1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2019 HiSilicon Limited. */
3 
4 #include <crypto/aes.h>
5 #include <crypto/aead.h>
6 #include <crypto/algapi.h>
7 #include <crypto/authenc.h>
8 #include <crypto/des.h>
9 #include <crypto/hash.h>
10 #include <crypto/internal/aead.h>
11 #include <crypto/internal/des.h>
12 #include <crypto/sha1.h>
13 #include <crypto/sha2.h>
14 #include <crypto/skcipher.h>
15 #include <crypto/xts.h>
16 #include <linux/crypto.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/idr.h>
19 
20 #include "sec.h"
21 #include "sec_crypto.h"
22 
23 #define SEC_PRIORITY		4001
24 #define SEC_XTS_MIN_KEY_SIZE	(2 * AES_MIN_KEY_SIZE)
25 #define SEC_XTS_MID_KEY_SIZE	(3 * AES_MIN_KEY_SIZE)
26 #define SEC_XTS_MAX_KEY_SIZE	(2 * AES_MAX_KEY_SIZE)
27 #define SEC_DES3_2KEY_SIZE	(2 * DES_KEY_SIZE)
28 #define SEC_DES3_3KEY_SIZE	(3 * DES_KEY_SIZE)
29 
30 /* SEC sqe(bd) bit operational relative MACRO */
31 #define SEC_DE_OFFSET		1
32 #define SEC_CIPHER_OFFSET	4
33 #define SEC_SCENE_OFFSET	3
34 #define SEC_DST_SGL_OFFSET	2
35 #define SEC_SRC_SGL_OFFSET	7
36 #define SEC_CKEY_OFFSET		9
37 #define SEC_CMODE_OFFSET	12
38 #define SEC_AKEY_OFFSET         5
39 #define SEC_AEAD_ALG_OFFSET     11
40 #define SEC_AUTH_OFFSET		6
41 
42 #define SEC_DE_OFFSET_V3		9
43 #define SEC_SCENE_OFFSET_V3	5
44 #define SEC_CKEY_OFFSET_V3	13
45 #define SEC_CTR_CNT_OFFSET	25
46 #define SEC_CTR_CNT_ROLLOVER	2
47 #define SEC_SRC_SGL_OFFSET_V3	11
48 #define SEC_DST_SGL_OFFSET_V3	14
49 #define SEC_CALG_OFFSET_V3	4
50 #define SEC_AKEY_OFFSET_V3	9
51 #define SEC_MAC_OFFSET_V3	4
52 #define SEC_AUTH_ALG_OFFSET_V3	15
53 #define SEC_CIPHER_AUTH_V3	0xbf
54 #define SEC_AUTH_CIPHER_V3	0x40
55 #define SEC_FLAG_OFFSET		7
56 #define SEC_FLAG_MASK		0x0780
57 #define SEC_TYPE_MASK		0x0F
58 #define SEC_DONE_MASK		0x0001
59 #define SEC_ICV_MASK		0x000E
60 #define SEC_SQE_LEN_RATE_MASK	0x3
61 
62 #define SEC_TOTAL_IV_SZ(depth)	(SEC_IV_SIZE * (depth))
63 #define SEC_SGL_SGE_NR		128
64 #define SEC_CIPHER_AUTH		0xfe
65 #define SEC_AUTH_CIPHER		0x1
66 #define SEC_MAX_MAC_LEN		64
67 #define SEC_MAX_AAD_LEN		65535
68 #define SEC_MAX_CCM_AAD_LEN	65279
69 #define SEC_TOTAL_MAC_SZ(depth) (SEC_MAX_MAC_LEN * (depth))
70 
71 #define SEC_PBUF_SZ			512
72 #define SEC_PBUF_IV_OFFSET		SEC_PBUF_SZ
73 #define SEC_PBUF_MAC_OFFSET		(SEC_PBUF_SZ + SEC_IV_SIZE)
74 #define SEC_PBUF_PKG		(SEC_PBUF_SZ + SEC_IV_SIZE +	\
75 			SEC_MAX_MAC_LEN * 2)
76 #define SEC_PBUF_NUM		(PAGE_SIZE / SEC_PBUF_PKG)
77 #define SEC_PBUF_PAGE_NUM(depth)	((depth) / SEC_PBUF_NUM)
78 #define SEC_PBUF_LEFT_SZ(depth)		(SEC_PBUF_PKG * ((depth) -	\
79 				SEC_PBUF_PAGE_NUM(depth) * SEC_PBUF_NUM))
80 #define SEC_TOTAL_PBUF_SZ(depth)	(PAGE_SIZE * SEC_PBUF_PAGE_NUM(depth) +	\
81 				SEC_PBUF_LEFT_SZ(depth))
82 
83 #define SEC_SQE_LEN_RATE	4
84 #define SEC_SQE_CFLAG		2
85 #define SEC_SQE_AEAD_FLAG	3
86 #define SEC_SQE_DONE		0x1
87 #define SEC_ICV_ERR		0x2
88 #define MIN_MAC_LEN		4
89 #define MAC_LEN_MASK		0x1U
90 #define MAX_INPUT_DATA_LEN	0xFFFE00
91 #define BITS_MASK		0xFF
92 #define BYTE_BITS		0x8
93 #define SEC_XTS_NAME_SZ		0x3
94 #define IV_CM_CAL_NUM		2
95 #define IV_CL_MASK		0x7
96 #define IV_CL_MIN		2
97 #define IV_CL_MID		4
98 #define IV_CL_MAX		8
99 #define IV_FLAGS_OFFSET	0x6
100 #define IV_CM_OFFSET		0x3
101 #define IV_LAST_BYTE1		1
102 #define IV_LAST_BYTE2		2
103 #define IV_LAST_BYTE_MASK	0xFF
104 #define IV_CTR_INIT		0x1
105 #define IV_BYTE_OFFSET		0x8
106 
107 static DEFINE_MUTEX(sec_algs_lock);
108 static unsigned int sec_available_devs;
109 
110 struct sec_skcipher {
111 	u64 alg_msk;
112 	struct skcipher_alg alg;
113 };
114 
115 struct sec_aead {
116 	u64 alg_msk;
117 	struct aead_alg alg;
118 };
119 
120 /* Get an en/de-cipher queue cyclically to balance load over queues of TFM */
121 static inline u32 sec_alloc_queue_id(struct sec_ctx *ctx, struct sec_req *req)
122 {
123 	if (req->c_req.encrypt)
124 		return (u32)atomic_inc_return(&ctx->enc_qcyclic) %
125 				 ctx->hlf_q_num;
126 
127 	return (u32)atomic_inc_return(&ctx->dec_qcyclic) % ctx->hlf_q_num +
128 				 ctx->hlf_q_num;
129 }
130 
131 static inline void sec_free_queue_id(struct sec_ctx *ctx, struct sec_req *req)
132 {
133 	if (req->c_req.encrypt)
134 		atomic_dec(&ctx->enc_qcyclic);
135 	else
136 		atomic_dec(&ctx->dec_qcyclic);
137 }
138 
139 static int sec_alloc_req_id(struct sec_req *req, struct sec_qp_ctx *qp_ctx)
140 {
141 	int req_id;
142 
143 	spin_lock_bh(&qp_ctx->req_lock);
144 	req_id = idr_alloc_cyclic(&qp_ctx->req_idr, NULL, 0, qp_ctx->qp->sq_depth, GFP_ATOMIC);
145 	spin_unlock_bh(&qp_ctx->req_lock);
146 	if (unlikely(req_id < 0)) {
147 		dev_err(req->ctx->dev, "alloc req id fail!\n");
148 		return req_id;
149 	}
150 
151 	req->qp_ctx = qp_ctx;
152 	qp_ctx->req_list[req_id] = req;
153 
154 	return req_id;
155 }
156 
157 static void sec_free_req_id(struct sec_req *req)
158 {
159 	struct sec_qp_ctx *qp_ctx = req->qp_ctx;
160 	int req_id = req->req_id;
161 
162 	if (unlikely(req_id < 0 || req_id >= qp_ctx->qp->sq_depth)) {
163 		dev_err(req->ctx->dev, "free request id invalid!\n");
164 		return;
165 	}
166 
167 	qp_ctx->req_list[req_id] = NULL;
168 	req->qp_ctx = NULL;
169 
170 	spin_lock_bh(&qp_ctx->req_lock);
171 	idr_remove(&qp_ctx->req_idr, req_id);
172 	spin_unlock_bh(&qp_ctx->req_lock);
173 }
174 
175 static u8 pre_parse_finished_bd(struct bd_status *status, void *resp)
176 {
177 	struct sec_sqe *bd = resp;
178 
179 	status->done = le16_to_cpu(bd->type2.done_flag) & SEC_DONE_MASK;
180 	status->icv = (le16_to_cpu(bd->type2.done_flag) & SEC_ICV_MASK) >> 1;
181 	status->flag = (le16_to_cpu(bd->type2.done_flag) &
182 					SEC_FLAG_MASK) >> SEC_FLAG_OFFSET;
183 	status->tag = le16_to_cpu(bd->type2.tag);
184 	status->err_type = bd->type2.error_type;
185 
186 	return bd->type_cipher_auth & SEC_TYPE_MASK;
187 }
188 
189 static u8 pre_parse_finished_bd3(struct bd_status *status, void *resp)
190 {
191 	struct sec_sqe3 *bd3 = resp;
192 
193 	status->done = le16_to_cpu(bd3->done_flag) & SEC_DONE_MASK;
194 	status->icv = (le16_to_cpu(bd3->done_flag) & SEC_ICV_MASK) >> 1;
195 	status->flag = (le16_to_cpu(bd3->done_flag) &
196 					SEC_FLAG_MASK) >> SEC_FLAG_OFFSET;
197 	status->tag = le64_to_cpu(bd3->tag);
198 	status->err_type = bd3->error_type;
199 
200 	return le32_to_cpu(bd3->bd_param) & SEC_TYPE_MASK;
201 }
202 
203 static int sec_cb_status_check(struct sec_req *req,
204 			       struct bd_status *status)
205 {
206 	struct sec_ctx *ctx = req->ctx;
207 
208 	if (unlikely(req->err_type || status->done != SEC_SQE_DONE)) {
209 		dev_err_ratelimited(ctx->dev, "err_type[%d], done[%u]\n",
210 				    req->err_type, status->done);
211 		return -EIO;
212 	}
213 
214 	if (unlikely(ctx->alg_type == SEC_SKCIPHER)) {
215 		if (unlikely(status->flag != SEC_SQE_CFLAG)) {
216 			dev_err_ratelimited(ctx->dev, "flag[%u]\n",
217 					    status->flag);
218 			return -EIO;
219 		}
220 	} else if (unlikely(ctx->alg_type == SEC_AEAD)) {
221 		if (unlikely(status->flag != SEC_SQE_AEAD_FLAG ||
222 			     status->icv == SEC_ICV_ERR)) {
223 			dev_err_ratelimited(ctx->dev,
224 					    "flag[%u], icv[%u]\n",
225 					    status->flag, status->icv);
226 			return -EBADMSG;
227 		}
228 	}
229 
230 	return 0;
231 }
232 
233 static void sec_req_cb(struct hisi_qp *qp, void *resp)
234 {
235 	struct sec_qp_ctx *qp_ctx = qp->qp_ctx;
236 	struct sec_dfx *dfx = &qp_ctx->ctx->sec->debug.dfx;
237 	u8 type_supported = qp_ctx->ctx->type_supported;
238 	struct bd_status status;
239 	struct sec_ctx *ctx;
240 	struct sec_req *req;
241 	int err;
242 	u8 type;
243 
244 	if (type_supported == SEC_BD_TYPE2) {
245 		type = pre_parse_finished_bd(&status, resp);
246 		req = qp_ctx->req_list[status.tag];
247 	} else {
248 		type = pre_parse_finished_bd3(&status, resp);
249 		req = (void *)(uintptr_t)status.tag;
250 	}
251 
252 	if (unlikely(type != type_supported)) {
253 		atomic64_inc(&dfx->err_bd_cnt);
254 		pr_err("err bd type [%u]\n", type);
255 		return;
256 	}
257 
258 	if (unlikely(!req)) {
259 		atomic64_inc(&dfx->invalid_req_cnt);
260 		atomic_inc(&qp->qp_status.used);
261 		return;
262 	}
263 
264 	req->err_type = status.err_type;
265 	ctx = req->ctx;
266 	err = sec_cb_status_check(req, &status);
267 	if (err)
268 		atomic64_inc(&dfx->done_flag_cnt);
269 
270 	atomic64_inc(&dfx->recv_cnt);
271 
272 	ctx->req_op->buf_unmap(ctx, req);
273 
274 	ctx->req_op->callback(ctx, req, err);
275 }
276 
277 static int sec_bd_send(struct sec_ctx *ctx, struct sec_req *req)
278 {
279 	struct sec_qp_ctx *qp_ctx = req->qp_ctx;
280 	int ret;
281 
282 	if (ctx->fake_req_limit <=
283 	    atomic_read(&qp_ctx->qp->qp_status.used) &&
284 	    !(req->flag & CRYPTO_TFM_REQ_MAY_BACKLOG))
285 		return -EBUSY;
286 
287 	spin_lock_bh(&qp_ctx->req_lock);
288 	ret = hisi_qp_send(qp_ctx->qp, &req->sec_sqe);
289 	if (ctx->fake_req_limit <=
290 	    atomic_read(&qp_ctx->qp->qp_status.used) && !ret) {
291 		list_add_tail(&req->backlog_head, &qp_ctx->backlog);
292 		atomic64_inc(&ctx->sec->debug.dfx.send_cnt);
293 		atomic64_inc(&ctx->sec->debug.dfx.send_busy_cnt);
294 		spin_unlock_bh(&qp_ctx->req_lock);
295 		return -EBUSY;
296 	}
297 	spin_unlock_bh(&qp_ctx->req_lock);
298 
299 	if (unlikely(ret == -EBUSY))
300 		return -ENOBUFS;
301 
302 	if (likely(!ret)) {
303 		ret = -EINPROGRESS;
304 		atomic64_inc(&ctx->sec->debug.dfx.send_cnt);
305 	}
306 
307 	return ret;
308 }
309 
310 /* Get DMA memory resources */
311 static int sec_alloc_civ_resource(struct device *dev, struct sec_alg_res *res)
312 {
313 	u16 q_depth = res->depth;
314 	int i;
315 
316 	res->c_ivin = dma_alloc_coherent(dev, SEC_TOTAL_IV_SZ(q_depth),
317 					 &res->c_ivin_dma, GFP_KERNEL);
318 	if (!res->c_ivin)
319 		return -ENOMEM;
320 
321 	for (i = 1; i < q_depth; i++) {
322 		res[i].c_ivin_dma = res->c_ivin_dma + i * SEC_IV_SIZE;
323 		res[i].c_ivin = res->c_ivin + i * SEC_IV_SIZE;
324 	}
325 
326 	return 0;
327 }
328 
329 static void sec_free_civ_resource(struct device *dev, struct sec_alg_res *res)
330 {
331 	if (res->c_ivin)
332 		dma_free_coherent(dev, SEC_TOTAL_IV_SZ(res->depth),
333 				  res->c_ivin, res->c_ivin_dma);
334 }
335 
336 static int sec_alloc_aiv_resource(struct device *dev, struct sec_alg_res *res)
337 {
338 	u16 q_depth = res->depth;
339 	int i;
340 
341 	res->a_ivin = dma_alloc_coherent(dev, SEC_TOTAL_IV_SZ(q_depth),
342 					 &res->a_ivin_dma, GFP_KERNEL);
343 	if (!res->a_ivin)
344 		return -ENOMEM;
345 
346 	for (i = 1; i < q_depth; i++) {
347 		res[i].a_ivin_dma = res->a_ivin_dma + i * SEC_IV_SIZE;
348 		res[i].a_ivin = res->a_ivin + i * SEC_IV_SIZE;
349 	}
350 
351 	return 0;
352 }
353 
354 static void sec_free_aiv_resource(struct device *dev, struct sec_alg_res *res)
355 {
356 	if (res->a_ivin)
357 		dma_free_coherent(dev, SEC_TOTAL_IV_SZ(res->depth),
358 				  res->a_ivin, res->a_ivin_dma);
359 }
360 
361 static int sec_alloc_mac_resource(struct device *dev, struct sec_alg_res *res)
362 {
363 	u16 q_depth = res->depth;
364 	int i;
365 
366 	res->out_mac = dma_alloc_coherent(dev, SEC_TOTAL_MAC_SZ(q_depth) << 1,
367 					  &res->out_mac_dma, GFP_KERNEL);
368 	if (!res->out_mac)
369 		return -ENOMEM;
370 
371 	for (i = 1; i < q_depth; i++) {
372 		res[i].out_mac_dma = res->out_mac_dma +
373 				     i * (SEC_MAX_MAC_LEN << 1);
374 		res[i].out_mac = res->out_mac + i * (SEC_MAX_MAC_LEN << 1);
375 	}
376 
377 	return 0;
378 }
379 
380 static void sec_free_mac_resource(struct device *dev, struct sec_alg_res *res)
381 {
382 	if (res->out_mac)
383 		dma_free_coherent(dev, SEC_TOTAL_MAC_SZ(res->depth) << 1,
384 				  res->out_mac, res->out_mac_dma);
385 }
386 
387 static void sec_free_pbuf_resource(struct device *dev, struct sec_alg_res *res)
388 {
389 	if (res->pbuf)
390 		dma_free_coherent(dev, SEC_TOTAL_PBUF_SZ(res->depth),
391 				  res->pbuf, res->pbuf_dma);
392 }
393 
394 /*
395  * To improve performance, pbuffer is used for
396  * small packets (< 512Bytes) as IOMMU translation using.
397  */
398 static int sec_alloc_pbuf_resource(struct device *dev, struct sec_alg_res *res)
399 {
400 	u16 q_depth = res->depth;
401 	int size = SEC_PBUF_PAGE_NUM(q_depth);
402 	int pbuf_page_offset;
403 	int i, j, k;
404 
405 	res->pbuf = dma_alloc_coherent(dev, SEC_TOTAL_PBUF_SZ(q_depth),
406 				&res->pbuf_dma, GFP_KERNEL);
407 	if (!res->pbuf)
408 		return -ENOMEM;
409 
410 	/*
411 	 * SEC_PBUF_PKG contains data pbuf, iv and
412 	 * out_mac : <SEC_PBUF|SEC_IV|SEC_MAC>
413 	 * Every PAGE contains six SEC_PBUF_PKG
414 	 * The sec_qp_ctx contains QM_Q_DEPTH numbers of SEC_PBUF_PKG
415 	 * So we need SEC_PBUF_PAGE_NUM numbers of PAGE
416 	 * for the SEC_TOTAL_PBUF_SZ
417 	 */
418 	for (i = 0; i <= size; i++) {
419 		pbuf_page_offset = PAGE_SIZE * i;
420 		for (j = 0; j < SEC_PBUF_NUM; j++) {
421 			k = i * SEC_PBUF_NUM + j;
422 			if (k == q_depth)
423 				break;
424 			res[k].pbuf = res->pbuf +
425 				j * SEC_PBUF_PKG + pbuf_page_offset;
426 			res[k].pbuf_dma = res->pbuf_dma +
427 				j * SEC_PBUF_PKG + pbuf_page_offset;
428 		}
429 	}
430 
431 	return 0;
432 }
433 
434 static int sec_alg_resource_alloc(struct sec_ctx *ctx,
435 				  struct sec_qp_ctx *qp_ctx)
436 {
437 	struct sec_alg_res *res = qp_ctx->res;
438 	struct device *dev = ctx->dev;
439 	int ret;
440 
441 	ret = sec_alloc_civ_resource(dev, res);
442 	if (ret)
443 		return ret;
444 
445 	if (ctx->alg_type == SEC_AEAD) {
446 		ret = sec_alloc_aiv_resource(dev, res);
447 		if (ret)
448 			goto alloc_aiv_fail;
449 
450 		ret = sec_alloc_mac_resource(dev, res);
451 		if (ret)
452 			goto alloc_mac_fail;
453 	}
454 	if (ctx->pbuf_supported) {
455 		ret = sec_alloc_pbuf_resource(dev, res);
456 		if (ret) {
457 			dev_err(dev, "fail to alloc pbuf dma resource!\n");
458 			goto alloc_pbuf_fail;
459 		}
460 	}
461 
462 	return 0;
463 
464 alloc_pbuf_fail:
465 	if (ctx->alg_type == SEC_AEAD)
466 		sec_free_mac_resource(dev, qp_ctx->res);
467 alloc_mac_fail:
468 	if (ctx->alg_type == SEC_AEAD)
469 		sec_free_aiv_resource(dev, res);
470 alloc_aiv_fail:
471 	sec_free_civ_resource(dev, res);
472 	return ret;
473 }
474 
475 static void sec_alg_resource_free(struct sec_ctx *ctx,
476 				  struct sec_qp_ctx *qp_ctx)
477 {
478 	struct device *dev = ctx->dev;
479 
480 	sec_free_civ_resource(dev, qp_ctx->res);
481 
482 	if (ctx->pbuf_supported)
483 		sec_free_pbuf_resource(dev, qp_ctx->res);
484 	if (ctx->alg_type == SEC_AEAD)
485 		sec_free_mac_resource(dev, qp_ctx->res);
486 }
487 
488 static int sec_alloc_qp_ctx_resource(struct sec_ctx *ctx, struct sec_qp_ctx *qp_ctx)
489 {
490 	u16 q_depth = qp_ctx->qp->sq_depth;
491 	struct device *dev = ctx->dev;
492 	int ret = -ENOMEM;
493 
494 	qp_ctx->req_list = kcalloc(q_depth, sizeof(struct sec_req *), GFP_KERNEL);
495 	if (!qp_ctx->req_list)
496 		return ret;
497 
498 	qp_ctx->res = kcalloc(q_depth, sizeof(struct sec_alg_res), GFP_KERNEL);
499 	if (!qp_ctx->res)
500 		goto err_free_req_list;
501 	qp_ctx->res->depth = q_depth;
502 
503 	qp_ctx->c_in_pool = hisi_acc_create_sgl_pool(dev, q_depth, SEC_SGL_SGE_NR);
504 	if (IS_ERR(qp_ctx->c_in_pool)) {
505 		dev_err(dev, "fail to create sgl pool for input!\n");
506 		goto err_free_res;
507 	}
508 
509 	qp_ctx->c_out_pool = hisi_acc_create_sgl_pool(dev, q_depth, SEC_SGL_SGE_NR);
510 	if (IS_ERR(qp_ctx->c_out_pool)) {
511 		dev_err(dev, "fail to create sgl pool for output!\n");
512 		goto err_free_c_in_pool;
513 	}
514 
515 	ret = sec_alg_resource_alloc(ctx, qp_ctx);
516 	if (ret)
517 		goto err_free_c_out_pool;
518 
519 	return 0;
520 
521 err_free_c_out_pool:
522 	hisi_acc_free_sgl_pool(dev, qp_ctx->c_out_pool);
523 err_free_c_in_pool:
524 	hisi_acc_free_sgl_pool(dev, qp_ctx->c_in_pool);
525 err_free_res:
526 	kfree(qp_ctx->res);
527 err_free_req_list:
528 	kfree(qp_ctx->req_list);
529 	return ret;
530 }
531 
532 static void sec_free_qp_ctx_resource(struct sec_ctx *ctx, struct sec_qp_ctx *qp_ctx)
533 {
534 	struct device *dev = ctx->dev;
535 
536 	sec_alg_resource_free(ctx, qp_ctx);
537 	hisi_acc_free_sgl_pool(dev, qp_ctx->c_out_pool);
538 	hisi_acc_free_sgl_pool(dev, qp_ctx->c_in_pool);
539 	kfree(qp_ctx->res);
540 	kfree(qp_ctx->req_list);
541 }
542 
543 static int sec_create_qp_ctx(struct sec_ctx *ctx, int qp_ctx_id)
544 {
545 	struct sec_qp_ctx *qp_ctx;
546 	struct hisi_qp *qp;
547 	int ret;
548 
549 	qp_ctx = &ctx->qp_ctx[qp_ctx_id];
550 	qp = ctx->qps[qp_ctx_id];
551 	qp->req_type = 0;
552 	qp->qp_ctx = qp_ctx;
553 	qp_ctx->qp = qp;
554 	qp_ctx->ctx = ctx;
555 
556 	qp->req_cb = sec_req_cb;
557 
558 	spin_lock_init(&qp_ctx->req_lock);
559 	idr_init(&qp_ctx->req_idr);
560 	INIT_LIST_HEAD(&qp_ctx->backlog);
561 
562 	ret = sec_alloc_qp_ctx_resource(ctx, qp_ctx);
563 	if (ret)
564 		goto err_destroy_idr;
565 
566 	ret = hisi_qm_start_qp(qp, 0);
567 	if (ret < 0)
568 		goto err_resource_free;
569 
570 	return 0;
571 
572 err_resource_free:
573 	sec_free_qp_ctx_resource(ctx, qp_ctx);
574 err_destroy_idr:
575 	idr_destroy(&qp_ctx->req_idr);
576 	return ret;
577 }
578 
579 static void sec_release_qp_ctx(struct sec_ctx *ctx,
580 			       struct sec_qp_ctx *qp_ctx)
581 {
582 	hisi_qm_stop_qp(qp_ctx->qp);
583 	sec_free_qp_ctx_resource(ctx, qp_ctx);
584 	idr_destroy(&qp_ctx->req_idr);
585 }
586 
587 static int sec_ctx_base_init(struct sec_ctx *ctx)
588 {
589 	struct sec_dev *sec;
590 	int i, ret;
591 
592 	ctx->qps = sec_create_qps();
593 	if (!ctx->qps) {
594 		pr_err("Can not create sec qps!\n");
595 		return -ENODEV;
596 	}
597 
598 	sec = container_of(ctx->qps[0]->qm, struct sec_dev, qm);
599 	ctx->sec = sec;
600 	ctx->dev = &sec->qm.pdev->dev;
601 	ctx->hlf_q_num = sec->ctx_q_num >> 1;
602 
603 	ctx->pbuf_supported = ctx->sec->iommu_used;
604 
605 	/* Half of queue depth is taken as fake requests limit in the queue. */
606 	ctx->fake_req_limit = ctx->qps[0]->sq_depth >> 1;
607 	ctx->qp_ctx = kcalloc(sec->ctx_q_num, sizeof(struct sec_qp_ctx),
608 			      GFP_KERNEL);
609 	if (!ctx->qp_ctx) {
610 		ret = -ENOMEM;
611 		goto err_destroy_qps;
612 	}
613 
614 	for (i = 0; i < sec->ctx_q_num; i++) {
615 		ret = sec_create_qp_ctx(ctx, i);
616 		if (ret)
617 			goto err_sec_release_qp_ctx;
618 	}
619 
620 	return 0;
621 
622 err_sec_release_qp_ctx:
623 	for (i = i - 1; i >= 0; i--)
624 		sec_release_qp_ctx(ctx, &ctx->qp_ctx[i]);
625 	kfree(ctx->qp_ctx);
626 err_destroy_qps:
627 	sec_destroy_qps(ctx->qps, sec->ctx_q_num);
628 	return ret;
629 }
630 
631 static void sec_ctx_base_uninit(struct sec_ctx *ctx)
632 {
633 	int i;
634 
635 	for (i = 0; i < ctx->sec->ctx_q_num; i++)
636 		sec_release_qp_ctx(ctx, &ctx->qp_ctx[i]);
637 
638 	sec_destroy_qps(ctx->qps, ctx->sec->ctx_q_num);
639 	kfree(ctx->qp_ctx);
640 }
641 
642 static int sec_cipher_init(struct sec_ctx *ctx)
643 {
644 	struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
645 
646 	c_ctx->c_key = dma_alloc_coherent(ctx->dev, SEC_MAX_KEY_SIZE,
647 					  &c_ctx->c_key_dma, GFP_KERNEL);
648 	if (!c_ctx->c_key)
649 		return -ENOMEM;
650 
651 	return 0;
652 }
653 
654 static void sec_cipher_uninit(struct sec_ctx *ctx)
655 {
656 	struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
657 
658 	memzero_explicit(c_ctx->c_key, SEC_MAX_KEY_SIZE);
659 	dma_free_coherent(ctx->dev, SEC_MAX_KEY_SIZE,
660 			  c_ctx->c_key, c_ctx->c_key_dma);
661 }
662 
663 static int sec_auth_init(struct sec_ctx *ctx)
664 {
665 	struct sec_auth_ctx *a_ctx = &ctx->a_ctx;
666 
667 	a_ctx->a_key = dma_alloc_coherent(ctx->dev, SEC_MAX_AKEY_SIZE,
668 					  &a_ctx->a_key_dma, GFP_KERNEL);
669 	if (!a_ctx->a_key)
670 		return -ENOMEM;
671 
672 	return 0;
673 }
674 
675 static void sec_auth_uninit(struct sec_ctx *ctx)
676 {
677 	struct sec_auth_ctx *a_ctx = &ctx->a_ctx;
678 
679 	memzero_explicit(a_ctx->a_key, SEC_MAX_AKEY_SIZE);
680 	dma_free_coherent(ctx->dev, SEC_MAX_AKEY_SIZE,
681 			  a_ctx->a_key, a_ctx->a_key_dma);
682 }
683 
684 static int sec_skcipher_fbtfm_init(struct crypto_skcipher *tfm)
685 {
686 	const char *alg = crypto_tfm_alg_name(&tfm->base);
687 	struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
688 	struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
689 
690 	c_ctx->fallback = false;
691 
692 	/* Currently, only XTS mode need fallback tfm when using 192bit key */
693 	if (likely(strncmp(alg, "xts", SEC_XTS_NAME_SZ)))
694 		return 0;
695 
696 	c_ctx->fbtfm = crypto_alloc_sync_skcipher(alg, 0,
697 						  CRYPTO_ALG_NEED_FALLBACK);
698 	if (IS_ERR(c_ctx->fbtfm)) {
699 		pr_err("failed to alloc xts mode fallback tfm!\n");
700 		return PTR_ERR(c_ctx->fbtfm);
701 	}
702 
703 	return 0;
704 }
705 
706 static int sec_skcipher_init(struct crypto_skcipher *tfm)
707 {
708 	struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
709 	int ret;
710 
711 	ctx->alg_type = SEC_SKCIPHER;
712 	crypto_skcipher_set_reqsize(tfm, sizeof(struct sec_req));
713 	ctx->c_ctx.ivsize = crypto_skcipher_ivsize(tfm);
714 	if (ctx->c_ctx.ivsize > SEC_IV_SIZE) {
715 		pr_err("get error skcipher iv size!\n");
716 		return -EINVAL;
717 	}
718 
719 	ret = sec_ctx_base_init(ctx);
720 	if (ret)
721 		return ret;
722 
723 	ret = sec_cipher_init(ctx);
724 	if (ret)
725 		goto err_cipher_init;
726 
727 	ret = sec_skcipher_fbtfm_init(tfm);
728 	if (ret)
729 		goto err_fbtfm_init;
730 
731 	return 0;
732 
733 err_fbtfm_init:
734 	sec_cipher_uninit(ctx);
735 err_cipher_init:
736 	sec_ctx_base_uninit(ctx);
737 	return ret;
738 }
739 
740 static void sec_skcipher_uninit(struct crypto_skcipher *tfm)
741 {
742 	struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
743 
744 	if (ctx->c_ctx.fbtfm)
745 		crypto_free_sync_skcipher(ctx->c_ctx.fbtfm);
746 
747 	sec_cipher_uninit(ctx);
748 	sec_ctx_base_uninit(ctx);
749 }
750 
751 static int sec_skcipher_3des_setkey(struct crypto_skcipher *tfm, const u8 *key, const u32 keylen)
752 {
753 	struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
754 	struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
755 	int ret;
756 
757 	ret = verify_skcipher_des3_key(tfm, key);
758 	if (ret)
759 		return ret;
760 
761 	switch (keylen) {
762 	case SEC_DES3_2KEY_SIZE:
763 		c_ctx->c_key_len = SEC_CKEY_3DES_2KEY;
764 		break;
765 	case SEC_DES3_3KEY_SIZE:
766 		c_ctx->c_key_len = SEC_CKEY_3DES_3KEY;
767 		break;
768 	default:
769 		return -EINVAL;
770 	}
771 
772 	return 0;
773 }
774 
775 static int sec_skcipher_aes_sm4_setkey(struct sec_cipher_ctx *c_ctx,
776 				       const u32 keylen,
777 				       const enum sec_cmode c_mode)
778 {
779 	if (c_mode == SEC_CMODE_XTS) {
780 		switch (keylen) {
781 		case SEC_XTS_MIN_KEY_SIZE:
782 			c_ctx->c_key_len = SEC_CKEY_128BIT;
783 			break;
784 		case SEC_XTS_MID_KEY_SIZE:
785 			c_ctx->fallback = true;
786 			break;
787 		case SEC_XTS_MAX_KEY_SIZE:
788 			c_ctx->c_key_len = SEC_CKEY_256BIT;
789 			break;
790 		default:
791 			pr_err("hisi_sec2: xts mode key error!\n");
792 			return -EINVAL;
793 		}
794 	} else {
795 		if (c_ctx->c_alg == SEC_CALG_SM4 &&
796 		    keylen != AES_KEYSIZE_128) {
797 			pr_err("hisi_sec2: sm4 key error!\n");
798 			return -EINVAL;
799 		} else {
800 			switch (keylen) {
801 			case AES_KEYSIZE_128:
802 				c_ctx->c_key_len = SEC_CKEY_128BIT;
803 				break;
804 			case AES_KEYSIZE_192:
805 				c_ctx->c_key_len = SEC_CKEY_192BIT;
806 				break;
807 			case AES_KEYSIZE_256:
808 				c_ctx->c_key_len = SEC_CKEY_256BIT;
809 				break;
810 			default:
811 				pr_err("hisi_sec2: aes key error!\n");
812 				return -EINVAL;
813 			}
814 		}
815 	}
816 
817 	return 0;
818 }
819 
820 static int sec_skcipher_setkey(struct crypto_skcipher *tfm, const u8 *key,
821 			       const u32 keylen, const enum sec_calg c_alg,
822 			       const enum sec_cmode c_mode)
823 {
824 	struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
825 	struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
826 	struct device *dev = ctx->dev;
827 	int ret;
828 
829 	if (c_mode == SEC_CMODE_XTS) {
830 		ret = xts_verify_key(tfm, key, keylen);
831 		if (ret) {
832 			dev_err(dev, "xts mode key err!\n");
833 			return ret;
834 		}
835 	}
836 
837 	c_ctx->c_alg  = c_alg;
838 	c_ctx->c_mode = c_mode;
839 
840 	switch (c_alg) {
841 	case SEC_CALG_3DES:
842 		ret = sec_skcipher_3des_setkey(tfm, key, keylen);
843 		break;
844 	case SEC_CALG_AES:
845 	case SEC_CALG_SM4:
846 		ret = sec_skcipher_aes_sm4_setkey(c_ctx, keylen, c_mode);
847 		break;
848 	default:
849 		dev_err(dev, "sec c_alg err!\n");
850 		return -EINVAL;
851 	}
852 
853 	if (ret) {
854 		dev_err(dev, "set sec key err!\n");
855 		return ret;
856 	}
857 
858 	memcpy(c_ctx->c_key, key, keylen);
859 	if (c_ctx->fallback && c_ctx->fbtfm) {
860 		ret = crypto_sync_skcipher_setkey(c_ctx->fbtfm, key, keylen);
861 		if (ret) {
862 			dev_err(dev, "failed to set fallback skcipher key!\n");
863 			return ret;
864 		}
865 	}
866 	return 0;
867 }
868 
869 #define GEN_SEC_SETKEY_FUNC(name, c_alg, c_mode)			\
870 static int sec_setkey_##name(struct crypto_skcipher *tfm, const u8 *key,\
871 	u32 keylen)							\
872 {									\
873 	return sec_skcipher_setkey(tfm, key, keylen, c_alg, c_mode);	\
874 }
875 
876 GEN_SEC_SETKEY_FUNC(aes_ecb, SEC_CALG_AES, SEC_CMODE_ECB)
877 GEN_SEC_SETKEY_FUNC(aes_cbc, SEC_CALG_AES, SEC_CMODE_CBC)
878 GEN_SEC_SETKEY_FUNC(aes_xts, SEC_CALG_AES, SEC_CMODE_XTS)
879 GEN_SEC_SETKEY_FUNC(aes_ctr, SEC_CALG_AES, SEC_CMODE_CTR)
880 GEN_SEC_SETKEY_FUNC(3des_ecb, SEC_CALG_3DES, SEC_CMODE_ECB)
881 GEN_SEC_SETKEY_FUNC(3des_cbc, SEC_CALG_3DES, SEC_CMODE_CBC)
882 GEN_SEC_SETKEY_FUNC(sm4_xts, SEC_CALG_SM4, SEC_CMODE_XTS)
883 GEN_SEC_SETKEY_FUNC(sm4_cbc, SEC_CALG_SM4, SEC_CMODE_CBC)
884 GEN_SEC_SETKEY_FUNC(sm4_ctr, SEC_CALG_SM4, SEC_CMODE_CTR)
885 
886 static int sec_cipher_pbuf_map(struct sec_ctx *ctx, struct sec_req *req,
887 			struct scatterlist *src)
888 {
889 	struct sec_aead_req *a_req = &req->aead_req;
890 	struct aead_request *aead_req = a_req->aead_req;
891 	struct sec_cipher_req *c_req = &req->c_req;
892 	struct sec_qp_ctx *qp_ctx = req->qp_ctx;
893 	struct device *dev = ctx->dev;
894 	int copy_size, pbuf_length;
895 	int req_id = req->req_id;
896 	struct crypto_aead *tfm;
897 	size_t authsize;
898 	u8 *mac_offset;
899 
900 	if (ctx->alg_type == SEC_AEAD)
901 		copy_size = aead_req->cryptlen + aead_req->assoclen;
902 	else
903 		copy_size = c_req->c_len;
904 
905 	pbuf_length = sg_copy_to_buffer(src, sg_nents(src),
906 			qp_ctx->res[req_id].pbuf, copy_size);
907 	if (unlikely(pbuf_length != copy_size)) {
908 		dev_err(dev, "copy src data to pbuf error!\n");
909 		return -EINVAL;
910 	}
911 	if (!c_req->encrypt && ctx->alg_type == SEC_AEAD) {
912 		tfm = crypto_aead_reqtfm(aead_req);
913 		authsize = crypto_aead_authsize(tfm);
914 		mac_offset = qp_ctx->res[req_id].pbuf + copy_size - authsize;
915 		memcpy(a_req->out_mac, mac_offset, authsize);
916 	}
917 
918 	req->in_dma = qp_ctx->res[req_id].pbuf_dma;
919 	c_req->c_out_dma = req->in_dma;
920 
921 	return 0;
922 }
923 
924 static void sec_cipher_pbuf_unmap(struct sec_ctx *ctx, struct sec_req *req,
925 			struct scatterlist *dst)
926 {
927 	struct aead_request *aead_req = req->aead_req.aead_req;
928 	struct sec_cipher_req *c_req = &req->c_req;
929 	struct sec_qp_ctx *qp_ctx = req->qp_ctx;
930 	int copy_size, pbuf_length;
931 	int req_id = req->req_id;
932 
933 	if (ctx->alg_type == SEC_AEAD)
934 		copy_size = c_req->c_len + aead_req->assoclen;
935 	else
936 		copy_size = c_req->c_len;
937 
938 	pbuf_length = sg_copy_from_buffer(dst, sg_nents(dst),
939 			qp_ctx->res[req_id].pbuf, copy_size);
940 	if (unlikely(pbuf_length != copy_size))
941 		dev_err(ctx->dev, "copy pbuf data to dst error!\n");
942 }
943 
944 static int sec_aead_mac_init(struct sec_aead_req *req)
945 {
946 	struct aead_request *aead_req = req->aead_req;
947 	struct crypto_aead *tfm = crypto_aead_reqtfm(aead_req);
948 	size_t authsize = crypto_aead_authsize(tfm);
949 	u8 *mac_out = req->out_mac;
950 	struct scatterlist *sgl = aead_req->src;
951 	size_t copy_size;
952 	off_t skip_size;
953 
954 	/* Copy input mac */
955 	skip_size = aead_req->assoclen + aead_req->cryptlen - authsize;
956 	copy_size = sg_pcopy_to_buffer(sgl, sg_nents(sgl), mac_out,
957 				       authsize, skip_size);
958 	if (unlikely(copy_size != authsize))
959 		return -EINVAL;
960 
961 	return 0;
962 }
963 
964 static int sec_cipher_map(struct sec_ctx *ctx, struct sec_req *req,
965 			  struct scatterlist *src, struct scatterlist *dst)
966 {
967 	struct sec_cipher_req *c_req = &req->c_req;
968 	struct sec_aead_req *a_req = &req->aead_req;
969 	struct sec_qp_ctx *qp_ctx = req->qp_ctx;
970 	struct sec_alg_res *res = &qp_ctx->res[req->req_id];
971 	struct device *dev = ctx->dev;
972 	int ret;
973 
974 	if (req->use_pbuf) {
975 		c_req->c_ivin = res->pbuf + SEC_PBUF_IV_OFFSET;
976 		c_req->c_ivin_dma = res->pbuf_dma + SEC_PBUF_IV_OFFSET;
977 		if (ctx->alg_type == SEC_AEAD) {
978 			a_req->a_ivin = res->a_ivin;
979 			a_req->a_ivin_dma = res->a_ivin_dma;
980 			a_req->out_mac = res->pbuf + SEC_PBUF_MAC_OFFSET;
981 			a_req->out_mac_dma = res->pbuf_dma +
982 					SEC_PBUF_MAC_OFFSET;
983 		}
984 		ret = sec_cipher_pbuf_map(ctx, req, src);
985 
986 		return ret;
987 	}
988 	c_req->c_ivin = res->c_ivin;
989 	c_req->c_ivin_dma = res->c_ivin_dma;
990 	if (ctx->alg_type == SEC_AEAD) {
991 		a_req->a_ivin = res->a_ivin;
992 		a_req->a_ivin_dma = res->a_ivin_dma;
993 		a_req->out_mac = res->out_mac;
994 		a_req->out_mac_dma = res->out_mac_dma;
995 	}
996 
997 	req->in = hisi_acc_sg_buf_map_to_hw_sgl(dev, src,
998 						qp_ctx->c_in_pool,
999 						req->req_id,
1000 						&req->in_dma);
1001 	if (IS_ERR(req->in)) {
1002 		dev_err(dev, "fail to dma map input sgl buffers!\n");
1003 		return PTR_ERR(req->in);
1004 	}
1005 
1006 	if (!c_req->encrypt && ctx->alg_type == SEC_AEAD) {
1007 		ret = sec_aead_mac_init(a_req);
1008 		if (unlikely(ret)) {
1009 			dev_err(dev, "fail to init mac data for ICV!\n");
1010 			hisi_acc_sg_buf_unmap(dev, src, req->in);
1011 			return ret;
1012 		}
1013 	}
1014 
1015 	if (dst == src) {
1016 		c_req->c_out = req->in;
1017 		c_req->c_out_dma = req->in_dma;
1018 	} else {
1019 		c_req->c_out = hisi_acc_sg_buf_map_to_hw_sgl(dev, dst,
1020 							     qp_ctx->c_out_pool,
1021 							     req->req_id,
1022 							     &c_req->c_out_dma);
1023 
1024 		if (IS_ERR(c_req->c_out)) {
1025 			dev_err(dev, "fail to dma map output sgl buffers!\n");
1026 			hisi_acc_sg_buf_unmap(dev, src, req->in);
1027 			return PTR_ERR(c_req->c_out);
1028 		}
1029 	}
1030 
1031 	return 0;
1032 }
1033 
1034 static void sec_cipher_unmap(struct sec_ctx *ctx, struct sec_req *req,
1035 			     struct scatterlist *src, struct scatterlist *dst)
1036 {
1037 	struct sec_cipher_req *c_req = &req->c_req;
1038 	struct device *dev = ctx->dev;
1039 
1040 	if (req->use_pbuf) {
1041 		sec_cipher_pbuf_unmap(ctx, req, dst);
1042 	} else {
1043 		if (dst != src)
1044 			hisi_acc_sg_buf_unmap(dev, src, req->in);
1045 
1046 		hisi_acc_sg_buf_unmap(dev, dst, c_req->c_out);
1047 	}
1048 }
1049 
1050 static int sec_skcipher_sgl_map(struct sec_ctx *ctx, struct sec_req *req)
1051 {
1052 	struct skcipher_request *sq = req->c_req.sk_req;
1053 
1054 	return sec_cipher_map(ctx, req, sq->src, sq->dst);
1055 }
1056 
1057 static void sec_skcipher_sgl_unmap(struct sec_ctx *ctx, struct sec_req *req)
1058 {
1059 	struct skcipher_request *sq = req->c_req.sk_req;
1060 
1061 	sec_cipher_unmap(ctx, req, sq->src, sq->dst);
1062 }
1063 
1064 static int sec_aead_aes_set_key(struct sec_cipher_ctx *c_ctx,
1065 				struct crypto_authenc_keys *keys)
1066 {
1067 	switch (keys->enckeylen) {
1068 	case AES_KEYSIZE_128:
1069 		c_ctx->c_key_len = SEC_CKEY_128BIT;
1070 		break;
1071 	case AES_KEYSIZE_192:
1072 		c_ctx->c_key_len = SEC_CKEY_192BIT;
1073 		break;
1074 	case AES_KEYSIZE_256:
1075 		c_ctx->c_key_len = SEC_CKEY_256BIT;
1076 		break;
1077 	default:
1078 		pr_err("hisi_sec2: aead aes key error!\n");
1079 		return -EINVAL;
1080 	}
1081 	memcpy(c_ctx->c_key, keys->enckey, keys->enckeylen);
1082 
1083 	return 0;
1084 }
1085 
1086 static int sec_aead_auth_set_key(struct sec_auth_ctx *ctx,
1087 				 struct crypto_authenc_keys *keys)
1088 {
1089 	struct crypto_shash *hash_tfm = ctx->hash_tfm;
1090 	int blocksize, digestsize, ret;
1091 
1092 	if (!keys->authkeylen) {
1093 		pr_err("hisi_sec2: aead auth key error!\n");
1094 		return -EINVAL;
1095 	}
1096 
1097 	blocksize = crypto_shash_blocksize(hash_tfm);
1098 	digestsize = crypto_shash_digestsize(hash_tfm);
1099 	if (keys->authkeylen > blocksize) {
1100 		ret = crypto_shash_tfm_digest(hash_tfm, keys->authkey,
1101 					      keys->authkeylen, ctx->a_key);
1102 		if (ret) {
1103 			pr_err("hisi_sec2: aead auth digest error!\n");
1104 			return -EINVAL;
1105 		}
1106 		ctx->a_key_len = digestsize;
1107 	} else {
1108 		memcpy(ctx->a_key, keys->authkey, keys->authkeylen);
1109 		ctx->a_key_len = keys->authkeylen;
1110 	}
1111 
1112 	return 0;
1113 }
1114 
1115 static int sec_aead_setauthsize(struct crypto_aead *aead, unsigned int authsize)
1116 {
1117 	struct crypto_tfm *tfm = crypto_aead_tfm(aead);
1118 	struct sec_ctx *ctx = crypto_tfm_ctx(tfm);
1119 	struct sec_auth_ctx *a_ctx = &ctx->a_ctx;
1120 
1121 	if (unlikely(a_ctx->fallback_aead_tfm))
1122 		return crypto_aead_setauthsize(a_ctx->fallback_aead_tfm, authsize);
1123 
1124 	return 0;
1125 }
1126 
1127 static int sec_aead_fallback_setkey(struct sec_auth_ctx *a_ctx,
1128 				    struct crypto_aead *tfm, const u8 *key,
1129 				    unsigned int keylen)
1130 {
1131 	crypto_aead_clear_flags(a_ctx->fallback_aead_tfm, CRYPTO_TFM_REQ_MASK);
1132 	crypto_aead_set_flags(a_ctx->fallback_aead_tfm,
1133 			      crypto_aead_get_flags(tfm) & CRYPTO_TFM_REQ_MASK);
1134 	return crypto_aead_setkey(a_ctx->fallback_aead_tfm, key, keylen);
1135 }
1136 
1137 static int sec_aead_setkey(struct crypto_aead *tfm, const u8 *key,
1138 			   const u32 keylen, const enum sec_hash_alg a_alg,
1139 			   const enum sec_calg c_alg,
1140 			   const enum sec_mac_len mac_len,
1141 			   const enum sec_cmode c_mode)
1142 {
1143 	struct sec_ctx *ctx = crypto_aead_ctx(tfm);
1144 	struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
1145 	struct sec_auth_ctx *a_ctx = &ctx->a_ctx;
1146 	struct device *dev = ctx->dev;
1147 	struct crypto_authenc_keys keys;
1148 	int ret;
1149 
1150 	ctx->a_ctx.a_alg = a_alg;
1151 	ctx->c_ctx.c_alg = c_alg;
1152 	ctx->a_ctx.mac_len = mac_len;
1153 	c_ctx->c_mode = c_mode;
1154 
1155 	if (c_mode == SEC_CMODE_CCM || c_mode == SEC_CMODE_GCM) {
1156 		ret = sec_skcipher_aes_sm4_setkey(c_ctx, keylen, c_mode);
1157 		if (ret) {
1158 			dev_err(dev, "set sec aes ccm cipher key err!\n");
1159 			return ret;
1160 		}
1161 		memcpy(c_ctx->c_key, key, keylen);
1162 
1163 		if (unlikely(a_ctx->fallback_aead_tfm)) {
1164 			ret = sec_aead_fallback_setkey(a_ctx, tfm, key, keylen);
1165 			if (ret)
1166 				return ret;
1167 		}
1168 
1169 		return 0;
1170 	}
1171 
1172 	ret = crypto_authenc_extractkeys(&keys, key, keylen);
1173 	if (ret)
1174 		goto bad_key;
1175 
1176 	ret = sec_aead_aes_set_key(c_ctx, &keys);
1177 	if (ret) {
1178 		dev_err(dev, "set sec cipher key err!\n");
1179 		goto bad_key;
1180 	}
1181 
1182 	ret = sec_aead_auth_set_key(&ctx->a_ctx, &keys);
1183 	if (ret) {
1184 		dev_err(dev, "set sec auth key err!\n");
1185 		goto bad_key;
1186 	}
1187 
1188 	if ((ctx->a_ctx.mac_len & SEC_SQE_LEN_RATE_MASK)  ||
1189 	    (ctx->a_ctx.a_key_len & SEC_SQE_LEN_RATE_MASK)) {
1190 		ret = -EINVAL;
1191 		dev_err(dev, "MAC or AUTH key length error!\n");
1192 		goto bad_key;
1193 	}
1194 
1195 	return 0;
1196 
1197 bad_key:
1198 	memzero_explicit(&keys, sizeof(struct crypto_authenc_keys));
1199 	return ret;
1200 }
1201 
1202 
1203 #define GEN_SEC_AEAD_SETKEY_FUNC(name, aalg, calg, maclen, cmode)	\
1204 static int sec_setkey_##name(struct crypto_aead *tfm, const u8 *key,	\
1205 	u32 keylen)							\
1206 {									\
1207 	return sec_aead_setkey(tfm, key, keylen, aalg, calg, maclen, cmode);\
1208 }
1209 
1210 GEN_SEC_AEAD_SETKEY_FUNC(aes_cbc_sha1, SEC_A_HMAC_SHA1,
1211 			 SEC_CALG_AES, SEC_HMAC_SHA1_MAC, SEC_CMODE_CBC)
1212 GEN_SEC_AEAD_SETKEY_FUNC(aes_cbc_sha256, SEC_A_HMAC_SHA256,
1213 			 SEC_CALG_AES, SEC_HMAC_SHA256_MAC, SEC_CMODE_CBC)
1214 GEN_SEC_AEAD_SETKEY_FUNC(aes_cbc_sha512, SEC_A_HMAC_SHA512,
1215 			 SEC_CALG_AES, SEC_HMAC_SHA512_MAC, SEC_CMODE_CBC)
1216 GEN_SEC_AEAD_SETKEY_FUNC(aes_ccm, 0, SEC_CALG_AES,
1217 			 SEC_HMAC_CCM_MAC, SEC_CMODE_CCM)
1218 GEN_SEC_AEAD_SETKEY_FUNC(aes_gcm, 0, SEC_CALG_AES,
1219 			 SEC_HMAC_GCM_MAC, SEC_CMODE_GCM)
1220 GEN_SEC_AEAD_SETKEY_FUNC(sm4_ccm, 0, SEC_CALG_SM4,
1221 			 SEC_HMAC_CCM_MAC, SEC_CMODE_CCM)
1222 GEN_SEC_AEAD_SETKEY_FUNC(sm4_gcm, 0, SEC_CALG_SM4,
1223 			 SEC_HMAC_GCM_MAC, SEC_CMODE_GCM)
1224 
1225 static int sec_aead_sgl_map(struct sec_ctx *ctx, struct sec_req *req)
1226 {
1227 	struct aead_request *aq = req->aead_req.aead_req;
1228 
1229 	return sec_cipher_map(ctx, req, aq->src, aq->dst);
1230 }
1231 
1232 static void sec_aead_sgl_unmap(struct sec_ctx *ctx, struct sec_req *req)
1233 {
1234 	struct aead_request *aq = req->aead_req.aead_req;
1235 
1236 	sec_cipher_unmap(ctx, req, aq->src, aq->dst);
1237 }
1238 
1239 static int sec_request_transfer(struct sec_ctx *ctx, struct sec_req *req)
1240 {
1241 	int ret;
1242 
1243 	ret = ctx->req_op->buf_map(ctx, req);
1244 	if (unlikely(ret))
1245 		return ret;
1246 
1247 	ctx->req_op->do_transfer(ctx, req);
1248 
1249 	ret = ctx->req_op->bd_fill(ctx, req);
1250 	if (unlikely(ret))
1251 		goto unmap_req_buf;
1252 
1253 	return ret;
1254 
1255 unmap_req_buf:
1256 	ctx->req_op->buf_unmap(ctx, req);
1257 	return ret;
1258 }
1259 
1260 static void sec_request_untransfer(struct sec_ctx *ctx, struct sec_req *req)
1261 {
1262 	ctx->req_op->buf_unmap(ctx, req);
1263 }
1264 
1265 static void sec_skcipher_copy_iv(struct sec_ctx *ctx, struct sec_req *req)
1266 {
1267 	struct skcipher_request *sk_req = req->c_req.sk_req;
1268 	struct sec_cipher_req *c_req = &req->c_req;
1269 
1270 	memcpy(c_req->c_ivin, sk_req->iv, ctx->c_ctx.ivsize);
1271 }
1272 
1273 static int sec_skcipher_bd_fill(struct sec_ctx *ctx, struct sec_req *req)
1274 {
1275 	struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
1276 	struct sec_cipher_req *c_req = &req->c_req;
1277 	struct sec_sqe *sec_sqe = &req->sec_sqe;
1278 	u8 scene, sa_type, da_type;
1279 	u8 bd_type, cipher;
1280 	u8 de = 0;
1281 
1282 	memset(sec_sqe, 0, sizeof(struct sec_sqe));
1283 
1284 	sec_sqe->type2.c_key_addr = cpu_to_le64(c_ctx->c_key_dma);
1285 	sec_sqe->type2.c_ivin_addr = cpu_to_le64(c_req->c_ivin_dma);
1286 	sec_sqe->type2.data_src_addr = cpu_to_le64(req->in_dma);
1287 	sec_sqe->type2.data_dst_addr = cpu_to_le64(c_req->c_out_dma);
1288 
1289 	sec_sqe->type2.icvw_kmode |= cpu_to_le16(((u16)c_ctx->c_mode) <<
1290 						SEC_CMODE_OFFSET);
1291 	sec_sqe->type2.c_alg = c_ctx->c_alg;
1292 	sec_sqe->type2.icvw_kmode |= cpu_to_le16(((u16)c_ctx->c_key_len) <<
1293 						SEC_CKEY_OFFSET);
1294 
1295 	bd_type = SEC_BD_TYPE2;
1296 	if (c_req->encrypt)
1297 		cipher = SEC_CIPHER_ENC << SEC_CIPHER_OFFSET;
1298 	else
1299 		cipher = SEC_CIPHER_DEC << SEC_CIPHER_OFFSET;
1300 	sec_sqe->type_cipher_auth = bd_type | cipher;
1301 
1302 	/* Set destination and source address type */
1303 	if (req->use_pbuf) {
1304 		sa_type = SEC_PBUF << SEC_SRC_SGL_OFFSET;
1305 		da_type = SEC_PBUF << SEC_DST_SGL_OFFSET;
1306 	} else {
1307 		sa_type = SEC_SGL << SEC_SRC_SGL_OFFSET;
1308 		da_type = SEC_SGL << SEC_DST_SGL_OFFSET;
1309 	}
1310 
1311 	sec_sqe->sdm_addr_type |= da_type;
1312 	scene = SEC_COMM_SCENE << SEC_SCENE_OFFSET;
1313 	if (req->in_dma != c_req->c_out_dma)
1314 		de = 0x1 << SEC_DE_OFFSET;
1315 
1316 	sec_sqe->sds_sa_type = (de | scene | sa_type);
1317 
1318 	sec_sqe->type2.clen_ivhlen |= cpu_to_le32(c_req->c_len);
1319 	sec_sqe->type2.tag = cpu_to_le16((u16)req->req_id);
1320 
1321 	return 0;
1322 }
1323 
1324 static int sec_skcipher_bd_fill_v3(struct sec_ctx *ctx, struct sec_req *req)
1325 {
1326 	struct sec_sqe3 *sec_sqe3 = &req->sec_sqe3;
1327 	struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
1328 	struct sec_cipher_req *c_req = &req->c_req;
1329 	u32 bd_param = 0;
1330 	u16 cipher;
1331 
1332 	memset(sec_sqe3, 0, sizeof(struct sec_sqe3));
1333 
1334 	sec_sqe3->c_key_addr = cpu_to_le64(c_ctx->c_key_dma);
1335 	sec_sqe3->no_scene.c_ivin_addr = cpu_to_le64(c_req->c_ivin_dma);
1336 	sec_sqe3->data_src_addr = cpu_to_le64(req->in_dma);
1337 	sec_sqe3->data_dst_addr = cpu_to_le64(c_req->c_out_dma);
1338 
1339 	sec_sqe3->c_mode_alg = ((u8)c_ctx->c_alg << SEC_CALG_OFFSET_V3) |
1340 						c_ctx->c_mode;
1341 	sec_sqe3->c_icv_key |= cpu_to_le16(((u16)c_ctx->c_key_len) <<
1342 						SEC_CKEY_OFFSET_V3);
1343 
1344 	if (c_req->encrypt)
1345 		cipher = SEC_CIPHER_ENC;
1346 	else
1347 		cipher = SEC_CIPHER_DEC;
1348 	sec_sqe3->c_icv_key |= cpu_to_le16(cipher);
1349 
1350 	/* Set the CTR counter mode is 128bit rollover */
1351 	sec_sqe3->auth_mac_key = cpu_to_le32((u32)SEC_CTR_CNT_ROLLOVER <<
1352 					SEC_CTR_CNT_OFFSET);
1353 
1354 	if (req->use_pbuf) {
1355 		bd_param |= SEC_PBUF << SEC_SRC_SGL_OFFSET_V3;
1356 		bd_param |= SEC_PBUF << SEC_DST_SGL_OFFSET_V3;
1357 	} else {
1358 		bd_param |= SEC_SGL << SEC_SRC_SGL_OFFSET_V3;
1359 		bd_param |= SEC_SGL << SEC_DST_SGL_OFFSET_V3;
1360 	}
1361 
1362 	bd_param |= SEC_COMM_SCENE << SEC_SCENE_OFFSET_V3;
1363 	if (req->in_dma != c_req->c_out_dma)
1364 		bd_param |= 0x1 << SEC_DE_OFFSET_V3;
1365 
1366 	bd_param |= SEC_BD_TYPE3;
1367 	sec_sqe3->bd_param = cpu_to_le32(bd_param);
1368 
1369 	sec_sqe3->c_len_ivin |= cpu_to_le32(c_req->c_len);
1370 	sec_sqe3->tag = cpu_to_le64((unsigned long)req);
1371 
1372 	return 0;
1373 }
1374 
1375 /* increment counter (128-bit int) */
1376 static void ctr_iv_inc(__u8 *counter, __u8 bits, __u32 nums)
1377 {
1378 	do {
1379 		--bits;
1380 		nums += counter[bits];
1381 		counter[bits] = nums & BITS_MASK;
1382 		nums >>= BYTE_BITS;
1383 	} while (bits && nums);
1384 }
1385 
1386 static void sec_update_iv(struct sec_req *req, enum sec_alg_type alg_type)
1387 {
1388 	struct aead_request *aead_req = req->aead_req.aead_req;
1389 	struct skcipher_request *sk_req = req->c_req.sk_req;
1390 	u32 iv_size = req->ctx->c_ctx.ivsize;
1391 	struct scatterlist *sgl;
1392 	unsigned int cryptlen;
1393 	size_t sz;
1394 	u8 *iv;
1395 
1396 	if (req->c_req.encrypt)
1397 		sgl = alg_type == SEC_SKCIPHER ? sk_req->dst : aead_req->dst;
1398 	else
1399 		sgl = alg_type == SEC_SKCIPHER ? sk_req->src : aead_req->src;
1400 
1401 	if (alg_type == SEC_SKCIPHER) {
1402 		iv = sk_req->iv;
1403 		cryptlen = sk_req->cryptlen;
1404 	} else {
1405 		iv = aead_req->iv;
1406 		cryptlen = aead_req->cryptlen;
1407 	}
1408 
1409 	if (req->ctx->c_ctx.c_mode == SEC_CMODE_CBC) {
1410 		sz = sg_pcopy_to_buffer(sgl, sg_nents(sgl), iv, iv_size,
1411 					cryptlen - iv_size);
1412 		if (unlikely(sz != iv_size))
1413 			dev_err(req->ctx->dev, "copy output iv error!\n");
1414 	} else {
1415 		sz = cryptlen / iv_size;
1416 		if (cryptlen % iv_size)
1417 			sz += 1;
1418 		ctr_iv_inc(iv, iv_size, sz);
1419 	}
1420 }
1421 
1422 static struct sec_req *sec_back_req_clear(struct sec_ctx *ctx,
1423 				struct sec_qp_ctx *qp_ctx)
1424 {
1425 	struct sec_req *backlog_req = NULL;
1426 
1427 	spin_lock_bh(&qp_ctx->req_lock);
1428 	if (ctx->fake_req_limit >=
1429 	    atomic_read(&qp_ctx->qp->qp_status.used) &&
1430 	    !list_empty(&qp_ctx->backlog)) {
1431 		backlog_req = list_first_entry(&qp_ctx->backlog,
1432 				typeof(*backlog_req), backlog_head);
1433 		list_del(&backlog_req->backlog_head);
1434 	}
1435 	spin_unlock_bh(&qp_ctx->req_lock);
1436 
1437 	return backlog_req;
1438 }
1439 
1440 static void sec_skcipher_callback(struct sec_ctx *ctx, struct sec_req *req,
1441 				  int err)
1442 {
1443 	struct skcipher_request *sk_req = req->c_req.sk_req;
1444 	struct sec_qp_ctx *qp_ctx = req->qp_ctx;
1445 	struct skcipher_request *backlog_sk_req;
1446 	struct sec_req *backlog_req;
1447 
1448 	sec_free_req_id(req);
1449 
1450 	/* IV output at encrypto of CBC/CTR mode */
1451 	if (!err && (ctx->c_ctx.c_mode == SEC_CMODE_CBC ||
1452 	    ctx->c_ctx.c_mode == SEC_CMODE_CTR) && req->c_req.encrypt)
1453 		sec_update_iv(req, SEC_SKCIPHER);
1454 
1455 	while (1) {
1456 		backlog_req = sec_back_req_clear(ctx, qp_ctx);
1457 		if (!backlog_req)
1458 			break;
1459 
1460 		backlog_sk_req = backlog_req->c_req.sk_req;
1461 		skcipher_request_complete(backlog_sk_req, -EINPROGRESS);
1462 		atomic64_inc(&ctx->sec->debug.dfx.recv_busy_cnt);
1463 	}
1464 
1465 	skcipher_request_complete(sk_req, err);
1466 }
1467 
1468 static void set_aead_auth_iv(struct sec_ctx *ctx, struct sec_req *req)
1469 {
1470 	struct aead_request *aead_req = req->aead_req.aead_req;
1471 	struct sec_cipher_req *c_req = &req->c_req;
1472 	struct sec_aead_req *a_req = &req->aead_req;
1473 	size_t authsize = ctx->a_ctx.mac_len;
1474 	u32 data_size = aead_req->cryptlen;
1475 	u8 flage = 0;
1476 	u8 cm, cl;
1477 
1478 	/* the specification has been checked in aead_iv_demension_check() */
1479 	cl = c_req->c_ivin[0] + 1;
1480 	c_req->c_ivin[ctx->c_ctx.ivsize - cl] = 0x00;
1481 	memset(&c_req->c_ivin[ctx->c_ctx.ivsize - cl], 0, cl);
1482 	c_req->c_ivin[ctx->c_ctx.ivsize - IV_LAST_BYTE1] = IV_CTR_INIT;
1483 
1484 	/* the last 3bit is L' */
1485 	flage |= c_req->c_ivin[0] & IV_CL_MASK;
1486 
1487 	/* the M' is bit3~bit5, the Flags is bit6 */
1488 	cm = (authsize - IV_CM_CAL_NUM) / IV_CM_CAL_NUM;
1489 	flage |= cm << IV_CM_OFFSET;
1490 	if (aead_req->assoclen)
1491 		flage |= 0x01 << IV_FLAGS_OFFSET;
1492 
1493 	memcpy(a_req->a_ivin, c_req->c_ivin, ctx->c_ctx.ivsize);
1494 	a_req->a_ivin[0] = flage;
1495 
1496 	/*
1497 	 * the last 32bit is counter's initial number,
1498 	 * but the nonce uses the first 16bit
1499 	 * the tail 16bit fill with the cipher length
1500 	 */
1501 	if (!c_req->encrypt)
1502 		data_size = aead_req->cryptlen - authsize;
1503 
1504 	a_req->a_ivin[ctx->c_ctx.ivsize - IV_LAST_BYTE1] =
1505 			data_size & IV_LAST_BYTE_MASK;
1506 	data_size >>= IV_BYTE_OFFSET;
1507 	a_req->a_ivin[ctx->c_ctx.ivsize - IV_LAST_BYTE2] =
1508 			data_size & IV_LAST_BYTE_MASK;
1509 }
1510 
1511 static void sec_aead_set_iv(struct sec_ctx *ctx, struct sec_req *req)
1512 {
1513 	struct aead_request *aead_req = req->aead_req.aead_req;
1514 	struct crypto_aead *tfm = crypto_aead_reqtfm(aead_req);
1515 	size_t authsize = crypto_aead_authsize(tfm);
1516 	struct sec_cipher_req *c_req = &req->c_req;
1517 	struct sec_aead_req *a_req = &req->aead_req;
1518 
1519 	memcpy(c_req->c_ivin, aead_req->iv, ctx->c_ctx.ivsize);
1520 
1521 	if (ctx->c_ctx.c_mode == SEC_CMODE_CCM) {
1522 		/*
1523 		 * CCM 16Byte Cipher_IV: {1B_Flage,13B_IV,2B_counter},
1524 		 * the  counter must set to 0x01
1525 		 */
1526 		ctx->a_ctx.mac_len = authsize;
1527 		/* CCM 16Byte Auth_IV: {1B_AFlage,13B_IV,2B_Ptext_length} */
1528 		set_aead_auth_iv(ctx, req);
1529 	}
1530 
1531 	/* GCM 12Byte Cipher_IV == Auth_IV */
1532 	if (ctx->c_ctx.c_mode == SEC_CMODE_GCM) {
1533 		ctx->a_ctx.mac_len = authsize;
1534 		memcpy(a_req->a_ivin, c_req->c_ivin, SEC_AIV_SIZE);
1535 	}
1536 }
1537 
1538 static void sec_auth_bd_fill_xcm(struct sec_auth_ctx *ctx, int dir,
1539 				 struct sec_req *req, struct sec_sqe *sec_sqe)
1540 {
1541 	struct sec_aead_req *a_req = &req->aead_req;
1542 	struct aead_request *aq = a_req->aead_req;
1543 
1544 	/* C_ICV_Len is MAC size, 0x4 ~ 0x10 */
1545 	sec_sqe->type2.icvw_kmode |= cpu_to_le16((u16)ctx->mac_len);
1546 
1547 	/* mode set to CCM/GCM, don't set {A_Alg, AKey_Len, MAC_Len} */
1548 	sec_sqe->type2.a_key_addr = sec_sqe->type2.c_key_addr;
1549 	sec_sqe->type2.a_ivin_addr = cpu_to_le64(a_req->a_ivin_dma);
1550 	sec_sqe->type_cipher_auth |= SEC_NO_AUTH << SEC_AUTH_OFFSET;
1551 
1552 	if (dir)
1553 		sec_sqe->sds_sa_type &= SEC_CIPHER_AUTH;
1554 	else
1555 		sec_sqe->sds_sa_type |= SEC_AUTH_CIPHER;
1556 
1557 	sec_sqe->type2.alen_ivllen = cpu_to_le32(aq->assoclen);
1558 	sec_sqe->type2.auth_src_offset = cpu_to_le16(0x0);
1559 	sec_sqe->type2.cipher_src_offset = cpu_to_le16((u16)aq->assoclen);
1560 
1561 	sec_sqe->type2.mac_addr = cpu_to_le64(a_req->out_mac_dma);
1562 }
1563 
1564 static void sec_auth_bd_fill_xcm_v3(struct sec_auth_ctx *ctx, int dir,
1565 				    struct sec_req *req, struct sec_sqe3 *sqe3)
1566 {
1567 	struct sec_aead_req *a_req = &req->aead_req;
1568 	struct aead_request *aq = a_req->aead_req;
1569 
1570 	/* C_ICV_Len is MAC size, 0x4 ~ 0x10 */
1571 	sqe3->c_icv_key |= cpu_to_le16((u16)ctx->mac_len << SEC_MAC_OFFSET_V3);
1572 
1573 	/* mode set to CCM/GCM, don't set {A_Alg, AKey_Len, MAC_Len} */
1574 	sqe3->a_key_addr = sqe3->c_key_addr;
1575 	sqe3->auth_ivin.a_ivin_addr = cpu_to_le64(a_req->a_ivin_dma);
1576 	sqe3->auth_mac_key |= SEC_NO_AUTH;
1577 
1578 	if (dir)
1579 		sqe3->huk_iv_seq &= SEC_CIPHER_AUTH_V3;
1580 	else
1581 		sqe3->huk_iv_seq |= SEC_AUTH_CIPHER_V3;
1582 
1583 	sqe3->a_len_key = cpu_to_le32(aq->assoclen);
1584 	sqe3->auth_src_offset = cpu_to_le16(0x0);
1585 	sqe3->cipher_src_offset = cpu_to_le16((u16)aq->assoclen);
1586 	sqe3->mac_addr = cpu_to_le64(a_req->out_mac_dma);
1587 }
1588 
1589 static void sec_auth_bd_fill_ex(struct sec_auth_ctx *ctx, int dir,
1590 			       struct sec_req *req, struct sec_sqe *sec_sqe)
1591 {
1592 	struct sec_aead_req *a_req = &req->aead_req;
1593 	struct sec_cipher_req *c_req = &req->c_req;
1594 	struct aead_request *aq = a_req->aead_req;
1595 
1596 	sec_sqe->type2.a_key_addr = cpu_to_le64(ctx->a_key_dma);
1597 
1598 	sec_sqe->type2.mac_key_alg =
1599 			cpu_to_le32(ctx->mac_len / SEC_SQE_LEN_RATE);
1600 
1601 	sec_sqe->type2.mac_key_alg |=
1602 			cpu_to_le32((u32)((ctx->a_key_len) /
1603 			SEC_SQE_LEN_RATE) << SEC_AKEY_OFFSET);
1604 
1605 	sec_sqe->type2.mac_key_alg |=
1606 			cpu_to_le32((u32)(ctx->a_alg) << SEC_AEAD_ALG_OFFSET);
1607 
1608 	if (dir) {
1609 		sec_sqe->type_cipher_auth |= SEC_AUTH_TYPE1 << SEC_AUTH_OFFSET;
1610 		sec_sqe->sds_sa_type &= SEC_CIPHER_AUTH;
1611 	} else {
1612 		sec_sqe->type_cipher_auth |= SEC_AUTH_TYPE2 << SEC_AUTH_OFFSET;
1613 		sec_sqe->sds_sa_type |= SEC_AUTH_CIPHER;
1614 	}
1615 	sec_sqe->type2.alen_ivllen = cpu_to_le32(c_req->c_len + aq->assoclen);
1616 
1617 	sec_sqe->type2.cipher_src_offset = cpu_to_le16((u16)aq->assoclen);
1618 
1619 	sec_sqe->type2.mac_addr = cpu_to_le64(a_req->out_mac_dma);
1620 }
1621 
1622 static int sec_aead_bd_fill(struct sec_ctx *ctx, struct sec_req *req)
1623 {
1624 	struct sec_auth_ctx *auth_ctx = &ctx->a_ctx;
1625 	struct sec_sqe *sec_sqe = &req->sec_sqe;
1626 	int ret;
1627 
1628 	ret = sec_skcipher_bd_fill(ctx, req);
1629 	if (unlikely(ret)) {
1630 		dev_err(ctx->dev, "skcipher bd fill is error!\n");
1631 		return ret;
1632 	}
1633 
1634 	if (ctx->c_ctx.c_mode == SEC_CMODE_CCM ||
1635 	    ctx->c_ctx.c_mode == SEC_CMODE_GCM)
1636 		sec_auth_bd_fill_xcm(auth_ctx, req->c_req.encrypt, req, sec_sqe);
1637 	else
1638 		sec_auth_bd_fill_ex(auth_ctx, req->c_req.encrypt, req, sec_sqe);
1639 
1640 	return 0;
1641 }
1642 
1643 static void sec_auth_bd_fill_ex_v3(struct sec_auth_ctx *ctx, int dir,
1644 				   struct sec_req *req, struct sec_sqe3 *sqe3)
1645 {
1646 	struct sec_aead_req *a_req = &req->aead_req;
1647 	struct sec_cipher_req *c_req = &req->c_req;
1648 	struct aead_request *aq = a_req->aead_req;
1649 
1650 	sqe3->a_key_addr = cpu_to_le64(ctx->a_key_dma);
1651 
1652 	sqe3->auth_mac_key |=
1653 			cpu_to_le32((u32)(ctx->mac_len /
1654 			SEC_SQE_LEN_RATE) << SEC_MAC_OFFSET_V3);
1655 
1656 	sqe3->auth_mac_key |=
1657 			cpu_to_le32((u32)(ctx->a_key_len /
1658 			SEC_SQE_LEN_RATE) << SEC_AKEY_OFFSET_V3);
1659 
1660 	sqe3->auth_mac_key |=
1661 			cpu_to_le32((u32)(ctx->a_alg) << SEC_AUTH_ALG_OFFSET_V3);
1662 
1663 	if (dir) {
1664 		sqe3->auth_mac_key |= cpu_to_le32((u32)SEC_AUTH_TYPE1);
1665 		sqe3->huk_iv_seq &= SEC_CIPHER_AUTH_V3;
1666 	} else {
1667 		sqe3->auth_mac_key |= cpu_to_le32((u32)SEC_AUTH_TYPE2);
1668 		sqe3->huk_iv_seq |= SEC_AUTH_CIPHER_V3;
1669 	}
1670 	sqe3->a_len_key = cpu_to_le32(c_req->c_len + aq->assoclen);
1671 
1672 	sqe3->cipher_src_offset = cpu_to_le16((u16)aq->assoclen);
1673 
1674 	sqe3->mac_addr = cpu_to_le64(a_req->out_mac_dma);
1675 }
1676 
1677 static int sec_aead_bd_fill_v3(struct sec_ctx *ctx, struct sec_req *req)
1678 {
1679 	struct sec_auth_ctx *auth_ctx = &ctx->a_ctx;
1680 	struct sec_sqe3 *sec_sqe3 = &req->sec_sqe3;
1681 	int ret;
1682 
1683 	ret = sec_skcipher_bd_fill_v3(ctx, req);
1684 	if (unlikely(ret)) {
1685 		dev_err(ctx->dev, "skcipher bd3 fill is error!\n");
1686 		return ret;
1687 	}
1688 
1689 	if (ctx->c_ctx.c_mode == SEC_CMODE_CCM ||
1690 	    ctx->c_ctx.c_mode == SEC_CMODE_GCM)
1691 		sec_auth_bd_fill_xcm_v3(auth_ctx, req->c_req.encrypt,
1692 					req, sec_sqe3);
1693 	else
1694 		sec_auth_bd_fill_ex_v3(auth_ctx, req->c_req.encrypt,
1695 				       req, sec_sqe3);
1696 
1697 	return 0;
1698 }
1699 
1700 static void sec_aead_callback(struct sec_ctx *c, struct sec_req *req, int err)
1701 {
1702 	struct aead_request *a_req = req->aead_req.aead_req;
1703 	struct crypto_aead *tfm = crypto_aead_reqtfm(a_req);
1704 	struct sec_aead_req *aead_req = &req->aead_req;
1705 	struct sec_cipher_req *c_req = &req->c_req;
1706 	size_t authsize = crypto_aead_authsize(tfm);
1707 	struct sec_qp_ctx *qp_ctx = req->qp_ctx;
1708 	struct aead_request *backlog_aead_req;
1709 	struct sec_req *backlog_req;
1710 	size_t sz;
1711 
1712 	if (!err && c->c_ctx.c_mode == SEC_CMODE_CBC && c_req->encrypt)
1713 		sec_update_iv(req, SEC_AEAD);
1714 
1715 	/* Copy output mac */
1716 	if (!err && c_req->encrypt) {
1717 		struct scatterlist *sgl = a_req->dst;
1718 
1719 		sz = sg_pcopy_from_buffer(sgl, sg_nents(sgl),
1720 					  aead_req->out_mac,
1721 					  authsize, a_req->cryptlen +
1722 					  a_req->assoclen);
1723 		if (unlikely(sz != authsize)) {
1724 			dev_err(c->dev, "copy out mac err!\n");
1725 			err = -EINVAL;
1726 		}
1727 	}
1728 
1729 	sec_free_req_id(req);
1730 
1731 	while (1) {
1732 		backlog_req = sec_back_req_clear(c, qp_ctx);
1733 		if (!backlog_req)
1734 			break;
1735 
1736 		backlog_aead_req = backlog_req->aead_req.aead_req;
1737 		aead_request_complete(backlog_aead_req, -EINPROGRESS);
1738 		atomic64_inc(&c->sec->debug.dfx.recv_busy_cnt);
1739 	}
1740 
1741 	aead_request_complete(a_req, err);
1742 }
1743 
1744 static void sec_request_uninit(struct sec_ctx *ctx, struct sec_req *req)
1745 {
1746 	sec_free_req_id(req);
1747 	sec_free_queue_id(ctx, req);
1748 }
1749 
1750 static int sec_request_init(struct sec_ctx *ctx, struct sec_req *req)
1751 {
1752 	struct sec_qp_ctx *qp_ctx;
1753 	int queue_id;
1754 
1755 	/* To load balance */
1756 	queue_id = sec_alloc_queue_id(ctx, req);
1757 	qp_ctx = &ctx->qp_ctx[queue_id];
1758 
1759 	req->req_id = sec_alloc_req_id(req, qp_ctx);
1760 	if (unlikely(req->req_id < 0)) {
1761 		sec_free_queue_id(ctx, req);
1762 		return req->req_id;
1763 	}
1764 
1765 	return 0;
1766 }
1767 
1768 static int sec_process(struct sec_ctx *ctx, struct sec_req *req)
1769 {
1770 	struct sec_cipher_req *c_req = &req->c_req;
1771 	int ret;
1772 
1773 	ret = sec_request_init(ctx, req);
1774 	if (unlikely(ret))
1775 		return ret;
1776 
1777 	ret = sec_request_transfer(ctx, req);
1778 	if (unlikely(ret))
1779 		goto err_uninit_req;
1780 
1781 	/* Output IV as decrypto */
1782 	if (!req->c_req.encrypt && (ctx->c_ctx.c_mode == SEC_CMODE_CBC ||
1783 	    ctx->c_ctx.c_mode == SEC_CMODE_CTR))
1784 		sec_update_iv(req, ctx->alg_type);
1785 
1786 	ret = ctx->req_op->bd_send(ctx, req);
1787 	if (unlikely((ret != -EBUSY && ret != -EINPROGRESS) ||
1788 		(ret == -EBUSY && !(req->flag & CRYPTO_TFM_REQ_MAY_BACKLOG)))) {
1789 		dev_err_ratelimited(ctx->dev, "send sec request failed!\n");
1790 		goto err_send_req;
1791 	}
1792 
1793 	return ret;
1794 
1795 err_send_req:
1796 	/* As failing, restore the IV from user */
1797 	if (ctx->c_ctx.c_mode == SEC_CMODE_CBC && !req->c_req.encrypt) {
1798 		if (ctx->alg_type == SEC_SKCIPHER)
1799 			memcpy(req->c_req.sk_req->iv, c_req->c_ivin,
1800 			       ctx->c_ctx.ivsize);
1801 		else
1802 			memcpy(req->aead_req.aead_req->iv, c_req->c_ivin,
1803 			       ctx->c_ctx.ivsize);
1804 	}
1805 
1806 	sec_request_untransfer(ctx, req);
1807 err_uninit_req:
1808 	sec_request_uninit(ctx, req);
1809 	return ret;
1810 }
1811 
1812 static const struct sec_req_op sec_skcipher_req_ops = {
1813 	.buf_map	= sec_skcipher_sgl_map,
1814 	.buf_unmap	= sec_skcipher_sgl_unmap,
1815 	.do_transfer	= sec_skcipher_copy_iv,
1816 	.bd_fill	= sec_skcipher_bd_fill,
1817 	.bd_send	= sec_bd_send,
1818 	.callback	= sec_skcipher_callback,
1819 	.process	= sec_process,
1820 };
1821 
1822 static const struct sec_req_op sec_aead_req_ops = {
1823 	.buf_map	= sec_aead_sgl_map,
1824 	.buf_unmap	= sec_aead_sgl_unmap,
1825 	.do_transfer	= sec_aead_set_iv,
1826 	.bd_fill	= sec_aead_bd_fill,
1827 	.bd_send	= sec_bd_send,
1828 	.callback	= sec_aead_callback,
1829 	.process	= sec_process,
1830 };
1831 
1832 static const struct sec_req_op sec_skcipher_req_ops_v3 = {
1833 	.buf_map	= sec_skcipher_sgl_map,
1834 	.buf_unmap	= sec_skcipher_sgl_unmap,
1835 	.do_transfer	= sec_skcipher_copy_iv,
1836 	.bd_fill	= sec_skcipher_bd_fill_v3,
1837 	.bd_send	= sec_bd_send,
1838 	.callback	= sec_skcipher_callback,
1839 	.process	= sec_process,
1840 };
1841 
1842 static const struct sec_req_op sec_aead_req_ops_v3 = {
1843 	.buf_map	= sec_aead_sgl_map,
1844 	.buf_unmap	= sec_aead_sgl_unmap,
1845 	.do_transfer	= sec_aead_set_iv,
1846 	.bd_fill	= sec_aead_bd_fill_v3,
1847 	.bd_send	= sec_bd_send,
1848 	.callback	= sec_aead_callback,
1849 	.process	= sec_process,
1850 };
1851 
1852 static int sec_skcipher_ctx_init(struct crypto_skcipher *tfm)
1853 {
1854 	struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
1855 	int ret;
1856 
1857 	ret = sec_skcipher_init(tfm);
1858 	if (ret)
1859 		return ret;
1860 
1861 	if (ctx->sec->qm.ver < QM_HW_V3) {
1862 		ctx->type_supported = SEC_BD_TYPE2;
1863 		ctx->req_op = &sec_skcipher_req_ops;
1864 	} else {
1865 		ctx->type_supported = SEC_BD_TYPE3;
1866 		ctx->req_op = &sec_skcipher_req_ops_v3;
1867 	}
1868 
1869 	return ret;
1870 }
1871 
1872 static void sec_skcipher_ctx_exit(struct crypto_skcipher *tfm)
1873 {
1874 	sec_skcipher_uninit(tfm);
1875 }
1876 
1877 static int sec_aead_init(struct crypto_aead *tfm)
1878 {
1879 	struct sec_ctx *ctx = crypto_aead_ctx(tfm);
1880 	int ret;
1881 
1882 	crypto_aead_set_reqsize(tfm, sizeof(struct sec_req));
1883 	ctx->alg_type = SEC_AEAD;
1884 	ctx->c_ctx.ivsize = crypto_aead_ivsize(tfm);
1885 	if (ctx->c_ctx.ivsize < SEC_AIV_SIZE ||
1886 	    ctx->c_ctx.ivsize > SEC_IV_SIZE) {
1887 		pr_err("get error aead iv size!\n");
1888 		return -EINVAL;
1889 	}
1890 
1891 	ret = sec_ctx_base_init(ctx);
1892 	if (ret)
1893 		return ret;
1894 	if (ctx->sec->qm.ver < QM_HW_V3) {
1895 		ctx->type_supported = SEC_BD_TYPE2;
1896 		ctx->req_op = &sec_aead_req_ops;
1897 	} else {
1898 		ctx->type_supported = SEC_BD_TYPE3;
1899 		ctx->req_op = &sec_aead_req_ops_v3;
1900 	}
1901 
1902 	ret = sec_auth_init(ctx);
1903 	if (ret)
1904 		goto err_auth_init;
1905 
1906 	ret = sec_cipher_init(ctx);
1907 	if (ret)
1908 		goto err_cipher_init;
1909 
1910 	return ret;
1911 
1912 err_cipher_init:
1913 	sec_auth_uninit(ctx);
1914 err_auth_init:
1915 	sec_ctx_base_uninit(ctx);
1916 	return ret;
1917 }
1918 
1919 static void sec_aead_exit(struct crypto_aead *tfm)
1920 {
1921 	struct sec_ctx *ctx = crypto_aead_ctx(tfm);
1922 
1923 	sec_cipher_uninit(ctx);
1924 	sec_auth_uninit(ctx);
1925 	sec_ctx_base_uninit(ctx);
1926 }
1927 
1928 static int sec_aead_ctx_init(struct crypto_aead *tfm, const char *hash_name)
1929 {
1930 	struct sec_ctx *ctx = crypto_aead_ctx(tfm);
1931 	struct sec_auth_ctx *auth_ctx = &ctx->a_ctx;
1932 	int ret;
1933 
1934 	ret = sec_aead_init(tfm);
1935 	if (ret) {
1936 		pr_err("hisi_sec2: aead init error!\n");
1937 		return ret;
1938 	}
1939 
1940 	auth_ctx->hash_tfm = crypto_alloc_shash(hash_name, 0, 0);
1941 	if (IS_ERR(auth_ctx->hash_tfm)) {
1942 		dev_err(ctx->dev, "aead alloc shash error!\n");
1943 		sec_aead_exit(tfm);
1944 		return PTR_ERR(auth_ctx->hash_tfm);
1945 	}
1946 
1947 	return 0;
1948 }
1949 
1950 static void sec_aead_ctx_exit(struct crypto_aead *tfm)
1951 {
1952 	struct sec_ctx *ctx = crypto_aead_ctx(tfm);
1953 
1954 	crypto_free_shash(ctx->a_ctx.hash_tfm);
1955 	sec_aead_exit(tfm);
1956 }
1957 
1958 static int sec_aead_xcm_ctx_init(struct crypto_aead *tfm)
1959 {
1960 	struct aead_alg *alg = crypto_aead_alg(tfm);
1961 	struct sec_ctx *ctx = crypto_aead_ctx(tfm);
1962 	struct sec_auth_ctx *a_ctx = &ctx->a_ctx;
1963 	const char *aead_name = alg->base.cra_name;
1964 	int ret;
1965 
1966 	ret = sec_aead_init(tfm);
1967 	if (ret) {
1968 		dev_err(ctx->dev, "hisi_sec2: aead xcm init error!\n");
1969 		return ret;
1970 	}
1971 
1972 	a_ctx->fallback_aead_tfm = crypto_alloc_aead(aead_name, 0,
1973 						     CRYPTO_ALG_NEED_FALLBACK |
1974 						     CRYPTO_ALG_ASYNC);
1975 	if (IS_ERR(a_ctx->fallback_aead_tfm)) {
1976 		dev_err(ctx->dev, "aead driver alloc fallback tfm error!\n");
1977 		sec_aead_exit(tfm);
1978 		return PTR_ERR(a_ctx->fallback_aead_tfm);
1979 	}
1980 	a_ctx->fallback = false;
1981 
1982 	return 0;
1983 }
1984 
1985 static void sec_aead_xcm_ctx_exit(struct crypto_aead *tfm)
1986 {
1987 	struct sec_ctx *ctx = crypto_aead_ctx(tfm);
1988 
1989 	crypto_free_aead(ctx->a_ctx.fallback_aead_tfm);
1990 	sec_aead_exit(tfm);
1991 }
1992 
1993 static int sec_aead_sha1_ctx_init(struct crypto_aead *tfm)
1994 {
1995 	return sec_aead_ctx_init(tfm, "sha1");
1996 }
1997 
1998 static int sec_aead_sha256_ctx_init(struct crypto_aead *tfm)
1999 {
2000 	return sec_aead_ctx_init(tfm, "sha256");
2001 }
2002 
2003 static int sec_aead_sha512_ctx_init(struct crypto_aead *tfm)
2004 {
2005 	return sec_aead_ctx_init(tfm, "sha512");
2006 }
2007 
2008 static int sec_skcipher_cryptlen_check(struct sec_ctx *ctx,
2009 	struct sec_req *sreq)
2010 {
2011 	u32 cryptlen = sreq->c_req.sk_req->cryptlen;
2012 	struct device *dev = ctx->dev;
2013 	u8 c_mode = ctx->c_ctx.c_mode;
2014 	int ret = 0;
2015 
2016 	switch (c_mode) {
2017 	case SEC_CMODE_XTS:
2018 		if (unlikely(cryptlen < AES_BLOCK_SIZE)) {
2019 			dev_err(dev, "skcipher XTS mode input length error!\n");
2020 			ret = -EINVAL;
2021 		}
2022 		break;
2023 	case SEC_CMODE_ECB:
2024 	case SEC_CMODE_CBC:
2025 		if (unlikely(cryptlen & (AES_BLOCK_SIZE - 1))) {
2026 			dev_err(dev, "skcipher AES input length error!\n");
2027 			ret = -EINVAL;
2028 		}
2029 		break;
2030 	case SEC_CMODE_CTR:
2031 		if (unlikely(ctx->sec->qm.ver < QM_HW_V3)) {
2032 			dev_err(dev, "skcipher HW version error!\n");
2033 			ret = -EINVAL;
2034 		}
2035 		break;
2036 	default:
2037 		ret = -EINVAL;
2038 	}
2039 
2040 	return ret;
2041 }
2042 
2043 static int sec_skcipher_param_check(struct sec_ctx *ctx, struct sec_req *sreq)
2044 {
2045 	struct skcipher_request *sk_req = sreq->c_req.sk_req;
2046 	struct device *dev = ctx->dev;
2047 	u8 c_alg = ctx->c_ctx.c_alg;
2048 
2049 	if (unlikely(!sk_req->src || !sk_req->dst ||
2050 		     sk_req->cryptlen > MAX_INPUT_DATA_LEN)) {
2051 		dev_err(dev, "skcipher input param error!\n");
2052 		return -EINVAL;
2053 	}
2054 	sreq->c_req.c_len = sk_req->cryptlen;
2055 
2056 	if (ctx->pbuf_supported && sk_req->cryptlen <= SEC_PBUF_SZ)
2057 		sreq->use_pbuf = true;
2058 	else
2059 		sreq->use_pbuf = false;
2060 
2061 	if (c_alg == SEC_CALG_3DES) {
2062 		if (unlikely(sk_req->cryptlen & (DES3_EDE_BLOCK_SIZE - 1))) {
2063 			dev_err(dev, "skcipher 3des input length error!\n");
2064 			return -EINVAL;
2065 		}
2066 		return 0;
2067 	} else if (c_alg == SEC_CALG_AES || c_alg == SEC_CALG_SM4) {
2068 		return sec_skcipher_cryptlen_check(ctx, sreq);
2069 	}
2070 
2071 	dev_err(dev, "skcipher algorithm error!\n");
2072 
2073 	return -EINVAL;
2074 }
2075 
2076 static int sec_skcipher_soft_crypto(struct sec_ctx *ctx,
2077 				    struct skcipher_request *sreq, bool encrypt)
2078 {
2079 	struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
2080 	SYNC_SKCIPHER_REQUEST_ON_STACK(subreq, c_ctx->fbtfm);
2081 	struct device *dev = ctx->dev;
2082 	int ret;
2083 
2084 	if (!c_ctx->fbtfm) {
2085 		dev_err_ratelimited(dev, "the soft tfm isn't supported in the current system.\n");
2086 		return -EINVAL;
2087 	}
2088 
2089 	skcipher_request_set_sync_tfm(subreq, c_ctx->fbtfm);
2090 
2091 	/* software need sync mode to do crypto */
2092 	skcipher_request_set_callback(subreq, sreq->base.flags,
2093 				      NULL, NULL);
2094 	skcipher_request_set_crypt(subreq, sreq->src, sreq->dst,
2095 				   sreq->cryptlen, sreq->iv);
2096 	if (encrypt)
2097 		ret = crypto_skcipher_encrypt(subreq);
2098 	else
2099 		ret = crypto_skcipher_decrypt(subreq);
2100 
2101 	skcipher_request_zero(subreq);
2102 
2103 	return ret;
2104 }
2105 
2106 static int sec_skcipher_crypto(struct skcipher_request *sk_req, bool encrypt)
2107 {
2108 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(sk_req);
2109 	struct sec_req *req = skcipher_request_ctx(sk_req);
2110 	struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
2111 	int ret;
2112 
2113 	if (!sk_req->cryptlen) {
2114 		if (ctx->c_ctx.c_mode == SEC_CMODE_XTS)
2115 			return -EINVAL;
2116 		return 0;
2117 	}
2118 
2119 	req->flag = sk_req->base.flags;
2120 	req->c_req.sk_req = sk_req;
2121 	req->c_req.encrypt = encrypt;
2122 	req->ctx = ctx;
2123 
2124 	ret = sec_skcipher_param_check(ctx, req);
2125 	if (unlikely(ret))
2126 		return -EINVAL;
2127 
2128 	if (unlikely(ctx->c_ctx.fallback))
2129 		return sec_skcipher_soft_crypto(ctx, sk_req, encrypt);
2130 
2131 	return ctx->req_op->process(ctx, req);
2132 }
2133 
2134 static int sec_skcipher_encrypt(struct skcipher_request *sk_req)
2135 {
2136 	return sec_skcipher_crypto(sk_req, true);
2137 }
2138 
2139 static int sec_skcipher_decrypt(struct skcipher_request *sk_req)
2140 {
2141 	return sec_skcipher_crypto(sk_req, false);
2142 }
2143 
2144 #define SEC_SKCIPHER_ALG(sec_cra_name, sec_set_key, \
2145 	sec_min_key_size, sec_max_key_size, blk_size, iv_size)\
2146 {\
2147 	.base = {\
2148 		.cra_name = sec_cra_name,\
2149 		.cra_driver_name = "hisi_sec_"sec_cra_name,\
2150 		.cra_priority = SEC_PRIORITY,\
2151 		.cra_flags = CRYPTO_ALG_ASYNC |\
2152 		 CRYPTO_ALG_NEED_FALLBACK,\
2153 		.cra_blocksize = blk_size,\
2154 		.cra_ctxsize = sizeof(struct sec_ctx),\
2155 		.cra_module = THIS_MODULE,\
2156 	},\
2157 	.init = sec_skcipher_ctx_init,\
2158 	.exit = sec_skcipher_ctx_exit,\
2159 	.setkey = sec_set_key,\
2160 	.decrypt = sec_skcipher_decrypt,\
2161 	.encrypt = sec_skcipher_encrypt,\
2162 	.min_keysize = sec_min_key_size,\
2163 	.max_keysize = sec_max_key_size,\
2164 	.ivsize = iv_size,\
2165 }
2166 
2167 static struct sec_skcipher sec_skciphers[] = {
2168 	{
2169 		.alg_msk = BIT(0),
2170 		.alg = SEC_SKCIPHER_ALG("ecb(aes)", sec_setkey_aes_ecb, AES_MIN_KEY_SIZE,
2171 					AES_MAX_KEY_SIZE, AES_BLOCK_SIZE, 0),
2172 	},
2173 	{
2174 		.alg_msk = BIT(1),
2175 		.alg = SEC_SKCIPHER_ALG("cbc(aes)", sec_setkey_aes_cbc, AES_MIN_KEY_SIZE,
2176 					AES_MAX_KEY_SIZE, AES_BLOCK_SIZE, AES_BLOCK_SIZE),
2177 	},
2178 	{
2179 		.alg_msk = BIT(2),
2180 		.alg = SEC_SKCIPHER_ALG("ctr(aes)", sec_setkey_aes_ctr,	AES_MIN_KEY_SIZE,
2181 					AES_MAX_KEY_SIZE, SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE),
2182 	},
2183 	{
2184 		.alg_msk = BIT(3),
2185 		.alg = SEC_SKCIPHER_ALG("xts(aes)", sec_setkey_aes_xts,	SEC_XTS_MIN_KEY_SIZE,
2186 					SEC_XTS_MAX_KEY_SIZE, AES_BLOCK_SIZE, AES_BLOCK_SIZE),
2187 	},
2188 	{
2189 		.alg_msk = BIT(12),
2190 		.alg = SEC_SKCIPHER_ALG("cbc(sm4)", sec_setkey_sm4_cbc,	AES_MIN_KEY_SIZE,
2191 					AES_MIN_KEY_SIZE, AES_BLOCK_SIZE, AES_BLOCK_SIZE),
2192 	},
2193 	{
2194 		.alg_msk = BIT(13),
2195 		.alg = SEC_SKCIPHER_ALG("ctr(sm4)", sec_setkey_sm4_ctr, AES_MIN_KEY_SIZE,
2196 					AES_MIN_KEY_SIZE, SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE),
2197 	},
2198 	{
2199 		.alg_msk = BIT(14),
2200 		.alg = SEC_SKCIPHER_ALG("xts(sm4)", sec_setkey_sm4_xts,	SEC_XTS_MIN_KEY_SIZE,
2201 					SEC_XTS_MIN_KEY_SIZE, AES_BLOCK_SIZE, AES_BLOCK_SIZE),
2202 	},
2203 	{
2204 		.alg_msk = BIT(23),
2205 		.alg = SEC_SKCIPHER_ALG("ecb(des3_ede)", sec_setkey_3des_ecb, SEC_DES3_3KEY_SIZE,
2206 					SEC_DES3_3KEY_SIZE, DES3_EDE_BLOCK_SIZE, 0),
2207 	},
2208 	{
2209 		.alg_msk = BIT(24),
2210 		.alg = SEC_SKCIPHER_ALG("cbc(des3_ede)", sec_setkey_3des_cbc, SEC_DES3_3KEY_SIZE,
2211 					SEC_DES3_3KEY_SIZE, DES3_EDE_BLOCK_SIZE,
2212 					DES3_EDE_BLOCK_SIZE),
2213 	},
2214 };
2215 
2216 static int aead_iv_demension_check(struct aead_request *aead_req)
2217 {
2218 	u8 cl;
2219 
2220 	cl = aead_req->iv[0] + 1;
2221 	if (cl < IV_CL_MIN || cl > IV_CL_MAX)
2222 		return -EINVAL;
2223 
2224 	if (cl < IV_CL_MID && aead_req->cryptlen >> (BYTE_BITS * cl))
2225 		return -EOVERFLOW;
2226 
2227 	return 0;
2228 }
2229 
2230 static int sec_aead_spec_check(struct sec_ctx *ctx, struct sec_req *sreq)
2231 {
2232 	struct aead_request *req = sreq->aead_req.aead_req;
2233 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
2234 	size_t authsize = crypto_aead_authsize(tfm);
2235 	u8 c_mode = ctx->c_ctx.c_mode;
2236 	struct device *dev = ctx->dev;
2237 	int ret;
2238 
2239 	if (unlikely(req->cryptlen + req->assoclen > MAX_INPUT_DATA_LEN ||
2240 	    req->assoclen > SEC_MAX_AAD_LEN)) {
2241 		dev_err(dev, "aead input spec error!\n");
2242 		return -EINVAL;
2243 	}
2244 
2245 	if (unlikely((c_mode == SEC_CMODE_GCM && authsize < DES_BLOCK_SIZE) ||
2246 	   (c_mode == SEC_CMODE_CCM && (authsize < MIN_MAC_LEN ||
2247 		authsize & MAC_LEN_MASK)))) {
2248 		dev_err(dev, "aead input mac length error!\n");
2249 		return -EINVAL;
2250 	}
2251 
2252 	if (c_mode == SEC_CMODE_CCM) {
2253 		if (unlikely(req->assoclen > SEC_MAX_CCM_AAD_LEN)) {
2254 			dev_err_ratelimited(dev, "CCM input aad parameter is too long!\n");
2255 			return -EINVAL;
2256 		}
2257 		ret = aead_iv_demension_check(req);
2258 		if (ret) {
2259 			dev_err(dev, "aead input iv param error!\n");
2260 			return ret;
2261 		}
2262 	}
2263 
2264 	if (sreq->c_req.encrypt)
2265 		sreq->c_req.c_len = req->cryptlen;
2266 	else
2267 		sreq->c_req.c_len = req->cryptlen - authsize;
2268 	if (c_mode == SEC_CMODE_CBC) {
2269 		if (unlikely(sreq->c_req.c_len & (AES_BLOCK_SIZE - 1))) {
2270 			dev_err(dev, "aead crypto length error!\n");
2271 			return -EINVAL;
2272 		}
2273 	}
2274 
2275 	return 0;
2276 }
2277 
2278 static int sec_aead_param_check(struct sec_ctx *ctx, struct sec_req *sreq)
2279 {
2280 	struct aead_request *req = sreq->aead_req.aead_req;
2281 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
2282 	size_t authsize = crypto_aead_authsize(tfm);
2283 	struct device *dev = ctx->dev;
2284 	u8 c_alg = ctx->c_ctx.c_alg;
2285 
2286 	if (unlikely(!req->src || !req->dst)) {
2287 		dev_err(dev, "aead input param error!\n");
2288 		return -EINVAL;
2289 	}
2290 
2291 	if (ctx->sec->qm.ver == QM_HW_V2) {
2292 		if (unlikely(!req->cryptlen || (!sreq->c_req.encrypt &&
2293 		    req->cryptlen <= authsize))) {
2294 			ctx->a_ctx.fallback = true;
2295 			return -EINVAL;
2296 		}
2297 	}
2298 
2299 	/* Support AES or SM4 */
2300 	if (unlikely(c_alg != SEC_CALG_AES && c_alg != SEC_CALG_SM4)) {
2301 		dev_err(dev, "aead crypto alg error!\n");
2302 		return -EINVAL;
2303 	}
2304 
2305 	if (unlikely(sec_aead_spec_check(ctx, sreq)))
2306 		return -EINVAL;
2307 
2308 	if (ctx->pbuf_supported && (req->cryptlen + req->assoclen) <=
2309 		SEC_PBUF_SZ)
2310 		sreq->use_pbuf = true;
2311 	else
2312 		sreq->use_pbuf = false;
2313 
2314 	return 0;
2315 }
2316 
2317 static int sec_aead_soft_crypto(struct sec_ctx *ctx,
2318 				struct aead_request *aead_req,
2319 				bool encrypt)
2320 {
2321 	struct sec_auth_ctx *a_ctx = &ctx->a_ctx;
2322 	struct device *dev = ctx->dev;
2323 	struct aead_request *subreq;
2324 	int ret;
2325 
2326 	/* Kunpeng920 aead mode not support input 0 size */
2327 	if (!a_ctx->fallback_aead_tfm) {
2328 		dev_err(dev, "aead fallback tfm is NULL!\n");
2329 		return -EINVAL;
2330 	}
2331 
2332 	subreq = aead_request_alloc(a_ctx->fallback_aead_tfm, GFP_KERNEL);
2333 	if (!subreq)
2334 		return -ENOMEM;
2335 
2336 	aead_request_set_tfm(subreq, a_ctx->fallback_aead_tfm);
2337 	aead_request_set_callback(subreq, aead_req->base.flags,
2338 				  aead_req->base.complete, aead_req->base.data);
2339 	aead_request_set_crypt(subreq, aead_req->src, aead_req->dst,
2340 			       aead_req->cryptlen, aead_req->iv);
2341 	aead_request_set_ad(subreq, aead_req->assoclen);
2342 
2343 	if (encrypt)
2344 		ret = crypto_aead_encrypt(subreq);
2345 	else
2346 		ret = crypto_aead_decrypt(subreq);
2347 	aead_request_free(subreq);
2348 
2349 	return ret;
2350 }
2351 
2352 static int sec_aead_crypto(struct aead_request *a_req, bool encrypt)
2353 {
2354 	struct crypto_aead *tfm = crypto_aead_reqtfm(a_req);
2355 	struct sec_req *req = aead_request_ctx(a_req);
2356 	struct sec_ctx *ctx = crypto_aead_ctx(tfm);
2357 	int ret;
2358 
2359 	req->flag = a_req->base.flags;
2360 	req->aead_req.aead_req = a_req;
2361 	req->c_req.encrypt = encrypt;
2362 	req->ctx = ctx;
2363 
2364 	ret = sec_aead_param_check(ctx, req);
2365 	if (unlikely(ret)) {
2366 		if (ctx->a_ctx.fallback)
2367 			return sec_aead_soft_crypto(ctx, a_req, encrypt);
2368 		return -EINVAL;
2369 	}
2370 
2371 	return ctx->req_op->process(ctx, req);
2372 }
2373 
2374 static int sec_aead_encrypt(struct aead_request *a_req)
2375 {
2376 	return sec_aead_crypto(a_req, true);
2377 }
2378 
2379 static int sec_aead_decrypt(struct aead_request *a_req)
2380 {
2381 	return sec_aead_crypto(a_req, false);
2382 }
2383 
2384 #define SEC_AEAD_ALG(sec_cra_name, sec_set_key, ctx_init,\
2385 			 ctx_exit, blk_size, iv_size, max_authsize)\
2386 {\
2387 	.base = {\
2388 		.cra_name = sec_cra_name,\
2389 		.cra_driver_name = "hisi_sec_"sec_cra_name,\
2390 		.cra_priority = SEC_PRIORITY,\
2391 		.cra_flags = CRYPTO_ALG_ASYNC |\
2392 		 CRYPTO_ALG_NEED_FALLBACK,\
2393 		.cra_blocksize = blk_size,\
2394 		.cra_ctxsize = sizeof(struct sec_ctx),\
2395 		.cra_module = THIS_MODULE,\
2396 	},\
2397 	.init = ctx_init,\
2398 	.exit = ctx_exit,\
2399 	.setkey = sec_set_key,\
2400 	.setauthsize = sec_aead_setauthsize,\
2401 	.decrypt = sec_aead_decrypt,\
2402 	.encrypt = sec_aead_encrypt,\
2403 	.ivsize = iv_size,\
2404 	.maxauthsize = max_authsize,\
2405 }
2406 
2407 static struct sec_aead sec_aeads[] = {
2408 	{
2409 		.alg_msk = BIT(6),
2410 		.alg = SEC_AEAD_ALG("ccm(aes)", sec_setkey_aes_ccm, sec_aead_xcm_ctx_init,
2411 				    sec_aead_xcm_ctx_exit, SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE,
2412 				    AES_BLOCK_SIZE),
2413 	},
2414 	{
2415 		.alg_msk = BIT(7),
2416 		.alg = SEC_AEAD_ALG("gcm(aes)", sec_setkey_aes_gcm, sec_aead_xcm_ctx_init,
2417 				    sec_aead_xcm_ctx_exit, SEC_MIN_BLOCK_SZ, SEC_AIV_SIZE,
2418 				    AES_BLOCK_SIZE),
2419 	},
2420 	{
2421 		.alg_msk = BIT(17),
2422 		.alg = SEC_AEAD_ALG("ccm(sm4)", sec_setkey_sm4_ccm, sec_aead_xcm_ctx_init,
2423 				    sec_aead_xcm_ctx_exit, SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE,
2424 				    AES_BLOCK_SIZE),
2425 	},
2426 	{
2427 		.alg_msk = BIT(18),
2428 		.alg = SEC_AEAD_ALG("gcm(sm4)", sec_setkey_sm4_gcm, sec_aead_xcm_ctx_init,
2429 				    sec_aead_xcm_ctx_exit, SEC_MIN_BLOCK_SZ, SEC_AIV_SIZE,
2430 				    AES_BLOCK_SIZE),
2431 	},
2432 	{
2433 		.alg_msk = BIT(43),
2434 		.alg = SEC_AEAD_ALG("authenc(hmac(sha1),cbc(aes))", sec_setkey_aes_cbc_sha1,
2435 				    sec_aead_sha1_ctx_init, sec_aead_ctx_exit, AES_BLOCK_SIZE,
2436 				    AES_BLOCK_SIZE, SHA1_DIGEST_SIZE),
2437 	},
2438 	{
2439 		.alg_msk = BIT(44),
2440 		.alg = SEC_AEAD_ALG("authenc(hmac(sha256),cbc(aes))", sec_setkey_aes_cbc_sha256,
2441 				    sec_aead_sha256_ctx_init, sec_aead_ctx_exit, AES_BLOCK_SIZE,
2442 				    AES_BLOCK_SIZE, SHA256_DIGEST_SIZE),
2443 	},
2444 	{
2445 		.alg_msk = BIT(45),
2446 		.alg = SEC_AEAD_ALG("authenc(hmac(sha512),cbc(aes))", sec_setkey_aes_cbc_sha512,
2447 				    sec_aead_sha512_ctx_init, sec_aead_ctx_exit, AES_BLOCK_SIZE,
2448 				    AES_BLOCK_SIZE, SHA512_DIGEST_SIZE),
2449 	},
2450 };
2451 
2452 static void sec_unregister_skcipher(u64 alg_mask, int end)
2453 {
2454 	int i;
2455 
2456 	for (i = 0; i < end; i++)
2457 		if (sec_skciphers[i].alg_msk & alg_mask)
2458 			crypto_unregister_skcipher(&sec_skciphers[i].alg);
2459 }
2460 
2461 static int sec_register_skcipher(u64 alg_mask)
2462 {
2463 	int i, ret, count;
2464 
2465 	count = ARRAY_SIZE(sec_skciphers);
2466 
2467 	for (i = 0; i < count; i++) {
2468 		if (!(sec_skciphers[i].alg_msk & alg_mask))
2469 			continue;
2470 
2471 		ret = crypto_register_skcipher(&sec_skciphers[i].alg);
2472 		if (ret)
2473 			goto err;
2474 	}
2475 
2476 	return 0;
2477 
2478 err:
2479 	sec_unregister_skcipher(alg_mask, i);
2480 
2481 	return ret;
2482 }
2483 
2484 static void sec_unregister_aead(u64 alg_mask, int end)
2485 {
2486 	int i;
2487 
2488 	for (i = 0; i < end; i++)
2489 		if (sec_aeads[i].alg_msk & alg_mask)
2490 			crypto_unregister_aead(&sec_aeads[i].alg);
2491 }
2492 
2493 static int sec_register_aead(u64 alg_mask)
2494 {
2495 	int i, ret, count;
2496 
2497 	count = ARRAY_SIZE(sec_aeads);
2498 
2499 	for (i = 0; i < count; i++) {
2500 		if (!(sec_aeads[i].alg_msk & alg_mask))
2501 			continue;
2502 
2503 		ret = crypto_register_aead(&sec_aeads[i].alg);
2504 		if (ret)
2505 			goto err;
2506 	}
2507 
2508 	return 0;
2509 
2510 err:
2511 	sec_unregister_aead(alg_mask, i);
2512 
2513 	return ret;
2514 }
2515 
2516 int sec_register_to_crypto(struct hisi_qm *qm)
2517 {
2518 	u64 alg_mask;
2519 	int ret = 0;
2520 
2521 	alg_mask = sec_get_alg_bitmap(qm, SEC_DRV_ALG_BITMAP_HIGH_IDX,
2522 				      SEC_DRV_ALG_BITMAP_LOW_IDX);
2523 
2524 	mutex_lock(&sec_algs_lock);
2525 	if (sec_available_devs) {
2526 		sec_available_devs++;
2527 		goto unlock;
2528 	}
2529 
2530 	ret = sec_register_skcipher(alg_mask);
2531 	if (ret)
2532 		goto unlock;
2533 
2534 	ret = sec_register_aead(alg_mask);
2535 	if (ret)
2536 		goto unreg_skcipher;
2537 
2538 	sec_available_devs++;
2539 	mutex_unlock(&sec_algs_lock);
2540 
2541 	return 0;
2542 
2543 unreg_skcipher:
2544 	sec_unregister_skcipher(alg_mask, ARRAY_SIZE(sec_skciphers));
2545 unlock:
2546 	mutex_unlock(&sec_algs_lock);
2547 	return ret;
2548 }
2549 
2550 void sec_unregister_from_crypto(struct hisi_qm *qm)
2551 {
2552 	u64 alg_mask;
2553 
2554 	alg_mask = sec_get_alg_bitmap(qm, SEC_DRV_ALG_BITMAP_HIGH_IDX,
2555 				      SEC_DRV_ALG_BITMAP_LOW_IDX);
2556 
2557 	mutex_lock(&sec_algs_lock);
2558 	if (--sec_available_devs)
2559 		goto unlock;
2560 
2561 	sec_unregister_aead(alg_mask, ARRAY_SIZE(sec_aeads));
2562 	sec_unregister_skcipher(alg_mask, ARRAY_SIZE(sec_skciphers));
2563 
2564 unlock:
2565 	mutex_unlock(&sec_algs_lock);
2566 }
2567