xref: /linux/drivers/dma/at_hdmac.c (revision 44f57d78)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Driver for the Atmel AHB DMA Controller (aka HDMA or DMAC on AT91 systems)
4  *
5  * Copyright (C) 2008 Atmel Corporation
6  *
7  * This supports the Atmel AHB DMA Controller found in several Atmel SoCs.
8  * The only Atmel DMA Controller that is not covered by this driver is the one
9  * found on AT91SAM9263.
10  */
11 
12 #include <dt-bindings/dma/at91.h>
13 #include <linux/clk.h>
14 #include <linux/dmaengine.h>
15 #include <linux/dma-mapping.h>
16 #include <linux/dmapool.h>
17 #include <linux/interrupt.h>
18 #include <linux/module.h>
19 #include <linux/platform_device.h>
20 #include <linux/slab.h>
21 #include <linux/of.h>
22 #include <linux/of_device.h>
23 #include <linux/of_dma.h>
24 
25 #include "at_hdmac_regs.h"
26 #include "dmaengine.h"
27 
28 /*
29  * Glossary
30  * --------
31  *
32  * at_hdmac		: Name of the ATmel AHB DMA Controller
33  * at_dma_ / atdma	: ATmel DMA controller entity related
34  * atc_	/ atchan	: ATmel DMA Channel entity related
35  */
36 
37 #define	ATC_DEFAULT_CFG		(ATC_FIFOCFG_HALFFIFO)
38 #define	ATC_DEFAULT_CTRLB	(ATC_SIF(AT_DMA_MEM_IF) \
39 				|ATC_DIF(AT_DMA_MEM_IF))
40 #define ATC_DMA_BUSWIDTHS\
41 	(BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) |\
42 	BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |\
43 	BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |\
44 	BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
45 
46 #define ATC_MAX_DSCR_TRIALS	10
47 
48 /*
49  * Initial number of descriptors to allocate for each channel. This could
50  * be increased during dma usage.
51  */
52 static unsigned int init_nr_desc_per_channel = 64;
53 module_param(init_nr_desc_per_channel, uint, 0644);
54 MODULE_PARM_DESC(init_nr_desc_per_channel,
55 		 "initial descriptors per channel (default: 64)");
56 
57 
58 /* prototypes */
59 static dma_cookie_t atc_tx_submit(struct dma_async_tx_descriptor *tx);
60 static void atc_issue_pending(struct dma_chan *chan);
61 
62 
63 /*----------------------------------------------------------------------*/
64 
65 static inline unsigned int atc_get_xfer_width(dma_addr_t src, dma_addr_t dst,
66 						size_t len)
67 {
68 	unsigned int width;
69 
70 	if (!((src | dst  | len) & 3))
71 		width = 2;
72 	else if (!((src | dst | len) & 1))
73 		width = 1;
74 	else
75 		width = 0;
76 
77 	return width;
78 }
79 
80 static struct at_desc *atc_first_active(struct at_dma_chan *atchan)
81 {
82 	return list_first_entry(&atchan->active_list,
83 				struct at_desc, desc_node);
84 }
85 
86 static struct at_desc *atc_first_queued(struct at_dma_chan *atchan)
87 {
88 	return list_first_entry(&atchan->queue,
89 				struct at_desc, desc_node);
90 }
91 
92 /**
93  * atc_alloc_descriptor - allocate and return an initialized descriptor
94  * @chan: the channel to allocate descriptors for
95  * @gfp_flags: GFP allocation flags
96  *
97  * Note: The ack-bit is positioned in the descriptor flag at creation time
98  *       to make initial allocation more convenient. This bit will be cleared
99  *       and control will be given to client at usage time (during
100  *       preparation functions).
101  */
102 static struct at_desc *atc_alloc_descriptor(struct dma_chan *chan,
103 					    gfp_t gfp_flags)
104 {
105 	struct at_desc	*desc = NULL;
106 	struct at_dma	*atdma = to_at_dma(chan->device);
107 	dma_addr_t phys;
108 
109 	desc = dma_pool_zalloc(atdma->dma_desc_pool, gfp_flags, &phys);
110 	if (desc) {
111 		INIT_LIST_HEAD(&desc->tx_list);
112 		dma_async_tx_descriptor_init(&desc->txd, chan);
113 		/* txd.flags will be overwritten in prep functions */
114 		desc->txd.flags = DMA_CTRL_ACK;
115 		desc->txd.tx_submit = atc_tx_submit;
116 		desc->txd.phys = phys;
117 	}
118 
119 	return desc;
120 }
121 
122 /**
123  * atc_desc_get - get an unused descriptor from free_list
124  * @atchan: channel we want a new descriptor for
125  */
126 static struct at_desc *atc_desc_get(struct at_dma_chan *atchan)
127 {
128 	struct at_desc *desc, *_desc;
129 	struct at_desc *ret = NULL;
130 	unsigned long flags;
131 	unsigned int i = 0;
132 
133 	spin_lock_irqsave(&atchan->lock, flags);
134 	list_for_each_entry_safe(desc, _desc, &atchan->free_list, desc_node) {
135 		i++;
136 		if (async_tx_test_ack(&desc->txd)) {
137 			list_del(&desc->desc_node);
138 			ret = desc;
139 			break;
140 		}
141 		dev_dbg(chan2dev(&atchan->chan_common),
142 				"desc %p not ACKed\n", desc);
143 	}
144 	spin_unlock_irqrestore(&atchan->lock, flags);
145 	dev_vdbg(chan2dev(&atchan->chan_common),
146 		"scanned %u descriptors on freelist\n", i);
147 
148 	/* no more descriptor available in initial pool: create one more */
149 	if (!ret) {
150 		ret = atc_alloc_descriptor(&atchan->chan_common, GFP_ATOMIC);
151 		if (ret) {
152 			spin_lock_irqsave(&atchan->lock, flags);
153 			atchan->descs_allocated++;
154 			spin_unlock_irqrestore(&atchan->lock, flags);
155 		} else {
156 			dev_err(chan2dev(&atchan->chan_common),
157 					"not enough descriptors available\n");
158 		}
159 	}
160 
161 	return ret;
162 }
163 
164 /**
165  * atc_desc_put - move a descriptor, including any children, to the free list
166  * @atchan: channel we work on
167  * @desc: descriptor, at the head of a chain, to move to free list
168  */
169 static void atc_desc_put(struct at_dma_chan *atchan, struct at_desc *desc)
170 {
171 	if (desc) {
172 		struct at_desc *child;
173 		unsigned long flags;
174 
175 		spin_lock_irqsave(&atchan->lock, flags);
176 		list_for_each_entry(child, &desc->tx_list, desc_node)
177 			dev_vdbg(chan2dev(&atchan->chan_common),
178 					"moving child desc %p to freelist\n",
179 					child);
180 		list_splice_init(&desc->tx_list, &atchan->free_list);
181 		dev_vdbg(chan2dev(&atchan->chan_common),
182 			 "moving desc %p to freelist\n", desc);
183 		list_add(&desc->desc_node, &atchan->free_list);
184 		spin_unlock_irqrestore(&atchan->lock, flags);
185 	}
186 }
187 
188 /**
189  * atc_desc_chain - build chain adding a descriptor
190  * @first: address of first descriptor of the chain
191  * @prev: address of previous descriptor of the chain
192  * @desc: descriptor to queue
193  *
194  * Called from prep_* functions
195  */
196 static void atc_desc_chain(struct at_desc **first, struct at_desc **prev,
197 			   struct at_desc *desc)
198 {
199 	if (!(*first)) {
200 		*first = desc;
201 	} else {
202 		/* inform the HW lli about chaining */
203 		(*prev)->lli.dscr = desc->txd.phys;
204 		/* insert the link descriptor to the LD ring */
205 		list_add_tail(&desc->desc_node,
206 				&(*first)->tx_list);
207 	}
208 	*prev = desc;
209 }
210 
211 /**
212  * atc_dostart - starts the DMA engine for real
213  * @atchan: the channel we want to start
214  * @first: first descriptor in the list we want to begin with
215  *
216  * Called with atchan->lock held and bh disabled
217  */
218 static void atc_dostart(struct at_dma_chan *atchan, struct at_desc *first)
219 {
220 	struct at_dma	*atdma = to_at_dma(atchan->chan_common.device);
221 
222 	/* ASSERT:  channel is idle */
223 	if (atc_chan_is_enabled(atchan)) {
224 		dev_err(chan2dev(&atchan->chan_common),
225 			"BUG: Attempted to start non-idle channel\n");
226 		dev_err(chan2dev(&atchan->chan_common),
227 			"  channel: s0x%x d0x%x ctrl0x%x:0x%x l0x%x\n",
228 			channel_readl(atchan, SADDR),
229 			channel_readl(atchan, DADDR),
230 			channel_readl(atchan, CTRLA),
231 			channel_readl(atchan, CTRLB),
232 			channel_readl(atchan, DSCR));
233 
234 		/* The tasklet will hopefully advance the queue... */
235 		return;
236 	}
237 
238 	vdbg_dump_regs(atchan);
239 
240 	channel_writel(atchan, SADDR, 0);
241 	channel_writel(atchan, DADDR, 0);
242 	channel_writel(atchan, CTRLA, 0);
243 	channel_writel(atchan, CTRLB, 0);
244 	channel_writel(atchan, DSCR, first->txd.phys);
245 	channel_writel(atchan, SPIP, ATC_SPIP_HOLE(first->src_hole) |
246 		       ATC_SPIP_BOUNDARY(first->boundary));
247 	channel_writel(atchan, DPIP, ATC_DPIP_HOLE(first->dst_hole) |
248 		       ATC_DPIP_BOUNDARY(first->boundary));
249 	dma_writel(atdma, CHER, atchan->mask);
250 
251 	vdbg_dump_regs(atchan);
252 }
253 
254 /*
255  * atc_get_desc_by_cookie - get the descriptor of a cookie
256  * @atchan: the DMA channel
257  * @cookie: the cookie to get the descriptor for
258  */
259 static struct at_desc *atc_get_desc_by_cookie(struct at_dma_chan *atchan,
260 						dma_cookie_t cookie)
261 {
262 	struct at_desc *desc, *_desc;
263 
264 	list_for_each_entry_safe(desc, _desc, &atchan->queue, desc_node) {
265 		if (desc->txd.cookie == cookie)
266 			return desc;
267 	}
268 
269 	list_for_each_entry_safe(desc, _desc, &atchan->active_list, desc_node) {
270 		if (desc->txd.cookie == cookie)
271 			return desc;
272 	}
273 
274 	return NULL;
275 }
276 
277 /**
278  * atc_calc_bytes_left - calculates the number of bytes left according to the
279  * value read from CTRLA.
280  *
281  * @current_len: the number of bytes left before reading CTRLA
282  * @ctrla: the value of CTRLA
283  */
284 static inline int atc_calc_bytes_left(int current_len, u32 ctrla)
285 {
286 	u32 btsize = (ctrla & ATC_BTSIZE_MAX);
287 	u32 src_width = ATC_REG_TO_SRC_WIDTH(ctrla);
288 
289 	/*
290 	 * According to the datasheet, when reading the Control A Register
291 	 * (ctrla), the Buffer Transfer Size (btsize) bitfield refers to the
292 	 * number of transfers completed on the Source Interface.
293 	 * So btsize is always a number of source width transfers.
294 	 */
295 	return current_len - (btsize << src_width);
296 }
297 
298 /**
299  * atc_get_bytes_left - get the number of bytes residue for a cookie
300  * @chan: DMA channel
301  * @cookie: transaction identifier to check status of
302  */
303 static int atc_get_bytes_left(struct dma_chan *chan, dma_cookie_t cookie)
304 {
305 	struct at_dma_chan      *atchan = to_at_dma_chan(chan);
306 	struct at_desc *desc_first = atc_first_active(atchan);
307 	struct at_desc *desc;
308 	int ret;
309 	u32 ctrla, dscr, trials;
310 
311 	/*
312 	 * If the cookie doesn't match to the currently running transfer then
313 	 * we can return the total length of the associated DMA transfer,
314 	 * because it is still queued.
315 	 */
316 	desc = atc_get_desc_by_cookie(atchan, cookie);
317 	if (desc == NULL)
318 		return -EINVAL;
319 	else if (desc != desc_first)
320 		return desc->total_len;
321 
322 	/* cookie matches to the currently running transfer */
323 	ret = desc_first->total_len;
324 
325 	if (desc_first->lli.dscr) {
326 		/* hardware linked list transfer */
327 
328 		/*
329 		 * Calculate the residue by removing the length of the child
330 		 * descriptors already transferred from the total length.
331 		 * To get the current child descriptor we can use the value of
332 		 * the channel's DSCR register and compare it against the value
333 		 * of the hardware linked list structure of each child
334 		 * descriptor.
335 		 *
336 		 * The CTRLA register provides us with the amount of data
337 		 * already read from the source for the current child
338 		 * descriptor. So we can compute a more accurate residue by also
339 		 * removing the number of bytes corresponding to this amount of
340 		 * data.
341 		 *
342 		 * However, the DSCR and CTRLA registers cannot be read both
343 		 * atomically. Hence a race condition may occur: the first read
344 		 * register may refer to one child descriptor whereas the second
345 		 * read may refer to a later child descriptor in the list
346 		 * because of the DMA transfer progression inbetween the two
347 		 * reads.
348 		 *
349 		 * One solution could have been to pause the DMA transfer, read
350 		 * the DSCR and CTRLA then resume the DMA transfer. Nonetheless,
351 		 * this approach presents some drawbacks:
352 		 * - If the DMA transfer is paused, RX overruns or TX underruns
353 		 *   are more likey to occur depending on the system latency.
354 		 *   Taking the USART driver as an example, it uses a cyclic DMA
355 		 *   transfer to read data from the Receive Holding Register
356 		 *   (RHR) to avoid RX overruns since the RHR is not protected
357 		 *   by any FIFO on most Atmel SoCs. So pausing the DMA transfer
358 		 *   to compute the residue would break the USART driver design.
359 		 * - The atc_pause() function masks interrupts but we'd rather
360 		 *   avoid to do so for system latency purpose.
361 		 *
362 		 * Then we'd rather use another solution: the DSCR is read a
363 		 * first time, the CTRLA is read in turn, next the DSCR is read
364 		 * a second time. If the two consecutive read values of the DSCR
365 		 * are the same then we assume both refers to the very same
366 		 * child descriptor as well as the CTRLA value read inbetween
367 		 * does. For cyclic tranfers, the assumption is that a full loop
368 		 * is "not so fast".
369 		 * If the two DSCR values are different, we read again the CTRLA
370 		 * then the DSCR till two consecutive read values from DSCR are
371 		 * equal or till the maxium trials is reach.
372 		 * This algorithm is very unlikely not to find a stable value for
373 		 * DSCR.
374 		 */
375 
376 		dscr = channel_readl(atchan, DSCR);
377 		rmb(); /* ensure DSCR is read before CTRLA */
378 		ctrla = channel_readl(atchan, CTRLA);
379 		for (trials = 0; trials < ATC_MAX_DSCR_TRIALS; ++trials) {
380 			u32 new_dscr;
381 
382 			rmb(); /* ensure DSCR is read after CTRLA */
383 			new_dscr = channel_readl(atchan, DSCR);
384 
385 			/*
386 			 * If the DSCR register value has not changed inside the
387 			 * DMA controller since the previous read, we assume
388 			 * that both the dscr and ctrla values refers to the
389 			 * very same descriptor.
390 			 */
391 			if (likely(new_dscr == dscr))
392 				break;
393 
394 			/*
395 			 * DSCR has changed inside the DMA controller, so the
396 			 * previouly read value of CTRLA may refer to an already
397 			 * processed descriptor hence could be outdated.
398 			 * We need to update ctrla to match the current
399 			 * descriptor.
400 			 */
401 			dscr = new_dscr;
402 			rmb(); /* ensure DSCR is read before CTRLA */
403 			ctrla = channel_readl(atchan, CTRLA);
404 		}
405 		if (unlikely(trials >= ATC_MAX_DSCR_TRIALS))
406 			return -ETIMEDOUT;
407 
408 		/* for the first descriptor we can be more accurate */
409 		if (desc_first->lli.dscr == dscr)
410 			return atc_calc_bytes_left(ret, ctrla);
411 
412 		ret -= desc_first->len;
413 		list_for_each_entry(desc, &desc_first->tx_list, desc_node) {
414 			if (desc->lli.dscr == dscr)
415 				break;
416 
417 			ret -= desc->len;
418 		}
419 
420 		/*
421 		 * For the current descriptor in the chain we can calculate
422 		 * the remaining bytes using the channel's register.
423 		 */
424 		ret = atc_calc_bytes_left(ret, ctrla);
425 	} else {
426 		/* single transfer */
427 		ctrla = channel_readl(atchan, CTRLA);
428 		ret = atc_calc_bytes_left(ret, ctrla);
429 	}
430 
431 	return ret;
432 }
433 
434 /**
435  * atc_chain_complete - finish work for one transaction chain
436  * @atchan: channel we work on
437  * @desc: descriptor at the head of the chain we want do complete
438  *
439  * Called with atchan->lock held and bh disabled */
440 static void
441 atc_chain_complete(struct at_dma_chan *atchan, struct at_desc *desc)
442 {
443 	struct dma_async_tx_descriptor	*txd = &desc->txd;
444 	struct at_dma			*atdma = to_at_dma(atchan->chan_common.device);
445 
446 	dev_vdbg(chan2dev(&atchan->chan_common),
447 		"descriptor %u complete\n", txd->cookie);
448 
449 	/* mark the descriptor as complete for non cyclic cases only */
450 	if (!atc_chan_is_cyclic(atchan))
451 		dma_cookie_complete(txd);
452 
453 	/* If the transfer was a memset, free our temporary buffer */
454 	if (desc->memset_buffer) {
455 		dma_pool_free(atdma->memset_pool, desc->memset_vaddr,
456 			      desc->memset_paddr);
457 		desc->memset_buffer = false;
458 	}
459 
460 	/* move children to free_list */
461 	list_splice_init(&desc->tx_list, &atchan->free_list);
462 	/* move myself to free_list */
463 	list_move(&desc->desc_node, &atchan->free_list);
464 
465 	dma_descriptor_unmap(txd);
466 	/* for cyclic transfers,
467 	 * no need to replay callback function while stopping */
468 	if (!atc_chan_is_cyclic(atchan)) {
469 		/*
470 		 * The API requires that no submissions are done from a
471 		 * callback, so we don't need to drop the lock here
472 		 */
473 		dmaengine_desc_get_callback_invoke(txd, NULL);
474 	}
475 
476 	dma_run_dependencies(txd);
477 }
478 
479 /**
480  * atc_complete_all - finish work for all transactions
481  * @atchan: channel to complete transactions for
482  *
483  * Eventually submit queued descriptors if any
484  *
485  * Assume channel is idle while calling this function
486  * Called with atchan->lock held and bh disabled
487  */
488 static void atc_complete_all(struct at_dma_chan *atchan)
489 {
490 	struct at_desc *desc, *_desc;
491 	LIST_HEAD(list);
492 
493 	dev_vdbg(chan2dev(&atchan->chan_common), "complete all\n");
494 
495 	/*
496 	 * Submit queued descriptors ASAP, i.e. before we go through
497 	 * the completed ones.
498 	 */
499 	if (!list_empty(&atchan->queue))
500 		atc_dostart(atchan, atc_first_queued(atchan));
501 	/* empty active_list now it is completed */
502 	list_splice_init(&atchan->active_list, &list);
503 	/* empty queue list by moving descriptors (if any) to active_list */
504 	list_splice_init(&atchan->queue, &atchan->active_list);
505 
506 	list_for_each_entry_safe(desc, _desc, &list, desc_node)
507 		atc_chain_complete(atchan, desc);
508 }
509 
510 /**
511  * atc_advance_work - at the end of a transaction, move forward
512  * @atchan: channel where the transaction ended
513  *
514  * Called with atchan->lock held and bh disabled
515  */
516 static void atc_advance_work(struct at_dma_chan *atchan)
517 {
518 	dev_vdbg(chan2dev(&atchan->chan_common), "advance_work\n");
519 
520 	if (atc_chan_is_enabled(atchan))
521 		return;
522 
523 	if (list_empty(&atchan->active_list) ||
524 	    list_is_singular(&atchan->active_list)) {
525 		atc_complete_all(atchan);
526 	} else {
527 		atc_chain_complete(atchan, atc_first_active(atchan));
528 		/* advance work */
529 		atc_dostart(atchan, atc_first_active(atchan));
530 	}
531 }
532 
533 
534 /**
535  * atc_handle_error - handle errors reported by DMA controller
536  * @atchan: channel where error occurs
537  *
538  * Called with atchan->lock held and bh disabled
539  */
540 static void atc_handle_error(struct at_dma_chan *atchan)
541 {
542 	struct at_desc *bad_desc;
543 	struct at_desc *child;
544 
545 	/*
546 	 * The descriptor currently at the head of the active list is
547 	 * broked. Since we don't have any way to report errors, we'll
548 	 * just have to scream loudly and try to carry on.
549 	 */
550 	bad_desc = atc_first_active(atchan);
551 	list_del_init(&bad_desc->desc_node);
552 
553 	/* As we are stopped, take advantage to push queued descriptors
554 	 * in active_list */
555 	list_splice_init(&atchan->queue, atchan->active_list.prev);
556 
557 	/* Try to restart the controller */
558 	if (!list_empty(&atchan->active_list))
559 		atc_dostart(atchan, atc_first_active(atchan));
560 
561 	/*
562 	 * KERN_CRITICAL may seem harsh, but since this only happens
563 	 * when someone submits a bad physical address in a
564 	 * descriptor, we should consider ourselves lucky that the
565 	 * controller flagged an error instead of scribbling over
566 	 * random memory locations.
567 	 */
568 	dev_crit(chan2dev(&atchan->chan_common),
569 			"Bad descriptor submitted for DMA!\n");
570 	dev_crit(chan2dev(&atchan->chan_common),
571 			"  cookie: %d\n", bad_desc->txd.cookie);
572 	atc_dump_lli(atchan, &bad_desc->lli);
573 	list_for_each_entry(child, &bad_desc->tx_list, desc_node)
574 		atc_dump_lli(atchan, &child->lli);
575 
576 	/* Pretend the descriptor completed successfully */
577 	atc_chain_complete(atchan, bad_desc);
578 }
579 
580 /**
581  * atc_handle_cyclic - at the end of a period, run callback function
582  * @atchan: channel used for cyclic operations
583  *
584  * Called with atchan->lock held and bh disabled
585  */
586 static void atc_handle_cyclic(struct at_dma_chan *atchan)
587 {
588 	struct at_desc			*first = atc_first_active(atchan);
589 	struct dma_async_tx_descriptor	*txd = &first->txd;
590 
591 	dev_vdbg(chan2dev(&atchan->chan_common),
592 			"new cyclic period llp 0x%08x\n",
593 			channel_readl(atchan, DSCR));
594 
595 	dmaengine_desc_get_callback_invoke(txd, NULL);
596 }
597 
598 /*--  IRQ & Tasklet  ---------------------------------------------------*/
599 
600 static void atc_tasklet(unsigned long data)
601 {
602 	struct at_dma_chan *atchan = (struct at_dma_chan *)data;
603 	unsigned long flags;
604 
605 	spin_lock_irqsave(&atchan->lock, flags);
606 	if (test_and_clear_bit(ATC_IS_ERROR, &atchan->status))
607 		atc_handle_error(atchan);
608 	else if (atc_chan_is_cyclic(atchan))
609 		atc_handle_cyclic(atchan);
610 	else
611 		atc_advance_work(atchan);
612 
613 	spin_unlock_irqrestore(&atchan->lock, flags);
614 }
615 
616 static irqreturn_t at_dma_interrupt(int irq, void *dev_id)
617 {
618 	struct at_dma		*atdma = (struct at_dma *)dev_id;
619 	struct at_dma_chan	*atchan;
620 	int			i;
621 	u32			status, pending, imr;
622 	int			ret = IRQ_NONE;
623 
624 	do {
625 		imr = dma_readl(atdma, EBCIMR);
626 		status = dma_readl(atdma, EBCISR);
627 		pending = status & imr;
628 
629 		if (!pending)
630 			break;
631 
632 		dev_vdbg(atdma->dma_common.dev,
633 			"interrupt: status = 0x%08x, 0x%08x, 0x%08x\n",
634 			 status, imr, pending);
635 
636 		for (i = 0; i < atdma->dma_common.chancnt; i++) {
637 			atchan = &atdma->chan[i];
638 			if (pending & (AT_DMA_BTC(i) | AT_DMA_ERR(i))) {
639 				if (pending & AT_DMA_ERR(i)) {
640 					/* Disable channel on AHB error */
641 					dma_writel(atdma, CHDR,
642 						AT_DMA_RES(i) | atchan->mask);
643 					/* Give information to tasklet */
644 					set_bit(ATC_IS_ERROR, &atchan->status);
645 				}
646 				tasklet_schedule(&atchan->tasklet);
647 				ret = IRQ_HANDLED;
648 			}
649 		}
650 
651 	} while (pending);
652 
653 	return ret;
654 }
655 
656 
657 /*--  DMA Engine API  --------------------------------------------------*/
658 
659 /**
660  * atc_tx_submit - set the prepared descriptor(s) to be executed by the engine
661  * @desc: descriptor at the head of the transaction chain
662  *
663  * Queue chain if DMA engine is working already
664  *
665  * Cookie increment and adding to active_list or queue must be atomic
666  */
667 static dma_cookie_t atc_tx_submit(struct dma_async_tx_descriptor *tx)
668 {
669 	struct at_desc		*desc = txd_to_at_desc(tx);
670 	struct at_dma_chan	*atchan = to_at_dma_chan(tx->chan);
671 	dma_cookie_t		cookie;
672 	unsigned long		flags;
673 
674 	spin_lock_irqsave(&atchan->lock, flags);
675 	cookie = dma_cookie_assign(tx);
676 
677 	if (list_empty(&atchan->active_list)) {
678 		dev_vdbg(chan2dev(tx->chan), "tx_submit: started %u\n",
679 				desc->txd.cookie);
680 		atc_dostart(atchan, desc);
681 		list_add_tail(&desc->desc_node, &atchan->active_list);
682 	} else {
683 		dev_vdbg(chan2dev(tx->chan), "tx_submit: queued %u\n",
684 				desc->txd.cookie);
685 		list_add_tail(&desc->desc_node, &atchan->queue);
686 	}
687 
688 	spin_unlock_irqrestore(&atchan->lock, flags);
689 
690 	return cookie;
691 }
692 
693 /**
694  * atc_prep_dma_interleaved - prepare memory to memory interleaved operation
695  * @chan: the channel to prepare operation on
696  * @xt: Interleaved transfer template
697  * @flags: tx descriptor status flags
698  */
699 static struct dma_async_tx_descriptor *
700 atc_prep_dma_interleaved(struct dma_chan *chan,
701 			 struct dma_interleaved_template *xt,
702 			 unsigned long flags)
703 {
704 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
705 	struct data_chunk	*first;
706 	struct at_desc		*desc = NULL;
707 	size_t			xfer_count;
708 	unsigned int		dwidth;
709 	u32			ctrla;
710 	u32			ctrlb;
711 	size_t			len = 0;
712 	int			i;
713 
714 	if (unlikely(!xt || xt->numf != 1 || !xt->frame_size))
715 		return NULL;
716 
717 	first = xt->sgl;
718 
719 	dev_info(chan2dev(chan),
720 		 "%s: src=%pad, dest=%pad, numf=%d, frame_size=%d, flags=0x%lx\n",
721 		__func__, &xt->src_start, &xt->dst_start, xt->numf,
722 		xt->frame_size, flags);
723 
724 	/*
725 	 * The controller can only "skip" X bytes every Y bytes, so we
726 	 * need to make sure we are given a template that fit that
727 	 * description, ie a template with chunks that always have the
728 	 * same size, with the same ICGs.
729 	 */
730 	for (i = 0; i < xt->frame_size; i++) {
731 		struct data_chunk *chunk = xt->sgl + i;
732 
733 		if ((chunk->size != xt->sgl->size) ||
734 		    (dmaengine_get_dst_icg(xt, chunk) != dmaengine_get_dst_icg(xt, first)) ||
735 		    (dmaengine_get_src_icg(xt, chunk) != dmaengine_get_src_icg(xt, first))) {
736 			dev_err(chan2dev(chan),
737 				"%s: the controller can transfer only identical chunks\n",
738 				__func__);
739 			return NULL;
740 		}
741 
742 		len += chunk->size;
743 	}
744 
745 	dwidth = atc_get_xfer_width(xt->src_start,
746 				    xt->dst_start, len);
747 
748 	xfer_count = len >> dwidth;
749 	if (xfer_count > ATC_BTSIZE_MAX) {
750 		dev_err(chan2dev(chan), "%s: buffer is too big\n", __func__);
751 		return NULL;
752 	}
753 
754 	ctrla = ATC_SRC_WIDTH(dwidth) |
755 		ATC_DST_WIDTH(dwidth);
756 
757 	ctrlb =   ATC_DEFAULT_CTRLB | ATC_IEN
758 		| ATC_SRC_ADDR_MODE_INCR
759 		| ATC_DST_ADDR_MODE_INCR
760 		| ATC_SRC_PIP
761 		| ATC_DST_PIP
762 		| ATC_FC_MEM2MEM;
763 
764 	/* create the transfer */
765 	desc = atc_desc_get(atchan);
766 	if (!desc) {
767 		dev_err(chan2dev(chan),
768 			"%s: couldn't allocate our descriptor\n", __func__);
769 		return NULL;
770 	}
771 
772 	desc->lli.saddr = xt->src_start;
773 	desc->lli.daddr = xt->dst_start;
774 	desc->lli.ctrla = ctrla | xfer_count;
775 	desc->lli.ctrlb = ctrlb;
776 
777 	desc->boundary = first->size >> dwidth;
778 	desc->dst_hole = (dmaengine_get_dst_icg(xt, first) >> dwidth) + 1;
779 	desc->src_hole = (dmaengine_get_src_icg(xt, first) >> dwidth) + 1;
780 
781 	desc->txd.cookie = -EBUSY;
782 	desc->total_len = desc->len = len;
783 
784 	/* set end-of-link to the last link descriptor of list*/
785 	set_desc_eol(desc);
786 
787 	desc->txd.flags = flags; /* client is in control of this ack */
788 
789 	return &desc->txd;
790 }
791 
792 /**
793  * atc_prep_dma_memcpy - prepare a memcpy operation
794  * @chan: the channel to prepare operation on
795  * @dest: operation virtual destination address
796  * @src: operation virtual source address
797  * @len: operation length
798  * @flags: tx descriptor status flags
799  */
800 static struct dma_async_tx_descriptor *
801 atc_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
802 		size_t len, unsigned long flags)
803 {
804 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
805 	struct at_desc		*desc = NULL;
806 	struct at_desc		*first = NULL;
807 	struct at_desc		*prev = NULL;
808 	size_t			xfer_count;
809 	size_t			offset;
810 	unsigned int		src_width;
811 	unsigned int		dst_width;
812 	u32			ctrla;
813 	u32			ctrlb;
814 
815 	dev_vdbg(chan2dev(chan), "prep_dma_memcpy: d%pad s%pad l0x%zx f0x%lx\n",
816 			&dest, &src, len, flags);
817 
818 	if (unlikely(!len)) {
819 		dev_dbg(chan2dev(chan), "prep_dma_memcpy: length is zero!\n");
820 		return NULL;
821 	}
822 
823 	ctrlb =   ATC_DEFAULT_CTRLB | ATC_IEN
824 		| ATC_SRC_ADDR_MODE_INCR
825 		| ATC_DST_ADDR_MODE_INCR
826 		| ATC_FC_MEM2MEM;
827 
828 	/*
829 	 * We can be a lot more clever here, but this should take care
830 	 * of the most common optimization.
831 	 */
832 	src_width = dst_width = atc_get_xfer_width(src, dest, len);
833 
834 	ctrla = ATC_SRC_WIDTH(src_width) |
835 		ATC_DST_WIDTH(dst_width);
836 
837 	for (offset = 0; offset < len; offset += xfer_count << src_width) {
838 		xfer_count = min_t(size_t, (len - offset) >> src_width,
839 				ATC_BTSIZE_MAX);
840 
841 		desc = atc_desc_get(atchan);
842 		if (!desc)
843 			goto err_desc_get;
844 
845 		desc->lli.saddr = src + offset;
846 		desc->lli.daddr = dest + offset;
847 		desc->lli.ctrla = ctrla | xfer_count;
848 		desc->lli.ctrlb = ctrlb;
849 
850 		desc->txd.cookie = 0;
851 		desc->len = xfer_count << src_width;
852 
853 		atc_desc_chain(&first, &prev, desc);
854 	}
855 
856 	/* First descriptor of the chain embedds additional information */
857 	first->txd.cookie = -EBUSY;
858 	first->total_len = len;
859 
860 	/* set end-of-link to the last link descriptor of list*/
861 	set_desc_eol(desc);
862 
863 	first->txd.flags = flags; /* client is in control of this ack */
864 
865 	return &first->txd;
866 
867 err_desc_get:
868 	atc_desc_put(atchan, first);
869 	return NULL;
870 }
871 
872 static struct at_desc *atc_create_memset_desc(struct dma_chan *chan,
873 					      dma_addr_t psrc,
874 					      dma_addr_t pdst,
875 					      size_t len)
876 {
877 	struct at_dma_chan *atchan = to_at_dma_chan(chan);
878 	struct at_desc *desc;
879 	size_t xfer_count;
880 
881 	u32 ctrla = ATC_SRC_WIDTH(2) | ATC_DST_WIDTH(2);
882 	u32 ctrlb = ATC_DEFAULT_CTRLB | ATC_IEN |
883 		ATC_SRC_ADDR_MODE_FIXED |
884 		ATC_DST_ADDR_MODE_INCR |
885 		ATC_FC_MEM2MEM;
886 
887 	xfer_count = len >> 2;
888 	if (xfer_count > ATC_BTSIZE_MAX) {
889 		dev_err(chan2dev(chan), "%s: buffer is too big\n",
890 			__func__);
891 		return NULL;
892 	}
893 
894 	desc = atc_desc_get(atchan);
895 	if (!desc) {
896 		dev_err(chan2dev(chan), "%s: can't get a descriptor\n",
897 			__func__);
898 		return NULL;
899 	}
900 
901 	desc->lli.saddr = psrc;
902 	desc->lli.daddr = pdst;
903 	desc->lli.ctrla = ctrla | xfer_count;
904 	desc->lli.ctrlb = ctrlb;
905 
906 	desc->txd.cookie = 0;
907 	desc->len = len;
908 
909 	return desc;
910 }
911 
912 /**
913  * atc_prep_dma_memset - prepare a memcpy operation
914  * @chan: the channel to prepare operation on
915  * @dest: operation virtual destination address
916  * @value: value to set memory buffer to
917  * @len: operation length
918  * @flags: tx descriptor status flags
919  */
920 static struct dma_async_tx_descriptor *
921 atc_prep_dma_memset(struct dma_chan *chan, dma_addr_t dest, int value,
922 		    size_t len, unsigned long flags)
923 {
924 	struct at_dma		*atdma = to_at_dma(chan->device);
925 	struct at_desc		*desc;
926 	void __iomem		*vaddr;
927 	dma_addr_t		paddr;
928 
929 	dev_vdbg(chan2dev(chan), "%s: d%pad v0x%x l0x%zx f0x%lx\n", __func__,
930 		&dest, value, len, flags);
931 
932 	if (unlikely(!len)) {
933 		dev_dbg(chan2dev(chan), "%s: length is zero!\n", __func__);
934 		return NULL;
935 	}
936 
937 	if (!is_dma_fill_aligned(chan->device, dest, 0, len)) {
938 		dev_dbg(chan2dev(chan), "%s: buffer is not aligned\n",
939 			__func__);
940 		return NULL;
941 	}
942 
943 	vaddr = dma_pool_alloc(atdma->memset_pool, GFP_ATOMIC, &paddr);
944 	if (!vaddr) {
945 		dev_err(chan2dev(chan), "%s: couldn't allocate buffer\n",
946 			__func__);
947 		return NULL;
948 	}
949 	*(u32*)vaddr = value;
950 
951 	desc = atc_create_memset_desc(chan, paddr, dest, len);
952 	if (!desc) {
953 		dev_err(chan2dev(chan), "%s: couldn't get a descriptor\n",
954 			__func__);
955 		goto err_free_buffer;
956 	}
957 
958 	desc->memset_paddr = paddr;
959 	desc->memset_vaddr = vaddr;
960 	desc->memset_buffer = true;
961 
962 	desc->txd.cookie = -EBUSY;
963 	desc->total_len = len;
964 
965 	/* set end-of-link on the descriptor */
966 	set_desc_eol(desc);
967 
968 	desc->txd.flags = flags;
969 
970 	return &desc->txd;
971 
972 err_free_buffer:
973 	dma_pool_free(atdma->memset_pool, vaddr, paddr);
974 	return NULL;
975 }
976 
977 static struct dma_async_tx_descriptor *
978 atc_prep_dma_memset_sg(struct dma_chan *chan,
979 		       struct scatterlist *sgl,
980 		       unsigned int sg_len, int value,
981 		       unsigned long flags)
982 {
983 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
984 	struct at_dma		*atdma = to_at_dma(chan->device);
985 	struct at_desc		*desc = NULL, *first = NULL, *prev = NULL;
986 	struct scatterlist	*sg;
987 	void __iomem		*vaddr;
988 	dma_addr_t		paddr;
989 	size_t			total_len = 0;
990 	int			i;
991 
992 	dev_vdbg(chan2dev(chan), "%s: v0x%x l0x%zx f0x%lx\n", __func__,
993 		 value, sg_len, flags);
994 
995 	if (unlikely(!sgl || !sg_len)) {
996 		dev_dbg(chan2dev(chan), "%s: scatterlist is empty!\n",
997 			__func__);
998 		return NULL;
999 	}
1000 
1001 	vaddr = dma_pool_alloc(atdma->memset_pool, GFP_ATOMIC, &paddr);
1002 	if (!vaddr) {
1003 		dev_err(chan2dev(chan), "%s: couldn't allocate buffer\n",
1004 			__func__);
1005 		return NULL;
1006 	}
1007 	*(u32*)vaddr = value;
1008 
1009 	for_each_sg(sgl, sg, sg_len, i) {
1010 		dma_addr_t dest = sg_dma_address(sg);
1011 		size_t len = sg_dma_len(sg);
1012 
1013 		dev_vdbg(chan2dev(chan), "%s: d%pad, l0x%zx\n",
1014 			 __func__, &dest, len);
1015 
1016 		if (!is_dma_fill_aligned(chan->device, dest, 0, len)) {
1017 			dev_err(chan2dev(chan), "%s: buffer is not aligned\n",
1018 				__func__);
1019 			goto err_put_desc;
1020 		}
1021 
1022 		desc = atc_create_memset_desc(chan, paddr, dest, len);
1023 		if (!desc)
1024 			goto err_put_desc;
1025 
1026 		atc_desc_chain(&first, &prev, desc);
1027 
1028 		total_len += len;
1029 	}
1030 
1031 	/*
1032 	 * Only set the buffer pointers on the last descriptor to
1033 	 * avoid free'ing while we have our transfer still going
1034 	 */
1035 	desc->memset_paddr = paddr;
1036 	desc->memset_vaddr = vaddr;
1037 	desc->memset_buffer = true;
1038 
1039 	first->txd.cookie = -EBUSY;
1040 	first->total_len = total_len;
1041 
1042 	/* set end-of-link on the descriptor */
1043 	set_desc_eol(desc);
1044 
1045 	first->txd.flags = flags;
1046 
1047 	return &first->txd;
1048 
1049 err_put_desc:
1050 	atc_desc_put(atchan, first);
1051 	return NULL;
1052 }
1053 
1054 /**
1055  * atc_prep_slave_sg - prepare descriptors for a DMA_SLAVE transaction
1056  * @chan: DMA channel
1057  * @sgl: scatterlist to transfer to/from
1058  * @sg_len: number of entries in @scatterlist
1059  * @direction: DMA direction
1060  * @flags: tx descriptor status flags
1061  * @context: transaction context (ignored)
1062  */
1063 static struct dma_async_tx_descriptor *
1064 atc_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
1065 		unsigned int sg_len, enum dma_transfer_direction direction,
1066 		unsigned long flags, void *context)
1067 {
1068 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1069 	struct at_dma_slave	*atslave = chan->private;
1070 	struct dma_slave_config	*sconfig = &atchan->dma_sconfig;
1071 	struct at_desc		*first = NULL;
1072 	struct at_desc		*prev = NULL;
1073 	u32			ctrla;
1074 	u32			ctrlb;
1075 	dma_addr_t		reg;
1076 	unsigned int		reg_width;
1077 	unsigned int		mem_width;
1078 	unsigned int		i;
1079 	struct scatterlist	*sg;
1080 	size_t			total_len = 0;
1081 
1082 	dev_vdbg(chan2dev(chan), "prep_slave_sg (%d): %s f0x%lx\n",
1083 			sg_len,
1084 			direction == DMA_MEM_TO_DEV ? "TO DEVICE" : "FROM DEVICE",
1085 			flags);
1086 
1087 	if (unlikely(!atslave || !sg_len)) {
1088 		dev_dbg(chan2dev(chan), "prep_slave_sg: sg length is zero!\n");
1089 		return NULL;
1090 	}
1091 
1092 	ctrla =   ATC_SCSIZE(sconfig->src_maxburst)
1093 		| ATC_DCSIZE(sconfig->dst_maxburst);
1094 	ctrlb = ATC_IEN;
1095 
1096 	switch (direction) {
1097 	case DMA_MEM_TO_DEV:
1098 		reg_width = convert_buswidth(sconfig->dst_addr_width);
1099 		ctrla |=  ATC_DST_WIDTH(reg_width);
1100 		ctrlb |=  ATC_DST_ADDR_MODE_FIXED
1101 			| ATC_SRC_ADDR_MODE_INCR
1102 			| ATC_FC_MEM2PER
1103 			| ATC_SIF(atchan->mem_if) | ATC_DIF(atchan->per_if);
1104 		reg = sconfig->dst_addr;
1105 		for_each_sg(sgl, sg, sg_len, i) {
1106 			struct at_desc	*desc;
1107 			u32		len;
1108 			u32		mem;
1109 
1110 			desc = atc_desc_get(atchan);
1111 			if (!desc)
1112 				goto err_desc_get;
1113 
1114 			mem = sg_dma_address(sg);
1115 			len = sg_dma_len(sg);
1116 			if (unlikely(!len)) {
1117 				dev_dbg(chan2dev(chan),
1118 					"prep_slave_sg: sg(%d) data length is zero\n", i);
1119 				goto err;
1120 			}
1121 			mem_width = 2;
1122 			if (unlikely(mem & 3 || len & 3))
1123 				mem_width = 0;
1124 
1125 			desc->lli.saddr = mem;
1126 			desc->lli.daddr = reg;
1127 			desc->lli.ctrla = ctrla
1128 					| ATC_SRC_WIDTH(mem_width)
1129 					| len >> mem_width;
1130 			desc->lli.ctrlb = ctrlb;
1131 			desc->len = len;
1132 
1133 			atc_desc_chain(&first, &prev, desc);
1134 			total_len += len;
1135 		}
1136 		break;
1137 	case DMA_DEV_TO_MEM:
1138 		reg_width = convert_buswidth(sconfig->src_addr_width);
1139 		ctrla |=  ATC_SRC_WIDTH(reg_width);
1140 		ctrlb |=  ATC_DST_ADDR_MODE_INCR
1141 			| ATC_SRC_ADDR_MODE_FIXED
1142 			| ATC_FC_PER2MEM
1143 			| ATC_SIF(atchan->per_if) | ATC_DIF(atchan->mem_if);
1144 
1145 		reg = sconfig->src_addr;
1146 		for_each_sg(sgl, sg, sg_len, i) {
1147 			struct at_desc	*desc;
1148 			u32		len;
1149 			u32		mem;
1150 
1151 			desc = atc_desc_get(atchan);
1152 			if (!desc)
1153 				goto err_desc_get;
1154 
1155 			mem = sg_dma_address(sg);
1156 			len = sg_dma_len(sg);
1157 			if (unlikely(!len)) {
1158 				dev_dbg(chan2dev(chan),
1159 					"prep_slave_sg: sg(%d) data length is zero\n", i);
1160 				goto err;
1161 			}
1162 			mem_width = 2;
1163 			if (unlikely(mem & 3 || len & 3))
1164 				mem_width = 0;
1165 
1166 			desc->lli.saddr = reg;
1167 			desc->lli.daddr = mem;
1168 			desc->lli.ctrla = ctrla
1169 					| ATC_DST_WIDTH(mem_width)
1170 					| len >> reg_width;
1171 			desc->lli.ctrlb = ctrlb;
1172 			desc->len = len;
1173 
1174 			atc_desc_chain(&first, &prev, desc);
1175 			total_len += len;
1176 		}
1177 		break;
1178 	default:
1179 		return NULL;
1180 	}
1181 
1182 	/* set end-of-link to the last link descriptor of list*/
1183 	set_desc_eol(prev);
1184 
1185 	/* First descriptor of the chain embedds additional information */
1186 	first->txd.cookie = -EBUSY;
1187 	first->total_len = total_len;
1188 
1189 	/* first link descriptor of list is responsible of flags */
1190 	first->txd.flags = flags; /* client is in control of this ack */
1191 
1192 	return &first->txd;
1193 
1194 err_desc_get:
1195 	dev_err(chan2dev(chan), "not enough descriptors available\n");
1196 err:
1197 	atc_desc_put(atchan, first);
1198 	return NULL;
1199 }
1200 
1201 /**
1202  * atc_dma_cyclic_check_values
1203  * Check for too big/unaligned periods and unaligned DMA buffer
1204  */
1205 static int
1206 atc_dma_cyclic_check_values(unsigned int reg_width, dma_addr_t buf_addr,
1207 		size_t period_len)
1208 {
1209 	if (period_len > (ATC_BTSIZE_MAX << reg_width))
1210 		goto err_out;
1211 	if (unlikely(period_len & ((1 << reg_width) - 1)))
1212 		goto err_out;
1213 	if (unlikely(buf_addr & ((1 << reg_width) - 1)))
1214 		goto err_out;
1215 
1216 	return 0;
1217 
1218 err_out:
1219 	return -EINVAL;
1220 }
1221 
1222 /**
1223  * atc_dma_cyclic_fill_desc - Fill one period descriptor
1224  */
1225 static int
1226 atc_dma_cyclic_fill_desc(struct dma_chan *chan, struct at_desc *desc,
1227 		unsigned int period_index, dma_addr_t buf_addr,
1228 		unsigned int reg_width, size_t period_len,
1229 		enum dma_transfer_direction direction)
1230 {
1231 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1232 	struct dma_slave_config	*sconfig = &atchan->dma_sconfig;
1233 	u32			ctrla;
1234 
1235 	/* prepare common CRTLA value */
1236 	ctrla =   ATC_SCSIZE(sconfig->src_maxburst)
1237 		| ATC_DCSIZE(sconfig->dst_maxburst)
1238 		| ATC_DST_WIDTH(reg_width)
1239 		| ATC_SRC_WIDTH(reg_width)
1240 		| period_len >> reg_width;
1241 
1242 	switch (direction) {
1243 	case DMA_MEM_TO_DEV:
1244 		desc->lli.saddr = buf_addr + (period_len * period_index);
1245 		desc->lli.daddr = sconfig->dst_addr;
1246 		desc->lli.ctrla = ctrla;
1247 		desc->lli.ctrlb = ATC_DST_ADDR_MODE_FIXED
1248 				| ATC_SRC_ADDR_MODE_INCR
1249 				| ATC_FC_MEM2PER
1250 				| ATC_SIF(atchan->mem_if)
1251 				| ATC_DIF(atchan->per_if);
1252 		desc->len = period_len;
1253 		break;
1254 
1255 	case DMA_DEV_TO_MEM:
1256 		desc->lli.saddr = sconfig->src_addr;
1257 		desc->lli.daddr = buf_addr + (period_len * period_index);
1258 		desc->lli.ctrla = ctrla;
1259 		desc->lli.ctrlb = ATC_DST_ADDR_MODE_INCR
1260 				| ATC_SRC_ADDR_MODE_FIXED
1261 				| ATC_FC_PER2MEM
1262 				| ATC_SIF(atchan->per_if)
1263 				| ATC_DIF(atchan->mem_if);
1264 		desc->len = period_len;
1265 		break;
1266 
1267 	default:
1268 		return -EINVAL;
1269 	}
1270 
1271 	return 0;
1272 }
1273 
1274 /**
1275  * atc_prep_dma_cyclic - prepare the cyclic DMA transfer
1276  * @chan: the DMA channel to prepare
1277  * @buf_addr: physical DMA address where the buffer starts
1278  * @buf_len: total number of bytes for the entire buffer
1279  * @period_len: number of bytes for each period
1280  * @direction: transfer direction, to or from device
1281  * @flags: tx descriptor status flags
1282  */
1283 static struct dma_async_tx_descriptor *
1284 atc_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
1285 		size_t period_len, enum dma_transfer_direction direction,
1286 		unsigned long flags)
1287 {
1288 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1289 	struct at_dma_slave	*atslave = chan->private;
1290 	struct dma_slave_config	*sconfig = &atchan->dma_sconfig;
1291 	struct at_desc		*first = NULL;
1292 	struct at_desc		*prev = NULL;
1293 	unsigned long		was_cyclic;
1294 	unsigned int		reg_width;
1295 	unsigned int		periods = buf_len / period_len;
1296 	unsigned int		i;
1297 
1298 	dev_vdbg(chan2dev(chan), "prep_dma_cyclic: %s buf@%pad - %d (%d/%d)\n",
1299 			direction == DMA_MEM_TO_DEV ? "TO DEVICE" : "FROM DEVICE",
1300 			&buf_addr,
1301 			periods, buf_len, period_len);
1302 
1303 	if (unlikely(!atslave || !buf_len || !period_len)) {
1304 		dev_dbg(chan2dev(chan), "prep_dma_cyclic: length is zero!\n");
1305 		return NULL;
1306 	}
1307 
1308 	was_cyclic = test_and_set_bit(ATC_IS_CYCLIC, &atchan->status);
1309 	if (was_cyclic) {
1310 		dev_dbg(chan2dev(chan), "prep_dma_cyclic: channel in use!\n");
1311 		return NULL;
1312 	}
1313 
1314 	if (unlikely(!is_slave_direction(direction)))
1315 		goto err_out;
1316 
1317 	if (direction == DMA_MEM_TO_DEV)
1318 		reg_width = convert_buswidth(sconfig->dst_addr_width);
1319 	else
1320 		reg_width = convert_buswidth(sconfig->src_addr_width);
1321 
1322 	/* Check for too big/unaligned periods and unaligned DMA buffer */
1323 	if (atc_dma_cyclic_check_values(reg_width, buf_addr, period_len))
1324 		goto err_out;
1325 
1326 	/* build cyclic linked list */
1327 	for (i = 0; i < periods; i++) {
1328 		struct at_desc	*desc;
1329 
1330 		desc = atc_desc_get(atchan);
1331 		if (!desc)
1332 			goto err_desc_get;
1333 
1334 		if (atc_dma_cyclic_fill_desc(chan, desc, i, buf_addr,
1335 					     reg_width, period_len, direction))
1336 			goto err_desc_get;
1337 
1338 		atc_desc_chain(&first, &prev, desc);
1339 	}
1340 
1341 	/* lets make a cyclic list */
1342 	prev->lli.dscr = first->txd.phys;
1343 
1344 	/* First descriptor of the chain embedds additional information */
1345 	first->txd.cookie = -EBUSY;
1346 	first->total_len = buf_len;
1347 
1348 	return &first->txd;
1349 
1350 err_desc_get:
1351 	dev_err(chan2dev(chan), "not enough descriptors available\n");
1352 	atc_desc_put(atchan, first);
1353 err_out:
1354 	clear_bit(ATC_IS_CYCLIC, &atchan->status);
1355 	return NULL;
1356 }
1357 
1358 static int atc_config(struct dma_chan *chan,
1359 		      struct dma_slave_config *sconfig)
1360 {
1361 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1362 
1363 	dev_vdbg(chan2dev(chan), "%s\n", __func__);
1364 
1365 	/* Check if it is chan is configured for slave transfers */
1366 	if (!chan->private)
1367 		return -EINVAL;
1368 
1369 	memcpy(&atchan->dma_sconfig, sconfig, sizeof(*sconfig));
1370 
1371 	convert_burst(&atchan->dma_sconfig.src_maxburst);
1372 	convert_burst(&atchan->dma_sconfig.dst_maxburst);
1373 
1374 	return 0;
1375 }
1376 
1377 static int atc_pause(struct dma_chan *chan)
1378 {
1379 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1380 	struct at_dma		*atdma = to_at_dma(chan->device);
1381 	int			chan_id = atchan->chan_common.chan_id;
1382 	unsigned long		flags;
1383 
1384 	dev_vdbg(chan2dev(chan), "%s\n", __func__);
1385 
1386 	spin_lock_irqsave(&atchan->lock, flags);
1387 
1388 	dma_writel(atdma, CHER, AT_DMA_SUSP(chan_id));
1389 	set_bit(ATC_IS_PAUSED, &atchan->status);
1390 
1391 	spin_unlock_irqrestore(&atchan->lock, flags);
1392 
1393 	return 0;
1394 }
1395 
1396 static int atc_resume(struct dma_chan *chan)
1397 {
1398 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1399 	struct at_dma		*atdma = to_at_dma(chan->device);
1400 	int			chan_id = atchan->chan_common.chan_id;
1401 	unsigned long		flags;
1402 
1403 	dev_vdbg(chan2dev(chan), "%s\n", __func__);
1404 
1405 	if (!atc_chan_is_paused(atchan))
1406 		return 0;
1407 
1408 	spin_lock_irqsave(&atchan->lock, flags);
1409 
1410 	dma_writel(atdma, CHDR, AT_DMA_RES(chan_id));
1411 	clear_bit(ATC_IS_PAUSED, &atchan->status);
1412 
1413 	spin_unlock_irqrestore(&atchan->lock, flags);
1414 
1415 	return 0;
1416 }
1417 
1418 static int atc_terminate_all(struct dma_chan *chan)
1419 {
1420 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1421 	struct at_dma		*atdma = to_at_dma(chan->device);
1422 	int			chan_id = atchan->chan_common.chan_id;
1423 	struct at_desc		*desc, *_desc;
1424 	unsigned long		flags;
1425 
1426 	LIST_HEAD(list);
1427 
1428 	dev_vdbg(chan2dev(chan), "%s\n", __func__);
1429 
1430 	/*
1431 	 * This is only called when something went wrong elsewhere, so
1432 	 * we don't really care about the data. Just disable the
1433 	 * channel. We still have to poll the channel enable bit due
1434 	 * to AHB/HSB limitations.
1435 	 */
1436 	spin_lock_irqsave(&atchan->lock, flags);
1437 
1438 	/* disabling channel: must also remove suspend state */
1439 	dma_writel(atdma, CHDR, AT_DMA_RES(chan_id) | atchan->mask);
1440 
1441 	/* confirm that this channel is disabled */
1442 	while (dma_readl(atdma, CHSR) & atchan->mask)
1443 		cpu_relax();
1444 
1445 	/* active_list entries will end up before queued entries */
1446 	list_splice_init(&atchan->queue, &list);
1447 	list_splice_init(&atchan->active_list, &list);
1448 
1449 	/* Flush all pending and queued descriptors */
1450 	list_for_each_entry_safe(desc, _desc, &list, desc_node)
1451 		atc_chain_complete(atchan, desc);
1452 
1453 	clear_bit(ATC_IS_PAUSED, &atchan->status);
1454 	/* if channel dedicated to cyclic operations, free it */
1455 	clear_bit(ATC_IS_CYCLIC, &atchan->status);
1456 
1457 	spin_unlock_irqrestore(&atchan->lock, flags);
1458 
1459 	return 0;
1460 }
1461 
1462 /**
1463  * atc_tx_status - poll for transaction completion
1464  * @chan: DMA channel
1465  * @cookie: transaction identifier to check status of
1466  * @txstate: if not %NULL updated with transaction state
1467  *
1468  * If @txstate is passed in, upon return it reflect the driver
1469  * internal state and can be used with dma_async_is_complete() to check
1470  * the status of multiple cookies without re-checking hardware state.
1471  */
1472 static enum dma_status
1473 atc_tx_status(struct dma_chan *chan,
1474 		dma_cookie_t cookie,
1475 		struct dma_tx_state *txstate)
1476 {
1477 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1478 	unsigned long		flags;
1479 	enum dma_status		ret;
1480 	int bytes = 0;
1481 
1482 	ret = dma_cookie_status(chan, cookie, txstate);
1483 	if (ret == DMA_COMPLETE)
1484 		return ret;
1485 	/*
1486 	 * There's no point calculating the residue if there's
1487 	 * no txstate to store the value.
1488 	 */
1489 	if (!txstate)
1490 		return DMA_ERROR;
1491 
1492 	spin_lock_irqsave(&atchan->lock, flags);
1493 
1494 	/*  Get number of bytes left in the active transactions */
1495 	bytes = atc_get_bytes_left(chan, cookie);
1496 
1497 	spin_unlock_irqrestore(&atchan->lock, flags);
1498 
1499 	if (unlikely(bytes < 0)) {
1500 		dev_vdbg(chan2dev(chan), "get residual bytes error\n");
1501 		return DMA_ERROR;
1502 	} else {
1503 		dma_set_residue(txstate, bytes);
1504 	}
1505 
1506 	dev_vdbg(chan2dev(chan), "tx_status %d: cookie = %d residue = %d\n",
1507 		 ret, cookie, bytes);
1508 
1509 	return ret;
1510 }
1511 
1512 /**
1513  * atc_issue_pending - try to finish work
1514  * @chan: target DMA channel
1515  */
1516 static void atc_issue_pending(struct dma_chan *chan)
1517 {
1518 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1519 	unsigned long		flags;
1520 
1521 	dev_vdbg(chan2dev(chan), "issue_pending\n");
1522 
1523 	/* Not needed for cyclic transfers */
1524 	if (atc_chan_is_cyclic(atchan))
1525 		return;
1526 
1527 	spin_lock_irqsave(&atchan->lock, flags);
1528 	atc_advance_work(atchan);
1529 	spin_unlock_irqrestore(&atchan->lock, flags);
1530 }
1531 
1532 /**
1533  * atc_alloc_chan_resources - allocate resources for DMA channel
1534  * @chan: allocate descriptor resources for this channel
1535  * @client: current client requesting the channel be ready for requests
1536  *
1537  * return - the number of allocated descriptors
1538  */
1539 static int atc_alloc_chan_resources(struct dma_chan *chan)
1540 {
1541 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1542 	struct at_dma		*atdma = to_at_dma(chan->device);
1543 	struct at_desc		*desc;
1544 	struct at_dma_slave	*atslave;
1545 	unsigned long		flags;
1546 	int			i;
1547 	u32			cfg;
1548 	LIST_HEAD(tmp_list);
1549 
1550 	dev_vdbg(chan2dev(chan), "alloc_chan_resources\n");
1551 
1552 	/* ASSERT:  channel is idle */
1553 	if (atc_chan_is_enabled(atchan)) {
1554 		dev_dbg(chan2dev(chan), "DMA channel not idle ?\n");
1555 		return -EIO;
1556 	}
1557 
1558 	cfg = ATC_DEFAULT_CFG;
1559 
1560 	atslave = chan->private;
1561 	if (atslave) {
1562 		/*
1563 		 * We need controller-specific data to set up slave
1564 		 * transfers.
1565 		 */
1566 		BUG_ON(!atslave->dma_dev || atslave->dma_dev != atdma->dma_common.dev);
1567 
1568 		/* if cfg configuration specified take it instead of default */
1569 		if (atslave->cfg)
1570 			cfg = atslave->cfg;
1571 	}
1572 
1573 	/* have we already been set up?
1574 	 * reconfigure channel but no need to reallocate descriptors */
1575 	if (!list_empty(&atchan->free_list))
1576 		return atchan->descs_allocated;
1577 
1578 	/* Allocate initial pool of descriptors */
1579 	for (i = 0; i < init_nr_desc_per_channel; i++) {
1580 		desc = atc_alloc_descriptor(chan, GFP_KERNEL);
1581 		if (!desc) {
1582 			dev_err(atdma->dma_common.dev,
1583 				"Only %d initial descriptors\n", i);
1584 			break;
1585 		}
1586 		list_add_tail(&desc->desc_node, &tmp_list);
1587 	}
1588 
1589 	spin_lock_irqsave(&atchan->lock, flags);
1590 	atchan->descs_allocated = i;
1591 	list_splice(&tmp_list, &atchan->free_list);
1592 	dma_cookie_init(chan);
1593 	spin_unlock_irqrestore(&atchan->lock, flags);
1594 
1595 	/* channel parameters */
1596 	channel_writel(atchan, CFG, cfg);
1597 
1598 	dev_dbg(chan2dev(chan),
1599 		"alloc_chan_resources: allocated %d descriptors\n",
1600 		atchan->descs_allocated);
1601 
1602 	return atchan->descs_allocated;
1603 }
1604 
1605 /**
1606  * atc_free_chan_resources - free all channel resources
1607  * @chan: DMA channel
1608  */
1609 static void atc_free_chan_resources(struct dma_chan *chan)
1610 {
1611 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1612 	struct at_dma		*atdma = to_at_dma(chan->device);
1613 	struct at_desc		*desc, *_desc;
1614 	LIST_HEAD(list);
1615 
1616 	dev_dbg(chan2dev(chan), "free_chan_resources: (descs allocated=%u)\n",
1617 		atchan->descs_allocated);
1618 
1619 	/* ASSERT:  channel is idle */
1620 	BUG_ON(!list_empty(&atchan->active_list));
1621 	BUG_ON(!list_empty(&atchan->queue));
1622 	BUG_ON(atc_chan_is_enabled(atchan));
1623 
1624 	list_for_each_entry_safe(desc, _desc, &atchan->free_list, desc_node) {
1625 		dev_vdbg(chan2dev(chan), "  freeing descriptor %p\n", desc);
1626 		list_del(&desc->desc_node);
1627 		/* free link descriptor */
1628 		dma_pool_free(atdma->dma_desc_pool, desc, desc->txd.phys);
1629 	}
1630 	list_splice_init(&atchan->free_list, &list);
1631 	atchan->descs_allocated = 0;
1632 	atchan->status = 0;
1633 
1634 	/*
1635 	 * Free atslave allocated in at_dma_xlate()
1636 	 */
1637 	kfree(chan->private);
1638 	chan->private = NULL;
1639 
1640 	dev_vdbg(chan2dev(chan), "free_chan_resources: done\n");
1641 }
1642 
1643 #ifdef CONFIG_OF
1644 static bool at_dma_filter(struct dma_chan *chan, void *slave)
1645 {
1646 	struct at_dma_slave *atslave = slave;
1647 
1648 	if (atslave->dma_dev == chan->device->dev) {
1649 		chan->private = atslave;
1650 		return true;
1651 	} else {
1652 		return false;
1653 	}
1654 }
1655 
1656 static struct dma_chan *at_dma_xlate(struct of_phandle_args *dma_spec,
1657 				     struct of_dma *of_dma)
1658 {
1659 	struct dma_chan *chan;
1660 	struct at_dma_chan *atchan;
1661 	struct at_dma_slave *atslave;
1662 	dma_cap_mask_t mask;
1663 	unsigned int per_id;
1664 	struct platform_device *dmac_pdev;
1665 
1666 	if (dma_spec->args_count != 2)
1667 		return NULL;
1668 
1669 	dmac_pdev = of_find_device_by_node(dma_spec->np);
1670 
1671 	dma_cap_zero(mask);
1672 	dma_cap_set(DMA_SLAVE, mask);
1673 
1674 	atslave = kzalloc(sizeof(*atslave), GFP_KERNEL);
1675 	if (!atslave)
1676 		return NULL;
1677 
1678 	atslave->cfg = ATC_DST_H2SEL_HW | ATC_SRC_H2SEL_HW;
1679 	/*
1680 	 * We can fill both SRC_PER and DST_PER, one of these fields will be
1681 	 * ignored depending on DMA transfer direction.
1682 	 */
1683 	per_id = dma_spec->args[1] & AT91_DMA_CFG_PER_ID_MASK;
1684 	atslave->cfg |= ATC_DST_PER_MSB(per_id) | ATC_DST_PER(per_id)
1685 		     | ATC_SRC_PER_MSB(per_id) | ATC_SRC_PER(per_id);
1686 	/*
1687 	 * We have to translate the value we get from the device tree since
1688 	 * the half FIFO configuration value had to be 0 to keep backward
1689 	 * compatibility.
1690 	 */
1691 	switch (dma_spec->args[1] & AT91_DMA_CFG_FIFOCFG_MASK) {
1692 	case AT91_DMA_CFG_FIFOCFG_ALAP:
1693 		atslave->cfg |= ATC_FIFOCFG_LARGESTBURST;
1694 		break;
1695 	case AT91_DMA_CFG_FIFOCFG_ASAP:
1696 		atslave->cfg |= ATC_FIFOCFG_ENOUGHSPACE;
1697 		break;
1698 	case AT91_DMA_CFG_FIFOCFG_HALF:
1699 	default:
1700 		atslave->cfg |= ATC_FIFOCFG_HALFFIFO;
1701 	}
1702 	atslave->dma_dev = &dmac_pdev->dev;
1703 
1704 	chan = dma_request_channel(mask, at_dma_filter, atslave);
1705 	if (!chan)
1706 		return NULL;
1707 
1708 	atchan = to_at_dma_chan(chan);
1709 	atchan->per_if = dma_spec->args[0] & 0xff;
1710 	atchan->mem_if = (dma_spec->args[0] >> 16) & 0xff;
1711 
1712 	return chan;
1713 }
1714 #else
1715 static struct dma_chan *at_dma_xlate(struct of_phandle_args *dma_spec,
1716 				     struct of_dma *of_dma)
1717 {
1718 	return NULL;
1719 }
1720 #endif
1721 
1722 /*--  Module Management  -----------------------------------------------*/
1723 
1724 /* cap_mask is a multi-u32 bitfield, fill it with proper C code. */
1725 static struct at_dma_platform_data at91sam9rl_config = {
1726 	.nr_channels = 2,
1727 };
1728 static struct at_dma_platform_data at91sam9g45_config = {
1729 	.nr_channels = 8,
1730 };
1731 
1732 #if defined(CONFIG_OF)
1733 static const struct of_device_id atmel_dma_dt_ids[] = {
1734 	{
1735 		.compatible = "atmel,at91sam9rl-dma",
1736 		.data = &at91sam9rl_config,
1737 	}, {
1738 		.compatible = "atmel,at91sam9g45-dma",
1739 		.data = &at91sam9g45_config,
1740 	}, {
1741 		/* sentinel */
1742 	}
1743 };
1744 
1745 MODULE_DEVICE_TABLE(of, atmel_dma_dt_ids);
1746 #endif
1747 
1748 static const struct platform_device_id atdma_devtypes[] = {
1749 	{
1750 		.name = "at91sam9rl_dma",
1751 		.driver_data = (unsigned long) &at91sam9rl_config,
1752 	}, {
1753 		.name = "at91sam9g45_dma",
1754 		.driver_data = (unsigned long) &at91sam9g45_config,
1755 	}, {
1756 		/* sentinel */
1757 	}
1758 };
1759 
1760 static inline const struct at_dma_platform_data * __init at_dma_get_driver_data(
1761 						struct platform_device *pdev)
1762 {
1763 	if (pdev->dev.of_node) {
1764 		const struct of_device_id *match;
1765 		match = of_match_node(atmel_dma_dt_ids, pdev->dev.of_node);
1766 		if (match == NULL)
1767 			return NULL;
1768 		return match->data;
1769 	}
1770 	return (struct at_dma_platform_data *)
1771 			platform_get_device_id(pdev)->driver_data;
1772 }
1773 
1774 /**
1775  * at_dma_off - disable DMA controller
1776  * @atdma: the Atmel HDAMC device
1777  */
1778 static void at_dma_off(struct at_dma *atdma)
1779 {
1780 	dma_writel(atdma, EN, 0);
1781 
1782 	/* disable all interrupts */
1783 	dma_writel(atdma, EBCIDR, -1L);
1784 
1785 	/* confirm that all channels are disabled */
1786 	while (dma_readl(atdma, CHSR) & atdma->all_chan_mask)
1787 		cpu_relax();
1788 }
1789 
1790 static int __init at_dma_probe(struct platform_device *pdev)
1791 {
1792 	struct resource		*io;
1793 	struct at_dma		*atdma;
1794 	size_t			size;
1795 	int			irq;
1796 	int			err;
1797 	int			i;
1798 	const struct at_dma_platform_data *plat_dat;
1799 
1800 	/* setup platform data for each SoC */
1801 	dma_cap_set(DMA_MEMCPY, at91sam9rl_config.cap_mask);
1802 	dma_cap_set(DMA_INTERLEAVE, at91sam9g45_config.cap_mask);
1803 	dma_cap_set(DMA_MEMCPY, at91sam9g45_config.cap_mask);
1804 	dma_cap_set(DMA_MEMSET, at91sam9g45_config.cap_mask);
1805 	dma_cap_set(DMA_MEMSET_SG, at91sam9g45_config.cap_mask);
1806 	dma_cap_set(DMA_PRIVATE, at91sam9g45_config.cap_mask);
1807 	dma_cap_set(DMA_SLAVE, at91sam9g45_config.cap_mask);
1808 
1809 	/* get DMA parameters from controller type */
1810 	plat_dat = at_dma_get_driver_data(pdev);
1811 	if (!plat_dat)
1812 		return -ENODEV;
1813 
1814 	io = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1815 	if (!io)
1816 		return -EINVAL;
1817 
1818 	irq = platform_get_irq(pdev, 0);
1819 	if (irq < 0)
1820 		return irq;
1821 
1822 	size = sizeof(struct at_dma);
1823 	size += plat_dat->nr_channels * sizeof(struct at_dma_chan);
1824 	atdma = kzalloc(size, GFP_KERNEL);
1825 	if (!atdma)
1826 		return -ENOMEM;
1827 
1828 	/* discover transaction capabilities */
1829 	atdma->dma_common.cap_mask = plat_dat->cap_mask;
1830 	atdma->all_chan_mask = (1 << plat_dat->nr_channels) - 1;
1831 
1832 	size = resource_size(io);
1833 	if (!request_mem_region(io->start, size, pdev->dev.driver->name)) {
1834 		err = -EBUSY;
1835 		goto err_kfree;
1836 	}
1837 
1838 	atdma->regs = ioremap(io->start, size);
1839 	if (!atdma->regs) {
1840 		err = -ENOMEM;
1841 		goto err_release_r;
1842 	}
1843 
1844 	atdma->clk = clk_get(&pdev->dev, "dma_clk");
1845 	if (IS_ERR(atdma->clk)) {
1846 		err = PTR_ERR(atdma->clk);
1847 		goto err_clk;
1848 	}
1849 	err = clk_prepare_enable(atdma->clk);
1850 	if (err)
1851 		goto err_clk_prepare;
1852 
1853 	/* force dma off, just in case */
1854 	at_dma_off(atdma);
1855 
1856 	err = request_irq(irq, at_dma_interrupt, 0, "at_hdmac", atdma);
1857 	if (err)
1858 		goto err_irq;
1859 
1860 	platform_set_drvdata(pdev, atdma);
1861 
1862 	/* create a pool of consistent memory blocks for hardware descriptors */
1863 	atdma->dma_desc_pool = dma_pool_create("at_hdmac_desc_pool",
1864 			&pdev->dev, sizeof(struct at_desc),
1865 			4 /* word alignment */, 0);
1866 	if (!atdma->dma_desc_pool) {
1867 		dev_err(&pdev->dev, "No memory for descriptors dma pool\n");
1868 		err = -ENOMEM;
1869 		goto err_desc_pool_create;
1870 	}
1871 
1872 	/* create a pool of consistent memory blocks for memset blocks */
1873 	atdma->memset_pool = dma_pool_create("at_hdmac_memset_pool",
1874 					     &pdev->dev, sizeof(int), 4, 0);
1875 	if (!atdma->memset_pool) {
1876 		dev_err(&pdev->dev, "No memory for memset dma pool\n");
1877 		err = -ENOMEM;
1878 		goto err_memset_pool_create;
1879 	}
1880 
1881 	/* clear any pending interrupt */
1882 	while (dma_readl(atdma, EBCISR))
1883 		cpu_relax();
1884 
1885 	/* initialize channels related values */
1886 	INIT_LIST_HEAD(&atdma->dma_common.channels);
1887 	for (i = 0; i < plat_dat->nr_channels; i++) {
1888 		struct at_dma_chan	*atchan = &atdma->chan[i];
1889 
1890 		atchan->mem_if = AT_DMA_MEM_IF;
1891 		atchan->per_if = AT_DMA_PER_IF;
1892 		atchan->chan_common.device = &atdma->dma_common;
1893 		dma_cookie_init(&atchan->chan_common);
1894 		list_add_tail(&atchan->chan_common.device_node,
1895 				&atdma->dma_common.channels);
1896 
1897 		atchan->ch_regs = atdma->regs + ch_regs(i);
1898 		spin_lock_init(&atchan->lock);
1899 		atchan->mask = 1 << i;
1900 
1901 		INIT_LIST_HEAD(&atchan->active_list);
1902 		INIT_LIST_HEAD(&atchan->queue);
1903 		INIT_LIST_HEAD(&atchan->free_list);
1904 
1905 		tasklet_init(&atchan->tasklet, atc_tasklet,
1906 				(unsigned long)atchan);
1907 		atc_enable_chan_irq(atdma, i);
1908 	}
1909 
1910 	/* set base routines */
1911 	atdma->dma_common.device_alloc_chan_resources = atc_alloc_chan_resources;
1912 	atdma->dma_common.device_free_chan_resources = atc_free_chan_resources;
1913 	atdma->dma_common.device_tx_status = atc_tx_status;
1914 	atdma->dma_common.device_issue_pending = atc_issue_pending;
1915 	atdma->dma_common.dev = &pdev->dev;
1916 
1917 	/* set prep routines based on capability */
1918 	if (dma_has_cap(DMA_INTERLEAVE, atdma->dma_common.cap_mask))
1919 		atdma->dma_common.device_prep_interleaved_dma = atc_prep_dma_interleaved;
1920 
1921 	if (dma_has_cap(DMA_MEMCPY, atdma->dma_common.cap_mask))
1922 		atdma->dma_common.device_prep_dma_memcpy = atc_prep_dma_memcpy;
1923 
1924 	if (dma_has_cap(DMA_MEMSET, atdma->dma_common.cap_mask)) {
1925 		atdma->dma_common.device_prep_dma_memset = atc_prep_dma_memset;
1926 		atdma->dma_common.device_prep_dma_memset_sg = atc_prep_dma_memset_sg;
1927 		atdma->dma_common.fill_align = DMAENGINE_ALIGN_4_BYTES;
1928 	}
1929 
1930 	if (dma_has_cap(DMA_SLAVE, atdma->dma_common.cap_mask)) {
1931 		atdma->dma_common.device_prep_slave_sg = atc_prep_slave_sg;
1932 		/* controller can do slave DMA: can trigger cyclic transfers */
1933 		dma_cap_set(DMA_CYCLIC, atdma->dma_common.cap_mask);
1934 		atdma->dma_common.device_prep_dma_cyclic = atc_prep_dma_cyclic;
1935 		atdma->dma_common.device_config = atc_config;
1936 		atdma->dma_common.device_pause = atc_pause;
1937 		atdma->dma_common.device_resume = atc_resume;
1938 		atdma->dma_common.device_terminate_all = atc_terminate_all;
1939 		atdma->dma_common.src_addr_widths = ATC_DMA_BUSWIDTHS;
1940 		atdma->dma_common.dst_addr_widths = ATC_DMA_BUSWIDTHS;
1941 		atdma->dma_common.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1942 		atdma->dma_common.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1943 	}
1944 
1945 	dma_writel(atdma, EN, AT_DMA_ENABLE);
1946 
1947 	dev_info(&pdev->dev, "Atmel AHB DMA Controller ( %s%s%s), %d channels\n",
1948 	  dma_has_cap(DMA_MEMCPY, atdma->dma_common.cap_mask) ? "cpy " : "",
1949 	  dma_has_cap(DMA_MEMSET, atdma->dma_common.cap_mask) ? "set " : "",
1950 	  dma_has_cap(DMA_SLAVE, atdma->dma_common.cap_mask)  ? "slave " : "",
1951 	  plat_dat->nr_channels);
1952 
1953 	dma_async_device_register(&atdma->dma_common);
1954 
1955 	/*
1956 	 * Do not return an error if the dmac node is not present in order to
1957 	 * not break the existing way of requesting channel with
1958 	 * dma_request_channel().
1959 	 */
1960 	if (pdev->dev.of_node) {
1961 		err = of_dma_controller_register(pdev->dev.of_node,
1962 						 at_dma_xlate, atdma);
1963 		if (err) {
1964 			dev_err(&pdev->dev, "could not register of_dma_controller\n");
1965 			goto err_of_dma_controller_register;
1966 		}
1967 	}
1968 
1969 	return 0;
1970 
1971 err_of_dma_controller_register:
1972 	dma_async_device_unregister(&atdma->dma_common);
1973 	dma_pool_destroy(atdma->memset_pool);
1974 err_memset_pool_create:
1975 	dma_pool_destroy(atdma->dma_desc_pool);
1976 err_desc_pool_create:
1977 	free_irq(platform_get_irq(pdev, 0), atdma);
1978 err_irq:
1979 	clk_disable_unprepare(atdma->clk);
1980 err_clk_prepare:
1981 	clk_put(atdma->clk);
1982 err_clk:
1983 	iounmap(atdma->regs);
1984 	atdma->regs = NULL;
1985 err_release_r:
1986 	release_mem_region(io->start, size);
1987 err_kfree:
1988 	kfree(atdma);
1989 	return err;
1990 }
1991 
1992 static int at_dma_remove(struct platform_device *pdev)
1993 {
1994 	struct at_dma		*atdma = platform_get_drvdata(pdev);
1995 	struct dma_chan		*chan, *_chan;
1996 	struct resource		*io;
1997 
1998 	at_dma_off(atdma);
1999 	if (pdev->dev.of_node)
2000 		of_dma_controller_free(pdev->dev.of_node);
2001 	dma_async_device_unregister(&atdma->dma_common);
2002 
2003 	dma_pool_destroy(atdma->memset_pool);
2004 	dma_pool_destroy(atdma->dma_desc_pool);
2005 	free_irq(platform_get_irq(pdev, 0), atdma);
2006 
2007 	list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels,
2008 			device_node) {
2009 		struct at_dma_chan	*atchan = to_at_dma_chan(chan);
2010 
2011 		/* Disable interrupts */
2012 		atc_disable_chan_irq(atdma, chan->chan_id);
2013 
2014 		tasklet_kill(&atchan->tasklet);
2015 		list_del(&chan->device_node);
2016 	}
2017 
2018 	clk_disable_unprepare(atdma->clk);
2019 	clk_put(atdma->clk);
2020 
2021 	iounmap(atdma->regs);
2022 	atdma->regs = NULL;
2023 
2024 	io = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2025 	release_mem_region(io->start, resource_size(io));
2026 
2027 	kfree(atdma);
2028 
2029 	return 0;
2030 }
2031 
2032 static void at_dma_shutdown(struct platform_device *pdev)
2033 {
2034 	struct at_dma	*atdma = platform_get_drvdata(pdev);
2035 
2036 	at_dma_off(platform_get_drvdata(pdev));
2037 	clk_disable_unprepare(atdma->clk);
2038 }
2039 
2040 static int at_dma_prepare(struct device *dev)
2041 {
2042 	struct at_dma *atdma = dev_get_drvdata(dev);
2043 	struct dma_chan *chan, *_chan;
2044 
2045 	list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels,
2046 			device_node) {
2047 		struct at_dma_chan *atchan = to_at_dma_chan(chan);
2048 		/* wait for transaction completion (except in cyclic case) */
2049 		if (atc_chan_is_enabled(atchan) && !atc_chan_is_cyclic(atchan))
2050 			return -EAGAIN;
2051 	}
2052 	return 0;
2053 }
2054 
2055 static void atc_suspend_cyclic(struct at_dma_chan *atchan)
2056 {
2057 	struct dma_chan	*chan = &atchan->chan_common;
2058 
2059 	/* Channel should be paused by user
2060 	 * do it anyway even if it is not done already */
2061 	if (!atc_chan_is_paused(atchan)) {
2062 		dev_warn(chan2dev(chan),
2063 		"cyclic channel not paused, should be done by channel user\n");
2064 		atc_pause(chan);
2065 	}
2066 
2067 	/* now preserve additional data for cyclic operations */
2068 	/* next descriptor address in the cyclic list */
2069 	atchan->save_dscr = channel_readl(atchan, DSCR);
2070 
2071 	vdbg_dump_regs(atchan);
2072 }
2073 
2074 static int at_dma_suspend_noirq(struct device *dev)
2075 {
2076 	struct at_dma *atdma = dev_get_drvdata(dev);
2077 	struct dma_chan *chan, *_chan;
2078 
2079 	/* preserve data */
2080 	list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels,
2081 			device_node) {
2082 		struct at_dma_chan *atchan = to_at_dma_chan(chan);
2083 
2084 		if (atc_chan_is_cyclic(atchan))
2085 			atc_suspend_cyclic(atchan);
2086 		atchan->save_cfg = channel_readl(atchan, CFG);
2087 	}
2088 	atdma->save_imr = dma_readl(atdma, EBCIMR);
2089 
2090 	/* disable DMA controller */
2091 	at_dma_off(atdma);
2092 	clk_disable_unprepare(atdma->clk);
2093 	return 0;
2094 }
2095 
2096 static void atc_resume_cyclic(struct at_dma_chan *atchan)
2097 {
2098 	struct at_dma	*atdma = to_at_dma(atchan->chan_common.device);
2099 
2100 	/* restore channel status for cyclic descriptors list:
2101 	 * next descriptor in the cyclic list at the time of suspend */
2102 	channel_writel(atchan, SADDR, 0);
2103 	channel_writel(atchan, DADDR, 0);
2104 	channel_writel(atchan, CTRLA, 0);
2105 	channel_writel(atchan, CTRLB, 0);
2106 	channel_writel(atchan, DSCR, atchan->save_dscr);
2107 	dma_writel(atdma, CHER, atchan->mask);
2108 
2109 	/* channel pause status should be removed by channel user
2110 	 * We cannot take the initiative to do it here */
2111 
2112 	vdbg_dump_regs(atchan);
2113 }
2114 
2115 static int at_dma_resume_noirq(struct device *dev)
2116 {
2117 	struct at_dma *atdma = dev_get_drvdata(dev);
2118 	struct dma_chan *chan, *_chan;
2119 
2120 	/* bring back DMA controller */
2121 	clk_prepare_enable(atdma->clk);
2122 	dma_writel(atdma, EN, AT_DMA_ENABLE);
2123 
2124 	/* clear any pending interrupt */
2125 	while (dma_readl(atdma, EBCISR))
2126 		cpu_relax();
2127 
2128 	/* restore saved data */
2129 	dma_writel(atdma, EBCIER, atdma->save_imr);
2130 	list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels,
2131 			device_node) {
2132 		struct at_dma_chan *atchan = to_at_dma_chan(chan);
2133 
2134 		channel_writel(atchan, CFG, atchan->save_cfg);
2135 		if (atc_chan_is_cyclic(atchan))
2136 			atc_resume_cyclic(atchan);
2137 	}
2138 	return 0;
2139 }
2140 
2141 static const struct dev_pm_ops at_dma_dev_pm_ops = {
2142 	.prepare = at_dma_prepare,
2143 	.suspend_noirq = at_dma_suspend_noirq,
2144 	.resume_noirq = at_dma_resume_noirq,
2145 };
2146 
2147 static struct platform_driver at_dma_driver = {
2148 	.remove		= at_dma_remove,
2149 	.shutdown	= at_dma_shutdown,
2150 	.id_table	= atdma_devtypes,
2151 	.driver = {
2152 		.name	= "at_hdmac",
2153 		.pm	= &at_dma_dev_pm_ops,
2154 		.of_match_table	= of_match_ptr(atmel_dma_dt_ids),
2155 	},
2156 };
2157 
2158 static int __init at_dma_init(void)
2159 {
2160 	return platform_driver_probe(&at_dma_driver, at_dma_probe);
2161 }
2162 subsys_initcall(at_dma_init);
2163 
2164 static void __exit at_dma_exit(void)
2165 {
2166 	platform_driver_unregister(&at_dma_driver);
2167 }
2168 module_exit(at_dma_exit);
2169 
2170 MODULE_DESCRIPTION("Atmel AHB DMA Controller driver");
2171 MODULE_AUTHOR("Nicolas Ferre <nicolas.ferre@atmel.com>");
2172 MODULE_LICENSE("GPL");
2173 MODULE_ALIAS("platform:at_hdmac");
2174