xref: /linux/drivers/dma/idxd/device.c (revision d642ef71)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2019 Intel Corporation. All rights rsvd. */
3 #include <linux/init.h>
4 #include <linux/kernel.h>
5 #include <linux/module.h>
6 #include <linux/pci.h>
7 #include <linux/io-64-nonatomic-lo-hi.h>
8 #include <linux/dmaengine.h>
9 #include <linux/irq.h>
10 #include <uapi/linux/idxd.h>
11 #include "../dmaengine.h"
12 #include "idxd.h"
13 #include "registers.h"
14 
15 static void idxd_cmd_exec(struct idxd_device *idxd, int cmd_code, u32 operand,
16 			  u32 *status);
17 static void idxd_device_wqs_clear_state(struct idxd_device *idxd);
18 static void idxd_wq_disable_cleanup(struct idxd_wq *wq);
19 
20 /* Interrupt control bits */
21 void idxd_unmask_error_interrupts(struct idxd_device *idxd)
22 {
23 	union genctrl_reg genctrl;
24 
25 	genctrl.bits = ioread32(idxd->reg_base + IDXD_GENCTRL_OFFSET);
26 	genctrl.softerr_int_en = 1;
27 	genctrl.halt_int_en = 1;
28 	iowrite32(genctrl.bits, idxd->reg_base + IDXD_GENCTRL_OFFSET);
29 }
30 
31 void idxd_mask_error_interrupts(struct idxd_device *idxd)
32 {
33 	union genctrl_reg genctrl;
34 
35 	genctrl.bits = ioread32(idxd->reg_base + IDXD_GENCTRL_OFFSET);
36 	genctrl.softerr_int_en = 0;
37 	genctrl.halt_int_en = 0;
38 	iowrite32(genctrl.bits, idxd->reg_base + IDXD_GENCTRL_OFFSET);
39 }
40 
41 static void free_hw_descs(struct idxd_wq *wq)
42 {
43 	int i;
44 
45 	for (i = 0; i < wq->num_descs; i++)
46 		kfree(wq->hw_descs[i]);
47 
48 	kfree(wq->hw_descs);
49 }
50 
51 static int alloc_hw_descs(struct idxd_wq *wq, int num)
52 {
53 	struct device *dev = &wq->idxd->pdev->dev;
54 	int i;
55 	int node = dev_to_node(dev);
56 
57 	wq->hw_descs = kcalloc_node(num, sizeof(struct dsa_hw_desc *),
58 				    GFP_KERNEL, node);
59 	if (!wq->hw_descs)
60 		return -ENOMEM;
61 
62 	for (i = 0; i < num; i++) {
63 		wq->hw_descs[i] = kzalloc_node(sizeof(*wq->hw_descs[i]),
64 					       GFP_KERNEL, node);
65 		if (!wq->hw_descs[i]) {
66 			free_hw_descs(wq);
67 			return -ENOMEM;
68 		}
69 	}
70 
71 	return 0;
72 }
73 
74 static void free_descs(struct idxd_wq *wq)
75 {
76 	int i;
77 
78 	for (i = 0; i < wq->num_descs; i++)
79 		kfree(wq->descs[i]);
80 
81 	kfree(wq->descs);
82 }
83 
84 static int alloc_descs(struct idxd_wq *wq, int num)
85 {
86 	struct device *dev = &wq->idxd->pdev->dev;
87 	int i;
88 	int node = dev_to_node(dev);
89 
90 	wq->descs = kcalloc_node(num, sizeof(struct idxd_desc *),
91 				 GFP_KERNEL, node);
92 	if (!wq->descs)
93 		return -ENOMEM;
94 
95 	for (i = 0; i < num; i++) {
96 		wq->descs[i] = kzalloc_node(sizeof(*wq->descs[i]),
97 					    GFP_KERNEL, node);
98 		if (!wq->descs[i]) {
99 			free_descs(wq);
100 			return -ENOMEM;
101 		}
102 	}
103 
104 	return 0;
105 }
106 
107 /* WQ control bits */
108 int idxd_wq_alloc_resources(struct idxd_wq *wq)
109 {
110 	struct idxd_device *idxd = wq->idxd;
111 	struct device *dev = &idxd->pdev->dev;
112 	int rc, num_descs, i;
113 
114 	if (wq->type != IDXD_WQT_KERNEL)
115 		return 0;
116 
117 	num_descs = wq_dedicated(wq) ? wq->size : wq->threshold;
118 	wq->num_descs = num_descs;
119 
120 	rc = alloc_hw_descs(wq, num_descs);
121 	if (rc < 0)
122 		return rc;
123 
124 	wq->compls_size = num_descs * idxd->data->compl_size;
125 	wq->compls = dma_alloc_coherent(dev, wq->compls_size, &wq->compls_addr, GFP_KERNEL);
126 	if (!wq->compls) {
127 		rc = -ENOMEM;
128 		goto fail_alloc_compls;
129 	}
130 
131 	rc = alloc_descs(wq, num_descs);
132 	if (rc < 0)
133 		goto fail_alloc_descs;
134 
135 	rc = sbitmap_queue_init_node(&wq->sbq, num_descs, -1, false, GFP_KERNEL,
136 				     dev_to_node(dev));
137 	if (rc < 0)
138 		goto fail_sbitmap_init;
139 
140 	for (i = 0; i < num_descs; i++) {
141 		struct idxd_desc *desc = wq->descs[i];
142 
143 		desc->hw = wq->hw_descs[i];
144 		if (idxd->data->type == IDXD_TYPE_DSA)
145 			desc->completion = &wq->compls[i];
146 		else if (idxd->data->type == IDXD_TYPE_IAX)
147 			desc->iax_completion = &wq->iax_compls[i];
148 		desc->compl_dma = wq->compls_addr + idxd->data->compl_size * i;
149 		desc->id = i;
150 		desc->wq = wq;
151 		desc->cpu = -1;
152 	}
153 
154 	return 0;
155 
156  fail_sbitmap_init:
157 	free_descs(wq);
158  fail_alloc_descs:
159 	dma_free_coherent(dev, wq->compls_size, wq->compls, wq->compls_addr);
160  fail_alloc_compls:
161 	free_hw_descs(wq);
162 	return rc;
163 }
164 
165 void idxd_wq_free_resources(struct idxd_wq *wq)
166 {
167 	struct device *dev = &wq->idxd->pdev->dev;
168 
169 	if (wq->type != IDXD_WQT_KERNEL)
170 		return;
171 
172 	free_hw_descs(wq);
173 	free_descs(wq);
174 	dma_free_coherent(dev, wq->compls_size, wq->compls, wq->compls_addr);
175 	sbitmap_queue_free(&wq->sbq);
176 }
177 
178 int idxd_wq_enable(struct idxd_wq *wq)
179 {
180 	struct idxd_device *idxd = wq->idxd;
181 	struct device *dev = &idxd->pdev->dev;
182 	u32 status;
183 
184 	if (wq->state == IDXD_WQ_ENABLED) {
185 		dev_dbg(dev, "WQ %d already enabled\n", wq->id);
186 		return 0;
187 	}
188 
189 	idxd_cmd_exec(idxd, IDXD_CMD_ENABLE_WQ, wq->id, &status);
190 
191 	if (status != IDXD_CMDSTS_SUCCESS &&
192 	    status != IDXD_CMDSTS_ERR_WQ_ENABLED) {
193 		dev_dbg(dev, "WQ enable failed: %#x\n", status);
194 		return -ENXIO;
195 	}
196 
197 	wq->state = IDXD_WQ_ENABLED;
198 	set_bit(wq->id, idxd->wq_enable_map);
199 	dev_dbg(dev, "WQ %d enabled\n", wq->id);
200 	return 0;
201 }
202 
203 int idxd_wq_disable(struct idxd_wq *wq, bool reset_config)
204 {
205 	struct idxd_device *idxd = wq->idxd;
206 	struct device *dev = &idxd->pdev->dev;
207 	u32 status, operand;
208 
209 	dev_dbg(dev, "Disabling WQ %d\n", wq->id);
210 
211 	if (wq->state != IDXD_WQ_ENABLED) {
212 		dev_dbg(dev, "WQ %d in wrong state: %d\n", wq->id, wq->state);
213 		return 0;
214 	}
215 
216 	operand = BIT(wq->id % 16) | ((wq->id / 16) << 16);
217 	idxd_cmd_exec(idxd, IDXD_CMD_DISABLE_WQ, operand, &status);
218 
219 	if (status != IDXD_CMDSTS_SUCCESS) {
220 		dev_dbg(dev, "WQ disable failed: %#x\n", status);
221 		return -ENXIO;
222 	}
223 
224 	if (reset_config)
225 		idxd_wq_disable_cleanup(wq);
226 	clear_bit(wq->id, idxd->wq_enable_map);
227 	wq->state = IDXD_WQ_DISABLED;
228 	dev_dbg(dev, "WQ %d disabled\n", wq->id);
229 	return 0;
230 }
231 
232 void idxd_wq_drain(struct idxd_wq *wq)
233 {
234 	struct idxd_device *idxd = wq->idxd;
235 	struct device *dev = &idxd->pdev->dev;
236 	u32 operand;
237 
238 	if (wq->state != IDXD_WQ_ENABLED) {
239 		dev_dbg(dev, "WQ %d in wrong state: %d\n", wq->id, wq->state);
240 		return;
241 	}
242 
243 	dev_dbg(dev, "Draining WQ %d\n", wq->id);
244 	operand = BIT(wq->id % 16) | ((wq->id / 16) << 16);
245 	idxd_cmd_exec(idxd, IDXD_CMD_DRAIN_WQ, operand, NULL);
246 }
247 
248 void idxd_wq_reset(struct idxd_wq *wq)
249 {
250 	struct idxd_device *idxd = wq->idxd;
251 	struct device *dev = &idxd->pdev->dev;
252 	u32 operand;
253 
254 	if (wq->state != IDXD_WQ_ENABLED) {
255 		dev_dbg(dev, "WQ %d in wrong state: %d\n", wq->id, wq->state);
256 		return;
257 	}
258 
259 	operand = BIT(wq->id % 16) | ((wq->id / 16) << 16);
260 	idxd_cmd_exec(idxd, IDXD_CMD_RESET_WQ, operand, NULL);
261 	idxd_wq_disable_cleanup(wq);
262 }
263 
264 int idxd_wq_map_portal(struct idxd_wq *wq)
265 {
266 	struct idxd_device *idxd = wq->idxd;
267 	struct pci_dev *pdev = idxd->pdev;
268 	struct device *dev = &pdev->dev;
269 	resource_size_t start;
270 
271 	start = pci_resource_start(pdev, IDXD_WQ_BAR);
272 	start += idxd_get_wq_portal_full_offset(wq->id, IDXD_PORTAL_LIMITED);
273 
274 	wq->portal = devm_ioremap(dev, start, IDXD_PORTAL_SIZE);
275 	if (!wq->portal)
276 		return -ENOMEM;
277 
278 	return 0;
279 }
280 
281 void idxd_wq_unmap_portal(struct idxd_wq *wq)
282 {
283 	struct device *dev = &wq->idxd->pdev->dev;
284 
285 	devm_iounmap(dev, wq->portal);
286 	wq->portal = NULL;
287 	wq->portal_offset = 0;
288 }
289 
290 void idxd_wqs_unmap_portal(struct idxd_device *idxd)
291 {
292 	int i;
293 
294 	for (i = 0; i < idxd->max_wqs; i++) {
295 		struct idxd_wq *wq = idxd->wqs[i];
296 
297 		if (wq->portal)
298 			idxd_wq_unmap_portal(wq);
299 	}
300 }
301 
302 static void __idxd_wq_set_pasid_locked(struct idxd_wq *wq, int pasid)
303 {
304 	struct idxd_device *idxd = wq->idxd;
305 	union wqcfg wqcfg;
306 	unsigned int offset;
307 
308 	offset = WQCFG_OFFSET(idxd, wq->id, WQCFG_PASID_IDX);
309 	spin_lock(&idxd->dev_lock);
310 	wqcfg.bits[WQCFG_PASID_IDX] = ioread32(idxd->reg_base + offset);
311 	wqcfg.pasid_en = 1;
312 	wqcfg.pasid = pasid;
313 	wq->wqcfg->bits[WQCFG_PASID_IDX] = wqcfg.bits[WQCFG_PASID_IDX];
314 	iowrite32(wqcfg.bits[WQCFG_PASID_IDX], idxd->reg_base + offset);
315 	spin_unlock(&idxd->dev_lock);
316 }
317 
318 int idxd_wq_set_pasid(struct idxd_wq *wq, int pasid)
319 {
320 	int rc;
321 
322 	rc = idxd_wq_disable(wq, false);
323 	if (rc < 0)
324 		return rc;
325 
326 	__idxd_wq_set_pasid_locked(wq, pasid);
327 
328 	rc = idxd_wq_enable(wq);
329 	if (rc < 0)
330 		return rc;
331 
332 	return 0;
333 }
334 
335 int idxd_wq_disable_pasid(struct idxd_wq *wq)
336 {
337 	struct idxd_device *idxd = wq->idxd;
338 	int rc;
339 	union wqcfg wqcfg;
340 	unsigned int offset;
341 
342 	rc = idxd_wq_disable(wq, false);
343 	if (rc < 0)
344 		return rc;
345 
346 	offset = WQCFG_OFFSET(idxd, wq->id, WQCFG_PASID_IDX);
347 	spin_lock(&idxd->dev_lock);
348 	wqcfg.bits[WQCFG_PASID_IDX] = ioread32(idxd->reg_base + offset);
349 	wqcfg.pasid_en = 0;
350 	wqcfg.pasid = 0;
351 	iowrite32(wqcfg.bits[WQCFG_PASID_IDX], idxd->reg_base + offset);
352 	spin_unlock(&idxd->dev_lock);
353 
354 	rc = idxd_wq_enable(wq);
355 	if (rc < 0)
356 		return rc;
357 
358 	return 0;
359 }
360 
361 static void idxd_wq_disable_cleanup(struct idxd_wq *wq)
362 {
363 	struct idxd_device *idxd = wq->idxd;
364 
365 	lockdep_assert_held(&wq->wq_lock);
366 	wq->state = IDXD_WQ_DISABLED;
367 	memset(wq->wqcfg, 0, idxd->wqcfg_size);
368 	wq->type = IDXD_WQT_NONE;
369 	wq->threshold = 0;
370 	wq->priority = 0;
371 	wq->enqcmds_retries = IDXD_ENQCMDS_RETRIES;
372 	wq->flags = 0;
373 	memset(wq->name, 0, WQ_NAME_SIZE);
374 	wq->max_xfer_bytes = WQ_DEFAULT_MAX_XFER;
375 	idxd_wq_set_max_batch_size(idxd->data->type, wq, WQ_DEFAULT_MAX_BATCH);
376 	if (wq->opcap_bmap)
377 		bitmap_copy(wq->opcap_bmap, idxd->opcap_bmap, IDXD_MAX_OPCAP_BITS);
378 }
379 
380 static void idxd_wq_device_reset_cleanup(struct idxd_wq *wq)
381 {
382 	lockdep_assert_held(&wq->wq_lock);
383 
384 	wq->size = 0;
385 	wq->group = NULL;
386 }
387 
388 static void idxd_wq_ref_release(struct percpu_ref *ref)
389 {
390 	struct idxd_wq *wq = container_of(ref, struct idxd_wq, wq_active);
391 
392 	complete(&wq->wq_dead);
393 }
394 
395 int idxd_wq_init_percpu_ref(struct idxd_wq *wq)
396 {
397 	int rc;
398 
399 	memset(&wq->wq_active, 0, sizeof(wq->wq_active));
400 	rc = percpu_ref_init(&wq->wq_active, idxd_wq_ref_release,
401 			     PERCPU_REF_ALLOW_REINIT, GFP_KERNEL);
402 	if (rc < 0)
403 		return rc;
404 	reinit_completion(&wq->wq_dead);
405 	reinit_completion(&wq->wq_resurrect);
406 	return 0;
407 }
408 
409 void __idxd_wq_quiesce(struct idxd_wq *wq)
410 {
411 	lockdep_assert_held(&wq->wq_lock);
412 	reinit_completion(&wq->wq_resurrect);
413 	percpu_ref_kill(&wq->wq_active);
414 	complete_all(&wq->wq_resurrect);
415 	wait_for_completion(&wq->wq_dead);
416 }
417 
418 void idxd_wq_quiesce(struct idxd_wq *wq)
419 {
420 	mutex_lock(&wq->wq_lock);
421 	__idxd_wq_quiesce(wq);
422 	mutex_unlock(&wq->wq_lock);
423 }
424 
425 /* Device control bits */
426 static inline bool idxd_is_enabled(struct idxd_device *idxd)
427 {
428 	union gensts_reg gensts;
429 
430 	gensts.bits = ioread32(idxd->reg_base + IDXD_GENSTATS_OFFSET);
431 
432 	if (gensts.state == IDXD_DEVICE_STATE_ENABLED)
433 		return true;
434 	return false;
435 }
436 
437 static inline bool idxd_device_is_halted(struct idxd_device *idxd)
438 {
439 	union gensts_reg gensts;
440 
441 	gensts.bits = ioread32(idxd->reg_base + IDXD_GENSTATS_OFFSET);
442 
443 	return (gensts.state == IDXD_DEVICE_STATE_HALT);
444 }
445 
446 /*
447  * This is function is only used for reset during probe and will
448  * poll for completion. Once the device is setup with interrupts,
449  * all commands will be done via interrupt completion.
450  */
451 int idxd_device_init_reset(struct idxd_device *idxd)
452 {
453 	struct device *dev = &idxd->pdev->dev;
454 	union idxd_command_reg cmd;
455 
456 	if (idxd_device_is_halted(idxd)) {
457 		dev_warn(&idxd->pdev->dev, "Device is HALTED!\n");
458 		return -ENXIO;
459 	}
460 
461 	memset(&cmd, 0, sizeof(cmd));
462 	cmd.cmd = IDXD_CMD_RESET_DEVICE;
463 	dev_dbg(dev, "%s: sending reset for init.\n", __func__);
464 	spin_lock(&idxd->cmd_lock);
465 	iowrite32(cmd.bits, idxd->reg_base + IDXD_CMD_OFFSET);
466 
467 	while (ioread32(idxd->reg_base + IDXD_CMDSTS_OFFSET) &
468 	       IDXD_CMDSTS_ACTIVE)
469 		cpu_relax();
470 	spin_unlock(&idxd->cmd_lock);
471 	return 0;
472 }
473 
474 static void idxd_cmd_exec(struct idxd_device *idxd, int cmd_code, u32 operand,
475 			  u32 *status)
476 {
477 	union idxd_command_reg cmd;
478 	DECLARE_COMPLETION_ONSTACK(done);
479 	u32 stat;
480 	unsigned long flags;
481 
482 	if (idxd_device_is_halted(idxd)) {
483 		dev_warn(&idxd->pdev->dev, "Device is HALTED!\n");
484 		if (status)
485 			*status = IDXD_CMDSTS_HW_ERR;
486 		return;
487 	}
488 
489 	memset(&cmd, 0, sizeof(cmd));
490 	cmd.cmd = cmd_code;
491 	cmd.operand = operand;
492 	cmd.int_req = 1;
493 
494 	spin_lock_irqsave(&idxd->cmd_lock, flags);
495 	wait_event_lock_irq(idxd->cmd_waitq,
496 			    !test_bit(IDXD_FLAG_CMD_RUNNING, &idxd->flags),
497 			    idxd->cmd_lock);
498 
499 	dev_dbg(&idxd->pdev->dev, "%s: sending cmd: %#x op: %#x\n",
500 		__func__, cmd_code, operand);
501 
502 	idxd->cmd_status = 0;
503 	__set_bit(IDXD_FLAG_CMD_RUNNING, &idxd->flags);
504 	idxd->cmd_done = &done;
505 	iowrite32(cmd.bits, idxd->reg_base + IDXD_CMD_OFFSET);
506 
507 	/*
508 	 * After command submitted, release lock and go to sleep until
509 	 * the command completes via interrupt.
510 	 */
511 	spin_unlock_irqrestore(&idxd->cmd_lock, flags);
512 	wait_for_completion(&done);
513 	stat = ioread32(idxd->reg_base + IDXD_CMDSTS_OFFSET);
514 	spin_lock(&idxd->cmd_lock);
515 	if (status)
516 		*status = stat;
517 	idxd->cmd_status = stat & GENMASK(7, 0);
518 
519 	__clear_bit(IDXD_FLAG_CMD_RUNNING, &idxd->flags);
520 	/* Wake up other pending commands */
521 	wake_up(&idxd->cmd_waitq);
522 	spin_unlock(&idxd->cmd_lock);
523 }
524 
525 int idxd_device_enable(struct idxd_device *idxd)
526 {
527 	struct device *dev = &idxd->pdev->dev;
528 	u32 status;
529 
530 	if (idxd_is_enabled(idxd)) {
531 		dev_dbg(dev, "Device already enabled\n");
532 		return -ENXIO;
533 	}
534 
535 	idxd_cmd_exec(idxd, IDXD_CMD_ENABLE_DEVICE, 0, &status);
536 
537 	/* If the command is successful or if the device was enabled */
538 	if (status != IDXD_CMDSTS_SUCCESS &&
539 	    status != IDXD_CMDSTS_ERR_DEV_ENABLED) {
540 		dev_dbg(dev, "%s: err_code: %#x\n", __func__, status);
541 		return -ENXIO;
542 	}
543 
544 	idxd->state = IDXD_DEV_ENABLED;
545 	return 0;
546 }
547 
548 int idxd_device_disable(struct idxd_device *idxd)
549 {
550 	struct device *dev = &idxd->pdev->dev;
551 	u32 status;
552 
553 	if (!idxd_is_enabled(idxd)) {
554 		dev_dbg(dev, "Device is not enabled\n");
555 		return 0;
556 	}
557 
558 	idxd_cmd_exec(idxd, IDXD_CMD_DISABLE_DEVICE, 0, &status);
559 
560 	/* If the command is successful or if the device was disabled */
561 	if (status != IDXD_CMDSTS_SUCCESS &&
562 	    !(status & IDXD_CMDSTS_ERR_DIS_DEV_EN)) {
563 		dev_dbg(dev, "%s: err_code: %#x\n", __func__, status);
564 		return -ENXIO;
565 	}
566 
567 	idxd_device_clear_state(idxd);
568 	return 0;
569 }
570 
571 void idxd_device_reset(struct idxd_device *idxd)
572 {
573 	idxd_cmd_exec(idxd, IDXD_CMD_RESET_DEVICE, 0, NULL);
574 	idxd_device_clear_state(idxd);
575 	spin_lock(&idxd->dev_lock);
576 	idxd_unmask_error_interrupts(idxd);
577 	spin_unlock(&idxd->dev_lock);
578 }
579 
580 void idxd_device_drain_pasid(struct idxd_device *idxd, int pasid)
581 {
582 	struct device *dev = &idxd->pdev->dev;
583 	u32 operand;
584 
585 	operand = pasid;
586 	dev_dbg(dev, "cmd: %u operand: %#x\n", IDXD_CMD_DRAIN_PASID, operand);
587 	idxd_cmd_exec(idxd, IDXD_CMD_DRAIN_PASID, operand, NULL);
588 	dev_dbg(dev, "pasid %d drained\n", pasid);
589 }
590 
591 int idxd_device_request_int_handle(struct idxd_device *idxd, int idx, int *handle,
592 				   enum idxd_interrupt_type irq_type)
593 {
594 	struct device *dev = &idxd->pdev->dev;
595 	u32 operand, status;
596 
597 	if (!(idxd->hw.cmd_cap & BIT(IDXD_CMD_REQUEST_INT_HANDLE)))
598 		return -EOPNOTSUPP;
599 
600 	dev_dbg(dev, "get int handle, idx %d\n", idx);
601 
602 	operand = idx & GENMASK(15, 0);
603 	if (irq_type == IDXD_IRQ_IMS)
604 		operand |= CMD_INT_HANDLE_IMS;
605 
606 	dev_dbg(dev, "cmd: %u operand: %#x\n", IDXD_CMD_REQUEST_INT_HANDLE, operand);
607 
608 	idxd_cmd_exec(idxd, IDXD_CMD_REQUEST_INT_HANDLE, operand, &status);
609 
610 	if ((status & IDXD_CMDSTS_ERR_MASK) != IDXD_CMDSTS_SUCCESS) {
611 		dev_dbg(dev, "request int handle failed: %#x\n", status);
612 		return -ENXIO;
613 	}
614 
615 	*handle = (status >> IDXD_CMDSTS_RES_SHIFT) & GENMASK(15, 0);
616 
617 	dev_dbg(dev, "int handle acquired: %u\n", *handle);
618 	return 0;
619 }
620 
621 int idxd_device_release_int_handle(struct idxd_device *idxd, int handle,
622 				   enum idxd_interrupt_type irq_type)
623 {
624 	struct device *dev = &idxd->pdev->dev;
625 	u32 operand, status;
626 	union idxd_command_reg cmd;
627 
628 	if (!(idxd->hw.cmd_cap & BIT(IDXD_CMD_RELEASE_INT_HANDLE)))
629 		return -EOPNOTSUPP;
630 
631 	dev_dbg(dev, "release int handle, handle %d\n", handle);
632 
633 	memset(&cmd, 0, sizeof(cmd));
634 	operand = handle & GENMASK(15, 0);
635 
636 	if (irq_type == IDXD_IRQ_IMS)
637 		operand |= CMD_INT_HANDLE_IMS;
638 
639 	cmd.cmd = IDXD_CMD_RELEASE_INT_HANDLE;
640 	cmd.operand = operand;
641 
642 	dev_dbg(dev, "cmd: %u operand: %#x\n", IDXD_CMD_RELEASE_INT_HANDLE, operand);
643 
644 	spin_lock(&idxd->cmd_lock);
645 	iowrite32(cmd.bits, idxd->reg_base + IDXD_CMD_OFFSET);
646 
647 	while (ioread32(idxd->reg_base + IDXD_CMDSTS_OFFSET) & IDXD_CMDSTS_ACTIVE)
648 		cpu_relax();
649 	status = ioread32(idxd->reg_base + IDXD_CMDSTS_OFFSET);
650 	spin_unlock(&idxd->cmd_lock);
651 
652 	if ((status & IDXD_CMDSTS_ERR_MASK) != IDXD_CMDSTS_SUCCESS) {
653 		dev_dbg(dev, "release int handle failed: %#x\n", status);
654 		return -ENXIO;
655 	}
656 
657 	dev_dbg(dev, "int handle released.\n");
658 	return 0;
659 }
660 
661 /* Device configuration bits */
662 static void idxd_engines_clear_state(struct idxd_device *idxd)
663 {
664 	struct idxd_engine *engine;
665 	int i;
666 
667 	lockdep_assert_held(&idxd->dev_lock);
668 	for (i = 0; i < idxd->max_engines; i++) {
669 		engine = idxd->engines[i];
670 		engine->group = NULL;
671 	}
672 }
673 
674 static void idxd_groups_clear_state(struct idxd_device *idxd)
675 {
676 	struct idxd_group *group;
677 	int i;
678 
679 	lockdep_assert_held(&idxd->dev_lock);
680 	for (i = 0; i < idxd->max_groups; i++) {
681 		group = idxd->groups[i];
682 		memset(&group->grpcfg, 0, sizeof(group->grpcfg));
683 		group->num_engines = 0;
684 		group->num_wqs = 0;
685 		group->use_rdbuf_limit = false;
686 		/*
687 		 * The default value is the same as the value of
688 		 * total read buffers in GRPCAP.
689 		 */
690 		group->rdbufs_allowed = idxd->max_rdbufs;
691 		group->rdbufs_reserved = 0;
692 		if (idxd->hw.version <= DEVICE_VERSION_2 && !tc_override) {
693 			group->tc_a = 1;
694 			group->tc_b = 1;
695 		} else {
696 			group->tc_a = -1;
697 			group->tc_b = -1;
698 		}
699 		group->desc_progress_limit = 0;
700 		group->batch_progress_limit = 0;
701 	}
702 }
703 
704 static void idxd_device_wqs_clear_state(struct idxd_device *idxd)
705 {
706 	int i;
707 
708 	for (i = 0; i < idxd->max_wqs; i++) {
709 		struct idxd_wq *wq = idxd->wqs[i];
710 
711 		mutex_lock(&wq->wq_lock);
712 		idxd_wq_disable_cleanup(wq);
713 		idxd_wq_device_reset_cleanup(wq);
714 		mutex_unlock(&wq->wq_lock);
715 	}
716 }
717 
718 void idxd_device_clear_state(struct idxd_device *idxd)
719 {
720 	/* IDXD is always disabled. Other states are cleared only when IDXD is configurable. */
721 	if (test_bit(IDXD_FLAG_CONFIGURABLE, &idxd->flags)) {
722 		/*
723 		 * Clearing wq state is protected by wq lock.
724 		 * So no need to be protected by device lock.
725 		 */
726 		idxd_device_wqs_clear_state(idxd);
727 
728 		spin_lock(&idxd->dev_lock);
729 		idxd_groups_clear_state(idxd);
730 		idxd_engines_clear_state(idxd);
731 	} else {
732 		spin_lock(&idxd->dev_lock);
733 	}
734 
735 	idxd->state = IDXD_DEV_DISABLED;
736 	spin_unlock(&idxd->dev_lock);
737 }
738 
739 static int idxd_device_evl_setup(struct idxd_device *idxd)
740 {
741 	union gencfg_reg gencfg;
742 	union evlcfg_reg evlcfg;
743 	union genctrl_reg genctrl;
744 	struct device *dev = &idxd->pdev->dev;
745 	void *addr;
746 	dma_addr_t dma_addr;
747 	int size;
748 	struct idxd_evl *evl = idxd->evl;
749 	unsigned long *bmap;
750 	int rc;
751 
752 	if (!evl)
753 		return 0;
754 
755 	size = evl_size(idxd);
756 
757 	bmap = bitmap_zalloc(size, GFP_KERNEL);
758 	if (!bmap) {
759 		rc = -ENOMEM;
760 		goto err_bmap;
761 	}
762 
763 	/*
764 	 * Address needs to be page aligned. However, dma_alloc_coherent() provides
765 	 * at minimal page size aligned address. No manual alignment required.
766 	 */
767 	addr = dma_alloc_coherent(dev, size, &dma_addr, GFP_KERNEL);
768 	if (!addr) {
769 		rc = -ENOMEM;
770 		goto err_alloc;
771 	}
772 
773 	spin_lock(&evl->lock);
774 	evl->log = addr;
775 	evl->dma = dma_addr;
776 	evl->log_size = size;
777 	evl->bmap = bmap;
778 
779 	memset(&evlcfg, 0, sizeof(evlcfg));
780 	evlcfg.bits[0] = dma_addr & GENMASK(63, 12);
781 	evlcfg.size = evl->size;
782 
783 	iowrite64(evlcfg.bits[0], idxd->reg_base + IDXD_EVLCFG_OFFSET);
784 	iowrite64(evlcfg.bits[1], idxd->reg_base + IDXD_EVLCFG_OFFSET + 8);
785 
786 	genctrl.bits = ioread32(idxd->reg_base + IDXD_GENCTRL_OFFSET);
787 	genctrl.evl_int_en = 1;
788 	iowrite32(genctrl.bits, idxd->reg_base + IDXD_GENCTRL_OFFSET);
789 
790 	gencfg.bits = ioread32(idxd->reg_base + IDXD_GENCFG_OFFSET);
791 	gencfg.evl_en = 1;
792 	iowrite32(gencfg.bits, idxd->reg_base + IDXD_GENCFG_OFFSET);
793 
794 	spin_unlock(&evl->lock);
795 	return 0;
796 
797 err_alloc:
798 	bitmap_free(bmap);
799 err_bmap:
800 	return rc;
801 }
802 
803 static void idxd_device_evl_free(struct idxd_device *idxd)
804 {
805 	union gencfg_reg gencfg;
806 	union genctrl_reg genctrl;
807 	struct device *dev = &idxd->pdev->dev;
808 	struct idxd_evl *evl = idxd->evl;
809 
810 	gencfg.bits = ioread32(idxd->reg_base + IDXD_GENCFG_OFFSET);
811 	if (!gencfg.evl_en)
812 		return;
813 
814 	spin_lock(&evl->lock);
815 	gencfg.evl_en = 0;
816 	iowrite32(gencfg.bits, idxd->reg_base + IDXD_GENCFG_OFFSET);
817 
818 	genctrl.bits = ioread32(idxd->reg_base + IDXD_GENCTRL_OFFSET);
819 	genctrl.evl_int_en = 0;
820 	iowrite32(genctrl.bits, idxd->reg_base + IDXD_GENCTRL_OFFSET);
821 
822 	iowrite64(0, idxd->reg_base + IDXD_EVLCFG_OFFSET);
823 	iowrite64(0, idxd->reg_base + IDXD_EVLCFG_OFFSET + 8);
824 
825 	dma_free_coherent(dev, evl->log_size, evl->log, evl->dma);
826 	bitmap_free(evl->bmap);
827 	evl->log = NULL;
828 	evl->size = IDXD_EVL_SIZE_MIN;
829 	spin_unlock(&evl->lock);
830 }
831 
832 static void idxd_group_config_write(struct idxd_group *group)
833 {
834 	struct idxd_device *idxd = group->idxd;
835 	struct device *dev = &idxd->pdev->dev;
836 	int i;
837 	u32 grpcfg_offset;
838 
839 	dev_dbg(dev, "Writing group %d cfg registers\n", group->id);
840 
841 	/* setup GRPWQCFG */
842 	for (i = 0; i < GRPWQCFG_STRIDES; i++) {
843 		grpcfg_offset = GRPWQCFG_OFFSET(idxd, group->id, i);
844 		iowrite64(group->grpcfg.wqs[i], idxd->reg_base + grpcfg_offset);
845 		dev_dbg(dev, "GRPCFG wq[%d:%d: %#x]: %#llx\n",
846 			group->id, i, grpcfg_offset,
847 			ioread64(idxd->reg_base + grpcfg_offset));
848 	}
849 
850 	/* setup GRPENGCFG */
851 	grpcfg_offset = GRPENGCFG_OFFSET(idxd, group->id);
852 	iowrite64(group->grpcfg.engines, idxd->reg_base + grpcfg_offset);
853 	dev_dbg(dev, "GRPCFG engs[%d: %#x]: %#llx\n", group->id,
854 		grpcfg_offset, ioread64(idxd->reg_base + grpcfg_offset));
855 
856 	/* setup GRPFLAGS */
857 	grpcfg_offset = GRPFLGCFG_OFFSET(idxd, group->id);
858 	iowrite64(group->grpcfg.flags.bits, idxd->reg_base + grpcfg_offset);
859 	dev_dbg(dev, "GRPFLAGS flags[%d: %#x]: %#llx\n",
860 		group->id, grpcfg_offset,
861 		ioread64(idxd->reg_base + grpcfg_offset));
862 }
863 
864 static int idxd_groups_config_write(struct idxd_device *idxd)
865 
866 {
867 	union gencfg_reg reg;
868 	int i;
869 	struct device *dev = &idxd->pdev->dev;
870 
871 	/* Setup bandwidth rdbuf limit */
872 	if (idxd->hw.gen_cap.config_en && idxd->rdbuf_limit) {
873 		reg.bits = ioread32(idxd->reg_base + IDXD_GENCFG_OFFSET);
874 		reg.rdbuf_limit = idxd->rdbuf_limit;
875 		iowrite32(reg.bits, idxd->reg_base + IDXD_GENCFG_OFFSET);
876 	}
877 
878 	dev_dbg(dev, "GENCFG(%#x): %#x\n", IDXD_GENCFG_OFFSET,
879 		ioread32(idxd->reg_base + IDXD_GENCFG_OFFSET));
880 
881 	for (i = 0; i < idxd->max_groups; i++) {
882 		struct idxd_group *group = idxd->groups[i];
883 
884 		idxd_group_config_write(group);
885 	}
886 
887 	return 0;
888 }
889 
890 static bool idxd_device_pasid_priv_enabled(struct idxd_device *idxd)
891 {
892 	struct pci_dev *pdev = idxd->pdev;
893 
894 	if (pdev->pasid_enabled && (pdev->pasid_features & PCI_PASID_CAP_PRIV))
895 		return true;
896 	return false;
897 }
898 
899 static int idxd_wq_config_write(struct idxd_wq *wq)
900 {
901 	struct idxd_device *idxd = wq->idxd;
902 	struct device *dev = &idxd->pdev->dev;
903 	u32 wq_offset;
904 	int i, n;
905 
906 	if (!wq->group)
907 		return 0;
908 
909 	/*
910 	 * Instead of memset the entire shadow copy of WQCFG, copy from the hardware after
911 	 * wq reset. This will copy back the sticky values that are present on some devices.
912 	 */
913 	for (i = 0; i < WQCFG_STRIDES(idxd); i++) {
914 		wq_offset = WQCFG_OFFSET(idxd, wq->id, i);
915 		wq->wqcfg->bits[i] |= ioread32(idxd->reg_base + wq_offset);
916 	}
917 
918 	if (wq->size == 0 && wq->type != IDXD_WQT_NONE)
919 		wq->size = WQ_DEFAULT_QUEUE_DEPTH;
920 
921 	/* byte 0-3 */
922 	wq->wqcfg->wq_size = wq->size;
923 
924 	/* bytes 4-7 */
925 	wq->wqcfg->wq_thresh = wq->threshold;
926 
927 	/* byte 8-11 */
928 	if (wq_dedicated(wq))
929 		wq->wqcfg->mode = 1;
930 
931 	/*
932 	 * The WQ priv bit is set depending on the WQ type. priv = 1 if the
933 	 * WQ type is kernel to indicate privileged access. This setting only
934 	 * matters for dedicated WQ. According to the DSA spec:
935 	 * If the WQ is in dedicated mode, WQ PASID Enable is 1, and the
936 	 * Privileged Mode Enable field of the PCI Express PASID capability
937 	 * is 0, this field must be 0.
938 	 *
939 	 * In the case of a dedicated kernel WQ that is not able to support
940 	 * the PASID cap, then the configuration will be rejected.
941 	 */
942 	if (wq_dedicated(wq) && wq->wqcfg->pasid_en &&
943 	    !idxd_device_pasid_priv_enabled(idxd) &&
944 	    wq->type == IDXD_WQT_KERNEL) {
945 		idxd->cmd_status = IDXD_SCMD_WQ_NO_PRIV;
946 		return -EOPNOTSUPP;
947 	}
948 
949 	wq->wqcfg->priority = wq->priority;
950 
951 	if (idxd->hw.gen_cap.block_on_fault &&
952 	    test_bit(WQ_FLAG_BLOCK_ON_FAULT, &wq->flags) &&
953 	    !test_bit(WQ_FLAG_PRS_DISABLE, &wq->flags))
954 		wq->wqcfg->bof = 1;
955 
956 	if (idxd->hw.wq_cap.wq_ats_support)
957 		wq->wqcfg->wq_ats_disable = test_bit(WQ_FLAG_ATS_DISABLE, &wq->flags);
958 
959 	if (idxd->hw.wq_cap.wq_prs_support)
960 		wq->wqcfg->wq_prs_disable = test_bit(WQ_FLAG_PRS_DISABLE, &wq->flags);
961 
962 	/* bytes 12-15 */
963 	wq->wqcfg->max_xfer_shift = ilog2(wq->max_xfer_bytes);
964 	idxd_wqcfg_set_max_batch_shift(idxd->data->type, wq->wqcfg, ilog2(wq->max_batch_size));
965 
966 	/* bytes 32-63 */
967 	if (idxd->hw.wq_cap.op_config && wq->opcap_bmap) {
968 		memset(wq->wqcfg->op_config, 0, IDXD_MAX_OPCAP_BITS / 8);
969 		for_each_set_bit(n, wq->opcap_bmap, IDXD_MAX_OPCAP_BITS) {
970 			int pos = n % BITS_PER_LONG_LONG;
971 			int idx = n / BITS_PER_LONG_LONG;
972 
973 			wq->wqcfg->op_config[idx] |= BIT(pos);
974 		}
975 	}
976 
977 	dev_dbg(dev, "WQ %d CFGs\n", wq->id);
978 	for (i = 0; i < WQCFG_STRIDES(idxd); i++) {
979 		wq_offset = WQCFG_OFFSET(idxd, wq->id, i);
980 		iowrite32(wq->wqcfg->bits[i], idxd->reg_base + wq_offset);
981 		dev_dbg(dev, "WQ[%d][%d][%#x]: %#x\n",
982 			wq->id, i, wq_offset,
983 			ioread32(idxd->reg_base + wq_offset));
984 	}
985 
986 	return 0;
987 }
988 
989 static int idxd_wqs_config_write(struct idxd_device *idxd)
990 {
991 	int i, rc;
992 
993 	for (i = 0; i < idxd->max_wqs; i++) {
994 		struct idxd_wq *wq = idxd->wqs[i];
995 
996 		rc = idxd_wq_config_write(wq);
997 		if (rc < 0)
998 			return rc;
999 	}
1000 
1001 	return 0;
1002 }
1003 
1004 static void idxd_group_flags_setup(struct idxd_device *idxd)
1005 {
1006 	int i;
1007 
1008 	/* TC-A 0 and TC-B 1 should be defaults */
1009 	for (i = 0; i < idxd->max_groups; i++) {
1010 		struct idxd_group *group = idxd->groups[i];
1011 
1012 		if (group->tc_a == -1)
1013 			group->tc_a = group->grpcfg.flags.tc_a = 0;
1014 		else
1015 			group->grpcfg.flags.tc_a = group->tc_a;
1016 		if (group->tc_b == -1)
1017 			group->tc_b = group->grpcfg.flags.tc_b = 1;
1018 		else
1019 			group->grpcfg.flags.tc_b = group->tc_b;
1020 		group->grpcfg.flags.use_rdbuf_limit = group->use_rdbuf_limit;
1021 		group->grpcfg.flags.rdbufs_reserved = group->rdbufs_reserved;
1022 		group->grpcfg.flags.rdbufs_allowed = group->rdbufs_allowed;
1023 		group->grpcfg.flags.desc_progress_limit = group->desc_progress_limit;
1024 		group->grpcfg.flags.batch_progress_limit = group->batch_progress_limit;
1025 	}
1026 }
1027 
1028 static int idxd_engines_setup(struct idxd_device *idxd)
1029 {
1030 	int i, engines = 0;
1031 	struct idxd_engine *eng;
1032 	struct idxd_group *group;
1033 
1034 	for (i = 0; i < idxd->max_groups; i++) {
1035 		group = idxd->groups[i];
1036 		group->grpcfg.engines = 0;
1037 	}
1038 
1039 	for (i = 0; i < idxd->max_engines; i++) {
1040 		eng = idxd->engines[i];
1041 		group = eng->group;
1042 
1043 		if (!group)
1044 			continue;
1045 
1046 		group->grpcfg.engines |= BIT(eng->id);
1047 		engines++;
1048 	}
1049 
1050 	if (!engines)
1051 		return -EINVAL;
1052 
1053 	return 0;
1054 }
1055 
1056 static int idxd_wqs_setup(struct idxd_device *idxd)
1057 {
1058 	struct idxd_wq *wq;
1059 	struct idxd_group *group;
1060 	int i, j, configured = 0;
1061 	struct device *dev = &idxd->pdev->dev;
1062 
1063 	for (i = 0; i < idxd->max_groups; i++) {
1064 		group = idxd->groups[i];
1065 		for (j = 0; j < 4; j++)
1066 			group->grpcfg.wqs[j] = 0;
1067 	}
1068 
1069 	for (i = 0; i < idxd->max_wqs; i++) {
1070 		wq = idxd->wqs[i];
1071 		group = wq->group;
1072 
1073 		if (!wq->group)
1074 			continue;
1075 
1076 		if (wq_shared(wq) && !wq_shared_supported(wq)) {
1077 			idxd->cmd_status = IDXD_SCMD_WQ_NO_SWQ_SUPPORT;
1078 			dev_warn(dev, "No shared wq support but configured.\n");
1079 			return -EINVAL;
1080 		}
1081 
1082 		group->grpcfg.wqs[wq->id / 64] |= BIT(wq->id % 64);
1083 		configured++;
1084 	}
1085 
1086 	if (configured == 0) {
1087 		idxd->cmd_status = IDXD_SCMD_WQ_NONE_CONFIGURED;
1088 		return -EINVAL;
1089 	}
1090 
1091 	return 0;
1092 }
1093 
1094 int idxd_device_config(struct idxd_device *idxd)
1095 {
1096 	int rc;
1097 
1098 	lockdep_assert_held(&idxd->dev_lock);
1099 	rc = idxd_wqs_setup(idxd);
1100 	if (rc < 0)
1101 		return rc;
1102 
1103 	rc = idxd_engines_setup(idxd);
1104 	if (rc < 0)
1105 		return rc;
1106 
1107 	idxd_group_flags_setup(idxd);
1108 
1109 	rc = idxd_wqs_config_write(idxd);
1110 	if (rc < 0)
1111 		return rc;
1112 
1113 	rc = idxd_groups_config_write(idxd);
1114 	if (rc < 0)
1115 		return rc;
1116 
1117 	return 0;
1118 }
1119 
1120 static int idxd_wq_load_config(struct idxd_wq *wq)
1121 {
1122 	struct idxd_device *idxd = wq->idxd;
1123 	struct device *dev = &idxd->pdev->dev;
1124 	int wqcfg_offset;
1125 	int i;
1126 
1127 	wqcfg_offset = WQCFG_OFFSET(idxd, wq->id, 0);
1128 	memcpy_fromio(wq->wqcfg, idxd->reg_base + wqcfg_offset, idxd->wqcfg_size);
1129 
1130 	wq->size = wq->wqcfg->wq_size;
1131 	wq->threshold = wq->wqcfg->wq_thresh;
1132 
1133 	/* The driver does not support shared WQ mode in read-only config yet */
1134 	if (wq->wqcfg->mode == 0 || wq->wqcfg->pasid_en)
1135 		return -EOPNOTSUPP;
1136 
1137 	set_bit(WQ_FLAG_DEDICATED, &wq->flags);
1138 
1139 	wq->priority = wq->wqcfg->priority;
1140 
1141 	wq->max_xfer_bytes = 1ULL << wq->wqcfg->max_xfer_shift;
1142 	idxd_wq_set_max_batch_size(idxd->data->type, wq, 1U << wq->wqcfg->max_batch_shift);
1143 
1144 	for (i = 0; i < WQCFG_STRIDES(idxd); i++) {
1145 		wqcfg_offset = WQCFG_OFFSET(idxd, wq->id, i);
1146 		dev_dbg(dev, "WQ[%d][%d][%#x]: %#x\n", wq->id, i, wqcfg_offset, wq->wqcfg->bits[i]);
1147 	}
1148 
1149 	return 0;
1150 }
1151 
1152 static void idxd_group_load_config(struct idxd_group *group)
1153 {
1154 	struct idxd_device *idxd = group->idxd;
1155 	struct device *dev = &idxd->pdev->dev;
1156 	int i, j, grpcfg_offset;
1157 
1158 	/*
1159 	 * Load WQS bit fields
1160 	 * Iterate through all 256 bits 64 bits at a time
1161 	 */
1162 	for (i = 0; i < GRPWQCFG_STRIDES; i++) {
1163 		struct idxd_wq *wq;
1164 
1165 		grpcfg_offset = GRPWQCFG_OFFSET(idxd, group->id, i);
1166 		group->grpcfg.wqs[i] = ioread64(idxd->reg_base + grpcfg_offset);
1167 		dev_dbg(dev, "GRPCFG wq[%d:%d: %#x]: %#llx\n",
1168 			group->id, i, grpcfg_offset, group->grpcfg.wqs[i]);
1169 
1170 		if (i * 64 >= idxd->max_wqs)
1171 			break;
1172 
1173 		/* Iterate through all 64 bits and check for wq set */
1174 		for (j = 0; j < 64; j++) {
1175 			int id = i * 64 + j;
1176 
1177 			/* No need to check beyond max wqs */
1178 			if (id >= idxd->max_wqs)
1179 				break;
1180 
1181 			/* Set group assignment for wq if wq bit is set */
1182 			if (group->grpcfg.wqs[i] & BIT(j)) {
1183 				wq = idxd->wqs[id];
1184 				wq->group = group;
1185 			}
1186 		}
1187 	}
1188 
1189 	grpcfg_offset = GRPENGCFG_OFFSET(idxd, group->id);
1190 	group->grpcfg.engines = ioread64(idxd->reg_base + grpcfg_offset);
1191 	dev_dbg(dev, "GRPCFG engs[%d: %#x]: %#llx\n", group->id,
1192 		grpcfg_offset, group->grpcfg.engines);
1193 
1194 	/* Iterate through all 64 bits to check engines set */
1195 	for (i = 0; i < 64; i++) {
1196 		if (i >= idxd->max_engines)
1197 			break;
1198 
1199 		if (group->grpcfg.engines & BIT(i)) {
1200 			struct idxd_engine *engine = idxd->engines[i];
1201 
1202 			engine->group = group;
1203 		}
1204 	}
1205 
1206 	grpcfg_offset = GRPFLGCFG_OFFSET(idxd, group->id);
1207 	group->grpcfg.flags.bits = ioread64(idxd->reg_base + grpcfg_offset);
1208 	dev_dbg(dev, "GRPFLAGS flags[%d: %#x]: %#llx\n",
1209 		group->id, grpcfg_offset, group->grpcfg.flags.bits);
1210 }
1211 
1212 int idxd_device_load_config(struct idxd_device *idxd)
1213 {
1214 	union gencfg_reg reg;
1215 	int i, rc;
1216 
1217 	reg.bits = ioread32(idxd->reg_base + IDXD_GENCFG_OFFSET);
1218 	idxd->rdbuf_limit = reg.rdbuf_limit;
1219 
1220 	for (i = 0; i < idxd->max_groups; i++) {
1221 		struct idxd_group *group = idxd->groups[i];
1222 
1223 		idxd_group_load_config(group);
1224 	}
1225 
1226 	for (i = 0; i < idxd->max_wqs; i++) {
1227 		struct idxd_wq *wq = idxd->wqs[i];
1228 
1229 		rc = idxd_wq_load_config(wq);
1230 		if (rc < 0)
1231 			return rc;
1232 	}
1233 
1234 	return 0;
1235 }
1236 
1237 static void idxd_flush_pending_descs(struct idxd_irq_entry *ie)
1238 {
1239 	struct idxd_desc *desc, *itr;
1240 	struct llist_node *head;
1241 	LIST_HEAD(flist);
1242 	enum idxd_complete_type ctype;
1243 
1244 	spin_lock(&ie->list_lock);
1245 	head = llist_del_all(&ie->pending_llist);
1246 	if (head) {
1247 		llist_for_each_entry_safe(desc, itr, head, llnode)
1248 			list_add_tail(&desc->list, &ie->work_list);
1249 	}
1250 
1251 	list_for_each_entry_safe(desc, itr, &ie->work_list, list)
1252 		list_move_tail(&desc->list, &flist);
1253 	spin_unlock(&ie->list_lock);
1254 
1255 	list_for_each_entry_safe(desc, itr, &flist, list) {
1256 		struct dma_async_tx_descriptor *tx;
1257 
1258 		list_del(&desc->list);
1259 		ctype = desc->completion->status ? IDXD_COMPLETE_NORMAL : IDXD_COMPLETE_ABORT;
1260 		/*
1261 		 * wq is being disabled. Any remaining descriptors are
1262 		 * likely to be stuck and can be dropped. callback could
1263 		 * point to code that is no longer accessible, for example
1264 		 * if dmatest module has been unloaded.
1265 		 */
1266 		tx = &desc->txd;
1267 		tx->callback = NULL;
1268 		tx->callback_result = NULL;
1269 		idxd_dma_complete_txd(desc, ctype, true);
1270 	}
1271 }
1272 
1273 static void idxd_device_set_perm_entry(struct idxd_device *idxd,
1274 				       struct idxd_irq_entry *ie)
1275 {
1276 	union msix_perm mperm;
1277 
1278 	if (ie->pasid == IOMMU_PASID_INVALID)
1279 		return;
1280 
1281 	mperm.bits = 0;
1282 	mperm.pasid = ie->pasid;
1283 	mperm.pasid_en = 1;
1284 	iowrite32(mperm.bits, idxd->reg_base + idxd->msix_perm_offset + ie->id * 8);
1285 }
1286 
1287 static void idxd_device_clear_perm_entry(struct idxd_device *idxd,
1288 					 struct idxd_irq_entry *ie)
1289 {
1290 	iowrite32(0, idxd->reg_base + idxd->msix_perm_offset + ie->id * 8);
1291 }
1292 
1293 void idxd_wq_free_irq(struct idxd_wq *wq)
1294 {
1295 	struct idxd_device *idxd = wq->idxd;
1296 	struct idxd_irq_entry *ie = &wq->ie;
1297 
1298 	if (wq->type != IDXD_WQT_KERNEL)
1299 		return;
1300 
1301 	free_irq(ie->vector, ie);
1302 	idxd_flush_pending_descs(ie);
1303 	if (idxd->request_int_handles)
1304 		idxd_device_release_int_handle(idxd, ie->int_handle, IDXD_IRQ_MSIX);
1305 	idxd_device_clear_perm_entry(idxd, ie);
1306 	ie->vector = -1;
1307 	ie->int_handle = INVALID_INT_HANDLE;
1308 	ie->pasid = IOMMU_PASID_INVALID;
1309 }
1310 
1311 int idxd_wq_request_irq(struct idxd_wq *wq)
1312 {
1313 	struct idxd_device *idxd = wq->idxd;
1314 	struct pci_dev *pdev = idxd->pdev;
1315 	struct device *dev = &pdev->dev;
1316 	struct idxd_irq_entry *ie;
1317 	int rc;
1318 
1319 	if (wq->type != IDXD_WQT_KERNEL)
1320 		return 0;
1321 
1322 	ie = &wq->ie;
1323 	ie->vector = pci_irq_vector(pdev, ie->id);
1324 	ie->pasid = device_pasid_enabled(idxd) ? idxd->pasid : IOMMU_PASID_INVALID;
1325 	idxd_device_set_perm_entry(idxd, ie);
1326 
1327 	rc = request_threaded_irq(ie->vector, NULL, idxd_wq_thread, 0, "idxd-portal", ie);
1328 	if (rc < 0) {
1329 		dev_err(dev, "Failed to request irq %d.\n", ie->vector);
1330 		goto err_irq;
1331 	}
1332 
1333 	if (idxd->request_int_handles) {
1334 		rc = idxd_device_request_int_handle(idxd, ie->id, &ie->int_handle,
1335 						    IDXD_IRQ_MSIX);
1336 		if (rc < 0)
1337 			goto err_int_handle;
1338 	} else {
1339 		ie->int_handle = ie->id;
1340 	}
1341 
1342 	return 0;
1343 
1344 err_int_handle:
1345 	ie->int_handle = INVALID_INT_HANDLE;
1346 	free_irq(ie->vector, ie);
1347 err_irq:
1348 	idxd_device_clear_perm_entry(idxd, ie);
1349 	ie->pasid = IOMMU_PASID_INVALID;
1350 	return rc;
1351 }
1352 
1353 int drv_enable_wq(struct idxd_wq *wq)
1354 {
1355 	struct idxd_device *idxd = wq->idxd;
1356 	struct device *dev = &idxd->pdev->dev;
1357 	int rc = -ENXIO;
1358 
1359 	lockdep_assert_held(&wq->wq_lock);
1360 
1361 	if (idxd->state != IDXD_DEV_ENABLED) {
1362 		idxd->cmd_status = IDXD_SCMD_DEV_NOT_ENABLED;
1363 		goto err;
1364 	}
1365 
1366 	if (wq->state != IDXD_WQ_DISABLED) {
1367 		dev_dbg(dev, "wq %d already enabled.\n", wq->id);
1368 		idxd->cmd_status = IDXD_SCMD_WQ_ENABLED;
1369 		rc = -EBUSY;
1370 		goto err;
1371 	}
1372 
1373 	if (!wq->group) {
1374 		dev_dbg(dev, "wq %d not attached to group.\n", wq->id);
1375 		idxd->cmd_status = IDXD_SCMD_WQ_NO_GRP;
1376 		goto err;
1377 	}
1378 
1379 	if (strlen(wq->name) == 0) {
1380 		idxd->cmd_status = IDXD_SCMD_WQ_NO_NAME;
1381 		dev_dbg(dev, "wq %d name not set.\n", wq->id);
1382 		goto err;
1383 	}
1384 
1385 	/* Shared WQ checks */
1386 	if (wq_shared(wq)) {
1387 		if (!wq_shared_supported(wq)) {
1388 			idxd->cmd_status = IDXD_SCMD_WQ_NO_SVM;
1389 			dev_dbg(dev, "PASID not enabled and shared wq.\n");
1390 			goto err;
1391 		}
1392 		/*
1393 		 * Shared wq with the threshold set to 0 means the user
1394 		 * did not set the threshold or transitioned from a
1395 		 * dedicated wq but did not set threshold. A value
1396 		 * of 0 would effectively disable the shared wq. The
1397 		 * driver does not allow a value of 0 to be set for
1398 		 * threshold via sysfs.
1399 		 */
1400 		if (wq->threshold == 0) {
1401 			idxd->cmd_status = IDXD_SCMD_WQ_NO_THRESH;
1402 			dev_dbg(dev, "Shared wq and threshold 0.\n");
1403 			goto err;
1404 		}
1405 	}
1406 
1407 	/*
1408 	 * In the event that the WQ is configurable for pasid, the driver
1409 	 * should setup the pasid, pasid_en bit. This is true for both kernel
1410 	 * and user shared workqueues. There is no need to setup priv bit in
1411 	 * that in-kernel DMA will also do user privileged requests.
1412 	 * A dedicated wq that is not 'kernel' type will configure pasid and
1413 	 * pasid_en later on so there is no need to setup.
1414 	 */
1415 	if (test_bit(IDXD_FLAG_CONFIGURABLE, &idxd->flags)) {
1416 		if (wq_pasid_enabled(wq)) {
1417 			if (is_idxd_wq_kernel(wq) || wq_shared(wq)) {
1418 				u32 pasid = wq_dedicated(wq) ? idxd->pasid : 0;
1419 
1420 				__idxd_wq_set_pasid_locked(wq, pasid);
1421 			}
1422 		}
1423 	}
1424 
1425 	rc = 0;
1426 	spin_lock(&idxd->dev_lock);
1427 	if (test_bit(IDXD_FLAG_CONFIGURABLE, &idxd->flags))
1428 		rc = idxd_device_config(idxd);
1429 	spin_unlock(&idxd->dev_lock);
1430 	if (rc < 0) {
1431 		dev_dbg(dev, "Writing wq %d config failed: %d\n", wq->id, rc);
1432 		goto err;
1433 	}
1434 
1435 	rc = idxd_wq_enable(wq);
1436 	if (rc < 0) {
1437 		dev_dbg(dev, "wq %d enabling failed: %d\n", wq->id, rc);
1438 		goto err;
1439 	}
1440 
1441 	rc = idxd_wq_map_portal(wq);
1442 	if (rc < 0) {
1443 		idxd->cmd_status = IDXD_SCMD_WQ_PORTAL_ERR;
1444 		dev_dbg(dev, "wq %d portal mapping failed: %d\n", wq->id, rc);
1445 		goto err_map_portal;
1446 	}
1447 
1448 	wq->client_count = 0;
1449 
1450 	rc = idxd_wq_request_irq(wq);
1451 	if (rc < 0) {
1452 		idxd->cmd_status = IDXD_SCMD_WQ_IRQ_ERR;
1453 		dev_dbg(dev, "WQ %d irq setup failed: %d\n", wq->id, rc);
1454 		goto err_irq;
1455 	}
1456 
1457 	rc = idxd_wq_alloc_resources(wq);
1458 	if (rc < 0) {
1459 		idxd->cmd_status = IDXD_SCMD_WQ_RES_ALLOC_ERR;
1460 		dev_dbg(dev, "WQ resource alloc failed\n");
1461 		goto err_res_alloc;
1462 	}
1463 
1464 	rc = idxd_wq_init_percpu_ref(wq);
1465 	if (rc < 0) {
1466 		idxd->cmd_status = IDXD_SCMD_PERCPU_ERR;
1467 		dev_dbg(dev, "percpu_ref setup failed\n");
1468 		goto err_ref;
1469 	}
1470 
1471 	return 0;
1472 
1473 err_ref:
1474 	idxd_wq_free_resources(wq);
1475 err_res_alloc:
1476 	idxd_wq_free_irq(wq);
1477 err_irq:
1478 	idxd_wq_unmap_portal(wq);
1479 err_map_portal:
1480 	if (idxd_wq_disable(wq, false))
1481 		dev_dbg(dev, "wq %s disable failed\n", dev_name(wq_confdev(wq)));
1482 err:
1483 	return rc;
1484 }
1485 
1486 void drv_disable_wq(struct idxd_wq *wq)
1487 {
1488 	struct idxd_device *idxd = wq->idxd;
1489 	struct device *dev = &idxd->pdev->dev;
1490 
1491 	lockdep_assert_held(&wq->wq_lock);
1492 
1493 	if (idxd_wq_refcount(wq))
1494 		dev_warn(dev, "Clients has claim on wq %d: %d\n",
1495 			 wq->id, idxd_wq_refcount(wq));
1496 
1497 	idxd_wq_unmap_portal(wq);
1498 	idxd_wq_drain(wq);
1499 	idxd_wq_free_irq(wq);
1500 	idxd_wq_reset(wq);
1501 	idxd_wq_free_resources(wq);
1502 	percpu_ref_exit(&wq->wq_active);
1503 	wq->type = IDXD_WQT_NONE;
1504 	wq->client_count = 0;
1505 }
1506 
1507 int idxd_device_drv_probe(struct idxd_dev *idxd_dev)
1508 {
1509 	struct idxd_device *idxd = idxd_dev_to_idxd(idxd_dev);
1510 	int rc = 0;
1511 
1512 	/*
1513 	 * Device should be in disabled state for the idxd_drv to load. If it's in
1514 	 * enabled state, then the device was altered outside of driver's control.
1515 	 * If the state is in halted state, then we don't want to proceed.
1516 	 */
1517 	if (idxd->state != IDXD_DEV_DISABLED) {
1518 		idxd->cmd_status = IDXD_SCMD_DEV_ENABLED;
1519 		return -ENXIO;
1520 	}
1521 
1522 	/* Device configuration */
1523 	spin_lock(&idxd->dev_lock);
1524 	if (test_bit(IDXD_FLAG_CONFIGURABLE, &idxd->flags))
1525 		rc = idxd_device_config(idxd);
1526 	spin_unlock(&idxd->dev_lock);
1527 	if (rc < 0)
1528 		return -ENXIO;
1529 
1530 	/*
1531 	 * System PASID is preserved across device disable/enable cycle, but
1532 	 * genconfig register content gets cleared during device reset. We
1533 	 * need to re-enable user interrupts for kernel work queue completion
1534 	 * IRQ to function.
1535 	 */
1536 	if (idxd->pasid != IOMMU_PASID_INVALID)
1537 		idxd_set_user_intr(idxd, 1);
1538 
1539 	rc = idxd_device_evl_setup(idxd);
1540 	if (rc < 0) {
1541 		idxd->cmd_status = IDXD_SCMD_DEV_EVL_ERR;
1542 		return rc;
1543 	}
1544 
1545 	/* Start device */
1546 	rc = idxd_device_enable(idxd);
1547 	if (rc < 0) {
1548 		idxd_device_evl_free(idxd);
1549 		return rc;
1550 	}
1551 
1552 	/* Setup DMA device without channels */
1553 	rc = idxd_register_dma_device(idxd);
1554 	if (rc < 0) {
1555 		idxd_device_disable(idxd);
1556 		idxd_device_evl_free(idxd);
1557 		idxd->cmd_status = IDXD_SCMD_DEV_DMA_ERR;
1558 		return rc;
1559 	}
1560 
1561 	idxd->cmd_status = 0;
1562 	return 0;
1563 }
1564 
1565 void idxd_device_drv_remove(struct idxd_dev *idxd_dev)
1566 {
1567 	struct device *dev = &idxd_dev->conf_dev;
1568 	struct idxd_device *idxd = idxd_dev_to_idxd(idxd_dev);
1569 	int i;
1570 
1571 	for (i = 0; i < idxd->max_wqs; i++) {
1572 		struct idxd_wq *wq = idxd->wqs[i];
1573 		struct device *wq_dev = wq_confdev(wq);
1574 
1575 		if (wq->state == IDXD_WQ_DISABLED)
1576 			continue;
1577 		dev_warn(dev, "Active wq %d on disable %s.\n", i, dev_name(wq_dev));
1578 		device_release_driver(wq_dev);
1579 	}
1580 
1581 	idxd_unregister_dma_device(idxd);
1582 	idxd_device_disable(idxd);
1583 	if (test_bit(IDXD_FLAG_CONFIGURABLE, &idxd->flags))
1584 		idxd_device_reset(idxd);
1585 	idxd_device_evl_free(idxd);
1586 }
1587 
1588 static enum idxd_dev_type dev_types[] = {
1589 	IDXD_DEV_DSA,
1590 	IDXD_DEV_IAX,
1591 	IDXD_DEV_NONE,
1592 };
1593 
1594 struct idxd_device_driver idxd_drv = {
1595 	.type = dev_types,
1596 	.probe = idxd_device_drv_probe,
1597 	.remove = idxd_device_drv_remove,
1598 	.name = "idxd",
1599 };
1600 EXPORT_SYMBOL_GPL(idxd_drv);
1601