 		break;
826 	}
827 	case CC_DMA_BUF_NULL:
828 	default:
829 		dev_err(dev, "AUTHENC: Invalid SRC/DST buffer type\n");
830 	}
831 
832 	*seq_size = (++idx);
833 }
834 
835 static void cc_proc_cipher_desc(struct aead_request *areq,
836 				unsigned int flow_mode,
837 				struct cc_hw_desc desc[],
838 				unsigned int *seq_size)
839 {
840 	unsigned int idx = *seq_size;
841 	struct aead_req_ctx *areq_ctx = aead_request_ctx(areq);
842 	enum cc_req_dma_buf_type data_dma_type = areq_ctx->data_buff_type;
843 	struct crypto_aead *tfm = crypto_aead_reqtfm(areq);
844 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
845 	struct device *dev = drvdata_to_dev(ctx->drvdata);
846 
847 	if (areq_ctx->cryptlen == 0)
848 		return; /*null processing*/
849 
850 	switch (data_dma_type) {
851 	case CC_DMA_BUF_DLLI:
852 		dev_dbg(dev, "CIPHER: SRC/DST buffer type DLLI\n");
853 		hw_desc_init(&desc[idx]);
854 		set_din_type(&desc[idx], DMA_DLLI,
855 			     (sg_dma_address(areq_ctx->src_sgl) +
856 			      areq_ctx->src_offset), areq_ctx->cryptlen,
857 			      NS_BIT);
858 		set_dout_dlli(&desc[idx],
859 			      (sg_dma_address(areq_ctx->dst_sgl) +
860 			       areq_ctx->dst_offset),
861 			      areq_ctx->cryptlen, NS_BIT, 0);
862 		set_flow_mode(&desc[idx], flow_mode);
863 		break;
864 	case CC_DMA_BUF_MLLI:
865 		dev_dbg(dev, "CIPHER: SRC/DST buffer type MLLI\n");
866 		hw_desc_init(&desc[idx]);
867 		set_din_type(&desc[idx], DMA_MLLI, areq_ctx->src.sram_addr,
868 			     areq_ctx->src.mlli_nents, NS_BIT);
869 		set_dout_mlli(&desc[idx], areq_ctx->dst.sram_addr,
870 			      areq_ctx->dst.mlli_nents, NS_BIT, 0);
871 		set_flow_mode(&desc[idx], flow_mode);
872 		break;
873 	case CC_DMA_BUF_NULL:
874 	default:
875 		dev_err(dev, "CIPHER: Invalid SRC/DST buffer type\n");
876 	}
877 
878 	*seq_size = (++idx);
879 }
880 
881 static void cc_proc_digest_desc(struct aead_request *req,
882 				struct cc_hw_desc desc[],
883 				unsigned int *seq_size)
884 {
885 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
886 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
887 	struct aead_req_ctx *req_ctx = aead_request_ctx(req);
888 	unsigned int idx = *seq_size;
889 	unsigned int hash_mode = (ctx->auth_mode == DRV_HASH_SHA1) ?
890 				DRV_HASH_HW_SHA1 : DRV_HASH_HW_SHA256;
891 	int direct = req_ctx->gen_ctx.op_type;
892 
893 	/* Get final ICV result */
894 	if (direct == DRV_CRYPTO_DIRECTION_ENCRYPT) {
895 		hw_desc_init(&desc[idx]);
896 		set_flow_mode(&desc[idx], S_HASH_to_DOUT);
897 		set_setup_mode(&desc[idx], SETUP_WRITE_STATE0);
898 		set_dout_dlli(&desc[idx], req_ctx->icv_dma_addr, ctx->authsize,
899 			      NS_BIT, 1);
900 		set_queue_last_ind(ctx->drvdata, &desc[idx]);
901 		if (ctx->auth_mode == DRV_HASH_XCBC_MAC) {
902 			set_aes_not_hash_mode(&desc[idx]);
903 			set_cipher_mode(&desc[idx], DRV_CIPHER_XCBC_MAC);
904 		} else {
905 			set_cipher_config0(&desc[idx],
906 					   HASH_DIGEST_RESULT_LITTLE_ENDIAN);
907 			set_cipher_mode(&desc[idx], hash_mode);
908 		}
909 	} else { /*Decrypt*/
910 		/* Get ICV out from hardware */
911 		hw_desc_init(&desc[idx]);
912 		set_setup_mode(&desc[idx], SETUP_WRITE_STATE0);
913 		set_flow_mode(&desc[idx], S_HASH_to_DOUT);
914 		set_dout_dlli(&desc[idx], req_ctx->mac_buf_dma_addr,
915 			      ctx->authsize, NS_BIT, 1);
916 		set_queue_last_ind(ctx->drvdata, &desc[idx]);
917 		set_cipher_config0(&desc[idx],
918 				   HASH_DIGEST_RESULT_LITTLE_ENDIAN);
919 		set_cipher_config1(&desc[idx], HASH_PADDING_DISABLED);
920 		if (ctx->auth_mode == DRV_HASH_XCBC_MAC) {
921 			set_cipher_mode(&desc[idx], DRV_CIPHER_XCBC_MAC);
922 			set_aes_not_hash_mode(&desc[idx]);
923 		} else {
924 			set_cipher_mode(&desc[idx], hash_mode);
925 		}
926 	}
927 
928 	*seq_size = (++idx);
929 }
930 
931 static void cc_set_cipher_desc(struct aead_request *req,
932 			       struct cc_hw_desc desc[],
933 			       unsigned int *seq_size)
934 {
935 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
936 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
937 	struct aead_req_ctx *req_ctx = aead_request_ctx(req);
938 	unsigned int hw_iv_size = req_ctx->hw_iv_size;
939 	unsigned int idx = *seq_size;
940 	int direct = req_ctx->gen_ctx.op_type;
941 
942 	/* Setup cipher state */
943 	hw_desc_init(&desc[idx]);
944 	set_cipher_config0(&desc[idx], direct);
945 	set_flow_mode(&desc[idx], ctx->flow_mode);
946 	set_din_type(&desc[idx], DMA_DLLI, req_ctx->gen_ctx.iv_dma_addr,
947 		     hw_iv_size, NS_BIT);
948 	if (ctx->cipher_mode == DRV_CIPHER_CTR)
949 		set_setup_mode(&desc[idx], SETUP_LOAD_STATE1);
950 	else
951 		set_setup_mode(&desc[idx], SETUP_LOAD_STATE0);
952 	set_cipher_mode(&desc[idx], ctx->cipher_mode);
953 	idx++;
954 
955 	/* Setup enc. key */
956 	hw_desc_init(&desc[idx]);
957 	set_cipher_config0(&desc[idx], direct);
958 	set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
959 	set_flow_mode(&desc[idx], ctx->flow_mode);
960 	if (ctx->flow_mode == S_DIN_to_AES) {
961 		set_din_type(&desc[idx], DMA_DLLI, ctx->enckey_dma_addr,
962 			     ((ctx->enc_keylen == 24) ? CC_AES_KEY_SIZE_MAX :
963 			      ctx->enc_keylen), NS_BIT);
964 		set_key_size_aes(&desc[idx], ctx->enc_keylen);
965 	} else {
966 		set_din_type(&desc[idx], DMA_DLLI, ctx->enckey_dma_addr,
967 			     ctx->enc_keylen, NS_BIT);
968 		set_key_size_des(&desc[idx], ctx->enc_keylen);
969 	}
970 	set_cipher_mode(&desc[idx], ctx->cipher_mode);
971 	idx++;
972 
973 	*seq_size = idx;
974 }
975 
976 static void cc_proc_cipher(struct aead_request *req, struct cc_hw_desc desc[],
977 			   unsigned int *seq_size, unsigned int data_flow_mode)
978 {
979 	struct aead_req_ctx *req_ctx = aead_request_ctx(req);
980 	int direct = req_ctx->gen_ctx.op_type;
981 	unsigned int idx = *seq_size;
982 
983 	if (req_ctx->cryptlen == 0)
984 		return; /*null processing*/
985 
986 	cc_set_cipher_desc(req, desc, &idx);
987 	cc_proc_cipher_desc(req, data_flow_mode, desc, &idx);
988 	if (direct == DRV_CRYPTO_DIRECTION_ENCRYPT) {
989 		/* We must wait for DMA to write all cipher */
990 		hw_desc_init(&desc[idx]);
991 		set_din_no_dma(&desc[idx], 0, 0xfffff0);
992 		set_dout_no_dma(&desc[idx], 0, 0, 1);
993 		idx++;
994 	}
995 
996 	*seq_size = idx;
997 }
998 
999 static void cc_set_hmac_desc(struct aead_request *req, struct cc_hw_desc desc[],
1000 			     unsigned int *seq_size)
1001 {
1002 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1003 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1004 	unsigned int hash_mode = (ctx->auth_mode == DRV_HASH_SHA1) ?
1005 				DRV_HASH_HW_SHA1 : DRV_HASH_HW_SHA256;
1006 	unsigned int digest_size = (ctx->auth_mode == DRV_HASH_SHA1) ?
1007 				CC_SHA1_DIGEST_SIZE : CC_SHA256_DIGEST_SIZE;
1008 	unsigned int idx = *seq_size;
1009 
1010 	/* Loading hash ipad xor key state */
1011 	hw_desc_init(&desc[idx]);
1012 	set_cipher_mode(&desc[idx], hash_mode);
1013 	set_din_type(&desc[idx], DMA_DLLI,
1014 		     ctx->auth_state.hmac.ipad_opad_dma_addr, digest_size,
1015 		     NS_BIT);
1016 	set_flow_mode(&desc[idx], S_DIN_to_HASH);
1017 	set_setup_mode(&desc[idx], SETUP_LOAD_STATE0);
1018 	idx++;
1019 
1020 	/* Load init. digest len (64 bytes) */
1021 	hw_desc_init(&desc[idx]);
1022 	set_cipher_mode(&desc[idx], hash_mode);
1023 	set_din_sram(&desc[idx], cc_digest_len_addr(ctx->drvdata, hash_mode),
1024 		     ctx->hash_len);
1025 	set_flow_mode(&desc[idx], S_DIN_to_HASH);
1026 	set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
1027 	idx++;
1028 
1029 	*seq_size = idx;
1030 }
1031 
1032 static void cc_set_xcbc_desc(struct aead_request *req, struct cc_hw_desc desc[],
1033 			     unsigned int *seq_size)
1034 {
1035 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1036 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1037 	unsigned int idx = *seq_size;
1038 
1039 	/* Loading MAC state */
1040 	hw_desc_init(&desc[idx]);
1041 	set_din_const(&desc[idx], 0, CC_AES_BLOCK_SIZE);
1042 	set_setup_mode(&desc[idx], SETUP_LOAD_STATE0);
1043 	set_cipher_mode(&desc[idx], DRV_CIPHER_XCBC_MAC);
1044 	set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
1045 	set_key_size_aes(&desc[idx], CC_AES_128_BIT_KEY_SIZE);
1046 	set_flow_mode(&desc[idx], S_DIN_to_HASH);
1047 	set_aes_not_hash_mode(&desc[idx]);
1048 	idx++;
1049 
1050 	/* Setup XCBC MAC K1 */
1051 	hw_desc_init(&desc[idx]);
1052 	set_din_type(&desc[idx], DMA_DLLI,
1053 		     ctx->auth_state.xcbc.xcbc_keys_dma_addr,
1054 		     AES_KEYSIZE_128, NS_BIT);
1055 	set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
1056 	set_cipher_mode(&desc[idx], DRV_CIPHER_XCBC_MAC);
1057 	set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
1058 	set_key_size_aes(&desc[idx], CC_AES_128_BIT_KEY_SIZE);
1059 	set_flow_mode(&desc[idx], S_DIN_to_HASH);
1060 	set_aes_not_hash_mode(&desc[idx]);
1061 	idx++;
1062 
1063 	/* Setup XCBC MAC K2 */
1064 	hw_desc_init(&desc[idx]);
1065 	set_din_type(&desc[idx], DMA_DLLI,
1066 		     (ctx->auth_state.xcbc.xcbc_keys_dma_addr +
1067 		      AES_KEYSIZE_128), AES_KEYSIZE_128, NS_BIT);
1068 	set_setup_mode(&desc[idx], SETUP_LOAD_STATE1);
1069 	set_cipher_mode(&desc[idx], DRV_CIPHER_XCBC_MAC);
1070 	set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
1071 	set_key_size_aes(&desc[idx], CC_AES_128_BIT_KEY_SIZE);
1072 	set_flow_mode(&desc[idx], S_DIN_to_HASH);
1073 	set_aes_not_hash_mode(&desc[idx]);
1074 	idx++;
1075 
1076 	/* Setup XCBC MAC K3 */
1077 	hw_desc_init(&desc[idx]);
1078 	set_din_type(&desc[idx], DMA_DLLI,
1079 		     (ctx->auth_state.xcbc.xcbc_keys_dma_addr +
1080 		      2 * AES_KEYSIZE_128), AES_KEYSIZE_128, NS_BIT);
1081 	set_setup_mode(&desc[idx], SETUP_LOAD_STATE2);
1082 	set_cipher_mode(&desc[idx], DRV_CIPHER_XCBC_MAC);
1083 	set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
1084 	set_key_size_aes(&desc[idx], CC_AES_128_BIT_KEY_SIZE);
1085 	set_flow_mode(&desc[idx], S_DIN_to_HASH);
1086 	set_aes_not_hash_mode(&desc[idx]);
1087 	idx++;
1088 
1089 	*seq_size = idx;
1090 }
1091 
1092 static void cc_proc_header_desc(struct aead_request *req,
1093 				struct cc_hw_desc desc[],
1094 				unsigned int *seq_size)
1095 {
1096 	struct aead_req_ctx *areq_ctx = aead_request_ctx(req);
1097 	unsigned int idx = *seq_size;
1098 
1099 	/* Hash associated data */
1100 	if (areq_ctx->assoclen > 0)
1101 		cc_set_assoc_desc(req, DIN_HASH, desc, &idx);
1102 
1103 	/* Hash IV */
1104 	*seq_size = idx;
1105 }
1106 
1107 static void cc_proc_scheme_desc(struct aead_request *req,
1108 				struct cc_hw_desc desc[],
1109 				unsigned int *seq_size)
1110 {
1111 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1112 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1113 	struct cc_aead_handle *aead_handle = ctx->drvdata->aead_handle;
1114 	unsigned int hash_mode = (ctx->auth_mode == DRV_HASH_SHA1) ?
1115 				DRV_HASH_HW_SHA1 : DRV_HASH_HW_SHA256;
1116 	unsigned int digest_size = (ctx->auth_mode == DRV_HASH_SHA1) ?
1117 				CC_SHA1_DIGEST_SIZE : CC_SHA256_DIGEST_SIZE;
1118 	unsigned int idx = *seq_size;
1119 
1120 	hw_desc_init(&desc[idx]);
1121 	set_cipher_mode(&desc[idx], hash_mode);
1122 	set_dout_sram(&desc[idx], aead_handle->sram_workspace_addr,
1123 		      ctx->hash_len);
1124 	set_flow_mode(&desc[idx], S_HASH_to_DOUT);
1125 	set_setup_mode(&desc[idx], SETUP_WRITE_STATE1);
1126 	set_cipher_do(&desc[idx], DO_PAD);
1127 	idx++;
1128 
1129 	/* Get final ICV result */
1130 	hw_desc_init(&desc[idx]);
1131 	set_dout_sram(&desc[idx], aead_handle->sram_workspace_addr,
1132 		      digest_size);
1133 	set_flow_mode(&desc[idx], S_HASH_to_DOUT);
1134 	set_setup_mode(&desc[idx], SETUP_WRITE_STATE0);
1135 	set_cipher_config0(&desc[idx], HASH_DIGEST_RESULT_LITTLE_ENDIAN);
1136 	set_cipher_mode(&desc[idx], hash_mode);
1137 	idx++;
1138 
1139 	/* Loading hash opad xor key state */
1140 	hw_desc_init(&desc[idx]);
1141 	set_cipher_mode(&desc[idx], hash_mode);
1142 	set_din_type(&desc[idx], DMA_DLLI,
1143 		     (ctx->auth_state.hmac.ipad_opad_dma_addr + digest_size),
1144 		     digest_size, NS_BIT);
1145 	set_flow_mode(&desc[idx], S_DIN_to_HASH);
1146 	set_setup_mode(&desc[idx], SETUP_LOAD_STATE0);
1147 	idx++;
1148 
1149 	/* Load init. digest len (64 bytes) */
1150 	hw_desc_init(&desc[idx]);
1151 	set_cipher_mode(&desc[idx], hash_mode);
1152 	set_din_sram(&desc[idx], cc_digest_len_addr(ctx->drvdata, hash_mode),
1153 		     ctx->hash_len);
1154 	set_cipher_config1(&desc[idx], HASH_PADDING_ENABLED);
1155 	set_flow_mode(&desc[idx], S_DIN_to_HASH);
1156 	set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
1157 	idx++;
1158 
1159 	/* Perform HASH update */
1160 	hw_desc_init(&desc[idx]);
1161 	set_din_sram(&desc[idx], aead_handle->sram_workspace_addr,
1162 		     digest_size);
1163 	set_flow_mode(&desc[idx], DIN_HASH);
1164 	idx++;
1165 
1166 	*seq_size = idx;
1167 }
1168 
1169 static void cc_mlli_to_sram(struct aead_request *req,
1170 			    struct cc_hw_desc desc[], unsigned int *seq_size)
1171 {
1172 	struct aead_req_ctx *req_ctx = aead_request_ctx(req);
1173 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1174 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1175 	struct device *dev = drvdata_to_dev(ctx->drvdata);
1176 
1177 	if ((req_ctx->assoc_buff_type == CC_DMA_BUF_MLLI ||
1178 	    req_ctx->data_buff_type == CC_DMA_BUF_MLLI ||
1179 	    !req_ctx->is_single_pass) && req_ctx->mlli_params.mlli_len) {
1180 		dev_dbg(dev, "Copy-to-sram: mlli_dma=%08x, mlli_size=%u\n",
1181 			(unsigned int)ctx->drvdata->mlli_sram_addr,
1182 			req_ctx->mlli_params.mlli_len);
1183 		/* Copy MLLI table host-to-sram */
1184 		hw_desc_init(&desc[*seq_size]);
1185 		set_din_type(&desc[*seq_size], DMA_DLLI,
1186 			     req_ctx->mlli_params.mlli_dma_addr,
1187 			     req_ctx->mlli_params.mlli_len, NS_BIT);
1188 		set_dout_sram(&desc[*seq_size],
1189 			      ctx->drvdata->mlli_sram_addr,
1190 			      req_ctx->mlli_params.mlli_len);
1191 		set_flow_mode(&desc[*seq_size], BYPASS);
1192 		(*seq_size)++;
1193 	}
1194 }
1195 
1196 static enum cc_flow_mode cc_get_data_flow(enum drv_crypto_direction direct,
1197 					  enum cc_flow_mode setup_flow_mode,
1198 					  bool is_single_pass)
1199 {
1200 	enum cc_flow_mode data_flow_mode;
1201 
1202 	if (direct == DRV_CRYPTO_DIRECTION_ENCRYPT) {
1203 		if (setup_flow_mode == S_DIN_to_AES)
1204 			data_flow_mode = is_single_pass ?
1205 				AES_to_HASH_and_DOUT : DIN_AES_DOUT;
1206 		else
1207 			data_flow_mode = is_single_pass ?
1208 				DES_to_HASH_and_DOUT : DIN_DES_DOUT;
1209 	} else { /* Decrypt */
1210 		if (setup_flow_mode == S_DIN_to_AES)
1211 			data_flow_mode = is_single_pass ?
1212 				AES_and_HASH : DIN_AES_DOUT;
1213 		else
1214 			data_flow_mode = is_single_pass ?
1215 				DES_and_HASH : DIN_DES_DOUT;
1216 	}
1217 
1218 	return data_flow_mode;
1219 }
1220 
1221 static void cc_hmac_authenc(struct aead_request *req, struct cc_hw_desc desc[],
1222 			    unsigned int *seq_size)
1223 {
1224 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1225 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1226 	struct aead_req_ctx *req_ctx = aead_request_ctx(req);
1227 	int direct = req_ctx->gen_ctx.op_type;
1228 	unsigned int data_flow_mode =
1229 		cc_get_data_flow(direct, ctx->flow_mode,
1230 				 req_ctx->is_single_pass);
1231 
1232 	if (req_ctx->is_single_pass) {
1233 		/**
1234 		 * Single-pass flow
1235 		 */
1236 		cc_set_hmac_desc(req, desc, seq_size);
1237 		cc_set_cipher_desc(req, desc, seq_size);
1238 		cc_proc_header_desc(req, desc, seq_size);
1239 		cc_proc_cipher_desc(req, data_flow_mode, desc, seq_size);
1240 		cc_proc_scheme_desc(req, desc, seq_size);
1241 		cc_proc_digest_desc(req, desc, seq_size);
1242 		return;
1243 	}
1244 
1245 	/**
1246 	 * Double-pass flow
1247 	 * Fallback for unsupported single-pass modes,
1248 	 * i.e. using assoc. data of non-word-multiple
1249 	 */
1250 	if (direct == DRV_CRYPTO_DIRECTION_ENCRYPT) {
1251 		/* encrypt first.. */
1252 		cc_proc_cipher(req, desc, seq_size, data_flow_mode);
1253 		/* authenc after..*/
1254 		cc_set_hmac_desc(req, desc, seq_size);
1255 		cc_proc_authen_desc(req, DIN_HASH, desc, seq_size, direct);
1256 		cc_proc_scheme_desc(req, desc, seq_size);
1257 		cc_proc_digest_desc(req, desc, seq_size);
1258 
1259 	} else { /*DECRYPT*/
1260 		/* authenc first..*/
1261 		cc_set_hmac_desc(req, desc, seq_size);
1262 		cc_proc_authen_desc(req, DIN_HASH, desc, seq_size, direct);
1263 		cc_proc_scheme_desc(req, desc, seq_size);
1264 		/* decrypt after.. */
1265 		cc_proc_cipher(req, desc, seq_size, data_flow_mode);
1266 		/* read the digest result with setting the completion bit
1267 		 * must be after the cipher operation
1268 		 */
1269 		cc_proc_digest_desc(req, desc, seq_size);
1270 	}
1271 }
1272 
1273 static void
1274 cc_xcbc_authenc(struct aead_request *req, struct cc_hw_desc desc[],
1275 		unsigned int *seq_size)
1276 {
1277 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1278 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1279 	struct aead_req_ctx *req_ctx = aead_request_ctx(req);
1280 	int direct = req_ctx->gen_ctx.op_type;
1281 	unsigned int data_flow_mode =
1282 		cc_get_data_flow(direct, ctx->flow_mode,
1283 				 req_ctx->is_single_pass);
1284 
1285 	if (req_ctx->is_single_pass) {
1286 		/**
1287 		 * Single-pass flow
1288 		 */
1289 		cc_set_xcbc_desc(req, desc, seq_size);
1290 		cc_set_cipher_desc(req, desc, seq_size);
1291 		cc_proc_header_desc(req, desc, seq_size);
1292 		cc_proc_cipher_desc(req, data_flow_mode, desc, seq_size);
1293 		cc_proc_digest_desc(req, desc, seq_size);
1294 		return;
1295 	}
1296 
1297 	/**
1298 	 * Double-pass flow
1299 	 * Fallback for unsupported single-pass modes,
1300 	 * i.e. using assoc. data of non-word-multiple
1301 	 */
1302 	if (direct == DRV_CRYPTO_DIRECTION_ENCRYPT) {
1303 		/* encrypt first.. */
1304 		cc_proc_cipher(req, desc, seq_size, data_flow_mode);
1305 		/* authenc after.. */
1306 		cc_set_xcbc_desc(req, desc, seq_size);
1307 		cc_proc_authen_desc(req, DIN_HASH, desc, seq_size, direct);
1308 		cc_proc_digest_desc(req, desc, seq_size);
1309 	} else { /*DECRYPT*/
1310 		/* authenc first.. */
1311 		cc_set_xcbc_desc(req, desc, seq_size);
1312 		cc_proc_authen_desc(req, DIN_HASH, desc, seq_size, direct);
1313 		/* decrypt after..*/
1314 		cc_proc_cipher(req, desc, seq_size, data_flow_mode);
1315 		/* read the digest result with setting the completion bit
1316 		 * must be after the cipher operation
1317 		 */
1318 		cc_proc_digest_desc(req, desc, seq_size);
1319 	}
1320 }
1321 
1322 static int validate_data_size(struct cc_aead_ctx *ctx,
1323 			      enum drv_crypto_direction direct,
1324 			      struct aead_request *req)
1325 {
1326 	struct aead_req_ctx *areq_ctx = aead_request_ctx(req);
1327 	struct device *dev = drvdata_to_dev(ctx->drvdata);
1328 	unsigned int assoclen = areq_ctx->assoclen;
1329 	unsigned int cipherlen = (direct == DRV_CRYPTO_DIRECTION_DECRYPT) ?
1330 			(req->cryptlen - ctx->authsize) : req->cryptlen;
1331 
1332 	if (direct == DRV_CRYPTO_DIRECTION_DECRYPT &&
1333 	    req->cryptlen < ctx->authsize)
1334 		goto data_size_err;
1335 
1336 	areq_ctx->is_single_pass = true; /*defaulted to fast flow*/
1337 
1338 	switch (ctx->flow_mode) {
1339 	case S_DIN_to_AES:
1340 		if (ctx->cipher_mode == DRV_CIPHER_CBC &&
1341 		    !IS_ALIGNED(cipherlen, AES_BLOCK_SIZE))
1342 			goto data_size_err;
1343 		if (ctx->cipher_mode == DRV_CIPHER_CCM)
1344 			break;
1345 		if (ctx->cipher_mode == DRV_CIPHER_GCTR) {
1346 			if (areq_ctx->plaintext_authenticate_only)
1347 				areq_ctx->is_single_pass = false;
1348 			break;
1349 		}
1350 
1351 		if (!IS_ALIGNED(assoclen, sizeof(u32)))
1352 			areq_ctx->is_single_pass = false;
1353 
1354 		if (ctx->cipher_mode == DRV_CIPHER_CTR &&
1355 		    !IS_ALIGNED(cipherlen, sizeof(u32)))
1356 			areq_ctx->is_single_pass = false;
1357 
1358 		break;
1359 	case S_DIN_to_DES:
1360 		if (!IS_ALIGNED(cipherlen, DES_BLOCK_SIZE))
1361 			goto data_size_err;
1362 		if (!IS_ALIGNED(assoclen, DES_BLOCK_SIZE))
1363 			areq_ctx->is_single_pass = false;
1364 		break;
1365 	default:
1366 		dev_err(dev, "Unexpected flow mode (%d)\n", ctx->flow_mode);
1367 		goto data_size_err;
1368 	}
1369 
1370 	return 0;
1371 
1372 data_size_err:
1373 	return -EINVAL;
1374 }
1375 
1376 static unsigned int format_ccm_a0(u8 *pa0_buff, u32 header_size)
1377 {
1378 	unsigned int len = 0;
1379 
1380 	if (header_size == 0)
1381 		return 0;
1382 
1383 	if (header_size < ((1UL << 16) - (1UL << 8))) {
1384 		len = 2;
1385 
1386 		pa0_buff[0] = (header_size >> 8) & 0xFF;
1387 		pa0_buff[1] = header_size & 0xFF;
1388 	} else {
1389 		len = 6;
1390 
1391 		pa0_buff[0] = 0xFF;
1392 		pa0_buff[1] = 0xFE;
1393 		pa0_buff[2] = (header_size >> 24) & 0xFF;
1394 		pa0_buff[3] = (header_size >> 16) & 0xFF;
1395 		pa0_buff[4] = (header_size >> 8) & 0xFF;
1396 		pa0_buff[5] = header_size & 0xFF;
1397 	}
1398 
1399 	return len;
1400 }
1401 
1402 static int set_msg_len(u8 *block, unsigned int msglen, unsigned int csize)
1403 {
1404 	__be32 data;
1405 
1406 	memset(block, 0, csize);
1407 	block += csize;
1408 
1409 	if (csize >= 4)
1410 		csize = 4;
1411 	else if (msglen > (1 << (8 * csize)))
1412 		return -EOVERFLOW;
1413 
1414 	data = cpu_to_be32(msglen);
1415 	memcpy(block - csize, (u8 *)&data + 4 - csize, csize);
1416 
1417 	return 0;
1418 }
1419 
1420 static int cc_ccm(struct aead_request *req, struct cc_hw_desc desc[],
1421 		  unsigned int *seq_size)
1422 {
1423 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1424 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1425 	struct aead_req_ctx *req_ctx = aead_request_ctx(req);
1426 	unsigned int idx = *seq_size;
1427 	unsigned int cipher_flow_mode;
1428 	dma_addr_t mac_result;
1429 
1430 	if (req_ctx->gen_ctx.op_type == DRV_CRYPTO_DIRECTION_DECRYPT) {
1431 		cipher_flow_mode = AES_to_HASH_and_DOUT;
1432 		mac_result = req_ctx->mac_buf_dma_addr;
1433 	} else { /* Encrypt */
1434 		cipher_flow_mode = AES_and_HASH;
1435 		mac_result = req_ctx->icv_dma_addr;
1436 	}
1437 
1438 	/* load key */
1439 	hw_desc_init(&desc[idx]);
1440 	set_cipher_mode(&desc[idx], DRV_CIPHER_CTR);
1441 	set_din_type(&desc[idx], DMA_DLLI, ctx->enckey_dma_addr,
1442 		     ((ctx->enc_keylen == 24) ?  CC_AES_KEY_SIZE_MAX :
1443 		      ctx->enc_keylen), NS_BIT);
1444 	set_key_size_aes(&desc[idx], ctx->enc_keylen);
1445 	set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
1446 	set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
1447 	set_flow_mode(&desc[idx], S_DIN_to_AES);
1448 	idx++;
1449 
1450 	/* load ctr state */
1451 	hw_desc_init(&desc[idx]);
1452 	set_cipher_mode(&desc[idx], DRV_CIPHER_CTR);
1453 	set_key_size_aes(&desc[idx], ctx->enc_keylen);
1454 	set_din_type(&desc[idx], DMA_DLLI,
1455 		     req_ctx->gen_ctx.iv_dma_addr, AES_BLOCK_SIZE, NS_BIT);
1456 	set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
1457 	set_setup_mode(&desc[idx], SETUP_LOAD_STATE1);
1458 	set_flow_mode(&desc[idx], S_DIN_to_AES);
1459 	idx++;
1460 
1461 	/* load MAC key */
1462 	hw_desc_init(&desc[idx]);
1463 	set_cipher_mode(&desc[idx], DRV_CIPHER_CBC_MAC);
1464 	set_din_type(&desc[idx], DMA_DLLI, ctx->enckey_dma_addr,
1465 		     ((ctx->enc_keylen == 24) ?  CC_AES_KEY_SIZE_MAX :
1466 		      ctx->enc_keylen), NS_BIT);
1467 	set_key_size_aes(&desc[idx], ctx->enc_keylen);
1468 	set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
1469 	set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
1470 	set_flow_mode(&desc[idx], S_DIN_to_HASH);
1471 	set_aes_not_hash_mode(&desc[idx]);
1472 	idx++;
1473 
1474 	/* load MAC state */
1475 	hw_desc_init(&desc[idx]);
1476 	set_cipher_mode(&desc[idx], DRV_CIPHER_CBC_MAC);
1477 	set_key_size_aes(&desc[idx], ctx->enc_keylen);
1478 	set_din_type(&desc[idx], DMA_DLLI, req_ctx->mac_buf_dma_addr,
1479 		     AES_BLOCK_SIZE, NS_BIT);
1480 	set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
1481 	set_setup_mode(&desc[idx], SETUP_LOAD_STATE0);
1482 	set_flow_mode(&desc[idx], S_DIN_to_HASH);
1483 	set_aes_not_hash_mode(&desc[idx]);
1484 	idx++;
1485 
1486 	/* process assoc data */
1487 	if (req_ctx->assoclen > 0) {
1488 		cc_set_assoc_desc(req, DIN_HASH, desc, &idx);
1489 	} else {
1490 		hw_desc_init(&desc[idx]);
1491 		set_din_type(&desc[idx], DMA_DLLI,
1492 			     sg_dma_address(&req_ctx->ccm_adata_sg),
1493 			     AES_BLOCK_SIZE + req_ctx->ccm_hdr_size, NS_BIT);
1494 		set_flow_mode(&desc[idx], DIN_HASH);
1495 		idx++;
1496 	}
1497 
1498 	/* process the cipher */
1499 	if (req_ctx->cryptlen)
1500 		cc_proc_cipher_desc(req, cipher_flow_mode, desc, &idx);
1501 
1502 	/* Read temporal MAC */
1503 	hw_desc_init(&desc[idx]);
1504 	set_cipher_mode(&desc[idx], DRV_CIPHER_CBC_MAC);
1505 	set_dout_dlli(&desc[idx], req_ctx->mac_buf_dma_addr, ctx->authsize,
1506 		      NS_BIT, 0);
1507 	set_setup_mode(&desc[idx], SETUP_WRITE_STATE0);
1508 	set_cipher_config0(&desc[idx], HASH_DIGEST_RESULT_LITTLE_ENDIAN);
1509 	set_flow_mode(&desc[idx], S_HASH_to_DOUT);
1510 	set_aes_not_hash_mode(&desc[idx]);
1511 	idx++;
1512 
1513 	/* load AES-CTR state (for last MAC calculation)*/
1514 	hw_desc_init(&desc[idx]);
1515 	set_cipher_mode(&desc[idx], DRV_CIPHER_CTR);
1516 	set_cipher_config0(&desc[idx], DRV_CRYPTO_DIRECTION_ENCRYPT);
1517 	set_din_type(&desc[idx], DMA_DLLI, req_ctx->ccm_iv0_dma_addr,
1518 		     AES_BLOCK_SIZE, NS_BIT);
1519 	set_key_size_aes(&desc[idx], ctx->enc_keylen);
1520 	set_setup_mode(&desc[idx], SETUP_LOAD_STATE1);
1521 	set_flow_mode(&desc[idx], S_DIN_to_AES);
1522 	idx++;
1523 
1524 	hw_desc_init(&desc[idx]);
1525 	set_din_no_dma(&desc[idx], 0, 0xfffff0);
1526 	set_dout_no_dma(&desc[idx], 0, 0, 1);
1527 	idx++;
1528 
1529 	/* encrypt the "T" value and store MAC in mac_state */
1530 	hw_desc_init(&desc[idx]);
1531 	set_din_type(&desc[idx], DMA_DLLI, req_ctx->mac_buf_dma_addr,
1532 		     ctx->authsize, NS_BIT);
1533 	set_dout_dlli(&desc[idx], mac_result, ctx->authsize, NS_BIT, 1);
1534 	set_queue_last_ind(ctx->drvdata, &desc[idx]);
1535 	set_flow_mode(&desc[idx], DIN_AES_DOUT);
1536 	idx++;
1537 
1538 	*seq_size = idx;
1539 	return 0;
1540 }
1541 
1542 static int config_ccm_adata(struct aead_request *req)
1543 {
1544 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1545 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1546 	struct device *dev = drvdata_to_dev(ctx->drvdata);
1547 	struct aead_req_ctx *req_ctx = aead_request_ctx(req);
1548 	//unsigned int size_of_a = 0, rem_a_size = 0;
1549 	unsigned int lp = req->iv[0];
1550 	/* Note: The code assume that req->iv[0] already contains the value
1551 	 * of L' of RFC3610
1552 	 */
1553 	unsigned int l = lp + 1;  /* This is L' of RFC 3610. */
1554 	unsigned int m = ctx->authsize;  /* This is M' of RFC 3610. */
1555 	u8 *b0 = req_ctx->ccm_config + CCM_B0_OFFSET;
1556 	u8 *a0 = req_ctx->ccm_config + CCM_A0_OFFSET;
1557 	u8 *ctr_count_0 = req_ctx->ccm_config + CCM_CTR_COUNT_0_OFFSET;
1558 	unsigned int cryptlen = (req_ctx->gen_ctx.op_type ==
1559 				 DRV_CRYPTO_DIRECTION_ENCRYPT) ?
1560 				req->cryptlen :
1561 				(req->cryptlen - ctx->authsize);
1562 	int rc;
1563 
1564 	memset(req_ctx->mac_buf, 0, AES_BLOCK_SIZE);
1565 	memset(req_ctx->ccm_config, 0, AES_BLOCK_SIZE * 3);
1566 
1567 	/* taken from crypto/ccm.c */
1568 	/* 2 <= L <= 8, so 1 <= L' <= 7. */
1569 	if (l < 2 || l > 8) {
1570 		dev_err(dev, "illegal iv value %X\n", req->iv[0]);
1571 		return -EINVAL;
1572 	}
1573 	memcpy(b0, req->iv, AES_BLOCK_SIZE);
1574 
1575 	/* format control info per RFC 3610 and
1576 	 * NIST Special Publication 800-38C
1577 	 */
1578 	*b0 |= (8 * ((m - 2) / 2));
1579 	if (req_ctx->assoclen > 0)
1580 		*b0 |= 64;  /* Enable bit 6 if Adata exists. */
1581 
1582 	rc = set_msg_len(b0 + 16 - l, cryptlen, l);  /* Write L'. */
1583 	if (rc) {
1584 		dev_err(dev, "message len overflow detected");
1585 		return rc;
1586 	}
1587 	 /* END of "taken from crypto/ccm.c" */
1588 
1589 	/* l(a) - size of associated data. */
1590 	req_ctx->ccm_hdr_size = format_ccm_a0(a0, req_ctx->assoclen);
1591 
1592 	memset(req->iv + 15 - req->iv[0], 0, req->iv[0] + 1);
1593 	req->iv[15] = 1;
1594 
1595 	memcpy(ctr_count_0, req->iv, AES_BLOCK_SIZE);
1596 	ctr_count_0[15] = 0;
1597 
1598 	return 0;
1599 }
1600 
1601 static void cc_proc_rfc4309_ccm(struct aead_request *req)
1602 {
1603 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1604 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1605 	struct aead_req_ctx *areq_ctx = aead_request_ctx(req);
1606 
1607 	/* L' */
1608 	memset(areq_ctx->ctr_iv, 0, AES_BLOCK_SIZE);
1609 	/* For RFC 4309, always use 4 bytes for message length
1610 	 * (at most 2^32-1 bytes).
1611 	 */
1612 	areq_ctx->ctr_iv[0] = 3;
1613 
1614 	/* In RFC 4309 there is an 11-bytes nonce+IV part,
1615 	 * that we build here.
1616 	 */
1617 	memcpy(areq_ctx->ctr_iv + CCM_BLOCK_NONCE_OFFSET, ctx->ctr_nonce,
1618 	       CCM_BLOCK_NONCE_SIZE);
1619 	memcpy(areq_ctx->ctr_iv + CCM_BLOCK_IV_OFFSET, req->iv,
1620 	       CCM_BLOCK_IV_SIZE);
1621 	req->iv = areq_ctx->ctr_iv;
1622 	areq_ctx->assoclen -= CCM_BLOCK_IV_SIZE;
1623 }
1624 
1625 static void cc_set_ghash_desc(struct aead_request *req,
1626 			      struct cc_hw_desc desc[], unsigned int *seq_size)
1627 {
1628 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1629 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1630 	struct aead_req_ctx *req_ctx = aead_request_ctx(req);
1631 	unsigned int idx = *seq_size;
1632 
1633 	/* load key to AES*/
1634 	hw_desc_init(&desc[idx]);
1635 	set_cipher_mode(&desc[idx], DRV_CIPHER_ECB);
1636 	set_cipher_config0(&desc[idx], DRV_CRYPTO_DIRECTION_ENCRYPT);
1637 	set_din_type(&desc[idx], DMA_DLLI, ctx->enckey_dma_addr,
1638 		     ctx->enc_keylen, NS_BIT);
1639 	set_key_size_aes(&desc[idx], ctx->enc_keylen);
1640 	set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
1641 	set_flow_mode(&desc[idx], S_DIN_to_AES);
1642 	idx++;
1643 
1644 	/* process one zero block to generate hkey */
1645 	hw_desc_init(&desc[idx]);
1646 	set_din_const(&desc[idx], 0x0, AES_BLOCK_SIZE);
1647 	set_dout_dlli(&desc[idx], req_ctx->hkey_dma_addr, AES_BLOCK_SIZE,
1648 		      NS_BIT, 0);
1649 	set_flow_mode(&desc[idx], DIN_AES_DOUT);
1650 	idx++;
1651 
1652 	/* Memory Barrier */
1653 	hw_desc_init(&desc[idx]);
1654 	set_din_no_dma(&desc[idx], 0, 0xfffff0);
1655 	set_dout_no_dma(&desc[idx], 0, 0, 1);
1656 	idx++;
1657 
1658 	/* Load GHASH subkey */
1659 	hw_desc_init(&desc[idx]);
1660 	set_din_type(&desc[idx], DMA_DLLI, req_ctx->hkey_dma_addr,
1661 		     AES_BLOCK_SIZE, NS_BIT);
1662 	set_dout_no_dma(&desc[idx], 0, 0, 1);
1663 	set_flow_mode(&desc[idx], S_DIN_to_HASH);
1664 	set_aes_not_hash_mode(&desc[idx]);
1665 	set_cipher_mode(&desc[idx], DRV_HASH_HW_GHASH);
1666 	set_cipher_config1(&desc[idx], HASH_PADDING_ENABLED);
1667 	set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
1668 	idx++;
1669 
1670 	/* Configure Hash Engine to work with GHASH.
1671 	 * Since it was not possible to extend HASH submodes to add GHASH,
1672 	 * The following command is necessary in order to
1673 	 * select GHASH (according to HW designers)
1674 	 */
1675 	hw_desc_init(&desc[idx]);
1676 	set_din_no_dma(&desc[idx], 0, 0xfffff0);
1677 	set_dout_no_dma(&desc[idx], 0, 0, 1);
1678 	set_flow_mode(&desc[idx], S_DIN_to_HASH);
1679 	set_aes_not_hash_mode(&desc[idx]);
1680 	set_cipher_mode(&desc[idx], DRV_HASH_HW_GHASH);
1681 	set_cipher_do(&desc[idx], 1); //1=AES_SK RKEK
1682 	set_cipher_config0(&desc[idx], DRV_CRYPTO_DIRECTION_ENCRYPT);
1683 	set_cipher_config1(&desc[idx], HASH_PADDING_ENABLED);
1684 	set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
1685 	idx++;
1686 
1687 	/* Load GHASH initial STATE (which is 0). (for any hash there is an
1688 	 * initial state)
1689 	 */
1690 	hw_desc_init(&desc[idx]);
1691 	set_din_const(&desc[idx], 0x0, AES_BLOCK_SIZE);
1692 	set_dout_no_dma(&desc[idx], 0, 0, 1);
1693 	set_flow_mode(&desc[idx], S_DIN_to_HASH);
1694 	set_aes_not_hash_mode(&desc[idx]);
1695 	set_cipher_mode(&desc[idx], DRV_HASH_HW_GHASH);
1696 	set_cipher_config1(&desc[idx], HASH_PADDING_ENABLED);
1697 	set_setup_mode(&desc[idx], SETUP_LOAD_STATE0);
1698 	idx++;
1699 
1700 	*seq_size = idx;
1701 }
1702 
1703 static void cc_set_gctr_desc(struct aead_request *req, struct cc_hw_desc desc[],
1704 			     unsigned int *seq_size)
1705 {
1706 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1707 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1708 	struct aead_req_ctx *req_ctx = aead_request_ctx(req);
1709 	unsigned int idx = *seq_size;
1710 
1711 	/* load key to AES*/
1712 	hw_desc_init(&desc[idx]);
1713 	set_cipher_mode(&desc[idx], DRV_CIPHER_GCTR);
1714 	set_cipher_config0(&desc[idx], DRV_CRYPTO_DIRECTION_ENCRYPT);
1715 	set_din_type(&desc[idx], DMA_DLLI, ctx->enckey_dma_addr,
1716 		     ctx->enc_keylen, NS_BIT);
1717 	set_key_size_aes(&desc[idx], ctx->enc_keylen);
1718 	set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
1719 	set_flow_mode(&desc[idx], S_DIN_to_AES);
1720 	idx++;
1721 
1722 	if (req_ctx->cryptlen && !req_ctx->plaintext_authenticate_only) {
1723 		/* load AES/CTR initial CTR value inc by 2*/
1724 		hw_desc_init(&desc[idx]);
1725 		set_cipher_mode(&desc[idx], DRV_CIPHER_GCTR);
1726 		set_key_size_aes(&desc[idx], ctx->enc_keylen);
1727 		set_din_type(&desc[idx], DMA_DLLI,
1728 			     req_ctx->gcm_iv_inc2_dma_addr, AES_BLOCK_SIZE,
1729 			     NS_BIT);
1730 		set_cipher_config0(&desc[idx], DRV_CRYPTO_DIRECTION_ENCRYPT);
1731 		set_setup_mode(&desc[idx], SETUP_LOAD_STATE1);
1732 		set_flow_mode(&desc[idx], S_DIN_to_AES);
1733 		idx++;
1734 	}
1735 
1736 	*seq_size = idx;
1737 }
1738 
1739 static void cc_proc_gcm_result(struct aead_request *req,
1740 			       struct cc_hw_desc desc[],
1741 			       unsigned int *seq_size)
1742 {
1743 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1744 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1745 	struct aead_req_ctx *req_ctx = aead_request_ctx(req);
1746 	dma_addr_t mac_result;
1747 	unsigned int idx = *seq_size;
1748 
1749 	if (req_ctx->gen_ctx.op_type == DRV_CRYPTO_DIRECTION_DECRYPT) {
1750 		mac_result = req_ctx->mac_buf_dma_addr;
1751 	} else { /* Encrypt */
1752 		mac_result = req_ctx->icv_dma_addr;
1753 	}
1754 
1755 	/* process(ghash) gcm_block_len */
1756 	hw_desc_init(&desc[idx]);
1757 	set_din_type(&desc[idx], DMA_DLLI, req_ctx->gcm_block_len_dma_addr,
1758 		     AES_BLOCK_SIZE, NS_BIT);
1759 	set_flow_mode(&desc[idx], DIN_HASH);
1760 	idx++;
1761 
1762 	/* Store GHASH state after GHASH(Associated Data + Cipher +LenBlock) */
1763 	hw_desc_init(&desc[idx]);
1764 	set_cipher_mode(&desc[idx], DRV_HASH_HW_GHASH);
1765 	set_din_no_dma(&desc[idx], 0, 0xfffff0);
1766 	set_dout_dlli(&desc[idx], req_ctx->mac_buf_dma_addr, AES_BLOCK_SIZE,
1767 		      NS_BIT, 0);
1768 	set_setup_mode(&desc[idx], SETUP_WRITE_STATE0);
1769 	set_flow_mode(&desc[idx], S_HASH_to_DOUT);
1770 	set_aes_not_hash_mode(&desc[idx]);
1771 
1772 	idx++;
1773 
1774 	/* load AES/CTR initial CTR value inc by 1*/
1775 	hw_desc_init(&desc[idx]);
1776 	set_cipher_mode(&desc[idx], DRV_CIPHER_GCTR);
1777 	set_key_size_aes(&desc[idx], ctx->enc_keylen);
1778 	set_din_type(&desc[idx], DMA_DLLI, req_ctx->gcm_iv_inc1_dma_addr,
1779 		     AES_BLOCK_SIZE, NS_BIT);
1780 	set_cipher_config0(&desc[idx], DRV_CRYPTO_DIRECTION_ENCRYPT);
1781 	set_setup_mode(&desc[idx], SETUP_LOAD_STATE1);
1782 	set_flow_mode(&desc[idx], S_DIN_to_AES);
1783 	idx++;
1784 
1785 	/* Memory Barrier */
1786 	hw_desc_init(&desc[idx]);
1787 	set_din_no_dma(&desc[idx], 0, 0xfffff0);
1788 	set_dout_no_dma(&desc[idx], 0, 0, 1);
1789 	idx++;
1790 
1791 	/* process GCTR on stored GHASH and store MAC in mac_state*/
1792 	hw_desc_init(&desc[idx]);
1793 	set_cipher_mode(&desc[idx], DRV_CIPHER_GCTR);
1794 	set_din_type(&desc[idx], DMA_DLLI, req_ctx->mac_buf_dma_addr,
1795 		     AES_BLOCK_SIZE, NS_BIT);
1796 	set_dout_dlli(&desc[idx], mac_result, ctx->authsize, NS_BIT, 1);
1797 	set_queue_last_ind(ctx->drvdata, &desc[idx]);
1798 	set_flow_mode(&desc[idx], DIN_AES_DOUT);
1799 	idx++;
1800 
1801 	*seq_size = idx;
1802 }
1803 
1804 static int cc_gcm(struct aead_request *req, struct cc_hw_desc desc[],
1805 		  unsigned int *seq_size)
1806 {
1807 	struct aead_req_ctx *req_ctx = aead_request_ctx(req);
1808 	unsigned int cipher_flow_mode;
1809 
1810 	if (req_ctx->gen_ctx.op_type == DRV_CRYPTO_DIRECTION_DECRYPT) {
1811 		cipher_flow_mode = AES_and_HASH;
1812 	} else { /* Encrypt */
1813 		cipher_flow_mode = AES_to_HASH_and_DOUT;
1814 	}
1815 
1816 	//in RFC4543 no data to encrypt. just copy data from src to dest.
1817 	if (req_ctx->plaintext_authenticate_only) {
1818 		cc_proc_cipher_desc(req, BYPASS, desc, seq_size);
1819 		cc_set_ghash_desc(req, desc, seq_size);
1820 		/* process(ghash) assoc data */
1821 		cc_set_assoc_desc(req, DIN_HASH, desc, seq_size);
1822 		cc_set_gctr_desc(req, desc, seq_size);
1823 		cc_proc_gcm_result(req, desc, seq_size);
1824 		return 0;
1825 	}
1826 
1827 	// for gcm and rfc4106.
1828 	cc_set_ghash_desc(req, desc, seq_size);
1829 	/* process(ghash) assoc data */
1830 	if (req_ctx->assoclen > 0)
1831 		cc_set_assoc_desc(req, DIN_HASH, desc, seq_size);
1832 	cc_set_gctr_desc(req, desc, seq_size);
1833 	/* process(gctr+ghash) */
1834 	if (req_ctx->cryptlen)
1835 		cc_proc_cipher_desc(req, cipher_flow_mode, desc, seq_size);
1836 	cc_proc_gcm_result(req, desc, seq_size);
1837 
1838 	return 0;
1839 }
1840 
1841 static int config_gcm_context(struct aead_request *req)
1842 {
1843 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1844 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1845 	struct aead_req_ctx *req_ctx = aead_request_ctx(req);
1846 	struct device *dev = drvdata_to_dev(ctx->drvdata);
1847 
1848 	unsigned int cryptlen = (req_ctx->gen_ctx.op_type ==
1849 				 DRV_CRYPTO_DIRECTION_ENCRYPT) ?
1850 				req->cryptlen :
1851 				(req->cryptlen - ctx->authsize);
1852 	__be32 counter = cpu_to_be32(2);
1853 
1854 	dev_dbg(dev, "%s() cryptlen = %d, req_ctx->assoclen = %d ctx->authsize = %d\n",
1855 		__func__, cryptlen, req_ctx->assoclen, ctx->authsize);
1856 
1857 	memset(req_ctx->hkey, 0, AES_BLOCK_SIZE);
1858 
1859 	memset(req_ctx->mac_buf, 0, AES_BLOCK_SIZE);
1860 
1861 	memcpy(req->iv + 12, &counter, 4);
1862 	memcpy(req_ctx->gcm_iv_inc2, req->iv, 16);
1863 
1864 	counter = cpu_to_be32(1);
1865 	memcpy(req->iv + 12, &counter, 4);
1866 	memcpy(req_ctx->gcm_iv_inc1, req->iv, 16);
1867 
1868 	if (!req_ctx->plaintext_authenticate_only) {
1869 		__be64 temp64;
1870 
1871 		temp64 = cpu_to_be64(req_ctx->assoclen * 8);
1872 		memcpy(&req_ctx->gcm_len_block.len_a, &temp64, sizeof(temp64));
1873 		temp64 = cpu_to_be64(cryptlen * 8);
1874 		memcpy(&req_ctx->gcm_len_block.len_c, &temp64, 8);
1875 	} else {
1876 		/* rfc4543=>  all data(AAD,IV,Plain) are considered additional
1877 		 * data that is nothing is encrypted.
1878 		 */
1879 		__be64 temp64;
1880 
1881 		temp64 = cpu_to_be64((req_ctx->assoclen +
1882 				      GCM_BLOCK_RFC4_IV_SIZE + cryptlen) * 8);
1883 		memcpy(&req_ctx->gcm_len_block.len_a, &temp64, sizeof(temp64));
1884 		temp64 = 0;
1885 		memcpy(&req_ctx->gcm_len_block.len_c, &temp64, 8);
1886 	}
1887 
1888 	return 0;
1889 }
1890 
1891 static void cc_proc_rfc4_gcm(struct aead_request *req)
1892 {
1893 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1894 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1895 	struct aead_req_ctx *areq_ctx = aead_request_ctx(req);
1896 
1897 	memcpy(areq_ctx->ctr_iv + GCM_BLOCK_RFC4_NONCE_OFFSET,
1898 	       ctx->ctr_nonce, GCM_BLOCK_RFC4_NONCE_SIZE);
1899 	memcpy(areq_ctx->ctr_iv + GCM_BLOCK_RFC4_IV_OFFSET, req->iv,
1900 	       GCM_BLOCK_RFC4_IV_SIZE);
1901 	req->iv = areq_ctx->ctr_iv;
1902 	areq_ctx->assoclen -= GCM_BLOCK_RFC4_IV_SIZE;
1903 }
1904 
1905 static int cc_proc_aead(struct aead_request *req,
1906 			enum drv_crypto_direction direct)
1907 {
1908 	int rc = 0;
1909 	int seq_len = 0;
1910 	struct cc_hw_desc desc[MAX_AEAD_PROCESS_SEQ];
1911 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1912 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1913 	struct aead_req_ctx *areq_ctx = aead_request_ctx(req);
1914 	struct device *dev = drvdata_to_dev(ctx->drvdata);
1915 	struct cc_crypto_req cc_req = {};
1916 
1917 	dev_dbg(dev, "%s context=%p req=%p iv=%p src=%p src_ofs=%d dst=%p dst_ofs=%d cryptolen=%d\n",
1918 		((direct == DRV_CRYPTO_DIRECTION_ENCRYPT) ? "Enc" : "Dec"),
1919 		ctx, req, req->iv, sg_virt(req->src), req->src->offset,
1920 		sg_virt(req->dst), req->dst->offset, req->cryptlen);
1921 
1922 	/* STAT_PHASE_0: Init and sanity checks */
1923 
1924 	/* Check data length according to mode */
1925 	if (validate_data_size(ctx, direct, req)) {
1926 		dev_err(dev, "Unsupported crypt/assoc len %d/%d.\n",
1927 			req->cryptlen, areq_ctx->assoclen);
1928 		crypto_aead_set_flags(tfm, CRYPTO_TFM_RES_BAD_BLOCK_LEN);
1929 		return -EINVAL;
1930 	}
1931 
1932 	/* Setup request structure */
1933 	cc_req.user_cb = (void *)cc_aead_complete;
1934 	cc_req.user_arg = (void *)req;
1935 
1936 	/* Setup request context */
1937 	areq_ctx->gen_ctx.op_type = direct;
1938 	areq_ctx->req_authsize = ctx->authsize;
1939 	areq_ctx->cipher_mode = ctx->cipher_mode;
1940 
1941 	/* STAT_PHASE_1: Map buffers */
1942 
1943 	if (ctx->cipher_mode == DRV_CIPHER_CTR) {
1944 		/* Build CTR IV - Copy nonce from last 4 bytes in
1945 		 * CTR key to first 4 bytes in CTR IV
1946 		 */
1947 		memcpy(areq_ctx->ctr_iv, ctx->ctr_nonce,
1948 		       CTR_RFC3686_NONCE_SIZE);
1949 		memcpy(areq_ctx->ctr_iv + CTR_RFC3686_NONCE_SIZE, req->iv,
1950 		       CTR_RFC3686_IV_SIZE);
1951 		/* Initialize counter portion of counter block */
1952 		*(__be32 *)(areq_ctx->ctr_iv + CTR_RFC3686_NONCE_SIZE +
1953 			    CTR_RFC3686_IV_SIZE) = cpu_to_be32(1);
1954 
1955 		/* Replace with counter iv */
1956 		req->iv = areq_ctx->ctr_iv;
1957 		areq_ctx->hw_iv_size = CTR_RFC3686_BLOCK_SIZE;
1958 	} else if ((ctx->cipher_mode == DRV_CIPHER_CCM) ||
1959 		   (ctx->cipher_mode == DRV_CIPHER_GCTR)) {
1960 		areq_ctx->hw_iv_size = AES_BLOCK_SIZE;
1961 		if (areq_ctx->ctr_iv != req->iv) {
1962 			memcpy(areq_ctx->ctr_iv, req->iv,
1963 			       crypto_aead_ivsize(tfm));
1964 			req->iv = areq_ctx->ctr_iv;
1965 		}
1966 	}  else {
1967 		areq_ctx->hw_iv_size = crypto_aead_ivsize(tfm);
1968 	}
1969 
1970 	if (ctx->cipher_mode == DRV_CIPHER_CCM) {
1971 		rc = config_ccm_adata(req);
1972 		if (rc) {
1973 			dev_dbg(dev, "config_ccm_adata() returned with a failure %d!",
1974 				rc);
1975 			goto exit;
1976 		}
1977 	} else {
1978 		areq_ctx->ccm_hdr_size = ccm_header_size_null;
1979 	}
1980 
1981 	if (ctx->cipher_mode == DRV_CIPHER_GCTR) {
1982 		rc = config_gcm_context(req);
1983 		if (rc) {
1984 			dev_dbg(dev, "config_gcm_context() returned with a failure %d!",
1985 				rc);
1986 			goto exit;
1987 		}
1988 	}
1989 
1990 	rc = cc_map_aead_request(ctx->drvdata, req);
1991 	if (rc) {
1992 		dev_err(dev, "map_request() failed\n");
1993 		goto exit;
1994 	}
1995 
1996 	/* STAT_PHASE_2: Create sequence */
1997 
1998 	/* Load MLLI tables to SRAM if necessary */
1999 	cc_mlli_to_sram(req, desc, &seq_len);
2000 
2001 	/*TODO: move seq len by reference */
2002 	switch (ctx->auth_mode) {
2003 	case DRV_HASH_SHA1:
2004 	case DRV_HASH_SHA256:
2005 		cc_hmac_authenc(req, desc, &seq_len);
2006 		break;
2007 	case DRV_HASH_XCBC_MAC:
2008 		cc_xcbc_authenc(req, desc, &seq_len);
2009 		break;
2010 	case DRV_HASH_NULL:
2011 		if (ctx->cipher_mode == DRV_CIPHER_CCM)
2012 			cc_ccm(req, desc, &seq_len);
2013 		if (ctx->cipher_mode == DRV_CIPHER_GCTR)
2014 			cc_gcm(req, desc, &seq_len);
2015 		break;
2016 	default:
2017 		dev_err(dev, "Unsupported authenc (%d)\n", ctx->auth_mode);
2018 		cc_unmap_aead_request(dev, req);
2019 		rc = -ENOTSUPP;
2020 		goto exit;
2021 	}
2022 
2023 	/* STAT_PHASE_3: Lock HW and push sequence */
2024 
2025 	rc = cc_send_request(ctx->drvdata, &cc_req, desc, seq_len, &req->base);
2026 
2027 	if (rc != -EINPROGRESS && rc != -EBUSY) {
2028 		dev_err(dev, "send_request() failed (rc=%d)\n", rc);
2029 		cc_unmap_aead_request(dev, req);
2030 	}
2031 
2032 exit:
2033 	return rc;
2034 }
2035 
2036 static int cc_aead_encrypt(struct aead_request *req)
2037 {
2038 	struct aead_req_ctx *areq_ctx = aead_request_ctx(req);
2039 	int rc;
2040 
2041 	memset(areq_ctx, 0, sizeof(*areq_ctx));
2042 
2043 	/* No generated IV required */
2044 	areq_ctx->backup_iv = req->iv;
2045 	areq_ctx->assoclen = req->assoclen;
2046 	areq_ctx->is_gcm4543 = false;
2047 
2048 	areq_ctx->plaintext_authenticate_only = false;
2049 
2050 	rc = cc_proc_aead(req, DRV_CRYPTO_DIRECTION_ENCRYPT);
2051 	if (rc != -EINPROGRESS && rc != -EBUSY)
2052 		req->iv = areq_ctx->backup_iv;
2053 
2054 	return rc;
2055 }
2056 
2057 static int cc_rfc4309_ccm_encrypt(struct aead_request *req)
2058 {
2059 	/* Very similar to cc_aead_encrypt() above. */
2060 
2061 	struct aead_req_ctx *areq_ctx = aead_request_ctx(req);
2062 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
2063 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
2064 	struct device *dev = drvdata_to_dev(ctx->drvdata);
2065 	int rc = -EINVAL;
2066 
2067 	if (!valid_assoclen(req)) {
2068 		dev_err(dev, "invalid Assoclen:%u\n", req->assoclen);
2069 		goto out;
2070 	}
2071 
2072 	memset(areq_ctx, 0, sizeof(*areq_ctx));
2073 
2074 	/* No generated IV required */
2075 	areq_ctx->backup_iv = req->iv;
2076 	areq_ctx->assoclen = req->assoclen;
2077 	areq_ctx->is_gcm4543 = true;
2078 
2079 	cc_proc_rfc4309_ccm(req);
2080 
2081 	rc = cc_proc_aead(req, DRV_CRYPTO_DIRECTION_ENCRYPT);
2082 	if (rc != -EINPROGRESS && rc != -EBUSY)
2083 		req->iv = areq_ctx->backup_iv;
2084 out:
2085 	return rc;
2086 }
2087 
2088 static int cc_aead_decrypt(struct aead_request *req)
2089 {
2090 	struct aead_req_ctx *areq_ctx = aead_request_ctx(req);
2091 	int rc;
2092 
2093 	memset(areq_ctx, 0, sizeof(*areq_ctx));
2094 
2095 	/* No generated IV required */
2096 	areq_ctx->backup_iv = req->iv;
2097 	areq_ctx->assoclen = req->assoclen;
2098 	areq_ctx->is_gcm4543 = false;
2099 
2100 	areq_ctx->plaintext_authenticate_only = false;
2101 
2102 	rc = cc_proc_aead(req, DRV_CRYPTO_DIRECTION_DECRYPT);
2103 	if (rc != -EINPROGRESS && rc != -EBUSY)
2104 		req->iv = areq_ctx->backup_iv;
2105 
2106 	return rc;
2107 }
2108 
2109 static int cc_rfc4309_ccm_decrypt(struct aead_request *req)
2110 {
2111 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
2112 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
2113 	struct device *dev = drvdata_to_dev(ctx->drvdata);
2114 	struct aead_req_ctx *areq_ctx = aead_request_ctx(req);
2115 	int rc = -EINVAL;
2116 
2117 	if (!valid_assoclen(req)) {
2118 		dev_err(dev, "invalid Assoclen:%u\n", req->assoclen);
2119 		goto out;
2120 	}
2121 
2122 	memset(areq_ctx, 0, sizeof(*areq_ctx));
2123 
2124 	/* No generated IV required */
2125 	areq_ctx->backup_iv = req->iv;
2126 	areq_ctx->assoclen = req->assoclen;
2127 
2128 	areq_ctx->is_gcm4543 = true;
2129 	cc_proc_rfc4309_ccm(req);
2130 
2131 	rc = cc_proc_aead(req, DRV_CRYPTO_DIRECTION_DECRYPT);
2132 	if (rc != -EINPROGRESS && rc != -EBUSY)
2133 		req->iv = areq_ctx->backup_iv;
2134 
2135 out:
2136 	return rc;
2137 }
2138 
2139 static int cc_rfc4106_gcm_setkey(struct crypto_aead *tfm, const u8 *key,
2140 				 unsigned int keylen)
2141 {
2142 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
2143 	struct device *dev = drvdata_to_dev(ctx->drvdata);
2144 
2145 	dev_dbg(dev, "%s()  keylen %d, key %p\n", __func__, keylen, key);
2146 
2147 	if (keylen < 4)
2148 		return -EINVAL;
2149 
2150 	keylen -= 4;
2151 	memcpy(ctx->ctr_nonce, key + keylen, 4);
2152 
2153 	return cc_aead_setkey(tfm, key, keylen);
2154 }
2155 
2156 static int cc_rfc4543_gcm_setkey(struct crypto_aead *tfm, const u8 *key,
2157 				 unsigned int keylen)
2158 {
2159 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
2160 	struct device *dev = drvdata_to_dev(ctx->drvdata);
2161 
2162 	dev_dbg(dev, "%s()  keylen %d, key %p\n", __func__, keylen, key);
2163 
2164 	if (keylen < 4)
2165 		return -EINVAL;
2166 
2167 	keylen -= 4;
2168 	memcpy(ctx->ctr_nonce, key + keylen, 4);
2169 
2170 	return cc_aead_setkey(tfm, key, keylen);
2171 }
2172 
2173 static int cc_gcm_setauthsize(struct crypto_aead *authenc,
2174 			      unsigned int authsize)
2175 {
2176 	switch (authsize) {
2177 	case 4:
2178 	case 8:
2179 	case 12:
2180 	case 13:
2181 	case 14:
2182 	case 15:
2183 	case 16:
2184 		break;
2185 	default:
2186 		return -EINVAL;
2187 	}
2188 
2189 	return cc_aead_setauthsize(authenc, authsize);
2190 }
2191 
2192 static int cc_rfc4106_gcm_setauthsize(struct crypto_aead *authenc,
2193 				      unsigned int authsize)
2194 {
2195 	struct cc_aead_ctx *ctx = crypto_aead_ctx(authenc);
2196 	struct device *dev = drvdata_to_dev(ctx->drvdata);
2197 
2198 	dev_dbg(dev, "authsize %d\n", authsize);
2199 
2200 	switch (authsize) {
2201 	case 8:
2202 	case 12:
2203 	case 16:
2204 		break;
2205 	default:
2206 		return -EINVAL;
2207 	}
2208 
2209 	return cc_aead_setauthsize(authenc, authsize);
2210 }
2211 
2212 static int cc_rfc4543_gcm_setauthsize(struct crypto_aead *authenc,
2213 				      unsigned int authsize)
2214 {
2215 	struct cc_aead_ctx *ctx = crypto_aead_ctx(authenc);
2216 	struct device *dev = drvdata_to_dev(ctx->drvdata);
2217 
2218 	dev_dbg(dev, "authsize %d\n", authsize);
2219 
2220 	if (authsize != 16)
2221 		return -EINVAL;
2222 
2223 	return cc_aead_setauthsize(authenc, authsize);
2224 }
2225 
2226 static int cc_rfc4106_gcm_encrypt(struct aead_request *req)
2227 {
2228 	/* Very similar to cc_aead_encrypt() above. */
2229 
2230 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
2231 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
2232 	struct device *dev = drvdata_to_dev(ctx->drvdata);
2233 	struct aead_req_ctx *areq_ctx = aead_request_ctx(req);
2234 	int rc = -EINVAL;
2235 
2236 	if (!valid_assoclen(req)) {
2237 		dev_err(dev, "invalid Assoclen:%u\n", req->assoclen);
2238 		goto out;
2239 	}
2240 
2241 	memset(areq_ctx, 0, sizeof(*areq_ctx));
2242 
2243 	/* No generated IV required */
2244 	areq_ctx->backup_iv = req->iv;
2245 	areq_ctx->assoclen = req->assoclen;
2246 	areq_ctx->plaintext_authenticate_only = false;
2247 
2248 	cc_proc_rfc4_gcm(req);
2249 	areq_ctx->is_gcm4543 = true;
2250 
2251 	rc = cc_proc_aead(req, DRV_CRYPTO_DIRECTION_ENCRYPT);
2252 	if (rc != -EINPROGRESS && rc != -EBUSY)
2253 		req->iv = areq_ctx->backup_iv;
2254 out:
2255 	return rc;
2256 }
2257 
2258 static int cc_rfc4543_gcm_encrypt(struct aead_request *req)
2259 {
2260 	/* Very similar to cc_aead_encrypt() above. */
2261 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
2262 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
2263 	struct device *dev = drvdata_to_dev(ctx->drvdata);
2264 	struct aead_req_ctx *areq_ctx = aead_request_ctx(req);
2265 	int rc = -EINVAL;
2266 
2267 	if (!valid_assoclen(req)) {
2268 		dev_err(dev, "invalid Assoclen:%u\n", req->assoclen);
2269 		goto out;
2270 	}
2271 
2272 	memset(areq_ctx, 0, sizeof(*areq_ctx));
2273 
2274 	//plaintext is not encryped with rfc4543
2275 	areq_ctx->plaintext_authenticate_only = true;
2276 
2277 	/* No generated IV required */
2278 	areq_ctx->backup_iv = req->iv;
2279 	areq_ctx->assoclen = req->assoclen;
2280 
2281 	cc_proc_rfc4_gcm(req);
2282 	areq_ctx->is_gcm4543 = true;
2283 
2284 	rc = cc_proc_aead(req, DRV_CRYPTO_DIRECTION_ENCRYPT);
2285 	if (rc != -EINPROGRESS && rc != -EBUSY)
2286 		req->iv = areq_ctx->backup_iv;
2287 out:
2288 	return rc;
2289 }
2290 
2291 static int cc_rfc4106_gcm_decrypt(struct aead_request *req)
2292 {
2293 	/* Very similar to cc_aead_decrypt() above. */
2294 
2295 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
2296 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
2297 	struct device *dev = drvdata_to_dev(ctx->drvdata);
2298 	struct aead_req_ctx *areq_ctx = aead_request_ctx(req);
2299 	int rc = -EINVAL;
2300 
2301 	if (!valid_assoclen(req)) {
2302 		dev_err(dev, "invalid Assoclen:%u\n", req->assoclen);
2303 		goto out;
2304 	}
2305 
2306 	memset(areq_ctx, 0, sizeof(*areq_ctx));
2307 
2308 	/* No generated IV required */
2309 	areq_ctx->backup_iv = req->iv;
2310 	areq_ctx->assoclen = req->assoclen;
2311 	areq_ctx->plaintext_authenticate_only = false;
2312 
2313 	cc_proc_rfc4_gcm(req);
2314 	areq_ctx->is_gcm4543 = true;
2315 
2316 	rc = cc_proc_aead(req, DRV_CRYPTO_DIRECTION_DECRYPT);
2317 	if (rc != -EINPROGRESS && rc != -EBUSY)
2318 		req->iv = areq_ctx->backup_iv;
2319 out:
2320 	return rc;
2321 }
2322 
2323 static int cc_rfc4543_gcm_decrypt(struct aead_request *req)
2324 {
2325 	/* Very similar to cc_aead_decrypt() above. */
2326 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
2327 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
2328 	struct device *dev = drvdata_to_dev(ctx->drvdata);
2329 	struct aead_req_ctx *areq_ctx = aead_request_ctx(req);
2330 	int rc = -EINVAL;
2331 
2332 	if (!valid_assoclen(req)) {
2333 		dev_err(dev, "invalid Assoclen:%u\n", req->assoclen);
2334 		goto out;
2335 	}
2336 
2337 	memset(areq_ctx, 0, sizeof(*areq_ctx));
2338 
2339 	//plaintext is not decryped with rfc4543
2340 	areq_ctx->plaintext_authenticate_only = true;
2341 
2342 	/* No generated IV required */
2343 	areq_ctx->backup_iv = req->iv;
2344 	areq_ctx->assoclen = req->assoclen;
2345 
2346 	cc_proc_rfc4_gcm(req);
2347 	areq_ctx->is_gcm4543 = true;
2348 
2349 	rc = cc_proc_aead(req, DRV_CRYPTO_DIRECTION_DECRYPT);
2350 	if (rc != -EINPROGRESS && rc != -EBUSY)
2351 		req->iv = areq_ctx->backup_iv;
2352 out:
2353 	return rc;
2354 }
2355 
2356 /* aead alg */
2357 static struct cc_alg_template aead_algs[] = {
2358 	{
2359 		.name = "authenc(hmac(sha1),cbc(aes))",
2360 		.driver_name = "authenc-hmac-sha1-cbc-aes-ccree",
2361 		.blocksize = AES_BLOCK_SIZE,
2362 		.template_aead = {
2363 			.setkey = cc_aead_setkey,
2364 			.setauthsize = cc_aead_setauthsize,
2365 			.encrypt = cc_aead_encrypt,
2366 			.decrypt = cc_aead_decrypt,
2367 			.init = cc_aead_init,
2368 			.exit = cc_aead_exit,
2369 			.ivsize = AES_BLOCK_SIZE,
2370 			.maxauthsize = SHA1_DIGEST_SIZE,
2371 		},
2372 		.cipher_mode = DRV_CIPHER_CBC,
2373 		.flow_mode = S_DIN_to_AES,
2374 		.auth_mode = DRV_HASH_SHA1,
2375 		.min_hw_rev = CC_HW_REV_630,
2376 		.std_body = CC_STD_NIST,
2377 	},
2378 	{
2379 		.name = "authenc(hmac(sha1),cbc(des3_ede))",
2380 		.driver_name = "authenc-hmac-sha1-cbc-des3-ccree",
2381 		.blocksize = DES3_EDE_BLOCK_SIZE,
2382 		.template_aead = {
2383 			.setkey = cc_des3_aead_setkey,
2384 			.setauthsize = cc_aead_setauthsize,
2385 			.encrypt = cc_aead_encrypt,
2386 			.decrypt = cc_aead_decrypt,
2387 			.init = cc_aead_init,
2388 			.exit = cc_aead_exit,
2389 			.ivsize = DES3_EDE_BLOCK_SIZE,
2390 			.maxauthsize = SHA1_DIGEST_SIZE,
2391 		},
2392 		.cipher_mode = DRV_CIPHER_CBC,
2393 		.flow_mode = S_DIN_to_DES,
2394 		.auth_mode = DRV_HASH_SHA1,
2395 		.min_hw_rev = CC_HW_REV_630,
2396 		.std_body = CC_STD_NIST,
2397 	},
2398 	{
2399 		.name = "authenc(hmac(sha256),cbc(aes))",
2400 		.driver_name = "authenc-hmac-sha256-cbc-aes-ccree",
2401 		.blocksize = AES_BLOCK_SIZE,
2402 		.template_aead = {
2403 			.setkey = cc_aead_setkey,
2404 			.setauthsize = cc_aead_setauthsize,
2405 			.encrypt = cc_aead_encrypt,
2406 			.decrypt = cc_aead_decrypt,
2407 			.init = cc_aead_init,
2408 			.exit = cc_aead_exit,
2409 			.ivsize = AES_BLOCK_SIZE,
2410 			.maxauthsize = SHA256_DIGEST_SIZE,
2411 		},
2412 		.cipher_mode = DRV_CIPHER_CBC,
2413 		.flow_mode = S_DIN_to_AES,
2414 		.auth_mode = DRV_HASH_SHA256,
2415 		.min_hw_rev = CC_HW_REV_630,
2416 		.std_body = CC_STD_NIST,
2417 	},
2418 	{
2419 		.name = "authenc(hmac(sha256),cbc(des3_ede))",
2420 		.driver_name = "authenc-hmac-sha256-cbc-des3-ccree",
2421 		.blocksize = DES3_EDE_BLOCK_SIZE,
2422 		.template_aead = {
2423 			.setkey = cc_des3_aead_setkey,
2424 			.setauthsize = cc_aead_setauthsize,
2425 			.encrypt = cc_aead_encrypt,
2426 			.decrypt = cc_aead_decrypt,
2427 			.init = cc_aead_init,
2428 			.exit = cc_aead_exit,
2429 			.ivsize = DES3_EDE_BLOCK_SIZE,
2430 			.maxauthsize = SHA256_DIGEST_SIZE,
2431 		},
2432 		.cipher_mode = DRV_CIPHER_CBC,
2433 		.flow_mode = S_DIN_to_DES,
2434 		.auth_mode = DRV_HASH_SHA256,
2435 		.min_hw_rev = CC_HW_REV_630,
2436 		.std_body = CC_STD_NIST,
2437 	},
2438 	{
2439 		.name = "authenc(xcbc(aes),cbc(aes))",
2440 		.driver_name = "authenc-xcbc-aes-cbc-aes-ccree",
2441 		.blocksize = AES_BLOCK_SIZE,
2442 		.template_aead = {
2443 			.setkey = cc_aead_setkey,
2444 			.setauthsize = cc_aead_setauthsize,
2445 			.encrypt = cc_aead_encrypt,
2446 			.decrypt = cc_aead_decrypt,
2447 			.init = cc_aead_init,
2448 			.exit = cc_aead_exit,
2449 			.ivsize = AES_BLOCK_SIZE,
2450 			.maxauthsize = AES_BLOCK_SIZE,
2451 		},
2452 		.cipher_mode = DRV_CIPHER_CBC,
2453 		.flow_mode = S_DIN_to_AES,
2454 		.auth_mode = DRV_HASH_XCBC_MAC,
2455 		.min_hw_rev = CC_HW_REV_630,
2456 		.std_body = CC_STD_NIST,
2457 	},
2458 	{
2459 		.name = "authenc(hmac(sha1),rfc3686(ctr(aes)))",
2460 		.driver_name = "authenc-hmac-sha1-rfc3686-ctr-aes-ccree",
2461 		.blocksize = 1,
2462 		.template_aead = {
2463 			.setkey = cc_aead_setkey,
2464 			.setauthsize = cc_aead_setauthsize,
2465 			.encrypt = cc_aead_encrypt,
2466 			.decrypt = cc_aead_decrypt,
2467 			.init = cc_aead_init,
2468 			.exit = cc_aead_exit,
2469 			.ivsize = CTR_RFC3686_IV_SIZE,
2470 			.maxauthsize = SHA1_DIGEST_SIZE,
2471 		},
2472 		.cipher_mode = DRV_CIPHER_CTR,
2473 		.flow_mode = S_DIN_to_AES,
2474 		.auth_mode = DRV_HASH_SHA1,
2475 		.min_hw_rev = CC_HW_REV_630,
2476 		.std_body = CC_STD_NIST,
2477 	},
2478 	{
2479 		.name = "authenc(hmac(sha256),rfc3686(ctr(aes)))",
2480 		.driver_name = "authenc-hmac-sha256-rfc3686-ctr-aes-ccree",
2481 		.blocksize = 1,
2482 		.template_aead = {
2483 			.setkey = cc_aead_setkey,
2484 			.setauthsize = cc_aead_setauthsize,
2485 			.encrypt = cc_aead_encrypt,
2486 			.decrypt = cc_aead_decrypt,
2487 			.init = cc_aead_init,
2488 			.exit = cc_aead_exit,
2489 			.ivsize = CTR_RFC3686_IV_SIZE,
2490 			.maxauthsize = SHA256_DIGEST_SIZE,
2491 		},
2492 		.cipher_mode = DRV_CIPHER_CTR,
2493 		.flow_mode = S_DIN_to_AES,
2494 		.auth_mode = DRV_HASH_SHA256,
2495 		.min_hw_rev = CC_HW_REV_630,
2496 		.std_body = CC_STD_NIST,
2497 	},
2498 	{
2499 		.name = "authenc(xcbc(aes),rfc3686(ctr(aes)))",
2500 		.driver_name = "authenc-xcbc-aes-rfc3686-ctr-aes-ccree",
2501 		.blocksize = 1,
2502 		.template_aead = {
2503 			.setkey = cc_aead_setkey,
2504 			.setauthsize = cc_aead_setauthsize,
2505 			.encrypt = cc_aead_encrypt,
2506 			.decrypt = cc_aead_decrypt,
2507 			.init = cc_aead_init,
2508 			.exit = cc_aead_exit,
2509 			.ivsize = CTR_RFC3686_IV_SIZE,
2510 			.maxauthsize = AES_BLOCK_SIZE,
2511 		},
2512 		.cipher_mode = DRV_CIPHER_CTR,
2513 		.flow_mode = S_DIN_to_AES,
2514 		.auth_mode = DRV_HASH_XCBC_MAC,
2515 		.min_hw_rev = CC_HW_REV_630,
2516 		.std_body = CC_STD_NIST,
2517 	},
2518 	{
2519 		.name = "ccm(aes)",
2520 		.driver_name = "ccm-aes-ccree",
2521 		.blocksize = 1,
2522 		.template_aead = {
2523 			.setkey = cc_aead_setkey,
2524 			.setauthsize = cc_ccm_setauthsize,
2525 			.encrypt = cc_aead_encrypt,
2526 			.decrypt = cc_aead_decrypt,
2527 			.init = cc_aead_init,
2528 			.exit = cc_aead_exit,
2529 			.ivsize = AES_BLOCK_SIZE,
2530 			.maxauthsize = AES_BLOCK_SIZE,
2531 		},
2532 		.cipher_mode = DRV_CIPHER_CCM,
2533 		.flow_mode = S_DIN_to_AES,
2534 		.auth_mode = DRV_HASH_NULL,
2535 		.min_hw_rev = CC_HW_REV_630,
2536 		.std_body = CC_STD_NIST,
2537 	},
2538 	{
2539 		.name = "rfc4309(ccm(aes))",
2540 		.driver_name = "rfc4309-ccm-aes-ccree",
2541 		.blocksize = 1,
2542 		.template_aead = {
2543 			.setkey = cc_rfc4309_ccm_setkey,
2544 			.setauthsize = cc_rfc4309_ccm_setauthsize,
2545 			.encrypt = cc_rfc4309_ccm_encrypt,
2546 			.decrypt = cc_rfc4309_ccm_decrypt,
2547 			.init = cc_aead_init,
2548 			.exit = cc_aead_exit,
2549 			.ivsize = CCM_BLOCK_IV_SIZE,
2550 			.maxauthsize = AES_BLOCK_SIZE,
2551 		},
2552 		.cipher_mode = DRV_CIPHER_CCM,
2553 		.flow_mode = S_DIN_to_AES,
2554 		.auth_mode = DRV_HASH_NULL,
2555 		.min_hw_rev = CC_HW_REV_630,
2556 		.std_body = CC_STD_NIST,
2557 	},
2558 	{
2559 		.name = "gcm(aes)",
2560 		.driver_name = "gcm-aes-ccree",
2561 		.blocksize = 1,
2562 		.template_aead = {
2563 			.setkey = cc_aead_setkey,
2564 			.setauthsize = cc_gcm_setauthsize,
2565 			.encrypt = cc_aead_encrypt,
2566 			.decrypt = cc_aead_decrypt,
2567 			.init = cc_aead_init,
2568 			.exit = cc_aead_exit,
2569 			.ivsize = 12,
2570 			.maxauthsize = AES_BLOCK_SIZE,
2571 		},
2572 		.cipher_mode = DRV_CIPHER_GCTR,
2573 		.flow_mode = S_DIN_to_AES,
2574 		.auth_mode = DRV_HASH_NULL,
2575 		.min_hw_rev = CC_HW_REV_630,
2576 		.std_body = CC_STD_NIST,
2577 	},
2578 	{
2579 		.name = "rfc4106(gcm(aes))",
2580 		.driver_name = "rfc4106-gcm-aes-ccree",
2581 		.blocksize = 1,
2582 		.template_aead = {
2583 			.setkey = cc_rfc4106_gcm_setkey,
2584 			.setauthsize = cc_rfc4106_gcm_setauthsize,
2585 			.encrypt = cc_rfc4106_gcm_encrypt,
2586 			.decrypt = cc_rfc4106_gcm_decrypt,
2587 			.init = cc_aead_init,
2588 			.exit = cc_aead_exit,
2589 			.ivsize = GCM_BLOCK_RFC4_IV_SIZE,
2590 			.maxauthsize = AES_BLOCK_SIZE,
2591 		},
2592 		.cipher_mode = DRV_CIPHER_GCTR,
2593 		.flow_mode = S_DIN_to_AES,
2594 		.auth_mode = DRV_HASH_NULL,
2595 		.min_hw_rev = CC_HW_REV_630,
2596 		.std_body = CC_STD_NIST,
2597 	},
2598 	{
2599 		.name = "rfc4543(gcm(aes))",
2600 		.driver_name = "rfc4543-gcm-aes-ccree",
2601 		.blocksize = 1,
2602 		.template_aead = {
2603 			.setkey = cc_rfc4543_gcm_setkey,
2604 			.setauthsize = cc_rfc4543_gcm_setauthsize,
2605 			.encrypt = cc_rfc4543_gcm_encrypt,
2606 			.decrypt = cc_rfc4543_gcm_decrypt,
2607 			.init = cc_aead_init,
2608 			.exit = cc_aead_exit,
2609 			.ivsize = GCM_BLOCK_RFC4_IV_SIZE,
2610 			.maxauthsize = AES_BLOCK_SIZE,
2611 		},
2612 		.cipher_mode = DRV_CIPHER_GCTR,
2613 		.flow_mode = S_DIN_to_AES,
2614 		.auth_mode = DRV_HASH_NULL,
2615 		.min_hw_rev = CC_HW_REV_630,
2616 		.std_body = CC_STD_NIST,
2617 	},
2618 };
2619 
2620 static struct cc_crypto_alg *cc_create_aead_alg(struct cc_alg_template *tmpl,
2621 						struct device *dev)
2622 {
2623 	struct cc_crypto_alg *t_alg;
2624 	struct aead_alg *alg;
2625 
2626 	t_alg = kzalloc(sizeof(*t_alg), GFP_KERNEL);
2627 	if (!t_alg)
2628 		return ERR_PTR(-ENOMEM);
2629 
2630 	alg = &tmpl->template_aead;
2631 
2632 	snprintf(alg->base.cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name);
2633 	snprintf(alg->base.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
2634 		 tmpl->driver_name);
2635 	alg->base.cra_module = THIS_MODULE;
2636 	alg->base.cra_priority = CC_CRA_PRIO;
2637 
2638 	alg->base.cra_ctxsize = sizeof(struct cc_aead_ctx);
2639 	alg->base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY;
2640 	alg->init = cc_aead_init;
2641 	alg->exit = cc_aead_exit;
2642 
2643 	t_alg->aead_alg = *alg;
2644 
2645 	t_alg->cipher_mode = tmpl->cipher_mode;
2646 	t_alg->flow_mode = tmpl->flow_mode;
2647 	t_alg->auth_mode = tmpl->auth_mode;
2648 
2649 	return t_alg;
2650 }
2651 
2652 int cc_aead_free(struct cc_drvdata *drvdata)
2653 {
2654 	struct cc_crypto_alg *t_alg, *n;
2655 	struct cc_aead_handle *aead_handle =
2656 		(struct cc_aead_handle *)drvdata->aead_handle;
2657 
2658 	if (aead_handle) {
2659 		/* Remove registered algs */
2660 		list_for_each_entry_safe(t_alg, n, &aead_handle->aead_list,
2661 					 entry) {
2662 			crypto_unregister_aead(&t_alg->aead_alg);
2663 			list_del(&t_alg->entry);
2664 			kfree(t_alg);
2665 		}
2666 		kfree(aead_handle);
2667 		drvdata->aead_handle = NULL;
2668 	}
2669 
2670 	return 0;
2671 }
2672 
2673 int cc_aead_alloc(struct cc_drvdata *drvdata)
2674 {
2675 	struct cc_aead_handle *aead_handle;
2676 	struct cc_crypto_alg *t_alg;
2677 	int rc = -ENOMEM;
2678 	int alg;
2679 	struct device *dev = drvdata_to_dev(drvdata);
2680 
2681 	aead_handle = kmalloc(sizeof(*aead_handle), GFP_KERNEL);
2682 	if (!aead_handle) {
2683 		rc = -ENOMEM;
2684 		goto fail0;
2685 	}
2686 
2687 	INIT_LIST_HEAD(&aead_handle->aead_list);
2688 	drvdata->aead_handle = aead_handle;
2689 
2690 	aead_handle->sram_workspace_addr = cc_sram_alloc(drvdata,
2691 							 MAX_HMAC_DIGEST_SIZE);
2692 
2693 	if (aead_handle->sram_workspace_addr == NULL_SRAM_ADDR) {
2694 		dev_err(dev, "SRAM pool exhausted\n");
2695 		rc = -ENOMEM;
2696 		goto fail1;
2697 	}
2698 
2699 	/* Linux crypto */
2700 	for (alg = 0; alg < ARRAY_SIZE(aead_algs); alg++) {
2701 		if ((aead_algs[alg].min_hw_rev > drvdata->hw_rev) ||
2702 		    !(drvdata->std_bodies & aead_algs[alg].std_body))
2703 			continue;
2704 
2705 		t_alg = cc_create_aead_alg(&aead_algs[alg], dev);
2706 		if (IS_ERR(t_alg)) {
2707 			rc = PTR_ERR(t_alg);
2708 			dev_err(dev, "%s alg allocation failed\n",
2709 				aead_algs[alg].driver_name);
2710 			goto fail1;
2711 		}
2712 		t_alg->drvdata = drvdata;
2713 		rc = crypto_register_aead(&t_alg->aead_alg);
2714 		if (rc) {
2715 			dev_err(dev, "%s alg registration failed\n",
2716 				t_alg->aead_alg.base.cra_driver_name);
2717 			goto fail2;
2718 		} else {
2719 			list_add_tail(&t_alg->entry, &aead_handle->aead_list);
2720 			dev_dbg(dev, "Registered %s\n",
2721 				t_alg->aead_alg.base.cra_driver_name);
2722 		}
2723 	}
2724 
2725 	return 0;
2726 
2727 fail2:
2728 	kfree(t_alg);
2729 fail1:
2730 	cc_aead_free(drvdata);
2731 fail0:
2732 	return rc;
2733 }
2734