xref: /linux/drivers/dma/sh/rcar-dmac.c (revision 9a6b55ac)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Renesas R-Car Gen2/Gen3 DMA Controller Driver
4  *
5  * Copyright (C) 2014-2019 Renesas Electronics Inc.
6  *
7  * Author: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
8  */
9 
10 #include <linux/delay.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/dmaengine.h>
13 #include <linux/interrupt.h>
14 #include <linux/list.h>
15 #include <linux/module.h>
16 #include <linux/mutex.h>
17 #include <linux/of.h>
18 #include <linux/of_dma.h>
19 #include <linux/of_platform.h>
20 #include <linux/platform_device.h>
21 #include <linux/pm_runtime.h>
22 #include <linux/slab.h>
23 #include <linux/spinlock.h>
24 
25 #include "../dmaengine.h"
26 
27 /*
28  * struct rcar_dmac_xfer_chunk - Descriptor for a hardware transfer
29  * @node: entry in the parent's chunks list
30  * @src_addr: device source address
31  * @dst_addr: device destination address
32  * @size: transfer size in bytes
33  */
34 struct rcar_dmac_xfer_chunk {
35 	struct list_head node;
36 
37 	dma_addr_t src_addr;
38 	dma_addr_t dst_addr;
39 	u32 size;
40 };
41 
42 /*
43  * struct rcar_dmac_hw_desc - Hardware descriptor for a transfer chunk
44  * @sar: value of the SAR register (source address)
45  * @dar: value of the DAR register (destination address)
46  * @tcr: value of the TCR register (transfer count)
47  */
48 struct rcar_dmac_hw_desc {
49 	u32 sar;
50 	u32 dar;
51 	u32 tcr;
52 	u32 reserved;
53 } __attribute__((__packed__));
54 
55 /*
56  * struct rcar_dmac_desc - R-Car Gen2 DMA Transfer Descriptor
57  * @async_tx: base DMA asynchronous transaction descriptor
58  * @direction: direction of the DMA transfer
59  * @xfer_shift: log2 of the transfer size
60  * @chcr: value of the channel configuration register for this transfer
61  * @node: entry in the channel's descriptors lists
62  * @chunks: list of transfer chunks for this transfer
63  * @running: the transfer chunk being currently processed
64  * @nchunks: number of transfer chunks for this transfer
65  * @hwdescs.use: whether the transfer descriptor uses hardware descriptors
66  * @hwdescs.mem: hardware descriptors memory for the transfer
67  * @hwdescs.dma: device address of the hardware descriptors memory
68  * @hwdescs.size: size of the hardware descriptors in bytes
69  * @size: transfer size in bytes
70  * @cyclic: when set indicates that the DMA transfer is cyclic
71  */
72 struct rcar_dmac_desc {
73 	struct dma_async_tx_descriptor async_tx;
74 	enum dma_transfer_direction direction;
75 	unsigned int xfer_shift;
76 	u32 chcr;
77 
78 	struct list_head node;
79 	struct list_head chunks;
80 	struct rcar_dmac_xfer_chunk *running;
81 	unsigned int nchunks;
82 
83 	struct {
84 		bool use;
85 		struct rcar_dmac_hw_desc *mem;
86 		dma_addr_t dma;
87 		size_t size;
88 	} hwdescs;
89 
90 	unsigned int size;
91 	bool cyclic;
92 };
93 
94 #define to_rcar_dmac_desc(d)	container_of(d, struct rcar_dmac_desc, async_tx)
95 
96 /*
97  * struct rcar_dmac_desc_page - One page worth of descriptors
98  * @node: entry in the channel's pages list
99  * @descs: array of DMA descriptors
100  * @chunks: array of transfer chunk descriptors
101  */
102 struct rcar_dmac_desc_page {
103 	struct list_head node;
104 
105 	union {
106 		struct rcar_dmac_desc descs[0];
107 		struct rcar_dmac_xfer_chunk chunks[0];
108 	};
109 };
110 
111 #define RCAR_DMAC_DESCS_PER_PAGE					\
112 	((PAGE_SIZE - offsetof(struct rcar_dmac_desc_page, descs)) /	\
113 	sizeof(struct rcar_dmac_desc))
114 #define RCAR_DMAC_XFER_CHUNKS_PER_PAGE					\
115 	((PAGE_SIZE - offsetof(struct rcar_dmac_desc_page, chunks)) /	\
116 	sizeof(struct rcar_dmac_xfer_chunk))
117 
118 /*
119  * struct rcar_dmac_chan_slave - Slave configuration
120  * @slave_addr: slave memory address
121  * @xfer_size: size (in bytes) of hardware transfers
122  */
123 struct rcar_dmac_chan_slave {
124 	phys_addr_t slave_addr;
125 	unsigned int xfer_size;
126 };
127 
128 /*
129  * struct rcar_dmac_chan_map - Map of slave device phys to dma address
130  * @addr: slave dma address
131  * @dir: direction of mapping
132  * @slave: slave configuration that is mapped
133  */
134 struct rcar_dmac_chan_map {
135 	dma_addr_t addr;
136 	enum dma_data_direction dir;
137 	struct rcar_dmac_chan_slave slave;
138 };
139 
140 /*
141  * struct rcar_dmac_chan - R-Car Gen2 DMA Controller Channel
142  * @chan: base DMA channel object
143  * @iomem: channel I/O memory base
144  * @index: index of this channel in the controller
145  * @irq: channel IRQ
146  * @src: slave memory address and size on the source side
147  * @dst: slave memory address and size on the destination side
148  * @mid_rid: hardware MID/RID for the DMA client using this channel
149  * @lock: protects the channel CHCR register and the desc members
150  * @desc.free: list of free descriptors
151  * @desc.pending: list of pending descriptors (submitted with tx_submit)
152  * @desc.active: list of active descriptors (activated with issue_pending)
153  * @desc.done: list of completed descriptors
154  * @desc.wait: list of descriptors waiting for an ack
155  * @desc.running: the descriptor being processed (a member of the active list)
156  * @desc.chunks_free: list of free transfer chunk descriptors
157  * @desc.pages: list of pages used by allocated descriptors
158  */
159 struct rcar_dmac_chan {
160 	struct dma_chan chan;
161 	void __iomem *iomem;
162 	unsigned int index;
163 	int irq;
164 
165 	struct rcar_dmac_chan_slave src;
166 	struct rcar_dmac_chan_slave dst;
167 	struct rcar_dmac_chan_map map;
168 	int mid_rid;
169 
170 	spinlock_t lock;
171 
172 	struct {
173 		struct list_head free;
174 		struct list_head pending;
175 		struct list_head active;
176 		struct list_head done;
177 		struct list_head wait;
178 		struct rcar_dmac_desc *running;
179 
180 		struct list_head chunks_free;
181 
182 		struct list_head pages;
183 	} desc;
184 };
185 
186 #define to_rcar_dmac_chan(c)	container_of(c, struct rcar_dmac_chan, chan)
187 
188 /*
189  * struct rcar_dmac - R-Car Gen2 DMA Controller
190  * @engine: base DMA engine object
191  * @dev: the hardware device
192  * @iomem: remapped I/O memory base
193  * @n_channels: number of available channels
194  * @channels: array of DMAC channels
195  * @channels_mask: bitfield of which DMA channels are managed by this driver
196  * @modules: bitmask of client modules in use
197  */
198 struct rcar_dmac {
199 	struct dma_device engine;
200 	struct device *dev;
201 	void __iomem *iomem;
202 	struct device_dma_parameters parms;
203 
204 	unsigned int n_channels;
205 	struct rcar_dmac_chan *channels;
206 	u32 channels_mask;
207 
208 	DECLARE_BITMAP(modules, 256);
209 };
210 
211 #define to_rcar_dmac(d)		container_of(d, struct rcar_dmac, engine)
212 
213 /*
214  * struct rcar_dmac_of_data - This driver's OF data
215  * @chan_offset_base: DMAC channels base offset
216  * @chan_offset_stride: DMAC channels offset stride
217  */
218 struct rcar_dmac_of_data {
219 	u32 chan_offset_base;
220 	u32 chan_offset_stride;
221 };
222 
223 /* -----------------------------------------------------------------------------
224  * Registers
225  */
226 
227 #define RCAR_DMAISTA			0x0020
228 #define RCAR_DMASEC			0x0030
229 #define RCAR_DMAOR			0x0060
230 #define RCAR_DMAOR_PRI_FIXED		(0 << 8)
231 #define RCAR_DMAOR_PRI_ROUND_ROBIN	(3 << 8)
232 #define RCAR_DMAOR_AE			(1 << 2)
233 #define RCAR_DMAOR_DME			(1 << 0)
234 #define RCAR_DMACHCLR			0x0080
235 #define RCAR_DMADPSEC			0x00a0
236 
237 #define RCAR_DMASAR			0x0000
238 #define RCAR_DMADAR			0x0004
239 #define RCAR_DMATCR			0x0008
240 #define RCAR_DMATCR_MASK		0x00ffffff
241 #define RCAR_DMATSR			0x0028
242 #define RCAR_DMACHCR			0x000c
243 #define RCAR_DMACHCR_CAE		(1 << 31)
244 #define RCAR_DMACHCR_CAIE		(1 << 30)
245 #define RCAR_DMACHCR_DPM_DISABLED	(0 << 28)
246 #define RCAR_DMACHCR_DPM_ENABLED	(1 << 28)
247 #define RCAR_DMACHCR_DPM_REPEAT		(2 << 28)
248 #define RCAR_DMACHCR_DPM_INFINITE	(3 << 28)
249 #define RCAR_DMACHCR_RPT_SAR		(1 << 27)
250 #define RCAR_DMACHCR_RPT_DAR		(1 << 26)
251 #define RCAR_DMACHCR_RPT_TCR		(1 << 25)
252 #define RCAR_DMACHCR_DPB		(1 << 22)
253 #define RCAR_DMACHCR_DSE		(1 << 19)
254 #define RCAR_DMACHCR_DSIE		(1 << 18)
255 #define RCAR_DMACHCR_TS_1B		((0 << 20) | (0 << 3))
256 #define RCAR_DMACHCR_TS_2B		((0 << 20) | (1 << 3))
257 #define RCAR_DMACHCR_TS_4B		((0 << 20) | (2 << 3))
258 #define RCAR_DMACHCR_TS_16B		((0 << 20) | (3 << 3))
259 #define RCAR_DMACHCR_TS_32B		((1 << 20) | (0 << 3))
260 #define RCAR_DMACHCR_TS_64B		((1 << 20) | (1 << 3))
261 #define RCAR_DMACHCR_TS_8B		((1 << 20) | (3 << 3))
262 #define RCAR_DMACHCR_DM_FIXED		(0 << 14)
263 #define RCAR_DMACHCR_DM_INC		(1 << 14)
264 #define RCAR_DMACHCR_DM_DEC		(2 << 14)
265 #define RCAR_DMACHCR_SM_FIXED		(0 << 12)
266 #define RCAR_DMACHCR_SM_INC		(1 << 12)
267 #define RCAR_DMACHCR_SM_DEC		(2 << 12)
268 #define RCAR_DMACHCR_RS_AUTO		(4 << 8)
269 #define RCAR_DMACHCR_RS_DMARS		(8 << 8)
270 #define RCAR_DMACHCR_IE			(1 << 2)
271 #define RCAR_DMACHCR_TE			(1 << 1)
272 #define RCAR_DMACHCR_DE			(1 << 0)
273 #define RCAR_DMATCRB			0x0018
274 #define RCAR_DMATSRB			0x0038
275 #define RCAR_DMACHCRB			0x001c
276 #define RCAR_DMACHCRB_DCNT(n)		((n) << 24)
277 #define RCAR_DMACHCRB_DPTR_MASK		(0xff << 16)
278 #define RCAR_DMACHCRB_DPTR_SHIFT	16
279 #define RCAR_DMACHCRB_DRST		(1 << 15)
280 #define RCAR_DMACHCRB_DTS		(1 << 8)
281 #define RCAR_DMACHCRB_SLM_NORMAL	(0 << 4)
282 #define RCAR_DMACHCRB_SLM_CLK(n)	((8 | (n)) << 4)
283 #define RCAR_DMACHCRB_PRI(n)		((n) << 0)
284 #define RCAR_DMARS			0x0040
285 #define RCAR_DMABUFCR			0x0048
286 #define RCAR_DMABUFCR_MBU(n)		((n) << 16)
287 #define RCAR_DMABUFCR_ULB(n)		((n) << 0)
288 #define RCAR_DMADPBASE			0x0050
289 #define RCAR_DMADPBASE_MASK		0xfffffff0
290 #define RCAR_DMADPBASE_SEL		(1 << 0)
291 #define RCAR_DMADPCR			0x0054
292 #define RCAR_DMADPCR_DIPT(n)		((n) << 24)
293 #define RCAR_DMAFIXSAR			0x0010
294 #define RCAR_DMAFIXDAR			0x0014
295 #define RCAR_DMAFIXDPBASE		0x0060
296 
297 /* Hardcode the MEMCPY transfer size to 4 bytes. */
298 #define RCAR_DMAC_MEMCPY_XFER_SIZE	4
299 
300 /* -----------------------------------------------------------------------------
301  * Device access
302  */
303 
304 static void rcar_dmac_write(struct rcar_dmac *dmac, u32 reg, u32 data)
305 {
306 	if (reg == RCAR_DMAOR)
307 		writew(data, dmac->iomem + reg);
308 	else
309 		writel(data, dmac->iomem + reg);
310 }
311 
312 static u32 rcar_dmac_read(struct rcar_dmac *dmac, u32 reg)
313 {
314 	if (reg == RCAR_DMAOR)
315 		return readw(dmac->iomem + reg);
316 	else
317 		return readl(dmac->iomem + reg);
318 }
319 
320 static u32 rcar_dmac_chan_read(struct rcar_dmac_chan *chan, u32 reg)
321 {
322 	if (reg == RCAR_DMARS)
323 		return readw(chan->iomem + reg);
324 	else
325 		return readl(chan->iomem + reg);
326 }
327 
328 static void rcar_dmac_chan_write(struct rcar_dmac_chan *chan, u32 reg, u32 data)
329 {
330 	if (reg == RCAR_DMARS)
331 		writew(data, chan->iomem + reg);
332 	else
333 		writel(data, chan->iomem + reg);
334 }
335 
336 /* -----------------------------------------------------------------------------
337  * Initialization and configuration
338  */
339 
340 static bool rcar_dmac_chan_is_busy(struct rcar_dmac_chan *chan)
341 {
342 	u32 chcr = rcar_dmac_chan_read(chan, RCAR_DMACHCR);
343 
344 	return !!(chcr & (RCAR_DMACHCR_DE | RCAR_DMACHCR_TE));
345 }
346 
347 static void rcar_dmac_chan_start_xfer(struct rcar_dmac_chan *chan)
348 {
349 	struct rcar_dmac_desc *desc = chan->desc.running;
350 	u32 chcr = desc->chcr;
351 
352 	WARN_ON_ONCE(rcar_dmac_chan_is_busy(chan));
353 
354 	if (chan->mid_rid >= 0)
355 		rcar_dmac_chan_write(chan, RCAR_DMARS, chan->mid_rid);
356 
357 	if (desc->hwdescs.use) {
358 		struct rcar_dmac_xfer_chunk *chunk =
359 			list_first_entry(&desc->chunks,
360 					 struct rcar_dmac_xfer_chunk, node);
361 
362 		dev_dbg(chan->chan.device->dev,
363 			"chan%u: queue desc %p: %u@%pad\n",
364 			chan->index, desc, desc->nchunks, &desc->hwdescs.dma);
365 
366 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
367 		rcar_dmac_chan_write(chan, RCAR_DMAFIXSAR,
368 				     chunk->src_addr >> 32);
369 		rcar_dmac_chan_write(chan, RCAR_DMAFIXDAR,
370 				     chunk->dst_addr >> 32);
371 		rcar_dmac_chan_write(chan, RCAR_DMAFIXDPBASE,
372 				     desc->hwdescs.dma >> 32);
373 #endif
374 		rcar_dmac_chan_write(chan, RCAR_DMADPBASE,
375 				     (desc->hwdescs.dma & 0xfffffff0) |
376 				     RCAR_DMADPBASE_SEL);
377 		rcar_dmac_chan_write(chan, RCAR_DMACHCRB,
378 				     RCAR_DMACHCRB_DCNT(desc->nchunks - 1) |
379 				     RCAR_DMACHCRB_DRST);
380 
381 		/*
382 		 * Errata: When descriptor memory is accessed through an IOMMU
383 		 * the DMADAR register isn't initialized automatically from the
384 		 * first descriptor at beginning of transfer by the DMAC like it
385 		 * should. Initialize it manually with the destination address
386 		 * of the first chunk.
387 		 */
388 		rcar_dmac_chan_write(chan, RCAR_DMADAR,
389 				     chunk->dst_addr & 0xffffffff);
390 
391 		/*
392 		 * Program the descriptor stage interrupt to occur after the end
393 		 * of the first stage.
394 		 */
395 		rcar_dmac_chan_write(chan, RCAR_DMADPCR, RCAR_DMADPCR_DIPT(1));
396 
397 		chcr |= RCAR_DMACHCR_RPT_SAR | RCAR_DMACHCR_RPT_DAR
398 		     |  RCAR_DMACHCR_RPT_TCR | RCAR_DMACHCR_DPB;
399 
400 		/*
401 		 * If the descriptor isn't cyclic enable normal descriptor mode
402 		 * and the transfer completion interrupt.
403 		 */
404 		if (!desc->cyclic)
405 			chcr |= RCAR_DMACHCR_DPM_ENABLED | RCAR_DMACHCR_IE;
406 		/*
407 		 * If the descriptor is cyclic and has a callback enable the
408 		 * descriptor stage interrupt in infinite repeat mode.
409 		 */
410 		else if (desc->async_tx.callback)
411 			chcr |= RCAR_DMACHCR_DPM_INFINITE | RCAR_DMACHCR_DSIE;
412 		/*
413 		 * Otherwise just select infinite repeat mode without any
414 		 * interrupt.
415 		 */
416 		else
417 			chcr |= RCAR_DMACHCR_DPM_INFINITE;
418 	} else {
419 		struct rcar_dmac_xfer_chunk *chunk = desc->running;
420 
421 		dev_dbg(chan->chan.device->dev,
422 			"chan%u: queue chunk %p: %u@%pad -> %pad\n",
423 			chan->index, chunk, chunk->size, &chunk->src_addr,
424 			&chunk->dst_addr);
425 
426 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
427 		rcar_dmac_chan_write(chan, RCAR_DMAFIXSAR,
428 				     chunk->src_addr >> 32);
429 		rcar_dmac_chan_write(chan, RCAR_DMAFIXDAR,
430 				     chunk->dst_addr >> 32);
431 #endif
432 		rcar_dmac_chan_write(chan, RCAR_DMASAR,
433 				     chunk->src_addr & 0xffffffff);
434 		rcar_dmac_chan_write(chan, RCAR_DMADAR,
435 				     chunk->dst_addr & 0xffffffff);
436 		rcar_dmac_chan_write(chan, RCAR_DMATCR,
437 				     chunk->size >> desc->xfer_shift);
438 
439 		chcr |= RCAR_DMACHCR_DPM_DISABLED | RCAR_DMACHCR_IE;
440 	}
441 
442 	rcar_dmac_chan_write(chan, RCAR_DMACHCR,
443 			     chcr | RCAR_DMACHCR_DE | RCAR_DMACHCR_CAIE);
444 }
445 
446 static int rcar_dmac_init(struct rcar_dmac *dmac)
447 {
448 	u16 dmaor;
449 
450 	/* Clear all channels and enable the DMAC globally. */
451 	rcar_dmac_write(dmac, RCAR_DMACHCLR, dmac->channels_mask);
452 	rcar_dmac_write(dmac, RCAR_DMAOR,
453 			RCAR_DMAOR_PRI_FIXED | RCAR_DMAOR_DME);
454 
455 	dmaor = rcar_dmac_read(dmac, RCAR_DMAOR);
456 	if ((dmaor & (RCAR_DMAOR_AE | RCAR_DMAOR_DME)) != RCAR_DMAOR_DME) {
457 		dev_warn(dmac->dev, "DMAOR initialization failed.\n");
458 		return -EIO;
459 	}
460 
461 	return 0;
462 }
463 
464 /* -----------------------------------------------------------------------------
465  * Descriptors submission
466  */
467 
468 static dma_cookie_t rcar_dmac_tx_submit(struct dma_async_tx_descriptor *tx)
469 {
470 	struct rcar_dmac_chan *chan = to_rcar_dmac_chan(tx->chan);
471 	struct rcar_dmac_desc *desc = to_rcar_dmac_desc(tx);
472 	unsigned long flags;
473 	dma_cookie_t cookie;
474 
475 	spin_lock_irqsave(&chan->lock, flags);
476 
477 	cookie = dma_cookie_assign(tx);
478 
479 	dev_dbg(chan->chan.device->dev, "chan%u: submit #%d@%p\n",
480 		chan->index, tx->cookie, desc);
481 
482 	list_add_tail(&desc->node, &chan->desc.pending);
483 	desc->running = list_first_entry(&desc->chunks,
484 					 struct rcar_dmac_xfer_chunk, node);
485 
486 	spin_unlock_irqrestore(&chan->lock, flags);
487 
488 	return cookie;
489 }
490 
491 /* -----------------------------------------------------------------------------
492  * Descriptors allocation and free
493  */
494 
495 /*
496  * rcar_dmac_desc_alloc - Allocate a page worth of DMA descriptors
497  * @chan: the DMA channel
498  * @gfp: allocation flags
499  */
500 static int rcar_dmac_desc_alloc(struct rcar_dmac_chan *chan, gfp_t gfp)
501 {
502 	struct rcar_dmac_desc_page *page;
503 	unsigned long flags;
504 	LIST_HEAD(list);
505 	unsigned int i;
506 
507 	page = (void *)get_zeroed_page(gfp);
508 	if (!page)
509 		return -ENOMEM;
510 
511 	for (i = 0; i < RCAR_DMAC_DESCS_PER_PAGE; ++i) {
512 		struct rcar_dmac_desc *desc = &page->descs[i];
513 
514 		dma_async_tx_descriptor_init(&desc->async_tx, &chan->chan);
515 		desc->async_tx.tx_submit = rcar_dmac_tx_submit;
516 		INIT_LIST_HEAD(&desc->chunks);
517 
518 		list_add_tail(&desc->node, &list);
519 	}
520 
521 	spin_lock_irqsave(&chan->lock, flags);
522 	list_splice_tail(&list, &chan->desc.free);
523 	list_add_tail(&page->node, &chan->desc.pages);
524 	spin_unlock_irqrestore(&chan->lock, flags);
525 
526 	return 0;
527 }
528 
529 /*
530  * rcar_dmac_desc_put - Release a DMA transfer descriptor
531  * @chan: the DMA channel
532  * @desc: the descriptor
533  *
534  * Put the descriptor and its transfer chunk descriptors back in the channel's
535  * free descriptors lists. The descriptor's chunks list will be reinitialized to
536  * an empty list as a result.
537  *
538  * The descriptor must have been removed from the channel's lists before calling
539  * this function.
540  */
541 static void rcar_dmac_desc_put(struct rcar_dmac_chan *chan,
542 			       struct rcar_dmac_desc *desc)
543 {
544 	unsigned long flags;
545 
546 	spin_lock_irqsave(&chan->lock, flags);
547 	list_splice_tail_init(&desc->chunks, &chan->desc.chunks_free);
548 	list_add(&desc->node, &chan->desc.free);
549 	spin_unlock_irqrestore(&chan->lock, flags);
550 }
551 
552 static void rcar_dmac_desc_recycle_acked(struct rcar_dmac_chan *chan)
553 {
554 	struct rcar_dmac_desc *desc, *_desc;
555 	unsigned long flags;
556 	LIST_HEAD(list);
557 
558 	/*
559 	 * We have to temporarily move all descriptors from the wait list to a
560 	 * local list as iterating over the wait list, even with
561 	 * list_for_each_entry_safe, isn't safe if we release the channel lock
562 	 * around the rcar_dmac_desc_put() call.
563 	 */
564 	spin_lock_irqsave(&chan->lock, flags);
565 	list_splice_init(&chan->desc.wait, &list);
566 	spin_unlock_irqrestore(&chan->lock, flags);
567 
568 	list_for_each_entry_safe(desc, _desc, &list, node) {
569 		if (async_tx_test_ack(&desc->async_tx)) {
570 			list_del(&desc->node);
571 			rcar_dmac_desc_put(chan, desc);
572 		}
573 	}
574 
575 	if (list_empty(&list))
576 		return;
577 
578 	/* Put the remaining descriptors back in the wait list. */
579 	spin_lock_irqsave(&chan->lock, flags);
580 	list_splice(&list, &chan->desc.wait);
581 	spin_unlock_irqrestore(&chan->lock, flags);
582 }
583 
584 /*
585  * rcar_dmac_desc_get - Allocate a descriptor for a DMA transfer
586  * @chan: the DMA channel
587  *
588  * Locking: This function must be called in a non-atomic context.
589  *
590  * Return: A pointer to the allocated descriptor or NULL if no descriptor can
591  * be allocated.
592  */
593 static struct rcar_dmac_desc *rcar_dmac_desc_get(struct rcar_dmac_chan *chan)
594 {
595 	struct rcar_dmac_desc *desc;
596 	unsigned long flags;
597 	int ret;
598 
599 	/* Recycle acked descriptors before attempting allocation. */
600 	rcar_dmac_desc_recycle_acked(chan);
601 
602 	spin_lock_irqsave(&chan->lock, flags);
603 
604 	while (list_empty(&chan->desc.free)) {
605 		/*
606 		 * No free descriptors, allocate a page worth of them and try
607 		 * again, as someone else could race us to get the newly
608 		 * allocated descriptors. If the allocation fails return an
609 		 * error.
610 		 */
611 		spin_unlock_irqrestore(&chan->lock, flags);
612 		ret = rcar_dmac_desc_alloc(chan, GFP_NOWAIT);
613 		if (ret < 0)
614 			return NULL;
615 		spin_lock_irqsave(&chan->lock, flags);
616 	}
617 
618 	desc = list_first_entry(&chan->desc.free, struct rcar_dmac_desc, node);
619 	list_del(&desc->node);
620 
621 	spin_unlock_irqrestore(&chan->lock, flags);
622 
623 	return desc;
624 }
625 
626 /*
627  * rcar_dmac_xfer_chunk_alloc - Allocate a page worth of transfer chunks
628  * @chan: the DMA channel
629  * @gfp: allocation flags
630  */
631 static int rcar_dmac_xfer_chunk_alloc(struct rcar_dmac_chan *chan, gfp_t gfp)
632 {
633 	struct rcar_dmac_desc_page *page;
634 	unsigned long flags;
635 	LIST_HEAD(list);
636 	unsigned int i;
637 
638 	page = (void *)get_zeroed_page(gfp);
639 	if (!page)
640 		return -ENOMEM;
641 
642 	for (i = 0; i < RCAR_DMAC_XFER_CHUNKS_PER_PAGE; ++i) {
643 		struct rcar_dmac_xfer_chunk *chunk = &page->chunks[i];
644 
645 		list_add_tail(&chunk->node, &list);
646 	}
647 
648 	spin_lock_irqsave(&chan->lock, flags);
649 	list_splice_tail(&list, &chan->desc.chunks_free);
650 	list_add_tail(&page->node, &chan->desc.pages);
651 	spin_unlock_irqrestore(&chan->lock, flags);
652 
653 	return 0;
654 }
655 
656 /*
657  * rcar_dmac_xfer_chunk_get - Allocate a transfer chunk for a DMA transfer
658  * @chan: the DMA channel
659  *
660  * Locking: This function must be called in a non-atomic context.
661  *
662  * Return: A pointer to the allocated transfer chunk descriptor or NULL if no
663  * descriptor can be allocated.
664  */
665 static struct rcar_dmac_xfer_chunk *
666 rcar_dmac_xfer_chunk_get(struct rcar_dmac_chan *chan)
667 {
668 	struct rcar_dmac_xfer_chunk *chunk;
669 	unsigned long flags;
670 	int ret;
671 
672 	spin_lock_irqsave(&chan->lock, flags);
673 
674 	while (list_empty(&chan->desc.chunks_free)) {
675 		/*
676 		 * No free descriptors, allocate a page worth of them and try
677 		 * again, as someone else could race us to get the newly
678 		 * allocated descriptors. If the allocation fails return an
679 		 * error.
680 		 */
681 		spin_unlock_irqrestore(&chan->lock, flags);
682 		ret = rcar_dmac_xfer_chunk_alloc(chan, GFP_NOWAIT);
683 		if (ret < 0)
684 			return NULL;
685 		spin_lock_irqsave(&chan->lock, flags);
686 	}
687 
688 	chunk = list_first_entry(&chan->desc.chunks_free,
689 				 struct rcar_dmac_xfer_chunk, node);
690 	list_del(&chunk->node);
691 
692 	spin_unlock_irqrestore(&chan->lock, flags);
693 
694 	return chunk;
695 }
696 
697 static void rcar_dmac_realloc_hwdesc(struct rcar_dmac_chan *chan,
698 				     struct rcar_dmac_desc *desc, size_t size)
699 {
700 	/*
701 	 * dma_alloc_coherent() allocates memory in page size increments. To
702 	 * avoid reallocating the hardware descriptors when the allocated size
703 	 * wouldn't change align the requested size to a multiple of the page
704 	 * size.
705 	 */
706 	size = PAGE_ALIGN(size);
707 
708 	if (desc->hwdescs.size == size)
709 		return;
710 
711 	if (desc->hwdescs.mem) {
712 		dma_free_coherent(chan->chan.device->dev, desc->hwdescs.size,
713 				  desc->hwdescs.mem, desc->hwdescs.dma);
714 		desc->hwdescs.mem = NULL;
715 		desc->hwdescs.size = 0;
716 	}
717 
718 	if (!size)
719 		return;
720 
721 	desc->hwdescs.mem = dma_alloc_coherent(chan->chan.device->dev, size,
722 					       &desc->hwdescs.dma, GFP_NOWAIT);
723 	if (!desc->hwdescs.mem)
724 		return;
725 
726 	desc->hwdescs.size = size;
727 }
728 
729 static int rcar_dmac_fill_hwdesc(struct rcar_dmac_chan *chan,
730 				 struct rcar_dmac_desc *desc)
731 {
732 	struct rcar_dmac_xfer_chunk *chunk;
733 	struct rcar_dmac_hw_desc *hwdesc;
734 
735 	rcar_dmac_realloc_hwdesc(chan, desc, desc->nchunks * sizeof(*hwdesc));
736 
737 	hwdesc = desc->hwdescs.mem;
738 	if (!hwdesc)
739 		return -ENOMEM;
740 
741 	list_for_each_entry(chunk, &desc->chunks, node) {
742 		hwdesc->sar = chunk->src_addr;
743 		hwdesc->dar = chunk->dst_addr;
744 		hwdesc->tcr = chunk->size >> desc->xfer_shift;
745 		hwdesc++;
746 	}
747 
748 	return 0;
749 }
750 
751 /* -----------------------------------------------------------------------------
752  * Stop and reset
753  */
754 static void rcar_dmac_chcr_de_barrier(struct rcar_dmac_chan *chan)
755 {
756 	u32 chcr;
757 	unsigned int i;
758 
759 	/*
760 	 * Ensure that the setting of the DE bit is actually 0 after
761 	 * clearing it.
762 	 */
763 	for (i = 0; i < 1024; i++) {
764 		chcr = rcar_dmac_chan_read(chan, RCAR_DMACHCR);
765 		if (!(chcr & RCAR_DMACHCR_DE))
766 			return;
767 		udelay(1);
768 	}
769 
770 	dev_err(chan->chan.device->dev, "CHCR DE check error\n");
771 }
772 
773 static void rcar_dmac_clear_chcr_de(struct rcar_dmac_chan *chan)
774 {
775 	u32 chcr = rcar_dmac_chan_read(chan, RCAR_DMACHCR);
776 
777 	/* set DE=0 and flush remaining data */
778 	rcar_dmac_chan_write(chan, RCAR_DMACHCR, (chcr & ~RCAR_DMACHCR_DE));
779 
780 	/* make sure all remaining data was flushed */
781 	rcar_dmac_chcr_de_barrier(chan);
782 }
783 
784 static void rcar_dmac_chan_halt(struct rcar_dmac_chan *chan)
785 {
786 	u32 chcr = rcar_dmac_chan_read(chan, RCAR_DMACHCR);
787 
788 	chcr &= ~(RCAR_DMACHCR_DSE | RCAR_DMACHCR_DSIE | RCAR_DMACHCR_IE |
789 		  RCAR_DMACHCR_TE | RCAR_DMACHCR_DE |
790 		  RCAR_DMACHCR_CAE | RCAR_DMACHCR_CAIE);
791 	rcar_dmac_chan_write(chan, RCAR_DMACHCR, chcr);
792 	rcar_dmac_chcr_de_barrier(chan);
793 }
794 
795 static void rcar_dmac_chan_reinit(struct rcar_dmac_chan *chan)
796 {
797 	struct rcar_dmac_desc *desc, *_desc;
798 	unsigned long flags;
799 	LIST_HEAD(descs);
800 
801 	spin_lock_irqsave(&chan->lock, flags);
802 
803 	/* Move all non-free descriptors to the local lists. */
804 	list_splice_init(&chan->desc.pending, &descs);
805 	list_splice_init(&chan->desc.active, &descs);
806 	list_splice_init(&chan->desc.done, &descs);
807 	list_splice_init(&chan->desc.wait, &descs);
808 
809 	chan->desc.running = NULL;
810 
811 	spin_unlock_irqrestore(&chan->lock, flags);
812 
813 	list_for_each_entry_safe(desc, _desc, &descs, node) {
814 		list_del(&desc->node);
815 		rcar_dmac_desc_put(chan, desc);
816 	}
817 }
818 
819 static void rcar_dmac_stop_all_chan(struct rcar_dmac *dmac)
820 {
821 	unsigned int i;
822 
823 	/* Stop all channels. */
824 	for (i = 0; i < dmac->n_channels; ++i) {
825 		struct rcar_dmac_chan *chan = &dmac->channels[i];
826 
827 		if (!(dmac->channels_mask & BIT(i)))
828 			continue;
829 
830 		/* Stop and reinitialize the channel. */
831 		spin_lock_irq(&chan->lock);
832 		rcar_dmac_chan_halt(chan);
833 		spin_unlock_irq(&chan->lock);
834 	}
835 }
836 
837 static int rcar_dmac_chan_pause(struct dma_chan *chan)
838 {
839 	unsigned long flags;
840 	struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
841 
842 	spin_lock_irqsave(&rchan->lock, flags);
843 	rcar_dmac_clear_chcr_de(rchan);
844 	spin_unlock_irqrestore(&rchan->lock, flags);
845 
846 	return 0;
847 }
848 
849 /* -----------------------------------------------------------------------------
850  * Descriptors preparation
851  */
852 
853 static void rcar_dmac_chan_configure_desc(struct rcar_dmac_chan *chan,
854 					  struct rcar_dmac_desc *desc)
855 {
856 	static const u32 chcr_ts[] = {
857 		RCAR_DMACHCR_TS_1B, RCAR_DMACHCR_TS_2B,
858 		RCAR_DMACHCR_TS_4B, RCAR_DMACHCR_TS_8B,
859 		RCAR_DMACHCR_TS_16B, RCAR_DMACHCR_TS_32B,
860 		RCAR_DMACHCR_TS_64B,
861 	};
862 
863 	unsigned int xfer_size;
864 	u32 chcr;
865 
866 	switch (desc->direction) {
867 	case DMA_DEV_TO_MEM:
868 		chcr = RCAR_DMACHCR_DM_INC | RCAR_DMACHCR_SM_FIXED
869 		     | RCAR_DMACHCR_RS_DMARS;
870 		xfer_size = chan->src.xfer_size;
871 		break;
872 
873 	case DMA_MEM_TO_DEV:
874 		chcr = RCAR_DMACHCR_DM_FIXED | RCAR_DMACHCR_SM_INC
875 		     | RCAR_DMACHCR_RS_DMARS;
876 		xfer_size = chan->dst.xfer_size;
877 		break;
878 
879 	case DMA_MEM_TO_MEM:
880 	default:
881 		chcr = RCAR_DMACHCR_DM_INC | RCAR_DMACHCR_SM_INC
882 		     | RCAR_DMACHCR_RS_AUTO;
883 		xfer_size = RCAR_DMAC_MEMCPY_XFER_SIZE;
884 		break;
885 	}
886 
887 	desc->xfer_shift = ilog2(xfer_size);
888 	desc->chcr = chcr | chcr_ts[desc->xfer_shift];
889 }
890 
891 /*
892  * rcar_dmac_chan_prep_sg - prepare transfer descriptors from an SG list
893  *
894  * Common routine for public (MEMCPY) and slave DMA. The MEMCPY case is also
895  * converted to scatter-gather to guarantee consistent locking and a correct
896  * list manipulation. For slave DMA direction carries the usual meaning, and,
897  * logically, the SG list is RAM and the addr variable contains slave address,
898  * e.g., the FIFO I/O register. For MEMCPY direction equals DMA_MEM_TO_MEM
899  * and the SG list contains only one element and points at the source buffer.
900  */
901 static struct dma_async_tx_descriptor *
902 rcar_dmac_chan_prep_sg(struct rcar_dmac_chan *chan, struct scatterlist *sgl,
903 		       unsigned int sg_len, dma_addr_t dev_addr,
904 		       enum dma_transfer_direction dir, unsigned long dma_flags,
905 		       bool cyclic)
906 {
907 	struct rcar_dmac_xfer_chunk *chunk;
908 	struct rcar_dmac_desc *desc;
909 	struct scatterlist *sg;
910 	unsigned int nchunks = 0;
911 	unsigned int max_chunk_size;
912 	unsigned int full_size = 0;
913 	bool cross_boundary = false;
914 	unsigned int i;
915 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
916 	u32 high_dev_addr;
917 	u32 high_mem_addr;
918 #endif
919 
920 	desc = rcar_dmac_desc_get(chan);
921 	if (!desc)
922 		return NULL;
923 
924 	desc->async_tx.flags = dma_flags;
925 	desc->async_tx.cookie = -EBUSY;
926 
927 	desc->cyclic = cyclic;
928 	desc->direction = dir;
929 
930 	rcar_dmac_chan_configure_desc(chan, desc);
931 
932 	max_chunk_size = RCAR_DMATCR_MASK << desc->xfer_shift;
933 
934 	/*
935 	 * Allocate and fill the transfer chunk descriptors. We own the only
936 	 * reference to the DMA descriptor, there's no need for locking.
937 	 */
938 	for_each_sg(sgl, sg, sg_len, i) {
939 		dma_addr_t mem_addr = sg_dma_address(sg);
940 		unsigned int len = sg_dma_len(sg);
941 
942 		full_size += len;
943 
944 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
945 		if (i == 0) {
946 			high_dev_addr = dev_addr >> 32;
947 			high_mem_addr = mem_addr >> 32;
948 		}
949 
950 		if ((dev_addr >> 32 != high_dev_addr) ||
951 		    (mem_addr >> 32 != high_mem_addr))
952 			cross_boundary = true;
953 #endif
954 		while (len) {
955 			unsigned int size = min(len, max_chunk_size);
956 
957 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
958 			/*
959 			 * Prevent individual transfers from crossing 4GB
960 			 * boundaries.
961 			 */
962 			if (dev_addr >> 32 != (dev_addr + size - 1) >> 32) {
963 				size = ALIGN(dev_addr, 1ULL << 32) - dev_addr;
964 				cross_boundary = true;
965 			}
966 			if (mem_addr >> 32 != (mem_addr + size - 1) >> 32) {
967 				size = ALIGN(mem_addr, 1ULL << 32) - mem_addr;
968 				cross_boundary = true;
969 			}
970 #endif
971 
972 			chunk = rcar_dmac_xfer_chunk_get(chan);
973 			if (!chunk) {
974 				rcar_dmac_desc_put(chan, desc);
975 				return NULL;
976 			}
977 
978 			if (dir == DMA_DEV_TO_MEM) {
979 				chunk->src_addr = dev_addr;
980 				chunk->dst_addr = mem_addr;
981 			} else {
982 				chunk->src_addr = mem_addr;
983 				chunk->dst_addr = dev_addr;
984 			}
985 
986 			chunk->size = size;
987 
988 			dev_dbg(chan->chan.device->dev,
989 				"chan%u: chunk %p/%p sgl %u@%p, %u/%u %pad -> %pad\n",
990 				chan->index, chunk, desc, i, sg, size, len,
991 				&chunk->src_addr, &chunk->dst_addr);
992 
993 			mem_addr += size;
994 			if (dir == DMA_MEM_TO_MEM)
995 				dev_addr += size;
996 
997 			len -= size;
998 
999 			list_add_tail(&chunk->node, &desc->chunks);
1000 			nchunks++;
1001 		}
1002 	}
1003 
1004 	desc->nchunks = nchunks;
1005 	desc->size = full_size;
1006 
1007 	/*
1008 	 * Use hardware descriptor lists if possible when more than one chunk
1009 	 * needs to be transferred (otherwise they don't make much sense).
1010 	 *
1011 	 * Source/Destination address should be located in same 4GiB region
1012 	 * in the 40bit address space when it uses Hardware descriptor,
1013 	 * and cross_boundary is checking it.
1014 	 */
1015 	desc->hwdescs.use = !cross_boundary && nchunks > 1;
1016 	if (desc->hwdescs.use) {
1017 		if (rcar_dmac_fill_hwdesc(chan, desc) < 0)
1018 			desc->hwdescs.use = false;
1019 	}
1020 
1021 	return &desc->async_tx;
1022 }
1023 
1024 /* -----------------------------------------------------------------------------
1025  * DMA engine operations
1026  */
1027 
1028 static int rcar_dmac_alloc_chan_resources(struct dma_chan *chan)
1029 {
1030 	struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1031 	int ret;
1032 
1033 	INIT_LIST_HEAD(&rchan->desc.chunks_free);
1034 	INIT_LIST_HEAD(&rchan->desc.pages);
1035 
1036 	/* Preallocate descriptors. */
1037 	ret = rcar_dmac_xfer_chunk_alloc(rchan, GFP_KERNEL);
1038 	if (ret < 0)
1039 		return -ENOMEM;
1040 
1041 	ret = rcar_dmac_desc_alloc(rchan, GFP_KERNEL);
1042 	if (ret < 0)
1043 		return -ENOMEM;
1044 
1045 	return pm_runtime_get_sync(chan->device->dev);
1046 }
1047 
1048 static void rcar_dmac_free_chan_resources(struct dma_chan *chan)
1049 {
1050 	struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1051 	struct rcar_dmac *dmac = to_rcar_dmac(chan->device);
1052 	struct rcar_dmac_chan_map *map = &rchan->map;
1053 	struct rcar_dmac_desc_page *page, *_page;
1054 	struct rcar_dmac_desc *desc;
1055 	LIST_HEAD(list);
1056 
1057 	/* Protect against ISR */
1058 	spin_lock_irq(&rchan->lock);
1059 	rcar_dmac_chan_halt(rchan);
1060 	spin_unlock_irq(&rchan->lock);
1061 
1062 	/*
1063 	 * Now no new interrupts will occur, but one might already be
1064 	 * running. Wait for it to finish before freeing resources.
1065 	 */
1066 	synchronize_irq(rchan->irq);
1067 
1068 	if (rchan->mid_rid >= 0) {
1069 		/* The caller is holding dma_list_mutex */
1070 		clear_bit(rchan->mid_rid, dmac->modules);
1071 		rchan->mid_rid = -EINVAL;
1072 	}
1073 
1074 	list_splice_init(&rchan->desc.free, &list);
1075 	list_splice_init(&rchan->desc.pending, &list);
1076 	list_splice_init(&rchan->desc.active, &list);
1077 	list_splice_init(&rchan->desc.done, &list);
1078 	list_splice_init(&rchan->desc.wait, &list);
1079 
1080 	rchan->desc.running = NULL;
1081 
1082 	list_for_each_entry(desc, &list, node)
1083 		rcar_dmac_realloc_hwdesc(rchan, desc, 0);
1084 
1085 	list_for_each_entry_safe(page, _page, &rchan->desc.pages, node) {
1086 		list_del(&page->node);
1087 		free_page((unsigned long)page);
1088 	}
1089 
1090 	/* Remove slave mapping if present. */
1091 	if (map->slave.xfer_size) {
1092 		dma_unmap_resource(chan->device->dev, map->addr,
1093 				   map->slave.xfer_size, map->dir, 0);
1094 		map->slave.xfer_size = 0;
1095 	}
1096 
1097 	pm_runtime_put(chan->device->dev);
1098 }
1099 
1100 static struct dma_async_tx_descriptor *
1101 rcar_dmac_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dma_dest,
1102 			  dma_addr_t dma_src, size_t len, unsigned long flags)
1103 {
1104 	struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1105 	struct scatterlist sgl;
1106 
1107 	if (!len)
1108 		return NULL;
1109 
1110 	sg_init_table(&sgl, 1);
1111 	sg_set_page(&sgl, pfn_to_page(PFN_DOWN(dma_src)), len,
1112 		    offset_in_page(dma_src));
1113 	sg_dma_address(&sgl) = dma_src;
1114 	sg_dma_len(&sgl) = len;
1115 
1116 	return rcar_dmac_chan_prep_sg(rchan, &sgl, 1, dma_dest,
1117 				      DMA_MEM_TO_MEM, flags, false);
1118 }
1119 
1120 static int rcar_dmac_map_slave_addr(struct dma_chan *chan,
1121 				    enum dma_transfer_direction dir)
1122 {
1123 	struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1124 	struct rcar_dmac_chan_map *map = &rchan->map;
1125 	phys_addr_t dev_addr;
1126 	size_t dev_size;
1127 	enum dma_data_direction dev_dir;
1128 
1129 	if (dir == DMA_DEV_TO_MEM) {
1130 		dev_addr = rchan->src.slave_addr;
1131 		dev_size = rchan->src.xfer_size;
1132 		dev_dir = DMA_TO_DEVICE;
1133 	} else {
1134 		dev_addr = rchan->dst.slave_addr;
1135 		dev_size = rchan->dst.xfer_size;
1136 		dev_dir = DMA_FROM_DEVICE;
1137 	}
1138 
1139 	/* Reuse current map if possible. */
1140 	if (dev_addr == map->slave.slave_addr &&
1141 	    dev_size == map->slave.xfer_size &&
1142 	    dev_dir == map->dir)
1143 		return 0;
1144 
1145 	/* Remove old mapping if present. */
1146 	if (map->slave.xfer_size)
1147 		dma_unmap_resource(chan->device->dev, map->addr,
1148 				   map->slave.xfer_size, map->dir, 0);
1149 	map->slave.xfer_size = 0;
1150 
1151 	/* Create new slave address map. */
1152 	map->addr = dma_map_resource(chan->device->dev, dev_addr, dev_size,
1153 				     dev_dir, 0);
1154 
1155 	if (dma_mapping_error(chan->device->dev, map->addr)) {
1156 		dev_err(chan->device->dev,
1157 			"chan%u: failed to map %zx@%pap", rchan->index,
1158 			dev_size, &dev_addr);
1159 		return -EIO;
1160 	}
1161 
1162 	dev_dbg(chan->device->dev, "chan%u: map %zx@%pap to %pad dir: %s\n",
1163 		rchan->index, dev_size, &dev_addr, &map->addr,
1164 		dev_dir == DMA_TO_DEVICE ? "DMA_TO_DEVICE" : "DMA_FROM_DEVICE");
1165 
1166 	map->slave.slave_addr = dev_addr;
1167 	map->slave.xfer_size = dev_size;
1168 	map->dir = dev_dir;
1169 
1170 	return 0;
1171 }
1172 
1173 static struct dma_async_tx_descriptor *
1174 rcar_dmac_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
1175 			unsigned int sg_len, enum dma_transfer_direction dir,
1176 			unsigned long flags, void *context)
1177 {
1178 	struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1179 
1180 	/* Someone calling slave DMA on a generic channel? */
1181 	if (rchan->mid_rid < 0 || !sg_len || !sg_dma_len(sgl)) {
1182 		dev_warn(chan->device->dev,
1183 			 "%s: bad parameter: len=%d, id=%d\n",
1184 			 __func__, sg_len, rchan->mid_rid);
1185 		return NULL;
1186 	}
1187 
1188 	if (rcar_dmac_map_slave_addr(chan, dir))
1189 		return NULL;
1190 
1191 	return rcar_dmac_chan_prep_sg(rchan, sgl, sg_len, rchan->map.addr,
1192 				      dir, flags, false);
1193 }
1194 
1195 #define RCAR_DMAC_MAX_SG_LEN	32
1196 
1197 static struct dma_async_tx_descriptor *
1198 rcar_dmac_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t buf_addr,
1199 			  size_t buf_len, size_t period_len,
1200 			  enum dma_transfer_direction dir, unsigned long flags)
1201 {
1202 	struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1203 	struct dma_async_tx_descriptor *desc;
1204 	struct scatterlist *sgl;
1205 	unsigned int sg_len;
1206 	unsigned int i;
1207 
1208 	/* Someone calling slave DMA on a generic channel? */
1209 	if (rchan->mid_rid < 0 || buf_len < period_len) {
1210 		dev_warn(chan->device->dev,
1211 			"%s: bad parameter: buf_len=%zu, period_len=%zu, id=%d\n",
1212 			__func__, buf_len, period_len, rchan->mid_rid);
1213 		return NULL;
1214 	}
1215 
1216 	if (rcar_dmac_map_slave_addr(chan, dir))
1217 		return NULL;
1218 
1219 	sg_len = buf_len / period_len;
1220 	if (sg_len > RCAR_DMAC_MAX_SG_LEN) {
1221 		dev_err(chan->device->dev,
1222 			"chan%u: sg length %d exceds limit %d",
1223 			rchan->index, sg_len, RCAR_DMAC_MAX_SG_LEN);
1224 		return NULL;
1225 	}
1226 
1227 	/*
1228 	 * Allocate the sg list dynamically as it would consume too much stack
1229 	 * space.
1230 	 */
1231 	sgl = kcalloc(sg_len, sizeof(*sgl), GFP_NOWAIT);
1232 	if (!sgl)
1233 		return NULL;
1234 
1235 	sg_init_table(sgl, sg_len);
1236 
1237 	for (i = 0; i < sg_len; ++i) {
1238 		dma_addr_t src = buf_addr + (period_len * i);
1239 
1240 		sg_set_page(&sgl[i], pfn_to_page(PFN_DOWN(src)), period_len,
1241 			    offset_in_page(src));
1242 		sg_dma_address(&sgl[i]) = src;
1243 		sg_dma_len(&sgl[i]) = period_len;
1244 	}
1245 
1246 	desc = rcar_dmac_chan_prep_sg(rchan, sgl, sg_len, rchan->map.addr,
1247 				      dir, flags, true);
1248 
1249 	kfree(sgl);
1250 	return desc;
1251 }
1252 
1253 static int rcar_dmac_device_config(struct dma_chan *chan,
1254 				   struct dma_slave_config *cfg)
1255 {
1256 	struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1257 
1258 	/*
1259 	 * We could lock this, but you shouldn't be configuring the
1260 	 * channel, while using it...
1261 	 */
1262 	rchan->src.slave_addr = cfg->src_addr;
1263 	rchan->dst.slave_addr = cfg->dst_addr;
1264 	rchan->src.xfer_size = cfg->src_addr_width;
1265 	rchan->dst.xfer_size = cfg->dst_addr_width;
1266 
1267 	return 0;
1268 }
1269 
1270 static int rcar_dmac_chan_terminate_all(struct dma_chan *chan)
1271 {
1272 	struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1273 	unsigned long flags;
1274 
1275 	spin_lock_irqsave(&rchan->lock, flags);
1276 	rcar_dmac_chan_halt(rchan);
1277 	spin_unlock_irqrestore(&rchan->lock, flags);
1278 
1279 	/*
1280 	 * FIXME: No new interrupt can occur now, but the IRQ thread might still
1281 	 * be running.
1282 	 */
1283 
1284 	rcar_dmac_chan_reinit(rchan);
1285 
1286 	return 0;
1287 }
1288 
1289 static unsigned int rcar_dmac_chan_get_residue(struct rcar_dmac_chan *chan,
1290 					       dma_cookie_t cookie)
1291 {
1292 	struct rcar_dmac_desc *desc = chan->desc.running;
1293 	struct rcar_dmac_xfer_chunk *running = NULL;
1294 	struct rcar_dmac_xfer_chunk *chunk;
1295 	enum dma_status status;
1296 	unsigned int residue = 0;
1297 	unsigned int dptr = 0;
1298 	unsigned int chcrb;
1299 	unsigned int tcrb;
1300 	unsigned int i;
1301 
1302 	if (!desc)
1303 		return 0;
1304 
1305 	/*
1306 	 * If the cookie corresponds to a descriptor that has been completed
1307 	 * there is no residue. The same check has already been performed by the
1308 	 * caller but without holding the channel lock, so the descriptor could
1309 	 * now be complete.
1310 	 */
1311 	status = dma_cookie_status(&chan->chan, cookie, NULL);
1312 	if (status == DMA_COMPLETE)
1313 		return 0;
1314 
1315 	/*
1316 	 * If the cookie doesn't correspond to the currently running transfer
1317 	 * then the descriptor hasn't been processed yet, and the residue is
1318 	 * equal to the full descriptor size.
1319 	 * Also, a client driver is possible to call this function before
1320 	 * rcar_dmac_isr_channel_thread() runs. In this case, the "desc.running"
1321 	 * will be the next descriptor, and the done list will appear. So, if
1322 	 * the argument cookie matches the done list's cookie, we can assume
1323 	 * the residue is zero.
1324 	 */
1325 	if (cookie != desc->async_tx.cookie) {
1326 		list_for_each_entry(desc, &chan->desc.done, node) {
1327 			if (cookie == desc->async_tx.cookie)
1328 				return 0;
1329 		}
1330 		list_for_each_entry(desc, &chan->desc.pending, node) {
1331 			if (cookie == desc->async_tx.cookie)
1332 				return desc->size;
1333 		}
1334 		list_for_each_entry(desc, &chan->desc.active, node) {
1335 			if (cookie == desc->async_tx.cookie)
1336 				return desc->size;
1337 		}
1338 
1339 		/*
1340 		 * No descriptor found for the cookie, there's thus no residue.
1341 		 * This shouldn't happen if the calling driver passes a correct
1342 		 * cookie value.
1343 		 */
1344 		WARN(1, "No descriptor for cookie!");
1345 		return 0;
1346 	}
1347 
1348 	/*
1349 	 * We need to read two registers.
1350 	 * Make sure the control register does not skip to next chunk
1351 	 * while reading the counter.
1352 	 * Trying it 3 times should be enough: Initial read, retry, retry
1353 	 * for the paranoid.
1354 	 */
1355 	for (i = 0; i < 3; i++) {
1356 		chcrb = rcar_dmac_chan_read(chan, RCAR_DMACHCRB) &
1357 					    RCAR_DMACHCRB_DPTR_MASK;
1358 		tcrb = rcar_dmac_chan_read(chan, RCAR_DMATCRB);
1359 		/* Still the same? */
1360 		if (chcrb == (rcar_dmac_chan_read(chan, RCAR_DMACHCRB) &
1361 			      RCAR_DMACHCRB_DPTR_MASK))
1362 			break;
1363 	}
1364 	WARN_ONCE(i >= 3, "residue might be not continuous!");
1365 
1366 	/*
1367 	 * In descriptor mode the descriptor running pointer is not maintained
1368 	 * by the interrupt handler, find the running descriptor from the
1369 	 * descriptor pointer field in the CHCRB register. In non-descriptor
1370 	 * mode just use the running descriptor pointer.
1371 	 */
1372 	if (desc->hwdescs.use) {
1373 		dptr = chcrb >> RCAR_DMACHCRB_DPTR_SHIFT;
1374 		if (dptr == 0)
1375 			dptr = desc->nchunks;
1376 		dptr--;
1377 		WARN_ON(dptr >= desc->nchunks);
1378 	} else {
1379 		running = desc->running;
1380 	}
1381 
1382 	/* Compute the size of all chunks still to be transferred. */
1383 	list_for_each_entry_reverse(chunk, &desc->chunks, node) {
1384 		if (chunk == running || ++dptr == desc->nchunks)
1385 			break;
1386 
1387 		residue += chunk->size;
1388 	}
1389 
1390 	/* Add the residue for the current chunk. */
1391 	residue += tcrb << desc->xfer_shift;
1392 
1393 	return residue;
1394 }
1395 
1396 static enum dma_status rcar_dmac_tx_status(struct dma_chan *chan,
1397 					   dma_cookie_t cookie,
1398 					   struct dma_tx_state *txstate)
1399 {
1400 	struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1401 	enum dma_status status;
1402 	unsigned long flags;
1403 	unsigned int residue;
1404 	bool cyclic;
1405 
1406 	status = dma_cookie_status(chan, cookie, txstate);
1407 	if (status == DMA_COMPLETE || !txstate)
1408 		return status;
1409 
1410 	spin_lock_irqsave(&rchan->lock, flags);
1411 	residue = rcar_dmac_chan_get_residue(rchan, cookie);
1412 	cyclic = rchan->desc.running ? rchan->desc.running->cyclic : false;
1413 	spin_unlock_irqrestore(&rchan->lock, flags);
1414 
1415 	/* if there's no residue, the cookie is complete */
1416 	if (!residue && !cyclic)
1417 		return DMA_COMPLETE;
1418 
1419 	dma_set_residue(txstate, residue);
1420 
1421 	return status;
1422 }
1423 
1424 static void rcar_dmac_issue_pending(struct dma_chan *chan)
1425 {
1426 	struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1427 	unsigned long flags;
1428 
1429 	spin_lock_irqsave(&rchan->lock, flags);
1430 
1431 	if (list_empty(&rchan->desc.pending))
1432 		goto done;
1433 
1434 	/* Append the pending list to the active list. */
1435 	list_splice_tail_init(&rchan->desc.pending, &rchan->desc.active);
1436 
1437 	/*
1438 	 * If no transfer is running pick the first descriptor from the active
1439 	 * list and start the transfer.
1440 	 */
1441 	if (!rchan->desc.running) {
1442 		struct rcar_dmac_desc *desc;
1443 
1444 		desc = list_first_entry(&rchan->desc.active,
1445 					struct rcar_dmac_desc, node);
1446 		rchan->desc.running = desc;
1447 
1448 		rcar_dmac_chan_start_xfer(rchan);
1449 	}
1450 
1451 done:
1452 	spin_unlock_irqrestore(&rchan->lock, flags);
1453 }
1454 
1455 static void rcar_dmac_device_synchronize(struct dma_chan *chan)
1456 {
1457 	struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1458 
1459 	synchronize_irq(rchan->irq);
1460 }
1461 
1462 /* -----------------------------------------------------------------------------
1463  * IRQ handling
1464  */
1465 
1466 static irqreturn_t rcar_dmac_isr_desc_stage_end(struct rcar_dmac_chan *chan)
1467 {
1468 	struct rcar_dmac_desc *desc = chan->desc.running;
1469 	unsigned int stage;
1470 
1471 	if (WARN_ON(!desc || !desc->cyclic)) {
1472 		/*
1473 		 * This should never happen, there should always be a running
1474 		 * cyclic descriptor when a descriptor stage end interrupt is
1475 		 * triggered. Warn and return.
1476 		 */
1477 		return IRQ_NONE;
1478 	}
1479 
1480 	/* Program the interrupt pointer to the next stage. */
1481 	stage = (rcar_dmac_chan_read(chan, RCAR_DMACHCRB) &
1482 		 RCAR_DMACHCRB_DPTR_MASK) >> RCAR_DMACHCRB_DPTR_SHIFT;
1483 	rcar_dmac_chan_write(chan, RCAR_DMADPCR, RCAR_DMADPCR_DIPT(stage));
1484 
1485 	return IRQ_WAKE_THREAD;
1486 }
1487 
1488 static irqreturn_t rcar_dmac_isr_transfer_end(struct rcar_dmac_chan *chan)
1489 {
1490 	struct rcar_dmac_desc *desc = chan->desc.running;
1491 	irqreturn_t ret = IRQ_WAKE_THREAD;
1492 
1493 	if (WARN_ON_ONCE(!desc)) {
1494 		/*
1495 		 * This should never happen, there should always be a running
1496 		 * descriptor when a transfer end interrupt is triggered. Warn
1497 		 * and return.
1498 		 */
1499 		return IRQ_NONE;
1500 	}
1501 
1502 	/*
1503 	 * The transfer end interrupt isn't generated for each chunk when using
1504 	 * descriptor mode. Only update the running chunk pointer in
1505 	 * non-descriptor mode.
1506 	 */
1507 	if (!desc->hwdescs.use) {
1508 		/*
1509 		 * If we haven't completed the last transfer chunk simply move
1510 		 * to the next one. Only wake the IRQ thread if the transfer is
1511 		 * cyclic.
1512 		 */
1513 		if (!list_is_last(&desc->running->node, &desc->chunks)) {
1514 			desc->running = list_next_entry(desc->running, node);
1515 			if (!desc->cyclic)
1516 				ret = IRQ_HANDLED;
1517 			goto done;
1518 		}
1519 
1520 		/*
1521 		 * We've completed the last transfer chunk. If the transfer is
1522 		 * cyclic, move back to the first one.
1523 		 */
1524 		if (desc->cyclic) {
1525 			desc->running =
1526 				list_first_entry(&desc->chunks,
1527 						 struct rcar_dmac_xfer_chunk,
1528 						 node);
1529 			goto done;
1530 		}
1531 	}
1532 
1533 	/* The descriptor is complete, move it to the done list. */
1534 	list_move_tail(&desc->node, &chan->desc.done);
1535 
1536 	/* Queue the next descriptor, if any. */
1537 	if (!list_empty(&chan->desc.active))
1538 		chan->desc.running = list_first_entry(&chan->desc.active,
1539 						      struct rcar_dmac_desc,
1540 						      node);
1541 	else
1542 		chan->desc.running = NULL;
1543 
1544 done:
1545 	if (chan->desc.running)
1546 		rcar_dmac_chan_start_xfer(chan);
1547 
1548 	return ret;
1549 }
1550 
1551 static irqreturn_t rcar_dmac_isr_channel(int irq, void *dev)
1552 {
1553 	u32 mask = RCAR_DMACHCR_DSE | RCAR_DMACHCR_TE;
1554 	struct rcar_dmac_chan *chan = dev;
1555 	irqreturn_t ret = IRQ_NONE;
1556 	bool reinit = false;
1557 	u32 chcr;
1558 
1559 	spin_lock(&chan->lock);
1560 
1561 	chcr = rcar_dmac_chan_read(chan, RCAR_DMACHCR);
1562 	if (chcr & RCAR_DMACHCR_CAE) {
1563 		struct rcar_dmac *dmac = to_rcar_dmac(chan->chan.device);
1564 
1565 		/*
1566 		 * We don't need to call rcar_dmac_chan_halt()
1567 		 * because channel is already stopped in error case.
1568 		 * We need to clear register and check DE bit as recovery.
1569 		 */
1570 		rcar_dmac_write(dmac, RCAR_DMACHCLR, 1 << chan->index);
1571 		rcar_dmac_chcr_de_barrier(chan);
1572 		reinit = true;
1573 		goto spin_lock_end;
1574 	}
1575 
1576 	if (chcr & RCAR_DMACHCR_TE)
1577 		mask |= RCAR_DMACHCR_DE;
1578 	rcar_dmac_chan_write(chan, RCAR_DMACHCR, chcr & ~mask);
1579 	if (mask & RCAR_DMACHCR_DE)
1580 		rcar_dmac_chcr_de_barrier(chan);
1581 
1582 	if (chcr & RCAR_DMACHCR_DSE)
1583 		ret |= rcar_dmac_isr_desc_stage_end(chan);
1584 
1585 	if (chcr & RCAR_DMACHCR_TE)
1586 		ret |= rcar_dmac_isr_transfer_end(chan);
1587 
1588 spin_lock_end:
1589 	spin_unlock(&chan->lock);
1590 
1591 	if (reinit) {
1592 		dev_err(chan->chan.device->dev, "Channel Address Error\n");
1593 
1594 		rcar_dmac_chan_reinit(chan);
1595 		ret = IRQ_HANDLED;
1596 	}
1597 
1598 	return ret;
1599 }
1600 
1601 static irqreturn_t rcar_dmac_isr_channel_thread(int irq, void *dev)
1602 {
1603 	struct rcar_dmac_chan *chan = dev;
1604 	struct rcar_dmac_desc *desc;
1605 	struct dmaengine_desc_callback cb;
1606 
1607 	spin_lock_irq(&chan->lock);
1608 
1609 	/* For cyclic transfers notify the user after every chunk. */
1610 	if (chan->desc.running && chan->desc.running->cyclic) {
1611 		desc = chan->desc.running;
1612 		dmaengine_desc_get_callback(&desc->async_tx, &cb);
1613 
1614 		if (dmaengine_desc_callback_valid(&cb)) {
1615 			spin_unlock_irq(&chan->lock);
1616 			dmaengine_desc_callback_invoke(&cb, NULL);
1617 			spin_lock_irq(&chan->lock);
1618 		}
1619 	}
1620 
1621 	/*
1622 	 * Call the callback function for all descriptors on the done list and
1623 	 * move them to the ack wait list.
1624 	 */
1625 	while (!list_empty(&chan->desc.done)) {
1626 		desc = list_first_entry(&chan->desc.done, struct rcar_dmac_desc,
1627 					node);
1628 		dma_cookie_complete(&desc->async_tx);
1629 		list_del(&desc->node);
1630 
1631 		dmaengine_desc_get_callback(&desc->async_tx, &cb);
1632 		if (dmaengine_desc_callback_valid(&cb)) {
1633 			spin_unlock_irq(&chan->lock);
1634 			/*
1635 			 * We own the only reference to this descriptor, we can
1636 			 * safely dereference it without holding the channel
1637 			 * lock.
1638 			 */
1639 			dmaengine_desc_callback_invoke(&cb, NULL);
1640 			spin_lock_irq(&chan->lock);
1641 		}
1642 
1643 		list_add_tail(&desc->node, &chan->desc.wait);
1644 	}
1645 
1646 	spin_unlock_irq(&chan->lock);
1647 
1648 	/* Recycle all acked descriptors. */
1649 	rcar_dmac_desc_recycle_acked(chan);
1650 
1651 	return IRQ_HANDLED;
1652 }
1653 
1654 /* -----------------------------------------------------------------------------
1655  * OF xlate and channel filter
1656  */
1657 
1658 static bool rcar_dmac_chan_filter(struct dma_chan *chan, void *arg)
1659 {
1660 	struct rcar_dmac *dmac = to_rcar_dmac(chan->device);
1661 	struct of_phandle_args *dma_spec = arg;
1662 
1663 	/*
1664 	 * FIXME: Using a filter on OF platforms is a nonsense. The OF xlate
1665 	 * function knows from which device it wants to allocate a channel from,
1666 	 * and would be perfectly capable of selecting the channel it wants.
1667 	 * Forcing it to call dma_request_channel() and iterate through all
1668 	 * channels from all controllers is just pointless.
1669 	 */
1670 	if (chan->device->device_config != rcar_dmac_device_config)
1671 		return false;
1672 
1673 	return !test_and_set_bit(dma_spec->args[0], dmac->modules);
1674 }
1675 
1676 static struct dma_chan *rcar_dmac_of_xlate(struct of_phandle_args *dma_spec,
1677 					   struct of_dma *ofdma)
1678 {
1679 	struct rcar_dmac_chan *rchan;
1680 	struct dma_chan *chan;
1681 	dma_cap_mask_t mask;
1682 
1683 	if (dma_spec->args_count != 1)
1684 		return NULL;
1685 
1686 	/* Only slave DMA channels can be allocated via DT */
1687 	dma_cap_zero(mask);
1688 	dma_cap_set(DMA_SLAVE, mask);
1689 
1690 	chan = __dma_request_channel(&mask, rcar_dmac_chan_filter, dma_spec,
1691 				     ofdma->of_node);
1692 	if (!chan)
1693 		return NULL;
1694 
1695 	rchan = to_rcar_dmac_chan(chan);
1696 	rchan->mid_rid = dma_spec->args[0];
1697 
1698 	return chan;
1699 }
1700 
1701 /* -----------------------------------------------------------------------------
1702  * Power management
1703  */
1704 
1705 #ifdef CONFIG_PM
1706 static int rcar_dmac_runtime_suspend(struct device *dev)
1707 {
1708 	return 0;
1709 }
1710 
1711 static int rcar_dmac_runtime_resume(struct device *dev)
1712 {
1713 	struct rcar_dmac *dmac = dev_get_drvdata(dev);
1714 
1715 	return rcar_dmac_init(dmac);
1716 }
1717 #endif
1718 
1719 static const struct dev_pm_ops rcar_dmac_pm = {
1720 	/*
1721 	 * TODO for system sleep/resume:
1722 	 *   - Wait for the current transfer to complete and stop the device,
1723 	 *   - Resume transfers, if any.
1724 	 */
1725 	SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
1726 				      pm_runtime_force_resume)
1727 	SET_RUNTIME_PM_OPS(rcar_dmac_runtime_suspend, rcar_dmac_runtime_resume,
1728 			   NULL)
1729 };
1730 
1731 /* -----------------------------------------------------------------------------
1732  * Probe and remove
1733  */
1734 
1735 static int rcar_dmac_chan_probe(struct rcar_dmac *dmac,
1736 				struct rcar_dmac_chan *rchan,
1737 				const struct rcar_dmac_of_data *data,
1738 				unsigned int index)
1739 {
1740 	struct platform_device *pdev = to_platform_device(dmac->dev);
1741 	struct dma_chan *chan = &rchan->chan;
1742 	char pdev_irqname[5];
1743 	char *irqname;
1744 	int ret;
1745 
1746 	rchan->index = index;
1747 	rchan->iomem = dmac->iomem + data->chan_offset_base +
1748 		       data->chan_offset_stride * index;
1749 	rchan->mid_rid = -EINVAL;
1750 
1751 	spin_lock_init(&rchan->lock);
1752 
1753 	INIT_LIST_HEAD(&rchan->desc.free);
1754 	INIT_LIST_HEAD(&rchan->desc.pending);
1755 	INIT_LIST_HEAD(&rchan->desc.active);
1756 	INIT_LIST_HEAD(&rchan->desc.done);
1757 	INIT_LIST_HEAD(&rchan->desc.wait);
1758 
1759 	/* Request the channel interrupt. */
1760 	sprintf(pdev_irqname, "ch%u", index);
1761 	rchan->irq = platform_get_irq_byname(pdev, pdev_irqname);
1762 	if (rchan->irq < 0)
1763 		return -ENODEV;
1764 
1765 	irqname = devm_kasprintf(dmac->dev, GFP_KERNEL, "%s:%u",
1766 				 dev_name(dmac->dev), index);
1767 	if (!irqname)
1768 		return -ENOMEM;
1769 
1770 	/*
1771 	 * Initialize the DMA engine channel and add it to the DMA engine
1772 	 * channels list.
1773 	 */
1774 	chan->device = &dmac->engine;
1775 	dma_cookie_init(chan);
1776 
1777 	list_add_tail(&chan->device_node, &dmac->engine.channels);
1778 
1779 	ret = devm_request_threaded_irq(dmac->dev, rchan->irq,
1780 					rcar_dmac_isr_channel,
1781 					rcar_dmac_isr_channel_thread, 0,
1782 					irqname, rchan);
1783 	if (ret) {
1784 		dev_err(dmac->dev, "failed to request IRQ %u (%d)\n",
1785 			rchan->irq, ret);
1786 		return ret;
1787 	}
1788 
1789 	return 0;
1790 }
1791 
1792 #define RCAR_DMAC_MAX_CHANNELS	32
1793 
1794 static int rcar_dmac_parse_of(struct device *dev, struct rcar_dmac *dmac)
1795 {
1796 	struct device_node *np = dev->of_node;
1797 	int ret;
1798 
1799 	ret = of_property_read_u32(np, "dma-channels", &dmac->n_channels);
1800 	if (ret < 0) {
1801 		dev_err(dev, "unable to read dma-channels property\n");
1802 		return ret;
1803 	}
1804 
1805 	/* The hardware and driver don't support more than 32 bits in CHCLR */
1806 	if (dmac->n_channels <= 0 ||
1807 	    dmac->n_channels >= RCAR_DMAC_MAX_CHANNELS) {
1808 		dev_err(dev, "invalid number of channels %u\n",
1809 			dmac->n_channels);
1810 		return -EINVAL;
1811 	}
1812 
1813 	/*
1814 	 * If the driver is unable to read dma-channel-mask property,
1815 	 * the driver assumes that it can use all channels.
1816 	 */
1817 	dmac->channels_mask = GENMASK(dmac->n_channels - 1, 0);
1818 	of_property_read_u32(np, "dma-channel-mask", &dmac->channels_mask);
1819 
1820 	/* If the property has out-of-channel mask, this driver clears it */
1821 	dmac->channels_mask &= GENMASK(dmac->n_channels - 1, 0);
1822 
1823 	return 0;
1824 }
1825 
1826 static int rcar_dmac_probe(struct platform_device *pdev)
1827 {
1828 	const enum dma_slave_buswidth widths = DMA_SLAVE_BUSWIDTH_1_BYTE |
1829 		DMA_SLAVE_BUSWIDTH_2_BYTES | DMA_SLAVE_BUSWIDTH_4_BYTES |
1830 		DMA_SLAVE_BUSWIDTH_8_BYTES | DMA_SLAVE_BUSWIDTH_16_BYTES |
1831 		DMA_SLAVE_BUSWIDTH_32_BYTES | DMA_SLAVE_BUSWIDTH_64_BYTES;
1832 	struct dma_device *engine;
1833 	struct rcar_dmac *dmac;
1834 	const struct rcar_dmac_of_data *data;
1835 	unsigned int i;
1836 	int ret;
1837 
1838 	data = of_device_get_match_data(&pdev->dev);
1839 	if (!data)
1840 		return -EINVAL;
1841 
1842 	dmac = devm_kzalloc(&pdev->dev, sizeof(*dmac), GFP_KERNEL);
1843 	if (!dmac)
1844 		return -ENOMEM;
1845 
1846 	dmac->dev = &pdev->dev;
1847 	platform_set_drvdata(pdev, dmac);
1848 	dmac->dev->dma_parms = &dmac->parms;
1849 	dma_set_max_seg_size(dmac->dev, RCAR_DMATCR_MASK);
1850 	dma_set_mask_and_coherent(dmac->dev, DMA_BIT_MASK(40));
1851 
1852 	ret = rcar_dmac_parse_of(&pdev->dev, dmac);
1853 	if (ret < 0)
1854 		return ret;
1855 
1856 	/*
1857 	 * A still unconfirmed hardware bug prevents the IPMMU microTLB 0 to be
1858 	 * flushed correctly, resulting in memory corruption. DMAC 0 channel 0
1859 	 * is connected to microTLB 0 on currently supported platforms, so we
1860 	 * can't use it with the IPMMU. As the IOMMU API operates at the device
1861 	 * level we can't disable it selectively, so ignore channel 0 for now if
1862 	 * the device is part of an IOMMU group.
1863 	 */
1864 	if (device_iommu_mapped(&pdev->dev))
1865 		dmac->channels_mask &= ~BIT(0);
1866 
1867 	dmac->channels = devm_kcalloc(&pdev->dev, dmac->n_channels,
1868 				      sizeof(*dmac->channels), GFP_KERNEL);
1869 	if (!dmac->channels)
1870 		return -ENOMEM;
1871 
1872 	/* Request resources. */
1873 	dmac->iomem = devm_platform_ioremap_resource(pdev, 0);
1874 	if (IS_ERR(dmac->iomem))
1875 		return PTR_ERR(dmac->iomem);
1876 
1877 	/* Enable runtime PM and initialize the device. */
1878 	pm_runtime_enable(&pdev->dev);
1879 	ret = pm_runtime_get_sync(&pdev->dev);
1880 	if (ret < 0) {
1881 		dev_err(&pdev->dev, "runtime PM get sync failed (%d)\n", ret);
1882 		return ret;
1883 	}
1884 
1885 	ret = rcar_dmac_init(dmac);
1886 	pm_runtime_put(&pdev->dev);
1887 
1888 	if (ret) {
1889 		dev_err(&pdev->dev, "failed to reset device\n");
1890 		goto error;
1891 	}
1892 
1893 	/* Initialize engine */
1894 	engine = &dmac->engine;
1895 
1896 	dma_cap_set(DMA_MEMCPY, engine->cap_mask);
1897 	dma_cap_set(DMA_SLAVE, engine->cap_mask);
1898 
1899 	engine->dev		= &pdev->dev;
1900 	engine->copy_align	= ilog2(RCAR_DMAC_MEMCPY_XFER_SIZE);
1901 
1902 	engine->src_addr_widths	= widths;
1903 	engine->dst_addr_widths	= widths;
1904 	engine->directions	= BIT(DMA_MEM_TO_DEV) | BIT(DMA_DEV_TO_MEM);
1905 	engine->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1906 
1907 	engine->device_alloc_chan_resources	= rcar_dmac_alloc_chan_resources;
1908 	engine->device_free_chan_resources	= rcar_dmac_free_chan_resources;
1909 	engine->device_prep_dma_memcpy		= rcar_dmac_prep_dma_memcpy;
1910 	engine->device_prep_slave_sg		= rcar_dmac_prep_slave_sg;
1911 	engine->device_prep_dma_cyclic		= rcar_dmac_prep_dma_cyclic;
1912 	engine->device_config			= rcar_dmac_device_config;
1913 	engine->device_pause			= rcar_dmac_chan_pause;
1914 	engine->device_terminate_all		= rcar_dmac_chan_terminate_all;
1915 	engine->device_tx_status		= rcar_dmac_tx_status;
1916 	engine->device_issue_pending		= rcar_dmac_issue_pending;
1917 	engine->device_synchronize		= rcar_dmac_device_synchronize;
1918 
1919 	INIT_LIST_HEAD(&engine->channels);
1920 
1921 	for (i = 0; i < dmac->n_channels; ++i) {
1922 		if (!(dmac->channels_mask & BIT(i)))
1923 			continue;
1924 
1925 		ret = rcar_dmac_chan_probe(dmac, &dmac->channels[i], data, i);
1926 		if (ret < 0)
1927 			goto error;
1928 	}
1929 
1930 	/* Register the DMAC as a DMA provider for DT. */
1931 	ret = of_dma_controller_register(pdev->dev.of_node, rcar_dmac_of_xlate,
1932 					 NULL);
1933 	if (ret < 0)
1934 		goto error;
1935 
1936 	/*
1937 	 * Register the DMA engine device.
1938 	 *
1939 	 * Default transfer size of 32 bytes requires 32-byte alignment.
1940 	 */
1941 	ret = dma_async_device_register(engine);
1942 	if (ret < 0)
1943 		goto error;
1944 
1945 	return 0;
1946 
1947 error:
1948 	of_dma_controller_free(pdev->dev.of_node);
1949 	pm_runtime_disable(&pdev->dev);
1950 	return ret;
1951 }
1952 
1953 static int rcar_dmac_remove(struct platform_device *pdev)
1954 {
1955 	struct rcar_dmac *dmac = platform_get_drvdata(pdev);
1956 
1957 	of_dma_controller_free(pdev->dev.of_node);
1958 	dma_async_device_unregister(&dmac->engine);
1959 
1960 	pm_runtime_disable(&pdev->dev);
1961 
1962 	return 0;
1963 }
1964 
1965 static void rcar_dmac_shutdown(struct platform_device *pdev)
1966 {
1967 	struct rcar_dmac *dmac = platform_get_drvdata(pdev);
1968 
1969 	rcar_dmac_stop_all_chan(dmac);
1970 }
1971 
1972 static const struct rcar_dmac_of_data rcar_dmac_data = {
1973 	.chan_offset_base = 0x8000,
1974 	.chan_offset_stride = 0x80,
1975 };
1976 
1977 static const struct of_device_id rcar_dmac_of_ids[] = {
1978 	{
1979 		.compatible = "renesas,rcar-dmac",
1980 		.data = &rcar_dmac_data,
1981 	},
1982 	{ /* Sentinel */ }
1983 };
1984 MODULE_DEVICE_TABLE(of, rcar_dmac_of_ids);
1985 
1986 static struct platform_driver rcar_dmac_driver = {
1987 	.driver		= {
1988 		.pm	= &rcar_dmac_pm,
1989 		.name	= "rcar-dmac",
1990 		.of_match_table = rcar_dmac_of_ids,
1991 	},
1992 	.probe		= rcar_dmac_probe,
1993 	.remove		= rcar_dmac_remove,
1994 	.shutdown	= rcar_dmac_shutdown,
1995 };
1996 
1997 module_platform_driver(rcar_dmac_driver);
1998 
1999 MODULE_DESCRIPTION("R-Car Gen2 DMA Controller Driver");
2000 MODULE_AUTHOR("Laurent Pinchart <laurent.pinchart@ideasonboard.com>");
2001 MODULE_LICENSE("GPL v2");
2002