xref: /linux/drivers/crypto/qce/sha.c (revision f86fd32d)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2010-2014, The Linux Foundation. All rights reserved.
4  */
5 
6 #include <linux/device.h>
7 #include <linux/interrupt.h>
8 #include <crypto/internal/hash.h>
9 
10 #include "common.h"
11 #include "core.h"
12 #include "sha.h"
13 
14 /* crypto hw padding constant for first operation */
15 #define SHA_PADDING		64
16 #define SHA_PADDING_MASK	(SHA_PADDING - 1)
17 
18 static LIST_HEAD(ahash_algs);
19 
20 static const u32 std_iv_sha1[SHA256_DIGEST_SIZE / sizeof(u32)] = {
21 	SHA1_H0, SHA1_H1, SHA1_H2, SHA1_H3, SHA1_H4, 0, 0, 0
22 };
23 
24 static const u32 std_iv_sha256[SHA256_DIGEST_SIZE / sizeof(u32)] = {
25 	SHA256_H0, SHA256_H1, SHA256_H2, SHA256_H3,
26 	SHA256_H4, SHA256_H5, SHA256_H6, SHA256_H7
27 };
28 
29 static void qce_ahash_done(void *data)
30 {
31 	struct crypto_async_request *async_req = data;
32 	struct ahash_request *req = ahash_request_cast(async_req);
33 	struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
34 	struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
35 	struct qce_alg_template *tmpl = to_ahash_tmpl(async_req->tfm);
36 	struct qce_device *qce = tmpl->qce;
37 	struct qce_result_dump *result = qce->dma.result_buf;
38 	unsigned int digestsize = crypto_ahash_digestsize(ahash);
39 	int error;
40 	u32 status;
41 
42 	error = qce_dma_terminate_all(&qce->dma);
43 	if (error)
44 		dev_dbg(qce->dev, "ahash dma termination error (%d)\n", error);
45 
46 	dma_unmap_sg(qce->dev, req->src, rctx->src_nents, DMA_TO_DEVICE);
47 	dma_unmap_sg(qce->dev, &rctx->result_sg, 1, DMA_FROM_DEVICE);
48 
49 	memcpy(rctx->digest, result->auth_iv, digestsize);
50 	if (req->result)
51 		memcpy(req->result, result->auth_iv, digestsize);
52 
53 	rctx->byte_count[0] = cpu_to_be32(result->auth_byte_count[0]);
54 	rctx->byte_count[1] = cpu_to_be32(result->auth_byte_count[1]);
55 
56 	error = qce_check_status(qce, &status);
57 	if (error < 0)
58 		dev_dbg(qce->dev, "ahash operation error (%x)\n", status);
59 
60 	req->src = rctx->src_orig;
61 	req->nbytes = rctx->nbytes_orig;
62 	rctx->last_blk = false;
63 	rctx->first_blk = false;
64 
65 	qce->async_req_done(tmpl->qce, error);
66 }
67 
68 static int qce_ahash_async_req_handle(struct crypto_async_request *async_req)
69 {
70 	struct ahash_request *req = ahash_request_cast(async_req);
71 	struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
72 	struct qce_sha_ctx *ctx = crypto_tfm_ctx(async_req->tfm);
73 	struct qce_alg_template *tmpl = to_ahash_tmpl(async_req->tfm);
74 	struct qce_device *qce = tmpl->qce;
75 	unsigned long flags = rctx->flags;
76 	int ret;
77 
78 	if (IS_SHA_HMAC(flags)) {
79 		rctx->authkey = ctx->authkey;
80 		rctx->authklen = QCE_SHA_HMAC_KEY_SIZE;
81 	} else if (IS_CMAC(flags)) {
82 		rctx->authkey = ctx->authkey;
83 		rctx->authklen = AES_KEYSIZE_128;
84 	}
85 
86 	rctx->src_nents = sg_nents_for_len(req->src, req->nbytes);
87 	if (rctx->src_nents < 0) {
88 		dev_err(qce->dev, "Invalid numbers of src SG.\n");
89 		return rctx->src_nents;
90 	}
91 
92 	ret = dma_map_sg(qce->dev, req->src, rctx->src_nents, DMA_TO_DEVICE);
93 	if (ret < 0)
94 		return ret;
95 
96 	sg_init_one(&rctx->result_sg, qce->dma.result_buf, QCE_RESULT_BUF_SZ);
97 
98 	ret = dma_map_sg(qce->dev, &rctx->result_sg, 1, DMA_FROM_DEVICE);
99 	if (ret < 0)
100 		goto error_unmap_src;
101 
102 	ret = qce_dma_prep_sgs(&qce->dma, req->src, rctx->src_nents,
103 			       &rctx->result_sg, 1, qce_ahash_done, async_req);
104 	if (ret)
105 		goto error_unmap_dst;
106 
107 	qce_dma_issue_pending(&qce->dma);
108 
109 	ret = qce_start(async_req, tmpl->crypto_alg_type, 0, 0);
110 	if (ret)
111 		goto error_terminate;
112 
113 	return 0;
114 
115 error_terminate:
116 	qce_dma_terminate_all(&qce->dma);
117 error_unmap_dst:
118 	dma_unmap_sg(qce->dev, &rctx->result_sg, 1, DMA_FROM_DEVICE);
119 error_unmap_src:
120 	dma_unmap_sg(qce->dev, req->src, rctx->src_nents, DMA_TO_DEVICE);
121 	return ret;
122 }
123 
124 static int qce_ahash_init(struct ahash_request *req)
125 {
126 	struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
127 	struct qce_alg_template *tmpl = to_ahash_tmpl(req->base.tfm);
128 	const u32 *std_iv = tmpl->std_iv;
129 
130 	memset(rctx, 0, sizeof(*rctx));
131 	rctx->first_blk = true;
132 	rctx->last_blk = false;
133 	rctx->flags = tmpl->alg_flags;
134 	memcpy(rctx->digest, std_iv, sizeof(rctx->digest));
135 
136 	return 0;
137 }
138 
139 static int qce_ahash_export(struct ahash_request *req, void *out)
140 {
141 	struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
142 	struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
143 	unsigned long flags = rctx->flags;
144 	unsigned int digestsize = crypto_ahash_digestsize(ahash);
145 	unsigned int blocksize =
146 			crypto_tfm_alg_blocksize(crypto_ahash_tfm(ahash));
147 
148 	if (IS_SHA1(flags) || IS_SHA1_HMAC(flags)) {
149 		struct sha1_state *out_state = out;
150 
151 		out_state->count = rctx->count;
152 		qce_cpu_to_be32p_array((__be32 *)out_state->state,
153 				       rctx->digest, digestsize);
154 		memcpy(out_state->buffer, rctx->buf, blocksize);
155 	} else if (IS_SHA256(flags) || IS_SHA256_HMAC(flags)) {
156 		struct sha256_state *out_state = out;
157 
158 		out_state->count = rctx->count;
159 		qce_cpu_to_be32p_array((__be32 *)out_state->state,
160 				       rctx->digest, digestsize);
161 		memcpy(out_state->buf, rctx->buf, blocksize);
162 	} else {
163 		return -EINVAL;
164 	}
165 
166 	return 0;
167 }
168 
169 static int qce_import_common(struct ahash_request *req, u64 in_count,
170 			     const u32 *state, const u8 *buffer, bool hmac)
171 {
172 	struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
173 	struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
174 	unsigned int digestsize = crypto_ahash_digestsize(ahash);
175 	unsigned int blocksize;
176 	u64 count = in_count;
177 
178 	blocksize = crypto_tfm_alg_blocksize(crypto_ahash_tfm(ahash));
179 	rctx->count = in_count;
180 	memcpy(rctx->buf, buffer, blocksize);
181 
182 	if (in_count <= blocksize) {
183 		rctx->first_blk = 1;
184 	} else {
185 		rctx->first_blk = 0;
186 		/*
187 		 * For HMAC, there is a hardware padding done when first block
188 		 * is set. Therefore the byte_count must be incremened by 64
189 		 * after the first block operation.
190 		 */
191 		if (hmac)
192 			count += SHA_PADDING;
193 	}
194 
195 	rctx->byte_count[0] = (__force __be32)(count & ~SHA_PADDING_MASK);
196 	rctx->byte_count[1] = (__force __be32)(count >> 32);
197 	qce_cpu_to_be32p_array((__be32 *)rctx->digest, (const u8 *)state,
198 			       digestsize);
199 	rctx->buflen = (unsigned int)(in_count & (blocksize - 1));
200 
201 	return 0;
202 }
203 
204 static int qce_ahash_import(struct ahash_request *req, const void *in)
205 {
206 	struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
207 	unsigned long flags = rctx->flags;
208 	bool hmac = IS_SHA_HMAC(flags);
209 	int ret = -EINVAL;
210 
211 	if (IS_SHA1(flags) || IS_SHA1_HMAC(flags)) {
212 		const struct sha1_state *state = in;
213 
214 		ret = qce_import_common(req, state->count, state->state,
215 					state->buffer, hmac);
216 	} else if (IS_SHA256(flags) || IS_SHA256_HMAC(flags)) {
217 		const struct sha256_state *state = in;
218 
219 		ret = qce_import_common(req, state->count, state->state,
220 					state->buf, hmac);
221 	}
222 
223 	return ret;
224 }
225 
226 static int qce_ahash_update(struct ahash_request *req)
227 {
228 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
229 	struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
230 	struct qce_alg_template *tmpl = to_ahash_tmpl(req->base.tfm);
231 	struct qce_device *qce = tmpl->qce;
232 	struct scatterlist *sg_last, *sg;
233 	unsigned int total, len;
234 	unsigned int hash_later;
235 	unsigned int nbytes;
236 	unsigned int blocksize;
237 
238 	blocksize = crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
239 	rctx->count += req->nbytes;
240 
241 	/* check for buffer from previous updates and append it */
242 	total = req->nbytes + rctx->buflen;
243 
244 	if (total <= blocksize) {
245 		scatterwalk_map_and_copy(rctx->buf + rctx->buflen, req->src,
246 					 0, req->nbytes, 0);
247 		rctx->buflen += req->nbytes;
248 		return 0;
249 	}
250 
251 	/* save the original req structure fields */
252 	rctx->src_orig = req->src;
253 	rctx->nbytes_orig = req->nbytes;
254 
255 	/*
256 	 * if we have data from previous update copy them on buffer. The old
257 	 * data will be combined with current request bytes.
258 	 */
259 	if (rctx->buflen)
260 		memcpy(rctx->tmpbuf, rctx->buf, rctx->buflen);
261 
262 	/* calculate how many bytes will be hashed later */
263 	hash_later = total % blocksize;
264 	if (hash_later) {
265 		unsigned int src_offset = req->nbytes - hash_later;
266 		scatterwalk_map_and_copy(rctx->buf, req->src, src_offset,
267 					 hash_later, 0);
268 	}
269 
270 	/* here nbytes is multiple of blocksize */
271 	nbytes = total - hash_later;
272 
273 	len = rctx->buflen;
274 	sg = sg_last = req->src;
275 
276 	while (len < nbytes && sg) {
277 		if (len + sg_dma_len(sg) > nbytes)
278 			break;
279 		len += sg_dma_len(sg);
280 		sg_last = sg;
281 		sg = sg_next(sg);
282 	}
283 
284 	if (!sg_last)
285 		return -EINVAL;
286 
287 	sg_mark_end(sg_last);
288 
289 	if (rctx->buflen) {
290 		sg_init_table(rctx->sg, 2);
291 		sg_set_buf(rctx->sg, rctx->tmpbuf, rctx->buflen);
292 		sg_chain(rctx->sg, 2, req->src);
293 		req->src = rctx->sg;
294 	}
295 
296 	req->nbytes = nbytes;
297 	rctx->buflen = hash_later;
298 
299 	return qce->async_req_enqueue(tmpl->qce, &req->base);
300 }
301 
302 static int qce_ahash_final(struct ahash_request *req)
303 {
304 	struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
305 	struct qce_alg_template *tmpl = to_ahash_tmpl(req->base.tfm);
306 	struct qce_device *qce = tmpl->qce;
307 
308 	if (!rctx->buflen)
309 		return 0;
310 
311 	rctx->last_blk = true;
312 
313 	rctx->src_orig = req->src;
314 	rctx->nbytes_orig = req->nbytes;
315 
316 	memcpy(rctx->tmpbuf, rctx->buf, rctx->buflen);
317 	sg_init_one(rctx->sg, rctx->tmpbuf, rctx->buflen);
318 
319 	req->src = rctx->sg;
320 	req->nbytes = rctx->buflen;
321 
322 	return qce->async_req_enqueue(tmpl->qce, &req->base);
323 }
324 
325 static int qce_ahash_digest(struct ahash_request *req)
326 {
327 	struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
328 	struct qce_alg_template *tmpl = to_ahash_tmpl(req->base.tfm);
329 	struct qce_device *qce = tmpl->qce;
330 	int ret;
331 
332 	ret = qce_ahash_init(req);
333 	if (ret)
334 		return ret;
335 
336 	rctx->src_orig = req->src;
337 	rctx->nbytes_orig = req->nbytes;
338 	rctx->first_blk = true;
339 	rctx->last_blk = true;
340 
341 	return qce->async_req_enqueue(tmpl->qce, &req->base);
342 }
343 
344 static int qce_ahash_hmac_setkey(struct crypto_ahash *tfm, const u8 *key,
345 				 unsigned int keylen)
346 {
347 	unsigned int digestsize = crypto_ahash_digestsize(tfm);
348 	struct qce_sha_ctx *ctx = crypto_tfm_ctx(&tfm->base);
349 	struct crypto_wait wait;
350 	struct ahash_request *req;
351 	struct scatterlist sg;
352 	unsigned int blocksize;
353 	struct crypto_ahash *ahash_tfm;
354 	u8 *buf;
355 	int ret;
356 	const char *alg_name;
357 
358 	blocksize = crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
359 	memset(ctx->authkey, 0, sizeof(ctx->authkey));
360 
361 	if (keylen <= blocksize) {
362 		memcpy(ctx->authkey, key, keylen);
363 		return 0;
364 	}
365 
366 	if (digestsize == SHA1_DIGEST_SIZE)
367 		alg_name = "sha1-qce";
368 	else if (digestsize == SHA256_DIGEST_SIZE)
369 		alg_name = "sha256-qce";
370 	else
371 		return -EINVAL;
372 
373 	ahash_tfm = crypto_alloc_ahash(alg_name, 0, 0);
374 	if (IS_ERR(ahash_tfm))
375 		return PTR_ERR(ahash_tfm);
376 
377 	req = ahash_request_alloc(ahash_tfm, GFP_KERNEL);
378 	if (!req) {
379 		ret = -ENOMEM;
380 		goto err_free_ahash;
381 	}
382 
383 	crypto_init_wait(&wait);
384 	ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
385 				   crypto_req_done, &wait);
386 	crypto_ahash_clear_flags(ahash_tfm, ~0);
387 
388 	buf = kzalloc(keylen + QCE_MAX_ALIGN_SIZE, GFP_KERNEL);
389 	if (!buf) {
390 		ret = -ENOMEM;
391 		goto err_free_req;
392 	}
393 
394 	memcpy(buf, key, keylen);
395 	sg_init_one(&sg, buf, keylen);
396 	ahash_request_set_crypt(req, &sg, ctx->authkey, keylen);
397 
398 	ret = crypto_wait_req(crypto_ahash_digest(req), &wait);
399 
400 	kfree(buf);
401 err_free_req:
402 	ahash_request_free(req);
403 err_free_ahash:
404 	crypto_free_ahash(ahash_tfm);
405 	return ret;
406 }
407 
408 static int qce_ahash_cra_init(struct crypto_tfm *tfm)
409 {
410 	struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
411 	struct qce_sha_ctx *ctx = crypto_tfm_ctx(tfm);
412 
413 	crypto_ahash_set_reqsize(ahash, sizeof(struct qce_sha_reqctx));
414 	memset(ctx, 0, sizeof(*ctx));
415 	return 0;
416 }
417 
418 struct qce_ahash_def {
419 	unsigned long flags;
420 	const char *name;
421 	const char *drv_name;
422 	unsigned int digestsize;
423 	unsigned int blocksize;
424 	unsigned int statesize;
425 	const u32 *std_iv;
426 };
427 
428 static const struct qce_ahash_def ahash_def[] = {
429 	{
430 		.flags		= QCE_HASH_SHA1,
431 		.name		= "sha1",
432 		.drv_name	= "sha1-qce",
433 		.digestsize	= SHA1_DIGEST_SIZE,
434 		.blocksize	= SHA1_BLOCK_SIZE,
435 		.statesize	= sizeof(struct sha1_state),
436 		.std_iv		= std_iv_sha1,
437 	},
438 	{
439 		.flags		= QCE_HASH_SHA256,
440 		.name		= "sha256",
441 		.drv_name	= "sha256-qce",
442 		.digestsize	= SHA256_DIGEST_SIZE,
443 		.blocksize	= SHA256_BLOCK_SIZE,
444 		.statesize	= sizeof(struct sha256_state),
445 		.std_iv		= std_iv_sha256,
446 	},
447 	{
448 		.flags		= QCE_HASH_SHA1_HMAC,
449 		.name		= "hmac(sha1)",
450 		.drv_name	= "hmac-sha1-qce",
451 		.digestsize	= SHA1_DIGEST_SIZE,
452 		.blocksize	= SHA1_BLOCK_SIZE,
453 		.statesize	= sizeof(struct sha1_state),
454 		.std_iv		= std_iv_sha1,
455 	},
456 	{
457 		.flags		= QCE_HASH_SHA256_HMAC,
458 		.name		= "hmac(sha256)",
459 		.drv_name	= "hmac-sha256-qce",
460 		.digestsize	= SHA256_DIGEST_SIZE,
461 		.blocksize	= SHA256_BLOCK_SIZE,
462 		.statesize	= sizeof(struct sha256_state),
463 		.std_iv		= std_iv_sha256,
464 	},
465 };
466 
467 static int qce_ahash_register_one(const struct qce_ahash_def *def,
468 				  struct qce_device *qce)
469 {
470 	struct qce_alg_template *tmpl;
471 	struct ahash_alg *alg;
472 	struct crypto_alg *base;
473 	int ret;
474 
475 	tmpl = kzalloc(sizeof(*tmpl), GFP_KERNEL);
476 	if (!tmpl)
477 		return -ENOMEM;
478 
479 	tmpl->std_iv = def->std_iv;
480 
481 	alg = &tmpl->alg.ahash;
482 	alg->init = qce_ahash_init;
483 	alg->update = qce_ahash_update;
484 	alg->final = qce_ahash_final;
485 	alg->digest = qce_ahash_digest;
486 	alg->export = qce_ahash_export;
487 	alg->import = qce_ahash_import;
488 	if (IS_SHA_HMAC(def->flags))
489 		alg->setkey = qce_ahash_hmac_setkey;
490 	alg->halg.digestsize = def->digestsize;
491 	alg->halg.statesize = def->statesize;
492 
493 	base = &alg->halg.base;
494 	base->cra_blocksize = def->blocksize;
495 	base->cra_priority = 300;
496 	base->cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY;
497 	base->cra_ctxsize = sizeof(struct qce_sha_ctx);
498 	base->cra_alignmask = 0;
499 	base->cra_module = THIS_MODULE;
500 	base->cra_init = qce_ahash_cra_init;
501 
502 	snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "%s", def->name);
503 	snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
504 		 def->drv_name);
505 
506 	INIT_LIST_HEAD(&tmpl->entry);
507 	tmpl->crypto_alg_type = CRYPTO_ALG_TYPE_AHASH;
508 	tmpl->alg_flags = def->flags;
509 	tmpl->qce = qce;
510 
511 	ret = crypto_register_ahash(alg);
512 	if (ret) {
513 		kfree(tmpl);
514 		dev_err(qce->dev, "%s registration failed\n", base->cra_name);
515 		return ret;
516 	}
517 
518 	list_add_tail(&tmpl->entry, &ahash_algs);
519 	dev_dbg(qce->dev, "%s is registered\n", base->cra_name);
520 	return 0;
521 }
522 
523 static void qce_ahash_unregister(struct qce_device *qce)
524 {
525 	struct qce_alg_template *tmpl, *n;
526 
527 	list_for_each_entry_safe(tmpl, n, &ahash_algs, entry) {
528 		crypto_unregister_ahash(&tmpl->alg.ahash);
529 		list_del(&tmpl->entry);
530 		kfree(tmpl);
531 	}
532 }
533 
534 static int qce_ahash_register(struct qce_device *qce)
535 {
536 	int ret, i;
537 
538 	for (i = 0; i < ARRAY_SIZE(ahash_def); i++) {
539 		ret = qce_ahash_register_one(&ahash_def[i], qce);
540 		if (ret)
541 			goto err;
542 	}
543 
544 	return 0;
545 err:
546 	qce_ahash_unregister(qce);
547 	return ret;
548 }
549 
550 const struct qce_algo_ops ahash_ops = {
551 	.type = CRYPTO_ALG_TYPE_AHASH,
552 	.register_algs = qce_ahash_register,
553 	.unregister_algs = qce_ahash_unregister,
554 	.async_req_handle = qce_ahash_async_req_handle,
555 };
556