xref: /linux/drivers/crypto/stm32/stm32-hash.c (revision d642ef71)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * This file is part of STM32 Crypto driver for Linux.
4  *
5  * Copyright (C) 2017, STMicroelectronics - All Rights Reserved
6  * Author(s): Lionel DEBIEVE <lionel.debieve@st.com> for STMicroelectronics.
7  */
8 
9 #include <crypto/engine.h>
10 #include <crypto/internal/hash.h>
11 #include <crypto/md5.h>
12 #include <crypto/scatterwalk.h>
13 #include <crypto/sha1.h>
14 #include <crypto/sha2.h>
15 #include <crypto/sha3.h>
16 #include <linux/clk.h>
17 #include <linux/delay.h>
18 #include <linux/dma-mapping.h>
19 #include <linux/dmaengine.h>
20 #include <linux/interrupt.h>
21 #include <linux/iopoll.h>
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/of.h>
25 #include <linux/platform_device.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/reset.h>
28 #include <linux/string.h>
29 
30 #define HASH_CR				0x00
31 #define HASH_DIN			0x04
32 #define HASH_STR			0x08
33 #define HASH_UX500_HREG(x)		(0x0c + ((x) * 0x04))
34 #define HASH_IMR			0x20
35 #define HASH_SR				0x24
36 #define HASH_CSR(x)			(0x0F8 + ((x) * 0x04))
37 #define HASH_HREG(x)			(0x310 + ((x) * 0x04))
38 #define HASH_HWCFGR			0x3F0
39 #define HASH_VER			0x3F4
40 #define HASH_ID				0x3F8
41 
42 /* Control Register */
43 #define HASH_CR_INIT			BIT(2)
44 #define HASH_CR_DMAE			BIT(3)
45 #define HASH_CR_DATATYPE_POS		4
46 #define HASH_CR_MODE			BIT(6)
47 #define HASH_CR_ALGO_POS		7
48 #define HASH_CR_MDMAT			BIT(13)
49 #define HASH_CR_DMAA			BIT(14)
50 #define HASH_CR_LKEY			BIT(16)
51 
52 /* Interrupt */
53 #define HASH_DINIE			BIT(0)
54 #define HASH_DCIE			BIT(1)
55 
56 /* Interrupt Mask */
57 #define HASH_MASK_CALC_COMPLETION	BIT(0)
58 #define HASH_MASK_DATA_INPUT		BIT(1)
59 
60 /* Status Flags */
61 #define HASH_SR_DATA_INPUT_READY	BIT(0)
62 #define HASH_SR_OUTPUT_READY		BIT(1)
63 #define HASH_SR_DMA_ACTIVE		BIT(2)
64 #define HASH_SR_BUSY			BIT(3)
65 
66 /* STR Register */
67 #define HASH_STR_NBLW_MASK		GENMASK(4, 0)
68 #define HASH_STR_DCAL			BIT(8)
69 
70 /* HWCFGR Register */
71 #define HASH_HWCFG_DMA_MASK		GENMASK(3, 0)
72 
73 /* Context swap register */
74 #define HASH_CSR_NB_SHA256_HMAC		54
75 #define HASH_CSR_NB_SHA256		38
76 #define HASH_CSR_NB_SHA512_HMAC		103
77 #define HASH_CSR_NB_SHA512		91
78 #define HASH_CSR_NB_SHA3_HMAC		88
79 #define HASH_CSR_NB_SHA3		72
80 #define HASH_CSR_NB_MAX			HASH_CSR_NB_SHA512_HMAC
81 
82 #define HASH_FLAGS_INIT			BIT(0)
83 #define HASH_FLAGS_OUTPUT_READY		BIT(1)
84 #define HASH_FLAGS_CPU			BIT(2)
85 #define HASH_FLAGS_DMA_ACTIVE		BIT(3)
86 #define HASH_FLAGS_HMAC_INIT		BIT(4)
87 #define HASH_FLAGS_HMAC_FINAL		BIT(5)
88 #define HASH_FLAGS_HMAC_KEY		BIT(6)
89 #define HASH_FLAGS_SHA3_MODE		BIT(7)
90 #define HASH_FLAGS_FINAL		BIT(15)
91 #define HASH_FLAGS_FINUP		BIT(16)
92 #define HASH_FLAGS_ALGO_MASK		GENMASK(20, 17)
93 #define HASH_FLAGS_ALGO_SHIFT		17
94 #define HASH_FLAGS_ERRORS		BIT(21)
95 #define HASH_FLAGS_EMPTY		BIT(22)
96 #define HASH_FLAGS_HMAC			BIT(23)
97 
98 #define HASH_OP_UPDATE			1
99 #define HASH_OP_FINAL			2
100 
101 #define HASH_BURST_LEVEL		4
102 
103 enum stm32_hash_data_format {
104 	HASH_DATA_32_BITS		= 0x0,
105 	HASH_DATA_16_BITS		= 0x1,
106 	HASH_DATA_8_BITS		= 0x2,
107 	HASH_DATA_1_BIT			= 0x3
108 };
109 
110 #define HASH_BUFLEN			(SHA3_224_BLOCK_SIZE + 4)
111 #define HASH_MAX_KEY_SIZE		(SHA512_BLOCK_SIZE * 8)
112 
113 enum stm32_hash_algo {
114 	HASH_SHA1			= 0,
115 	HASH_MD5			= 1,
116 	HASH_SHA224			= 2,
117 	HASH_SHA256			= 3,
118 	HASH_SHA3_224			= 4,
119 	HASH_SHA3_256			= 5,
120 	HASH_SHA3_384			= 6,
121 	HASH_SHA3_512			= 7,
122 	HASH_SHA384			= 12,
123 	HASH_SHA512			= 15,
124 };
125 
126 enum ux500_hash_algo {
127 	HASH_SHA256_UX500		= 0,
128 	HASH_SHA1_UX500			= 1,
129 };
130 
131 #define HASH_AUTOSUSPEND_DELAY		50
132 
133 struct stm32_hash_ctx {
134 	struct stm32_hash_dev	*hdev;
135 	struct crypto_shash	*xtfm;
136 	unsigned long		flags;
137 
138 	u8			key[HASH_MAX_KEY_SIZE];
139 	int			keylen;
140 };
141 
142 struct stm32_hash_state {
143 	u32			flags;
144 
145 	u16			bufcnt;
146 	u16			blocklen;
147 
148 	u8 buffer[HASH_BUFLEN] __aligned(4);
149 
150 	/* hash state */
151 	u32			hw_context[3 + HASH_CSR_NB_MAX];
152 };
153 
154 struct stm32_hash_request_ctx {
155 	struct stm32_hash_dev	*hdev;
156 	unsigned long		op;
157 
158 	u8 digest[SHA512_DIGEST_SIZE] __aligned(sizeof(u32));
159 	size_t			digcnt;
160 
161 	/* DMA */
162 	struct scatterlist	*sg;
163 	unsigned int		offset;
164 	unsigned int		total;
165 	struct scatterlist	sg_key;
166 
167 	dma_addr_t		dma_addr;
168 	size_t			dma_ct;
169 	int			nents;
170 
171 	u8			data_type;
172 
173 	struct stm32_hash_state state;
174 };
175 
176 struct stm32_hash_algs_info {
177 	struct ahash_engine_alg	*algs_list;
178 	size_t			size;
179 };
180 
181 struct stm32_hash_pdata {
182 	const int				alg_shift;
183 	const struct stm32_hash_algs_info	*algs_info;
184 	size_t					algs_info_size;
185 	bool					has_sr;
186 	bool					has_mdmat;
187 	bool					broken_emptymsg;
188 	bool					ux500;
189 };
190 
191 struct stm32_hash_dev {
192 	struct list_head	list;
193 	struct device		*dev;
194 	struct clk		*clk;
195 	struct reset_control	*rst;
196 	void __iomem		*io_base;
197 	phys_addr_t		phys_base;
198 	u32			dma_mode;
199 	bool			polled;
200 
201 	struct ahash_request	*req;
202 	struct crypto_engine	*engine;
203 
204 	unsigned long		flags;
205 
206 	struct dma_chan		*dma_lch;
207 	struct completion	dma_completion;
208 
209 	const struct stm32_hash_pdata	*pdata;
210 };
211 
212 struct stm32_hash_drv {
213 	struct list_head	dev_list;
214 	spinlock_t		lock; /* List protection access */
215 };
216 
217 static struct stm32_hash_drv stm32_hash = {
218 	.dev_list = LIST_HEAD_INIT(stm32_hash.dev_list),
219 	.lock = __SPIN_LOCK_UNLOCKED(stm32_hash.lock),
220 };
221 
222 static void stm32_hash_dma_callback(void *param);
223 
224 static inline u32 stm32_hash_read(struct stm32_hash_dev *hdev, u32 offset)
225 {
226 	return readl_relaxed(hdev->io_base + offset);
227 }
228 
229 static inline void stm32_hash_write(struct stm32_hash_dev *hdev,
230 				    u32 offset, u32 value)
231 {
232 	writel_relaxed(value, hdev->io_base + offset);
233 }
234 
235 static inline int stm32_hash_wait_busy(struct stm32_hash_dev *hdev)
236 {
237 	u32 status;
238 
239 	/* The Ux500 lacks the special status register, we poll the DCAL bit instead */
240 	if (!hdev->pdata->has_sr)
241 		return readl_relaxed_poll_timeout(hdev->io_base + HASH_STR, status,
242 						  !(status & HASH_STR_DCAL), 10, 10000);
243 
244 	return readl_relaxed_poll_timeout(hdev->io_base + HASH_SR, status,
245 				   !(status & HASH_SR_BUSY), 10, 10000);
246 }
247 
248 static void stm32_hash_set_nblw(struct stm32_hash_dev *hdev, int length)
249 {
250 	u32 reg;
251 
252 	reg = stm32_hash_read(hdev, HASH_STR);
253 	reg &= ~(HASH_STR_NBLW_MASK);
254 	reg |= (8U * ((length) % 4U));
255 	stm32_hash_write(hdev, HASH_STR, reg);
256 }
257 
258 static int stm32_hash_write_key(struct stm32_hash_dev *hdev)
259 {
260 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(hdev->req);
261 	struct stm32_hash_ctx *ctx = crypto_ahash_ctx(tfm);
262 	u32 reg;
263 	int keylen = ctx->keylen;
264 	void *key = ctx->key;
265 
266 	if (keylen) {
267 		stm32_hash_set_nblw(hdev, keylen);
268 
269 		while (keylen > 0) {
270 			stm32_hash_write(hdev, HASH_DIN, *(u32 *)key);
271 			keylen -= 4;
272 			key += 4;
273 		}
274 
275 		reg = stm32_hash_read(hdev, HASH_STR);
276 		reg |= HASH_STR_DCAL;
277 		stm32_hash_write(hdev, HASH_STR, reg);
278 
279 		return -EINPROGRESS;
280 	}
281 
282 	return 0;
283 }
284 
285 static void stm32_hash_write_ctrl(struct stm32_hash_dev *hdev)
286 {
287 	struct stm32_hash_request_ctx *rctx = ahash_request_ctx(hdev->req);
288 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(hdev->req);
289 	struct stm32_hash_ctx *ctx = crypto_ahash_ctx(tfm);
290 	struct stm32_hash_state *state = &rctx->state;
291 	u32 alg = (state->flags & HASH_FLAGS_ALGO_MASK) >> HASH_FLAGS_ALGO_SHIFT;
292 
293 	u32 reg = HASH_CR_INIT;
294 
295 	if (!(hdev->flags & HASH_FLAGS_INIT)) {
296 		if (hdev->pdata->ux500) {
297 			reg |= ((alg & BIT(0)) << HASH_CR_ALGO_POS);
298 		} else {
299 			if (hdev->pdata->alg_shift == HASH_CR_ALGO_POS)
300 				reg |= ((alg & BIT(1)) << 17) |
301 				       ((alg & BIT(0)) << HASH_CR_ALGO_POS);
302 			else
303 				reg |= alg << hdev->pdata->alg_shift;
304 		}
305 
306 		reg |= (rctx->data_type << HASH_CR_DATATYPE_POS);
307 
308 		if (state->flags & HASH_FLAGS_HMAC) {
309 			hdev->flags |= HASH_FLAGS_HMAC;
310 			reg |= HASH_CR_MODE;
311 			if (ctx->keylen > crypto_ahash_blocksize(tfm))
312 				reg |= HASH_CR_LKEY;
313 		}
314 
315 		if (!hdev->polled)
316 			stm32_hash_write(hdev, HASH_IMR, HASH_DCIE);
317 
318 		stm32_hash_write(hdev, HASH_CR, reg);
319 
320 		hdev->flags |= HASH_FLAGS_INIT;
321 
322 		/*
323 		 * After first block + 1 words are fill up,
324 		 * we only need to fill 1 block to start partial computation
325 		 */
326 		rctx->state.blocklen -= sizeof(u32);
327 
328 		dev_dbg(hdev->dev, "Write Control %x\n", reg);
329 	}
330 }
331 
332 static void stm32_hash_append_sg(struct stm32_hash_request_ctx *rctx)
333 {
334 	struct stm32_hash_state *state = &rctx->state;
335 	size_t count;
336 
337 	while ((state->bufcnt < state->blocklen) && rctx->total) {
338 		count = min(rctx->sg->length - rctx->offset, rctx->total);
339 		count = min_t(size_t, count, state->blocklen - state->bufcnt);
340 
341 		if (count <= 0) {
342 			if ((rctx->sg->length == 0) && !sg_is_last(rctx->sg)) {
343 				rctx->sg = sg_next(rctx->sg);
344 				continue;
345 			} else {
346 				break;
347 			}
348 		}
349 
350 		scatterwalk_map_and_copy(state->buffer + state->bufcnt,
351 					 rctx->sg, rctx->offset, count, 0);
352 
353 		state->bufcnt += count;
354 		rctx->offset += count;
355 		rctx->total -= count;
356 
357 		if (rctx->offset == rctx->sg->length) {
358 			rctx->sg = sg_next(rctx->sg);
359 			if (rctx->sg)
360 				rctx->offset = 0;
361 			else
362 				rctx->total = 0;
363 		}
364 	}
365 }
366 
367 static int stm32_hash_xmit_cpu(struct stm32_hash_dev *hdev,
368 			       const u8 *buf, size_t length, int final)
369 {
370 	struct stm32_hash_request_ctx *rctx = ahash_request_ctx(hdev->req);
371 	struct stm32_hash_state *state = &rctx->state;
372 	unsigned int count, len32;
373 	const u32 *buffer = (const u32 *)buf;
374 	u32 reg;
375 
376 	if (final) {
377 		hdev->flags |= HASH_FLAGS_FINAL;
378 
379 		/* Do not process empty messages if hw is buggy. */
380 		if (!(hdev->flags & HASH_FLAGS_INIT) && !length &&
381 		    hdev->pdata->broken_emptymsg) {
382 			state->flags |= HASH_FLAGS_EMPTY;
383 			return 0;
384 		}
385 	}
386 
387 	len32 = DIV_ROUND_UP(length, sizeof(u32));
388 
389 	dev_dbg(hdev->dev, "%s: length: %zd, final: %x len32 %i\n",
390 		__func__, length, final, len32);
391 
392 	hdev->flags |= HASH_FLAGS_CPU;
393 
394 	stm32_hash_write_ctrl(hdev);
395 
396 	if (stm32_hash_wait_busy(hdev))
397 		return -ETIMEDOUT;
398 
399 	if ((hdev->flags & HASH_FLAGS_HMAC) &&
400 	    (!(hdev->flags & HASH_FLAGS_HMAC_KEY))) {
401 		hdev->flags |= HASH_FLAGS_HMAC_KEY;
402 		stm32_hash_write_key(hdev);
403 		if (stm32_hash_wait_busy(hdev))
404 			return -ETIMEDOUT;
405 	}
406 
407 	for (count = 0; count < len32; count++)
408 		stm32_hash_write(hdev, HASH_DIN, buffer[count]);
409 
410 	if (final) {
411 		if (stm32_hash_wait_busy(hdev))
412 			return -ETIMEDOUT;
413 
414 		stm32_hash_set_nblw(hdev, length);
415 		reg = stm32_hash_read(hdev, HASH_STR);
416 		reg |= HASH_STR_DCAL;
417 		stm32_hash_write(hdev, HASH_STR, reg);
418 		if (hdev->flags & HASH_FLAGS_HMAC) {
419 			if (stm32_hash_wait_busy(hdev))
420 				return -ETIMEDOUT;
421 			stm32_hash_write_key(hdev);
422 		}
423 		return -EINPROGRESS;
424 	}
425 
426 	return 0;
427 }
428 
429 static int hash_swap_reg(struct stm32_hash_request_ctx *rctx)
430 {
431 	struct stm32_hash_state *state = &rctx->state;
432 
433 	switch ((state->flags & HASH_FLAGS_ALGO_MASK) >>
434 		HASH_FLAGS_ALGO_SHIFT) {
435 	case HASH_MD5:
436 	case HASH_SHA1:
437 	case HASH_SHA224:
438 	case HASH_SHA256:
439 		if (state->flags & HASH_FLAGS_HMAC)
440 			return HASH_CSR_NB_SHA256_HMAC;
441 		else
442 			return HASH_CSR_NB_SHA256;
443 		break;
444 
445 	case HASH_SHA384:
446 	case HASH_SHA512:
447 		if (state->flags & HASH_FLAGS_HMAC)
448 			return HASH_CSR_NB_SHA512_HMAC;
449 		else
450 			return HASH_CSR_NB_SHA512;
451 		break;
452 
453 	case HASH_SHA3_224:
454 	case HASH_SHA3_256:
455 	case HASH_SHA3_384:
456 	case HASH_SHA3_512:
457 		if (state->flags & HASH_FLAGS_HMAC)
458 			return HASH_CSR_NB_SHA3_HMAC;
459 		else
460 			return HASH_CSR_NB_SHA3;
461 		break;
462 
463 	default:
464 		return -EINVAL;
465 	}
466 }
467 
468 static int stm32_hash_update_cpu(struct stm32_hash_dev *hdev)
469 {
470 	struct stm32_hash_request_ctx *rctx = ahash_request_ctx(hdev->req);
471 	struct stm32_hash_state *state = &rctx->state;
472 	u32 *preg = state->hw_context;
473 	int bufcnt, err = 0, final;
474 	int i, swap_reg;
475 
476 	dev_dbg(hdev->dev, "%s flags %x\n", __func__, state->flags);
477 
478 	final = state->flags & HASH_FLAGS_FINAL;
479 
480 	while ((rctx->total >= state->blocklen) ||
481 	       (state->bufcnt + rctx->total >= state->blocklen)) {
482 		stm32_hash_append_sg(rctx);
483 		bufcnt = state->bufcnt;
484 		state->bufcnt = 0;
485 		err = stm32_hash_xmit_cpu(hdev, state->buffer, bufcnt, 0);
486 		if (err)
487 			return err;
488 	}
489 
490 	stm32_hash_append_sg(rctx);
491 
492 	if (final) {
493 		bufcnt = state->bufcnt;
494 		state->bufcnt = 0;
495 		return stm32_hash_xmit_cpu(hdev, state->buffer, bufcnt, 1);
496 	}
497 
498 	if (!(hdev->flags & HASH_FLAGS_INIT))
499 		return 0;
500 
501 	if (stm32_hash_wait_busy(hdev))
502 		return -ETIMEDOUT;
503 
504 	swap_reg = hash_swap_reg(rctx);
505 
506 	if (!hdev->pdata->ux500)
507 		*preg++ = stm32_hash_read(hdev, HASH_IMR);
508 	*preg++ = stm32_hash_read(hdev, HASH_STR);
509 	*preg++ = stm32_hash_read(hdev, HASH_CR);
510 	for (i = 0; i < swap_reg; i++)
511 		*preg++ = stm32_hash_read(hdev, HASH_CSR(i));
512 
513 	state->flags |= HASH_FLAGS_INIT;
514 
515 	return err;
516 }
517 
518 static int stm32_hash_xmit_dma(struct stm32_hash_dev *hdev,
519 			       struct scatterlist *sg, int length, int mdma)
520 {
521 	struct dma_async_tx_descriptor *in_desc;
522 	dma_cookie_t cookie;
523 	u32 reg;
524 	int err;
525 
526 	in_desc = dmaengine_prep_slave_sg(hdev->dma_lch, sg, 1,
527 					  DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT |
528 					  DMA_CTRL_ACK);
529 	if (!in_desc) {
530 		dev_err(hdev->dev, "dmaengine_prep_slave error\n");
531 		return -ENOMEM;
532 	}
533 
534 	reinit_completion(&hdev->dma_completion);
535 	in_desc->callback = stm32_hash_dma_callback;
536 	in_desc->callback_param = hdev;
537 
538 	hdev->flags |= HASH_FLAGS_FINAL;
539 	hdev->flags |= HASH_FLAGS_DMA_ACTIVE;
540 
541 	reg = stm32_hash_read(hdev, HASH_CR);
542 
543 	if (hdev->pdata->has_mdmat) {
544 		if (mdma)
545 			reg |= HASH_CR_MDMAT;
546 		else
547 			reg &= ~HASH_CR_MDMAT;
548 	}
549 	reg |= HASH_CR_DMAE;
550 
551 	stm32_hash_write(hdev, HASH_CR, reg);
552 
553 	stm32_hash_set_nblw(hdev, length);
554 
555 	cookie = dmaengine_submit(in_desc);
556 	err = dma_submit_error(cookie);
557 	if (err)
558 		return -ENOMEM;
559 
560 	dma_async_issue_pending(hdev->dma_lch);
561 
562 	if (!wait_for_completion_timeout(&hdev->dma_completion,
563 					 msecs_to_jiffies(100)))
564 		err = -ETIMEDOUT;
565 
566 	if (dma_async_is_tx_complete(hdev->dma_lch, cookie,
567 				     NULL, NULL) != DMA_COMPLETE)
568 		err = -ETIMEDOUT;
569 
570 	if (err) {
571 		dev_err(hdev->dev, "DMA Error %i\n", err);
572 		dmaengine_terminate_all(hdev->dma_lch);
573 		return err;
574 	}
575 
576 	return -EINPROGRESS;
577 }
578 
579 static void stm32_hash_dma_callback(void *param)
580 {
581 	struct stm32_hash_dev *hdev = param;
582 
583 	complete(&hdev->dma_completion);
584 }
585 
586 static int stm32_hash_hmac_dma_send(struct stm32_hash_dev *hdev)
587 {
588 	struct stm32_hash_request_ctx *rctx = ahash_request_ctx(hdev->req);
589 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(hdev->req);
590 	struct stm32_hash_ctx *ctx = crypto_ahash_ctx(tfm);
591 	int err;
592 
593 	if (ctx->keylen < rctx->state.blocklen || hdev->dma_mode == 1) {
594 		err = stm32_hash_write_key(hdev);
595 		if (stm32_hash_wait_busy(hdev))
596 			return -ETIMEDOUT;
597 	} else {
598 		if (!(hdev->flags & HASH_FLAGS_HMAC_KEY))
599 			sg_init_one(&rctx->sg_key, ctx->key,
600 				    ALIGN(ctx->keylen, sizeof(u32)));
601 
602 		rctx->dma_ct = dma_map_sg(hdev->dev, &rctx->sg_key, 1,
603 					  DMA_TO_DEVICE);
604 		if (rctx->dma_ct == 0) {
605 			dev_err(hdev->dev, "dma_map_sg error\n");
606 			return -ENOMEM;
607 		}
608 
609 		err = stm32_hash_xmit_dma(hdev, &rctx->sg_key, ctx->keylen, 0);
610 
611 		dma_unmap_sg(hdev->dev, &rctx->sg_key, 1, DMA_TO_DEVICE);
612 	}
613 
614 	return err;
615 }
616 
617 static int stm32_hash_dma_init(struct stm32_hash_dev *hdev)
618 {
619 	struct dma_slave_config dma_conf;
620 	struct dma_chan *chan;
621 	int err;
622 
623 	memset(&dma_conf, 0, sizeof(dma_conf));
624 
625 	dma_conf.direction = DMA_MEM_TO_DEV;
626 	dma_conf.dst_addr = hdev->phys_base + HASH_DIN;
627 	dma_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
628 	dma_conf.src_maxburst = HASH_BURST_LEVEL;
629 	dma_conf.dst_maxburst = HASH_BURST_LEVEL;
630 	dma_conf.device_fc = false;
631 
632 	chan = dma_request_chan(hdev->dev, "in");
633 	if (IS_ERR(chan))
634 		return PTR_ERR(chan);
635 
636 	hdev->dma_lch = chan;
637 
638 	err = dmaengine_slave_config(hdev->dma_lch, &dma_conf);
639 	if (err) {
640 		dma_release_channel(hdev->dma_lch);
641 		hdev->dma_lch = NULL;
642 		dev_err(hdev->dev, "Couldn't configure DMA slave.\n");
643 		return err;
644 	}
645 
646 	init_completion(&hdev->dma_completion);
647 
648 	return 0;
649 }
650 
651 static int stm32_hash_dma_send(struct stm32_hash_dev *hdev)
652 {
653 	struct stm32_hash_request_ctx *rctx = ahash_request_ctx(hdev->req);
654 	u32 *buffer = (void *)rctx->state.buffer;
655 	struct scatterlist sg[1], *tsg;
656 	int err = 0, reg, ncp = 0;
657 	unsigned int i, len = 0, bufcnt = 0;
658 	bool is_last = false;
659 
660 	rctx->sg = hdev->req->src;
661 	rctx->total = hdev->req->nbytes;
662 
663 	rctx->nents = sg_nents(rctx->sg);
664 	if (rctx->nents < 0)
665 		return -EINVAL;
666 
667 	stm32_hash_write_ctrl(hdev);
668 
669 	if (hdev->flags & HASH_FLAGS_HMAC) {
670 		err = stm32_hash_hmac_dma_send(hdev);
671 		if (err != -EINPROGRESS)
672 			return err;
673 	}
674 
675 	for_each_sg(rctx->sg, tsg, rctx->nents, i) {
676 		sg[0] = *tsg;
677 		len = sg->length;
678 
679 		if (sg_is_last(sg) || (bufcnt + sg[0].length) >= rctx->total) {
680 			sg->length = rctx->total - bufcnt;
681 			is_last = true;
682 			if (hdev->dma_mode == 1) {
683 				len = (ALIGN(sg->length, 16) - 16);
684 
685 				ncp = sg_pcopy_to_buffer(
686 					rctx->sg, rctx->nents,
687 					rctx->state.buffer, sg->length - len,
688 					rctx->total - sg->length + len);
689 
690 				sg->length = len;
691 			} else {
692 				if (!(IS_ALIGNED(sg->length, sizeof(u32)))) {
693 					len = sg->length;
694 					sg->length = ALIGN(sg->length,
695 							   sizeof(u32));
696 				}
697 			}
698 		}
699 
700 		rctx->dma_ct = dma_map_sg(hdev->dev, sg, 1,
701 					  DMA_TO_DEVICE);
702 		if (rctx->dma_ct == 0) {
703 			dev_err(hdev->dev, "dma_map_sg error\n");
704 			return -ENOMEM;
705 		}
706 
707 		err = stm32_hash_xmit_dma(hdev, sg, len, !is_last);
708 
709 		bufcnt += sg[0].length;
710 		dma_unmap_sg(hdev->dev, sg, 1, DMA_TO_DEVICE);
711 
712 		if (err == -ENOMEM)
713 			return err;
714 		if (is_last)
715 			break;
716 	}
717 
718 	if (hdev->dma_mode == 1) {
719 		if (stm32_hash_wait_busy(hdev))
720 			return -ETIMEDOUT;
721 		reg = stm32_hash_read(hdev, HASH_CR);
722 		reg &= ~HASH_CR_DMAE;
723 		reg |= HASH_CR_DMAA;
724 		stm32_hash_write(hdev, HASH_CR, reg);
725 
726 		if (ncp) {
727 			memset(buffer + ncp, 0,
728 			       DIV_ROUND_UP(ncp, sizeof(u32)) - ncp);
729 			writesl(hdev->io_base + HASH_DIN, buffer,
730 				DIV_ROUND_UP(ncp, sizeof(u32)));
731 		}
732 		stm32_hash_set_nblw(hdev, ncp);
733 		reg = stm32_hash_read(hdev, HASH_STR);
734 		reg |= HASH_STR_DCAL;
735 		stm32_hash_write(hdev, HASH_STR, reg);
736 		err = -EINPROGRESS;
737 	}
738 
739 	if (hdev->flags & HASH_FLAGS_HMAC) {
740 		if (stm32_hash_wait_busy(hdev))
741 			return -ETIMEDOUT;
742 		err = stm32_hash_hmac_dma_send(hdev);
743 	}
744 
745 	return err;
746 }
747 
748 static struct stm32_hash_dev *stm32_hash_find_dev(struct stm32_hash_ctx *ctx)
749 {
750 	struct stm32_hash_dev *hdev = NULL, *tmp;
751 
752 	spin_lock_bh(&stm32_hash.lock);
753 	if (!ctx->hdev) {
754 		list_for_each_entry(tmp, &stm32_hash.dev_list, list) {
755 			hdev = tmp;
756 			break;
757 		}
758 		ctx->hdev = hdev;
759 	} else {
760 		hdev = ctx->hdev;
761 	}
762 
763 	spin_unlock_bh(&stm32_hash.lock);
764 
765 	return hdev;
766 }
767 
768 static bool stm32_hash_dma_aligned_data(struct ahash_request *req)
769 {
770 	struct scatterlist *sg;
771 	struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
772 	struct stm32_hash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(req));
773 	struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
774 	int i;
775 
776 	if (!hdev->dma_lch || req->nbytes <= rctx->state.blocklen)
777 		return false;
778 
779 	if (sg_nents(req->src) > 1) {
780 		if (hdev->dma_mode == 1)
781 			return false;
782 		for_each_sg(req->src, sg, sg_nents(req->src), i) {
783 			if ((!IS_ALIGNED(sg->length, sizeof(u32))) &&
784 			    (!sg_is_last(sg)))
785 				return false;
786 		}
787 	}
788 
789 	if (req->src->offset % 4)
790 		return false;
791 
792 	return true;
793 }
794 
795 static int stm32_hash_init(struct ahash_request *req)
796 {
797 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
798 	struct stm32_hash_ctx *ctx = crypto_ahash_ctx(tfm);
799 	struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
800 	struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
801 	struct stm32_hash_state *state = &rctx->state;
802 	bool sha3_mode = ctx->flags & HASH_FLAGS_SHA3_MODE;
803 
804 	rctx->hdev = hdev;
805 
806 	state->flags = HASH_FLAGS_CPU;
807 
808 	if (sha3_mode)
809 		state->flags |= HASH_FLAGS_SHA3_MODE;
810 
811 	rctx->digcnt = crypto_ahash_digestsize(tfm);
812 	switch (rctx->digcnt) {
813 	case MD5_DIGEST_SIZE:
814 		state->flags |= HASH_MD5 << HASH_FLAGS_ALGO_SHIFT;
815 		break;
816 	case SHA1_DIGEST_SIZE:
817 		if (hdev->pdata->ux500)
818 			state->flags |= HASH_SHA1_UX500 << HASH_FLAGS_ALGO_SHIFT;
819 		else
820 			state->flags |= HASH_SHA1 << HASH_FLAGS_ALGO_SHIFT;
821 		break;
822 	case SHA224_DIGEST_SIZE:
823 		if (sha3_mode)
824 			state->flags |= HASH_SHA3_224 << HASH_FLAGS_ALGO_SHIFT;
825 		else
826 			state->flags |= HASH_SHA224 << HASH_FLAGS_ALGO_SHIFT;
827 		break;
828 	case SHA256_DIGEST_SIZE:
829 		if (sha3_mode) {
830 			state->flags |= HASH_SHA3_256 << HASH_FLAGS_ALGO_SHIFT;
831 		} else {
832 			if (hdev->pdata->ux500)
833 				state->flags |= HASH_SHA256_UX500 << HASH_FLAGS_ALGO_SHIFT;
834 			else
835 				state->flags |= HASH_SHA256 << HASH_FLAGS_ALGO_SHIFT;
836 		}
837 		break;
838 	case SHA384_DIGEST_SIZE:
839 		if (sha3_mode)
840 			state->flags |= HASH_SHA3_384 << HASH_FLAGS_ALGO_SHIFT;
841 		else
842 			state->flags |= HASH_SHA384 << HASH_FLAGS_ALGO_SHIFT;
843 		break;
844 	case SHA512_DIGEST_SIZE:
845 		if (sha3_mode)
846 			state->flags |= HASH_SHA3_512 << HASH_FLAGS_ALGO_SHIFT;
847 		else
848 			state->flags |= HASH_SHA512 << HASH_FLAGS_ALGO_SHIFT;
849 		break;
850 	default:
851 		return -EINVAL;
852 	}
853 
854 	rctx->state.bufcnt = 0;
855 	rctx->state.blocklen = crypto_ahash_blocksize(tfm) + sizeof(u32);
856 	if (rctx->state.blocklen > HASH_BUFLEN) {
857 		dev_err(hdev->dev, "Error, block too large");
858 		return -EINVAL;
859 	}
860 	rctx->total = 0;
861 	rctx->offset = 0;
862 	rctx->data_type = HASH_DATA_8_BITS;
863 
864 	if (ctx->flags & HASH_FLAGS_HMAC)
865 		state->flags |= HASH_FLAGS_HMAC;
866 
867 	dev_dbg(hdev->dev, "%s Flags %x\n", __func__, state->flags);
868 
869 	return 0;
870 }
871 
872 static int stm32_hash_update_req(struct stm32_hash_dev *hdev)
873 {
874 	struct stm32_hash_request_ctx *rctx = ahash_request_ctx(hdev->req);
875 	struct stm32_hash_state *state = &rctx->state;
876 
877 	if (!(state->flags & HASH_FLAGS_CPU))
878 		return stm32_hash_dma_send(hdev);
879 
880 	return stm32_hash_update_cpu(hdev);
881 }
882 
883 static int stm32_hash_final_req(struct stm32_hash_dev *hdev)
884 {
885 	struct ahash_request *req = hdev->req;
886 	struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
887 	struct stm32_hash_state *state = &rctx->state;
888 	int buflen = state->bufcnt;
889 
890 	if (state->flags & HASH_FLAGS_FINUP)
891 		return stm32_hash_update_req(hdev);
892 
893 	state->bufcnt = 0;
894 
895 	return stm32_hash_xmit_cpu(hdev, state->buffer, buflen, 1);
896 }
897 
898 static void stm32_hash_emptymsg_fallback(struct ahash_request *req)
899 {
900 	struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
901 	struct stm32_hash_ctx *ctx = crypto_ahash_ctx(ahash);
902 	struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
903 	struct stm32_hash_dev *hdev = rctx->hdev;
904 	int ret;
905 
906 	dev_dbg(hdev->dev, "use fallback message size 0 key size %d\n",
907 		ctx->keylen);
908 
909 	if (!ctx->xtfm) {
910 		dev_err(hdev->dev, "no fallback engine\n");
911 		return;
912 	}
913 
914 	if (ctx->keylen) {
915 		ret = crypto_shash_setkey(ctx->xtfm, ctx->key, ctx->keylen);
916 		if (ret) {
917 			dev_err(hdev->dev, "failed to set key ret=%d\n", ret);
918 			return;
919 		}
920 	}
921 
922 	ret = crypto_shash_tfm_digest(ctx->xtfm, NULL, 0, rctx->digest);
923 	if (ret)
924 		dev_err(hdev->dev, "shash digest error\n");
925 }
926 
927 static void stm32_hash_copy_hash(struct ahash_request *req)
928 {
929 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
930 	struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
931 	struct stm32_hash_state *state = &rctx->state;
932 	struct stm32_hash_dev *hdev = rctx->hdev;
933 	__be32 *hash = (void *)rctx->digest;
934 	unsigned int i, hashsize;
935 
936 	if (hdev->pdata->broken_emptymsg && (state->flags & HASH_FLAGS_EMPTY))
937 		return stm32_hash_emptymsg_fallback(req);
938 
939 	hashsize = crypto_ahash_digestsize(tfm);
940 
941 	for (i = 0; i < hashsize / sizeof(u32); i++) {
942 		if (hdev->pdata->ux500)
943 			hash[i] = cpu_to_be32(stm32_hash_read(hdev,
944 					      HASH_UX500_HREG(i)));
945 		else
946 			hash[i] = cpu_to_be32(stm32_hash_read(hdev,
947 					      HASH_HREG(i)));
948 	}
949 }
950 
951 static int stm32_hash_finish(struct ahash_request *req)
952 {
953 	struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
954 	u32 reg;
955 
956 	reg = stm32_hash_read(rctx->hdev, HASH_SR);
957 	reg &= ~HASH_SR_OUTPUT_READY;
958 	stm32_hash_write(rctx->hdev, HASH_SR, reg);
959 
960 	if (!req->result)
961 		return -EINVAL;
962 
963 	memcpy(req->result, rctx->digest, rctx->digcnt);
964 
965 	return 0;
966 }
967 
968 static void stm32_hash_finish_req(struct ahash_request *req, int err)
969 {
970 	struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
971 	struct stm32_hash_dev *hdev = rctx->hdev;
972 
973 	if (!err && (HASH_FLAGS_FINAL & hdev->flags)) {
974 		stm32_hash_copy_hash(req);
975 		err = stm32_hash_finish(req);
976 	}
977 
978 	pm_runtime_mark_last_busy(hdev->dev);
979 	pm_runtime_put_autosuspend(hdev->dev);
980 
981 	crypto_finalize_hash_request(hdev->engine, req, err);
982 }
983 
984 static int stm32_hash_handle_queue(struct stm32_hash_dev *hdev,
985 				   struct ahash_request *req)
986 {
987 	return crypto_transfer_hash_request_to_engine(hdev->engine, req);
988 }
989 
990 static int stm32_hash_one_request(struct crypto_engine *engine, void *areq)
991 {
992 	struct ahash_request *req = container_of(areq, struct ahash_request,
993 						 base);
994 	struct stm32_hash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(req));
995 	struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
996 	struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
997 	struct stm32_hash_state *state = &rctx->state;
998 	int swap_reg;
999 	int err = 0;
1000 
1001 	if (!hdev)
1002 		return -ENODEV;
1003 
1004 	dev_dbg(hdev->dev, "processing new req, op: %lu, nbytes %d\n",
1005 		rctx->op, req->nbytes);
1006 
1007 	pm_runtime_get_sync(hdev->dev);
1008 
1009 	hdev->req = req;
1010 	hdev->flags = 0;
1011 	swap_reg = hash_swap_reg(rctx);
1012 
1013 	if (state->flags & HASH_FLAGS_INIT) {
1014 		u32 *preg = rctx->state.hw_context;
1015 		u32 reg;
1016 		int i;
1017 
1018 		if (!hdev->pdata->ux500)
1019 			stm32_hash_write(hdev, HASH_IMR, *preg++);
1020 		stm32_hash_write(hdev, HASH_STR, *preg++);
1021 		stm32_hash_write(hdev, HASH_CR, *preg);
1022 		reg = *preg++ | HASH_CR_INIT;
1023 		stm32_hash_write(hdev, HASH_CR, reg);
1024 
1025 		for (i = 0; i < swap_reg; i++)
1026 			stm32_hash_write(hdev, HASH_CSR(i), *preg++);
1027 
1028 		hdev->flags |= HASH_FLAGS_INIT;
1029 
1030 		if (state->flags & HASH_FLAGS_HMAC)
1031 			hdev->flags |= HASH_FLAGS_HMAC |
1032 				       HASH_FLAGS_HMAC_KEY;
1033 	}
1034 
1035 	if (rctx->op == HASH_OP_UPDATE)
1036 		err = stm32_hash_update_req(hdev);
1037 	else if (rctx->op == HASH_OP_FINAL)
1038 		err = stm32_hash_final_req(hdev);
1039 
1040 	/* If we have an IRQ, wait for that, else poll for completion */
1041 	if (err == -EINPROGRESS && hdev->polled) {
1042 		if (stm32_hash_wait_busy(hdev))
1043 			err = -ETIMEDOUT;
1044 		else {
1045 			hdev->flags |= HASH_FLAGS_OUTPUT_READY;
1046 			err = 0;
1047 		}
1048 	}
1049 
1050 	if (err != -EINPROGRESS)
1051 	/* done task will not finish it, so do it here */
1052 		stm32_hash_finish_req(req, err);
1053 
1054 	return 0;
1055 }
1056 
1057 static int stm32_hash_enqueue(struct ahash_request *req, unsigned int op)
1058 {
1059 	struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
1060 	struct stm32_hash_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
1061 	struct stm32_hash_dev *hdev = ctx->hdev;
1062 
1063 	rctx->op = op;
1064 
1065 	return stm32_hash_handle_queue(hdev, req);
1066 }
1067 
1068 static int stm32_hash_update(struct ahash_request *req)
1069 {
1070 	struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
1071 	struct stm32_hash_state *state = &rctx->state;
1072 
1073 	if (!req->nbytes || !(state->flags & HASH_FLAGS_CPU))
1074 		return 0;
1075 
1076 	rctx->total = req->nbytes;
1077 	rctx->sg = req->src;
1078 	rctx->offset = 0;
1079 
1080 	if ((state->bufcnt + rctx->total < state->blocklen)) {
1081 		stm32_hash_append_sg(rctx);
1082 		return 0;
1083 	}
1084 
1085 	return stm32_hash_enqueue(req, HASH_OP_UPDATE);
1086 }
1087 
1088 static int stm32_hash_final(struct ahash_request *req)
1089 {
1090 	struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
1091 	struct stm32_hash_state *state = &rctx->state;
1092 
1093 	state->flags |= HASH_FLAGS_FINAL;
1094 
1095 	return stm32_hash_enqueue(req, HASH_OP_FINAL);
1096 }
1097 
1098 static int stm32_hash_finup(struct ahash_request *req)
1099 {
1100 	struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
1101 	struct stm32_hash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(req));
1102 	struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
1103 	struct stm32_hash_state *state = &rctx->state;
1104 
1105 	if (!req->nbytes)
1106 		goto out;
1107 
1108 	state->flags |= HASH_FLAGS_FINUP;
1109 	rctx->total = req->nbytes;
1110 	rctx->sg = req->src;
1111 	rctx->offset = 0;
1112 
1113 	if (hdev->dma_lch && stm32_hash_dma_aligned_data(req))
1114 		state->flags &= ~HASH_FLAGS_CPU;
1115 
1116 out:
1117 	return stm32_hash_final(req);
1118 }
1119 
1120 static int stm32_hash_digest(struct ahash_request *req)
1121 {
1122 	return stm32_hash_init(req) ?: stm32_hash_finup(req);
1123 }
1124 
1125 static int stm32_hash_export(struct ahash_request *req, void *out)
1126 {
1127 	struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
1128 
1129 	memcpy(out, &rctx->state, sizeof(rctx->state));
1130 
1131 	return 0;
1132 }
1133 
1134 static int stm32_hash_import(struct ahash_request *req, const void *in)
1135 {
1136 	struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
1137 
1138 	stm32_hash_init(req);
1139 	memcpy(&rctx->state, in, sizeof(rctx->state));
1140 
1141 	return 0;
1142 }
1143 
1144 static int stm32_hash_setkey(struct crypto_ahash *tfm,
1145 			     const u8 *key, unsigned int keylen)
1146 {
1147 	struct stm32_hash_ctx *ctx = crypto_ahash_ctx(tfm);
1148 
1149 	if (keylen <= HASH_MAX_KEY_SIZE) {
1150 		memcpy(ctx->key, key, keylen);
1151 		ctx->keylen = keylen;
1152 	} else {
1153 		return -ENOMEM;
1154 	}
1155 
1156 	return 0;
1157 }
1158 
1159 static int stm32_hash_init_fallback(struct crypto_tfm *tfm)
1160 {
1161 	struct stm32_hash_ctx *ctx = crypto_tfm_ctx(tfm);
1162 	struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
1163 	const char *name = crypto_tfm_alg_name(tfm);
1164 	struct crypto_shash *xtfm;
1165 
1166 	/* The fallback is only needed on Ux500 */
1167 	if (!hdev->pdata->ux500)
1168 		return 0;
1169 
1170 	xtfm = crypto_alloc_shash(name, 0, CRYPTO_ALG_NEED_FALLBACK);
1171 	if (IS_ERR(xtfm)) {
1172 		dev_err(hdev->dev, "failed to allocate %s fallback\n",
1173 			name);
1174 		return PTR_ERR(xtfm);
1175 	}
1176 	dev_info(hdev->dev, "allocated %s fallback\n", name);
1177 	ctx->xtfm = xtfm;
1178 
1179 	return 0;
1180 }
1181 
1182 static int stm32_hash_cra_init_algs(struct crypto_tfm *tfm, u32 algs_flags)
1183 {
1184 	struct stm32_hash_ctx *ctx = crypto_tfm_ctx(tfm);
1185 
1186 	crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
1187 				 sizeof(struct stm32_hash_request_ctx));
1188 
1189 	ctx->keylen = 0;
1190 
1191 	if (algs_flags)
1192 		ctx->flags |= algs_flags;
1193 
1194 	return stm32_hash_init_fallback(tfm);
1195 }
1196 
1197 static int stm32_hash_cra_init(struct crypto_tfm *tfm)
1198 {
1199 	return stm32_hash_cra_init_algs(tfm, 0);
1200 }
1201 
1202 static int stm32_hash_cra_hmac_init(struct crypto_tfm *tfm)
1203 {
1204 	return stm32_hash_cra_init_algs(tfm, HASH_FLAGS_HMAC);
1205 }
1206 
1207 static int stm32_hash_cra_sha3_init(struct crypto_tfm *tfm)
1208 {
1209 	return stm32_hash_cra_init_algs(tfm, HASH_FLAGS_SHA3_MODE);
1210 }
1211 
1212 static int stm32_hash_cra_sha3_hmac_init(struct crypto_tfm *tfm)
1213 {
1214 	return stm32_hash_cra_init_algs(tfm, HASH_FLAGS_SHA3_MODE |
1215 					HASH_FLAGS_HMAC);
1216 }
1217 
1218 
1219 static void stm32_hash_cra_exit(struct crypto_tfm *tfm)
1220 {
1221 	struct stm32_hash_ctx *ctx = crypto_tfm_ctx(tfm);
1222 
1223 	if (ctx->xtfm)
1224 		crypto_free_shash(ctx->xtfm);
1225 }
1226 
1227 static irqreturn_t stm32_hash_irq_thread(int irq, void *dev_id)
1228 {
1229 	struct stm32_hash_dev *hdev = dev_id;
1230 
1231 	if (HASH_FLAGS_CPU & hdev->flags) {
1232 		if (HASH_FLAGS_OUTPUT_READY & hdev->flags) {
1233 			hdev->flags &= ~HASH_FLAGS_OUTPUT_READY;
1234 			goto finish;
1235 		}
1236 	} else if (HASH_FLAGS_DMA_ACTIVE & hdev->flags) {
1237 		hdev->flags &= ~HASH_FLAGS_DMA_ACTIVE;
1238 			goto finish;
1239 	}
1240 
1241 	return IRQ_HANDLED;
1242 
1243 finish:
1244 	/* Finish current request */
1245 	stm32_hash_finish_req(hdev->req, 0);
1246 
1247 	return IRQ_HANDLED;
1248 }
1249 
1250 static irqreturn_t stm32_hash_irq_handler(int irq, void *dev_id)
1251 {
1252 	struct stm32_hash_dev *hdev = dev_id;
1253 	u32 reg;
1254 
1255 	reg = stm32_hash_read(hdev, HASH_SR);
1256 	if (reg & HASH_SR_OUTPUT_READY) {
1257 		hdev->flags |= HASH_FLAGS_OUTPUT_READY;
1258 		/* Disable IT*/
1259 		stm32_hash_write(hdev, HASH_IMR, 0);
1260 		return IRQ_WAKE_THREAD;
1261 	}
1262 
1263 	return IRQ_NONE;
1264 }
1265 
1266 static struct ahash_engine_alg algs_md5[] = {
1267 	{
1268 		.base.init = stm32_hash_init,
1269 		.base.update = stm32_hash_update,
1270 		.base.final = stm32_hash_final,
1271 		.base.finup = stm32_hash_finup,
1272 		.base.digest = stm32_hash_digest,
1273 		.base.export = stm32_hash_export,
1274 		.base.import = stm32_hash_import,
1275 		.base.halg = {
1276 			.digestsize = MD5_DIGEST_SIZE,
1277 			.statesize = sizeof(struct stm32_hash_state),
1278 			.base = {
1279 				.cra_name = "md5",
1280 				.cra_driver_name = "stm32-md5",
1281 				.cra_priority = 200,
1282 				.cra_flags = CRYPTO_ALG_ASYNC |
1283 					CRYPTO_ALG_KERN_DRIVER_ONLY,
1284 				.cra_blocksize = MD5_HMAC_BLOCK_SIZE,
1285 				.cra_ctxsize = sizeof(struct stm32_hash_ctx),
1286 				.cra_init = stm32_hash_cra_init,
1287 				.cra_exit = stm32_hash_cra_exit,
1288 				.cra_module = THIS_MODULE,
1289 			}
1290 		},
1291 		.op = {
1292 			.do_one_request = stm32_hash_one_request,
1293 		},
1294 	},
1295 	{
1296 		.base.init = stm32_hash_init,
1297 		.base.update = stm32_hash_update,
1298 		.base.final = stm32_hash_final,
1299 		.base.finup = stm32_hash_finup,
1300 		.base.digest = stm32_hash_digest,
1301 		.base.export = stm32_hash_export,
1302 		.base.import = stm32_hash_import,
1303 		.base.setkey = stm32_hash_setkey,
1304 		.base.halg = {
1305 			.digestsize = MD5_DIGEST_SIZE,
1306 			.statesize = sizeof(struct stm32_hash_state),
1307 			.base = {
1308 				.cra_name = "hmac(md5)",
1309 				.cra_driver_name = "stm32-hmac-md5",
1310 				.cra_priority = 200,
1311 				.cra_flags = CRYPTO_ALG_ASYNC |
1312 					CRYPTO_ALG_KERN_DRIVER_ONLY,
1313 				.cra_blocksize = MD5_HMAC_BLOCK_SIZE,
1314 				.cra_ctxsize = sizeof(struct stm32_hash_ctx),
1315 				.cra_init = stm32_hash_cra_hmac_init,
1316 				.cra_exit = stm32_hash_cra_exit,
1317 				.cra_module = THIS_MODULE,
1318 			}
1319 		},
1320 		.op = {
1321 			.do_one_request = stm32_hash_one_request,
1322 		},
1323 	}
1324 };
1325 
1326 static struct ahash_engine_alg algs_sha1[] = {
1327 	{
1328 		.base.init = stm32_hash_init,
1329 		.base.update = stm32_hash_update,
1330 		.base.final = stm32_hash_final,
1331 		.base.finup = stm32_hash_finup,
1332 		.base.digest = stm32_hash_digest,
1333 		.base.export = stm32_hash_export,
1334 		.base.import = stm32_hash_import,
1335 		.base.halg = {
1336 			.digestsize = SHA1_DIGEST_SIZE,
1337 			.statesize = sizeof(struct stm32_hash_state),
1338 			.base = {
1339 				.cra_name = "sha1",
1340 				.cra_driver_name = "stm32-sha1",
1341 				.cra_priority = 200,
1342 				.cra_flags = CRYPTO_ALG_ASYNC |
1343 					CRYPTO_ALG_KERN_DRIVER_ONLY,
1344 				.cra_blocksize = SHA1_BLOCK_SIZE,
1345 				.cra_ctxsize = sizeof(struct stm32_hash_ctx),
1346 				.cra_init = stm32_hash_cra_init,
1347 				.cra_exit = stm32_hash_cra_exit,
1348 				.cra_module = THIS_MODULE,
1349 			}
1350 		},
1351 		.op = {
1352 			.do_one_request = stm32_hash_one_request,
1353 		},
1354 	},
1355 	{
1356 		.base.init = stm32_hash_init,
1357 		.base.update = stm32_hash_update,
1358 		.base.final = stm32_hash_final,
1359 		.base.finup = stm32_hash_finup,
1360 		.base.digest = stm32_hash_digest,
1361 		.base.export = stm32_hash_export,
1362 		.base.import = stm32_hash_import,
1363 		.base.setkey = stm32_hash_setkey,
1364 		.base.halg = {
1365 			.digestsize = SHA1_DIGEST_SIZE,
1366 			.statesize = sizeof(struct stm32_hash_state),
1367 			.base = {
1368 				.cra_name = "hmac(sha1)",
1369 				.cra_driver_name = "stm32-hmac-sha1",
1370 				.cra_priority = 200,
1371 				.cra_flags = CRYPTO_ALG_ASYNC |
1372 					CRYPTO_ALG_KERN_DRIVER_ONLY,
1373 				.cra_blocksize = SHA1_BLOCK_SIZE,
1374 				.cra_ctxsize = sizeof(struct stm32_hash_ctx),
1375 				.cra_init = stm32_hash_cra_hmac_init,
1376 				.cra_exit = stm32_hash_cra_exit,
1377 				.cra_module = THIS_MODULE,
1378 			}
1379 		},
1380 		.op = {
1381 			.do_one_request = stm32_hash_one_request,
1382 		},
1383 	},
1384 };
1385 
1386 static struct ahash_engine_alg algs_sha224[] = {
1387 	{
1388 		.base.init = stm32_hash_init,
1389 		.base.update = stm32_hash_update,
1390 		.base.final = stm32_hash_final,
1391 		.base.finup = stm32_hash_finup,
1392 		.base.digest = stm32_hash_digest,
1393 		.base.export = stm32_hash_export,
1394 		.base.import = stm32_hash_import,
1395 		.base.halg = {
1396 			.digestsize = SHA224_DIGEST_SIZE,
1397 			.statesize = sizeof(struct stm32_hash_state),
1398 			.base = {
1399 				.cra_name = "sha224",
1400 				.cra_driver_name = "stm32-sha224",
1401 				.cra_priority = 200,
1402 				.cra_flags = CRYPTO_ALG_ASYNC |
1403 					CRYPTO_ALG_KERN_DRIVER_ONLY,
1404 				.cra_blocksize = SHA224_BLOCK_SIZE,
1405 				.cra_ctxsize = sizeof(struct stm32_hash_ctx),
1406 				.cra_init = stm32_hash_cra_init,
1407 				.cra_exit = stm32_hash_cra_exit,
1408 				.cra_module = THIS_MODULE,
1409 			}
1410 		},
1411 		.op = {
1412 			.do_one_request = stm32_hash_one_request,
1413 		},
1414 	},
1415 	{
1416 		.base.init = stm32_hash_init,
1417 		.base.update = stm32_hash_update,
1418 		.base.final = stm32_hash_final,
1419 		.base.finup = stm32_hash_finup,
1420 		.base.digest = stm32_hash_digest,
1421 		.base.setkey = stm32_hash_setkey,
1422 		.base.export = stm32_hash_export,
1423 		.base.import = stm32_hash_import,
1424 		.base.halg = {
1425 			.digestsize = SHA224_DIGEST_SIZE,
1426 			.statesize = sizeof(struct stm32_hash_state),
1427 			.base = {
1428 				.cra_name = "hmac(sha224)",
1429 				.cra_driver_name = "stm32-hmac-sha224",
1430 				.cra_priority = 200,
1431 				.cra_flags = CRYPTO_ALG_ASYNC |
1432 					CRYPTO_ALG_KERN_DRIVER_ONLY,
1433 				.cra_blocksize = SHA224_BLOCK_SIZE,
1434 				.cra_ctxsize = sizeof(struct stm32_hash_ctx),
1435 				.cra_init = stm32_hash_cra_hmac_init,
1436 				.cra_exit = stm32_hash_cra_exit,
1437 				.cra_module = THIS_MODULE,
1438 			}
1439 		},
1440 		.op = {
1441 			.do_one_request = stm32_hash_one_request,
1442 		},
1443 	},
1444 };
1445 
1446 static struct ahash_engine_alg algs_sha256[] = {
1447 	{
1448 		.base.init = stm32_hash_init,
1449 		.base.update = stm32_hash_update,
1450 		.base.final = stm32_hash_final,
1451 		.base.finup = stm32_hash_finup,
1452 		.base.digest = stm32_hash_digest,
1453 		.base.export = stm32_hash_export,
1454 		.base.import = stm32_hash_import,
1455 		.base.halg = {
1456 			.digestsize = SHA256_DIGEST_SIZE,
1457 			.statesize = sizeof(struct stm32_hash_state),
1458 			.base = {
1459 				.cra_name = "sha256",
1460 				.cra_driver_name = "stm32-sha256",
1461 				.cra_priority = 200,
1462 				.cra_flags = CRYPTO_ALG_ASYNC |
1463 					CRYPTO_ALG_KERN_DRIVER_ONLY,
1464 				.cra_blocksize = SHA256_BLOCK_SIZE,
1465 				.cra_ctxsize = sizeof(struct stm32_hash_ctx),
1466 				.cra_init = stm32_hash_cra_init,
1467 				.cra_exit = stm32_hash_cra_exit,
1468 				.cra_module = THIS_MODULE,
1469 			}
1470 		},
1471 		.op = {
1472 			.do_one_request = stm32_hash_one_request,
1473 		},
1474 	},
1475 	{
1476 		.base.init = stm32_hash_init,
1477 		.base.update = stm32_hash_update,
1478 		.base.final = stm32_hash_final,
1479 		.base.finup = stm32_hash_finup,
1480 		.base.digest = stm32_hash_digest,
1481 		.base.export = stm32_hash_export,
1482 		.base.import = stm32_hash_import,
1483 		.base.setkey = stm32_hash_setkey,
1484 		.base.halg = {
1485 			.digestsize = SHA256_DIGEST_SIZE,
1486 			.statesize = sizeof(struct stm32_hash_state),
1487 			.base = {
1488 				.cra_name = "hmac(sha256)",
1489 				.cra_driver_name = "stm32-hmac-sha256",
1490 				.cra_priority = 200,
1491 				.cra_flags = CRYPTO_ALG_ASYNC |
1492 					CRYPTO_ALG_KERN_DRIVER_ONLY,
1493 				.cra_blocksize = SHA256_BLOCK_SIZE,
1494 				.cra_ctxsize = sizeof(struct stm32_hash_ctx),
1495 				.cra_init = stm32_hash_cra_hmac_init,
1496 				.cra_exit = stm32_hash_cra_exit,
1497 				.cra_module = THIS_MODULE,
1498 			}
1499 		},
1500 		.op = {
1501 			.do_one_request = stm32_hash_one_request,
1502 		},
1503 	},
1504 };
1505 
1506 static struct ahash_engine_alg algs_sha384_sha512[] = {
1507 	{
1508 		.base.init = stm32_hash_init,
1509 		.base.update = stm32_hash_update,
1510 		.base.final = stm32_hash_final,
1511 		.base.finup = stm32_hash_finup,
1512 		.base.digest = stm32_hash_digest,
1513 		.base.export = stm32_hash_export,
1514 		.base.import = stm32_hash_import,
1515 		.base.halg = {
1516 			.digestsize = SHA384_DIGEST_SIZE,
1517 			.statesize = sizeof(struct stm32_hash_state),
1518 			.base = {
1519 				.cra_name = "sha384",
1520 				.cra_driver_name = "stm32-sha384",
1521 				.cra_priority = 200,
1522 				.cra_flags = CRYPTO_ALG_ASYNC |
1523 					CRYPTO_ALG_KERN_DRIVER_ONLY,
1524 				.cra_blocksize = SHA384_BLOCK_SIZE,
1525 				.cra_ctxsize = sizeof(struct stm32_hash_ctx),
1526 				.cra_init = stm32_hash_cra_init,
1527 				.cra_exit = stm32_hash_cra_exit,
1528 				.cra_module = THIS_MODULE,
1529 			}
1530 		},
1531 		.op = {
1532 			.do_one_request = stm32_hash_one_request,
1533 		},
1534 	},
1535 	{
1536 		.base.init = stm32_hash_init,
1537 		.base.update = stm32_hash_update,
1538 		.base.final = stm32_hash_final,
1539 		.base.finup = stm32_hash_finup,
1540 		.base.digest = stm32_hash_digest,
1541 		.base.setkey = stm32_hash_setkey,
1542 		.base.export = stm32_hash_export,
1543 		.base.import = stm32_hash_import,
1544 		.base.halg = {
1545 			.digestsize = SHA384_DIGEST_SIZE,
1546 			.statesize = sizeof(struct stm32_hash_state),
1547 			.base = {
1548 				.cra_name = "hmac(sha384)",
1549 				.cra_driver_name = "stm32-hmac-sha384",
1550 				.cra_priority = 200,
1551 				.cra_flags = CRYPTO_ALG_ASYNC |
1552 					CRYPTO_ALG_KERN_DRIVER_ONLY,
1553 				.cra_blocksize = SHA384_BLOCK_SIZE,
1554 				.cra_ctxsize = sizeof(struct stm32_hash_ctx),
1555 				.cra_init = stm32_hash_cra_hmac_init,
1556 				.cra_exit = stm32_hash_cra_exit,
1557 				.cra_module = THIS_MODULE,
1558 			}
1559 		},
1560 		.op = {
1561 			.do_one_request = stm32_hash_one_request,
1562 		},
1563 	},
1564 	{
1565 		.base.init = stm32_hash_init,
1566 		.base.update = stm32_hash_update,
1567 		.base.final = stm32_hash_final,
1568 		.base.finup = stm32_hash_finup,
1569 		.base.digest = stm32_hash_digest,
1570 		.base.export = stm32_hash_export,
1571 		.base.import = stm32_hash_import,
1572 		.base.halg = {
1573 			.digestsize = SHA512_DIGEST_SIZE,
1574 			.statesize = sizeof(struct stm32_hash_state),
1575 			.base = {
1576 				.cra_name = "sha512",
1577 				.cra_driver_name = "stm32-sha512",
1578 				.cra_priority = 200,
1579 				.cra_flags = CRYPTO_ALG_ASYNC |
1580 					CRYPTO_ALG_KERN_DRIVER_ONLY,
1581 				.cra_blocksize = SHA512_BLOCK_SIZE,
1582 				.cra_ctxsize = sizeof(struct stm32_hash_ctx),
1583 				.cra_init = stm32_hash_cra_init,
1584 				.cra_exit = stm32_hash_cra_exit,
1585 				.cra_module = THIS_MODULE,
1586 			}
1587 		},
1588 		.op = {
1589 			.do_one_request = stm32_hash_one_request,
1590 		},
1591 	},
1592 	{
1593 		.base.init = stm32_hash_init,
1594 		.base.update = stm32_hash_update,
1595 		.base.final = stm32_hash_final,
1596 		.base.finup = stm32_hash_finup,
1597 		.base.digest = stm32_hash_digest,
1598 		.base.export = stm32_hash_export,
1599 		.base.import = stm32_hash_import,
1600 		.base.setkey = stm32_hash_setkey,
1601 		.base.halg = {
1602 			.digestsize = SHA512_DIGEST_SIZE,
1603 			.statesize = sizeof(struct stm32_hash_state),
1604 			.base = {
1605 				.cra_name = "hmac(sha512)",
1606 				.cra_driver_name = "stm32-hmac-sha512",
1607 				.cra_priority = 200,
1608 				.cra_flags = CRYPTO_ALG_ASYNC |
1609 					CRYPTO_ALG_KERN_DRIVER_ONLY,
1610 				.cra_blocksize = SHA512_BLOCK_SIZE,
1611 				.cra_ctxsize = sizeof(struct stm32_hash_ctx),
1612 				.cra_init = stm32_hash_cra_hmac_init,
1613 				.cra_exit = stm32_hash_cra_exit,
1614 				.cra_module = THIS_MODULE,
1615 			}
1616 		},
1617 		.op = {
1618 			.do_one_request = stm32_hash_one_request,
1619 		},
1620 	},
1621 };
1622 
1623 static struct ahash_engine_alg algs_sha3[] = {
1624 	{
1625 		.base.init = stm32_hash_init,
1626 		.base.update = stm32_hash_update,
1627 		.base.final = stm32_hash_final,
1628 		.base.finup = stm32_hash_finup,
1629 		.base.digest = stm32_hash_digest,
1630 		.base.export = stm32_hash_export,
1631 		.base.import = stm32_hash_import,
1632 		.base.halg = {
1633 			.digestsize = SHA3_224_DIGEST_SIZE,
1634 			.statesize = sizeof(struct stm32_hash_state),
1635 			.base = {
1636 				.cra_name = "sha3-224",
1637 				.cra_driver_name = "stm32-sha3-224",
1638 				.cra_priority = 200,
1639 				.cra_flags = CRYPTO_ALG_ASYNC |
1640 					CRYPTO_ALG_KERN_DRIVER_ONLY,
1641 				.cra_blocksize = SHA3_224_BLOCK_SIZE,
1642 				.cra_ctxsize = sizeof(struct stm32_hash_ctx),
1643 				.cra_init = stm32_hash_cra_sha3_init,
1644 				.cra_exit = stm32_hash_cra_exit,
1645 				.cra_module = THIS_MODULE,
1646 			}
1647 		},
1648 		.op = {
1649 			.do_one_request = stm32_hash_one_request,
1650 		},
1651 	},
1652 	{
1653 		.base.init = stm32_hash_init,
1654 		.base.update = stm32_hash_update,
1655 		.base.final = stm32_hash_final,
1656 		.base.finup = stm32_hash_finup,
1657 		.base.digest = stm32_hash_digest,
1658 		.base.export = stm32_hash_export,
1659 		.base.import = stm32_hash_import,
1660 		.base.setkey = stm32_hash_setkey,
1661 		.base.halg = {
1662 			.digestsize = SHA3_224_DIGEST_SIZE,
1663 			.statesize = sizeof(struct stm32_hash_state),
1664 			.base = {
1665 				.cra_name = "hmac(sha3-224)",
1666 				.cra_driver_name = "stm32-hmac-sha3-224",
1667 				.cra_priority = 200,
1668 				.cra_flags = CRYPTO_ALG_ASYNC |
1669 					CRYPTO_ALG_KERN_DRIVER_ONLY,
1670 				.cra_blocksize = SHA3_224_BLOCK_SIZE,
1671 				.cra_ctxsize = sizeof(struct stm32_hash_ctx),
1672 				.cra_init = stm32_hash_cra_sha3_hmac_init,
1673 				.cra_exit = stm32_hash_cra_exit,
1674 				.cra_module = THIS_MODULE,
1675 			}
1676 		},
1677 		.op = {
1678 			.do_one_request = stm32_hash_one_request,
1679 		},
1680 	},
1681 	{
1682 		.base.init = stm32_hash_init,
1683 		.base.update = stm32_hash_update,
1684 		.base.final = stm32_hash_final,
1685 		.base.finup = stm32_hash_finup,
1686 		.base.digest = stm32_hash_digest,
1687 		.base.export = stm32_hash_export,
1688 		.base.import = stm32_hash_import,
1689 		.base.halg = {
1690 			.digestsize = SHA3_256_DIGEST_SIZE,
1691 			.statesize = sizeof(struct stm32_hash_state),
1692 			.base = {
1693 				.cra_name = "sha3-256",
1694 				.cra_driver_name = "stm32-sha3-256",
1695 				.cra_priority = 200,
1696 				.cra_flags = CRYPTO_ALG_ASYNC |
1697 					CRYPTO_ALG_KERN_DRIVER_ONLY,
1698 				.cra_blocksize = SHA3_256_BLOCK_SIZE,
1699 				.cra_ctxsize = sizeof(struct stm32_hash_ctx),
1700 				.cra_init = stm32_hash_cra_sha3_init,
1701 				.cra_exit = stm32_hash_cra_exit,
1702 				.cra_module = THIS_MODULE,
1703 			}
1704 		},
1705 		.op = {
1706 			.do_one_request = stm32_hash_one_request,
1707 		},
1708 	},
1709 	{
1710 		.base.init = stm32_hash_init,
1711 		.base.update = stm32_hash_update,
1712 		.base.final = stm32_hash_final,
1713 		.base.finup = stm32_hash_finup,
1714 		.base.digest = stm32_hash_digest,
1715 		.base.export = stm32_hash_export,
1716 		.base.import = stm32_hash_import,
1717 		.base.setkey = stm32_hash_setkey,
1718 		.base.halg = {
1719 			.digestsize = SHA3_256_DIGEST_SIZE,
1720 			.statesize = sizeof(struct stm32_hash_state),
1721 			.base = {
1722 				.cra_name = "hmac(sha3-256)",
1723 				.cra_driver_name = "stm32-hmac-sha3-256",
1724 				.cra_priority = 200,
1725 				.cra_flags = CRYPTO_ALG_ASYNC |
1726 					CRYPTO_ALG_KERN_DRIVER_ONLY,
1727 				.cra_blocksize = SHA3_256_BLOCK_SIZE,
1728 				.cra_ctxsize = sizeof(struct stm32_hash_ctx),
1729 				.cra_init = stm32_hash_cra_sha3_hmac_init,
1730 				.cra_exit = stm32_hash_cra_exit,
1731 				.cra_module = THIS_MODULE,
1732 			}
1733 		},
1734 		.op = {
1735 			.do_one_request = stm32_hash_one_request,
1736 		},
1737 	},
1738 	{
1739 		.base.init = stm32_hash_init,
1740 		.base.update = stm32_hash_update,
1741 		.base.final = stm32_hash_final,
1742 		.base.finup = stm32_hash_finup,
1743 		.base.digest = stm32_hash_digest,
1744 		.base.export = stm32_hash_export,
1745 		.base.import = stm32_hash_import,
1746 		.base.halg = {
1747 			.digestsize = SHA3_384_DIGEST_SIZE,
1748 			.statesize = sizeof(struct stm32_hash_state),
1749 			.base = {
1750 				.cra_name = "sha3-384",
1751 				.cra_driver_name = "stm32-sha3-384",
1752 				.cra_priority = 200,
1753 				.cra_flags = CRYPTO_ALG_ASYNC |
1754 					CRYPTO_ALG_KERN_DRIVER_ONLY,
1755 				.cra_blocksize = SHA3_384_BLOCK_SIZE,
1756 				.cra_ctxsize = sizeof(struct stm32_hash_ctx),
1757 				.cra_init = stm32_hash_cra_sha3_init,
1758 				.cra_exit = stm32_hash_cra_exit,
1759 				.cra_module = THIS_MODULE,
1760 			}
1761 		},
1762 		.op = {
1763 			.do_one_request = stm32_hash_one_request,
1764 		},
1765 	},
1766 	{
1767 		.base.init = stm32_hash_init,
1768 		.base.update = stm32_hash_update,
1769 		.base.final = stm32_hash_final,
1770 		.base.finup = stm32_hash_finup,
1771 		.base.digest = stm32_hash_digest,
1772 		.base.export = stm32_hash_export,
1773 		.base.import = stm32_hash_import,
1774 		.base.setkey = stm32_hash_setkey,
1775 		.base.halg = {
1776 			.digestsize = SHA3_384_DIGEST_SIZE,
1777 			.statesize = sizeof(struct stm32_hash_state),
1778 			.base = {
1779 				.cra_name = "hmac(sha3-384)",
1780 				.cra_driver_name = "stm32-hmac-sha3-384",
1781 				.cra_priority = 200,
1782 				.cra_flags = CRYPTO_ALG_ASYNC |
1783 					CRYPTO_ALG_KERN_DRIVER_ONLY,
1784 				.cra_blocksize = SHA3_384_BLOCK_SIZE,
1785 				.cra_ctxsize = sizeof(struct stm32_hash_ctx),
1786 				.cra_init = stm32_hash_cra_sha3_hmac_init,
1787 				.cra_exit = stm32_hash_cra_exit,
1788 				.cra_module = THIS_MODULE,
1789 			}
1790 		},
1791 		.op = {
1792 			.do_one_request = stm32_hash_one_request,
1793 		},
1794 	},
1795 	{
1796 		.base.init = stm32_hash_init,
1797 		.base.update = stm32_hash_update,
1798 		.base.final = stm32_hash_final,
1799 		.base.finup = stm32_hash_finup,
1800 		.base.digest = stm32_hash_digest,
1801 		.base.export = stm32_hash_export,
1802 		.base.import = stm32_hash_import,
1803 		.base.halg = {
1804 			.digestsize = SHA3_512_DIGEST_SIZE,
1805 			.statesize = sizeof(struct stm32_hash_state),
1806 			.base = {
1807 				.cra_name = "sha3-512",
1808 				.cra_driver_name = "stm32-sha3-512",
1809 				.cra_priority = 200,
1810 				.cra_flags = CRYPTO_ALG_ASYNC |
1811 					CRYPTO_ALG_KERN_DRIVER_ONLY,
1812 				.cra_blocksize = SHA3_512_BLOCK_SIZE,
1813 				.cra_ctxsize = sizeof(struct stm32_hash_ctx),
1814 				.cra_init = stm32_hash_cra_sha3_init,
1815 				.cra_exit = stm32_hash_cra_exit,
1816 				.cra_module = THIS_MODULE,
1817 			}
1818 		},
1819 		.op = {
1820 			.do_one_request = stm32_hash_one_request,
1821 		},
1822 	},
1823 	{
1824 		.base.init = stm32_hash_init,
1825 		.base.update = stm32_hash_update,
1826 		.base.final = stm32_hash_final,
1827 		.base.finup = stm32_hash_finup,
1828 		.base.digest = stm32_hash_digest,
1829 		.base.export = stm32_hash_export,
1830 		.base.import = stm32_hash_import,
1831 		.base.setkey = stm32_hash_setkey,
1832 		.base.halg = {
1833 			.digestsize = SHA3_512_DIGEST_SIZE,
1834 			.statesize = sizeof(struct stm32_hash_state),
1835 			.base = {
1836 				.cra_name = "hmac(sha3-512)",
1837 				.cra_driver_name = "stm32-hmac-sha3-512",
1838 				.cra_priority = 200,
1839 				.cra_flags = CRYPTO_ALG_ASYNC |
1840 					CRYPTO_ALG_KERN_DRIVER_ONLY,
1841 				.cra_blocksize = SHA3_512_BLOCK_SIZE,
1842 				.cra_ctxsize = sizeof(struct stm32_hash_ctx),
1843 				.cra_init = stm32_hash_cra_sha3_hmac_init,
1844 				.cra_exit = stm32_hash_cra_exit,
1845 				.cra_module = THIS_MODULE,
1846 			}
1847 		},
1848 		.op = {
1849 			.do_one_request = stm32_hash_one_request,
1850 		},
1851 	}
1852 };
1853 
1854 static int stm32_hash_register_algs(struct stm32_hash_dev *hdev)
1855 {
1856 	unsigned int i, j;
1857 	int err;
1858 
1859 	for (i = 0; i < hdev->pdata->algs_info_size; i++) {
1860 		for (j = 0; j < hdev->pdata->algs_info[i].size; j++) {
1861 			err = crypto_engine_register_ahash(
1862 				&hdev->pdata->algs_info[i].algs_list[j]);
1863 			if (err)
1864 				goto err_algs;
1865 		}
1866 	}
1867 
1868 	return 0;
1869 err_algs:
1870 	dev_err(hdev->dev, "Algo %d : %d failed\n", i, j);
1871 	for (; i--; ) {
1872 		for (; j--;)
1873 			crypto_engine_unregister_ahash(
1874 				&hdev->pdata->algs_info[i].algs_list[j]);
1875 	}
1876 
1877 	return err;
1878 }
1879 
1880 static int stm32_hash_unregister_algs(struct stm32_hash_dev *hdev)
1881 {
1882 	unsigned int i, j;
1883 
1884 	for (i = 0; i < hdev->pdata->algs_info_size; i++) {
1885 		for (j = 0; j < hdev->pdata->algs_info[i].size; j++)
1886 			crypto_engine_unregister_ahash(
1887 				&hdev->pdata->algs_info[i].algs_list[j]);
1888 	}
1889 
1890 	return 0;
1891 }
1892 
1893 static struct stm32_hash_algs_info stm32_hash_algs_info_ux500[] = {
1894 	{
1895 		.algs_list	= algs_sha1,
1896 		.size		= ARRAY_SIZE(algs_sha1),
1897 	},
1898 	{
1899 		.algs_list	= algs_sha256,
1900 		.size		= ARRAY_SIZE(algs_sha256),
1901 	},
1902 };
1903 
1904 static const struct stm32_hash_pdata stm32_hash_pdata_ux500 = {
1905 	.alg_shift	= 7,
1906 	.algs_info	= stm32_hash_algs_info_ux500,
1907 	.algs_info_size	= ARRAY_SIZE(stm32_hash_algs_info_ux500),
1908 	.broken_emptymsg = true,
1909 	.ux500		= true,
1910 };
1911 
1912 static struct stm32_hash_algs_info stm32_hash_algs_info_stm32f4[] = {
1913 	{
1914 		.algs_list	= algs_md5,
1915 		.size		= ARRAY_SIZE(algs_md5),
1916 	},
1917 	{
1918 		.algs_list	= algs_sha1,
1919 		.size		= ARRAY_SIZE(algs_sha1),
1920 	},
1921 };
1922 
1923 static const struct stm32_hash_pdata stm32_hash_pdata_stm32f4 = {
1924 	.alg_shift	= 7,
1925 	.algs_info	= stm32_hash_algs_info_stm32f4,
1926 	.algs_info_size	= ARRAY_SIZE(stm32_hash_algs_info_stm32f4),
1927 	.has_sr		= true,
1928 	.has_mdmat	= true,
1929 };
1930 
1931 static struct stm32_hash_algs_info stm32_hash_algs_info_stm32f7[] = {
1932 	{
1933 		.algs_list	= algs_md5,
1934 		.size		= ARRAY_SIZE(algs_md5),
1935 	},
1936 	{
1937 		.algs_list	= algs_sha1,
1938 		.size		= ARRAY_SIZE(algs_sha1),
1939 	},
1940 	{
1941 		.algs_list	= algs_sha224,
1942 		.size		= ARRAY_SIZE(algs_sha224),
1943 	},
1944 	{
1945 		.algs_list	= algs_sha256,
1946 		.size		= ARRAY_SIZE(algs_sha256),
1947 	},
1948 };
1949 
1950 static const struct stm32_hash_pdata stm32_hash_pdata_stm32f7 = {
1951 	.alg_shift	= 7,
1952 	.algs_info	= stm32_hash_algs_info_stm32f7,
1953 	.algs_info_size	= ARRAY_SIZE(stm32_hash_algs_info_stm32f7),
1954 	.has_sr		= true,
1955 	.has_mdmat	= true,
1956 };
1957 
1958 static struct stm32_hash_algs_info stm32_hash_algs_info_stm32mp13[] = {
1959 	{
1960 		.algs_list	= algs_sha1,
1961 		.size		= ARRAY_SIZE(algs_sha1),
1962 	},
1963 	{
1964 		.algs_list	= algs_sha224,
1965 		.size		= ARRAY_SIZE(algs_sha224),
1966 	},
1967 	{
1968 		.algs_list	= algs_sha256,
1969 		.size		= ARRAY_SIZE(algs_sha256),
1970 	},
1971 	{
1972 		.algs_list	= algs_sha384_sha512,
1973 		.size		= ARRAY_SIZE(algs_sha384_sha512),
1974 	},
1975 	{
1976 		.algs_list	= algs_sha3,
1977 		.size		= ARRAY_SIZE(algs_sha3),
1978 	},
1979 };
1980 
1981 static const struct stm32_hash_pdata stm32_hash_pdata_stm32mp13 = {
1982 	.alg_shift	= 17,
1983 	.algs_info	= stm32_hash_algs_info_stm32mp13,
1984 	.algs_info_size	= ARRAY_SIZE(stm32_hash_algs_info_stm32mp13),
1985 	.has_sr		= true,
1986 	.has_mdmat	= true,
1987 };
1988 
1989 static const struct of_device_id stm32_hash_of_match[] = {
1990 	{ .compatible = "stericsson,ux500-hash", .data = &stm32_hash_pdata_ux500 },
1991 	{ .compatible = "st,stm32f456-hash", .data = &stm32_hash_pdata_stm32f4 },
1992 	{ .compatible = "st,stm32f756-hash", .data = &stm32_hash_pdata_stm32f7 },
1993 	{ .compatible = "st,stm32mp13-hash", .data = &stm32_hash_pdata_stm32mp13 },
1994 	{},
1995 };
1996 
1997 MODULE_DEVICE_TABLE(of, stm32_hash_of_match);
1998 
1999 static int stm32_hash_get_of_match(struct stm32_hash_dev *hdev,
2000 				   struct device *dev)
2001 {
2002 	hdev->pdata = of_device_get_match_data(dev);
2003 	if (!hdev->pdata) {
2004 		dev_err(dev, "no compatible OF match\n");
2005 		return -EINVAL;
2006 	}
2007 
2008 	return 0;
2009 }
2010 
2011 static int stm32_hash_probe(struct platform_device *pdev)
2012 {
2013 	struct stm32_hash_dev *hdev;
2014 	struct device *dev = &pdev->dev;
2015 	struct resource *res;
2016 	int ret, irq;
2017 
2018 	hdev = devm_kzalloc(dev, sizeof(*hdev), GFP_KERNEL);
2019 	if (!hdev)
2020 		return -ENOMEM;
2021 
2022 	hdev->io_base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
2023 	if (IS_ERR(hdev->io_base))
2024 		return PTR_ERR(hdev->io_base);
2025 
2026 	hdev->phys_base = res->start;
2027 
2028 	ret = stm32_hash_get_of_match(hdev, dev);
2029 	if (ret)
2030 		return ret;
2031 
2032 	irq = platform_get_irq_optional(pdev, 0);
2033 	if (irq < 0 && irq != -ENXIO)
2034 		return irq;
2035 
2036 	if (irq > 0) {
2037 		ret = devm_request_threaded_irq(dev, irq,
2038 						stm32_hash_irq_handler,
2039 						stm32_hash_irq_thread,
2040 						IRQF_ONESHOT,
2041 						dev_name(dev), hdev);
2042 		if (ret) {
2043 			dev_err(dev, "Cannot grab IRQ\n");
2044 			return ret;
2045 		}
2046 	} else {
2047 		dev_info(dev, "No IRQ, use polling mode\n");
2048 		hdev->polled = true;
2049 	}
2050 
2051 	hdev->clk = devm_clk_get(&pdev->dev, NULL);
2052 	if (IS_ERR(hdev->clk))
2053 		return dev_err_probe(dev, PTR_ERR(hdev->clk),
2054 				     "failed to get clock for hash\n");
2055 
2056 	ret = clk_prepare_enable(hdev->clk);
2057 	if (ret) {
2058 		dev_err(dev, "failed to enable hash clock (%d)\n", ret);
2059 		return ret;
2060 	}
2061 
2062 	pm_runtime_set_autosuspend_delay(dev, HASH_AUTOSUSPEND_DELAY);
2063 	pm_runtime_use_autosuspend(dev);
2064 
2065 	pm_runtime_get_noresume(dev);
2066 	pm_runtime_set_active(dev);
2067 	pm_runtime_enable(dev);
2068 
2069 	hdev->rst = devm_reset_control_get(&pdev->dev, NULL);
2070 	if (IS_ERR(hdev->rst)) {
2071 		if (PTR_ERR(hdev->rst) == -EPROBE_DEFER) {
2072 			ret = -EPROBE_DEFER;
2073 			goto err_reset;
2074 		}
2075 	} else {
2076 		reset_control_assert(hdev->rst);
2077 		udelay(2);
2078 		reset_control_deassert(hdev->rst);
2079 	}
2080 
2081 	hdev->dev = dev;
2082 
2083 	platform_set_drvdata(pdev, hdev);
2084 
2085 	ret = stm32_hash_dma_init(hdev);
2086 	switch (ret) {
2087 	case 0:
2088 		break;
2089 	case -ENOENT:
2090 	case -ENODEV:
2091 		dev_info(dev, "DMA mode not available\n");
2092 		break;
2093 	default:
2094 		dev_err(dev, "DMA init error %d\n", ret);
2095 		goto err_dma;
2096 	}
2097 
2098 	spin_lock(&stm32_hash.lock);
2099 	list_add_tail(&hdev->list, &stm32_hash.dev_list);
2100 	spin_unlock(&stm32_hash.lock);
2101 
2102 	/* Initialize crypto engine */
2103 	hdev->engine = crypto_engine_alloc_init(dev, 1);
2104 	if (!hdev->engine) {
2105 		ret = -ENOMEM;
2106 		goto err_engine;
2107 	}
2108 
2109 	ret = crypto_engine_start(hdev->engine);
2110 	if (ret)
2111 		goto err_engine_start;
2112 
2113 	if (hdev->pdata->ux500)
2114 		/* FIXME: implement DMA mode for Ux500 */
2115 		hdev->dma_mode = 0;
2116 	else
2117 		hdev->dma_mode = stm32_hash_read(hdev, HASH_HWCFGR) & HASH_HWCFG_DMA_MASK;
2118 
2119 	/* Register algos */
2120 	ret = stm32_hash_register_algs(hdev);
2121 	if (ret)
2122 		goto err_algs;
2123 
2124 	dev_info(dev, "Init HASH done HW ver %x DMA mode %u\n",
2125 		 stm32_hash_read(hdev, HASH_VER), hdev->dma_mode);
2126 
2127 	pm_runtime_put_sync(dev);
2128 
2129 	return 0;
2130 
2131 err_algs:
2132 err_engine_start:
2133 	crypto_engine_exit(hdev->engine);
2134 err_engine:
2135 	spin_lock(&stm32_hash.lock);
2136 	list_del(&hdev->list);
2137 	spin_unlock(&stm32_hash.lock);
2138 err_dma:
2139 	if (hdev->dma_lch)
2140 		dma_release_channel(hdev->dma_lch);
2141 err_reset:
2142 	pm_runtime_disable(dev);
2143 	pm_runtime_put_noidle(dev);
2144 
2145 	clk_disable_unprepare(hdev->clk);
2146 
2147 	return ret;
2148 }
2149 
2150 static void stm32_hash_remove(struct platform_device *pdev)
2151 {
2152 	struct stm32_hash_dev *hdev = platform_get_drvdata(pdev);
2153 	int ret;
2154 
2155 	ret = pm_runtime_get_sync(hdev->dev);
2156 
2157 	stm32_hash_unregister_algs(hdev);
2158 
2159 	crypto_engine_exit(hdev->engine);
2160 
2161 	spin_lock(&stm32_hash.lock);
2162 	list_del(&hdev->list);
2163 	spin_unlock(&stm32_hash.lock);
2164 
2165 	if (hdev->dma_lch)
2166 		dma_release_channel(hdev->dma_lch);
2167 
2168 	pm_runtime_disable(hdev->dev);
2169 	pm_runtime_put_noidle(hdev->dev);
2170 
2171 	if (ret >= 0)
2172 		clk_disable_unprepare(hdev->clk);
2173 }
2174 
2175 #ifdef CONFIG_PM
2176 static int stm32_hash_runtime_suspend(struct device *dev)
2177 {
2178 	struct stm32_hash_dev *hdev = dev_get_drvdata(dev);
2179 
2180 	clk_disable_unprepare(hdev->clk);
2181 
2182 	return 0;
2183 }
2184 
2185 static int stm32_hash_runtime_resume(struct device *dev)
2186 {
2187 	struct stm32_hash_dev *hdev = dev_get_drvdata(dev);
2188 	int ret;
2189 
2190 	ret = clk_prepare_enable(hdev->clk);
2191 	if (ret) {
2192 		dev_err(hdev->dev, "Failed to prepare_enable clock\n");
2193 		return ret;
2194 	}
2195 
2196 	return 0;
2197 }
2198 #endif
2199 
2200 static const struct dev_pm_ops stm32_hash_pm_ops = {
2201 	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
2202 				pm_runtime_force_resume)
2203 	SET_RUNTIME_PM_OPS(stm32_hash_runtime_suspend,
2204 			   stm32_hash_runtime_resume, NULL)
2205 };
2206 
2207 static struct platform_driver stm32_hash_driver = {
2208 	.probe		= stm32_hash_probe,
2209 	.remove_new	= stm32_hash_remove,
2210 	.driver		= {
2211 		.name	= "stm32-hash",
2212 		.pm = &stm32_hash_pm_ops,
2213 		.of_match_table	= stm32_hash_of_match,
2214 	}
2215 };
2216 
2217 module_platform_driver(stm32_hash_driver);
2218 
2219 MODULE_DESCRIPTION("STM32 SHA1/SHA2/SHA3 & MD5 (HMAC) hw accelerator driver");
2220 MODULE_AUTHOR("Lionel Debieve <lionel.debieve@st.com>");
2221 MODULE_LICENSE("GPL v2");
2222