xref: /linux/drivers/dma/stm32-dma.c (revision 44f57d78)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Driver for STM32 DMA controller
4  *
5  * Inspired by dma-jz4740.c and tegra20-apb-dma.c
6  *
7  * Copyright (C) M'boumba Cedric Madianga 2015
8  * Author: M'boumba Cedric Madianga <cedric.madianga@gmail.com>
9  *         Pierre-Yves Mordret <pierre-yves.mordret@st.com>
10  */
11 
12 #include <linux/clk.h>
13 #include <linux/delay.h>
14 #include <linux/dmaengine.h>
15 #include <linux/dma-mapping.h>
16 #include <linux/err.h>
17 #include <linux/init.h>
18 #include <linux/jiffies.h>
19 #include <linux/list.h>
20 #include <linux/module.h>
21 #include <linux/of.h>
22 #include <linux/of_device.h>
23 #include <linux/of_dma.h>
24 #include <linux/platform_device.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/reset.h>
27 #include <linux/sched.h>
28 #include <linux/slab.h>
29 
30 #include "virt-dma.h"
31 
32 #define STM32_DMA_LISR			0x0000 /* DMA Low Int Status Reg */
33 #define STM32_DMA_HISR			0x0004 /* DMA High Int Status Reg */
34 #define STM32_DMA_LIFCR			0x0008 /* DMA Low Int Flag Clear Reg */
35 #define STM32_DMA_HIFCR			0x000c /* DMA High Int Flag Clear Reg */
36 #define STM32_DMA_TCI			BIT(5) /* Transfer Complete Interrupt */
37 #define STM32_DMA_HTI			BIT(4) /* Half Transfer Interrupt */
38 #define STM32_DMA_TEI			BIT(3) /* Transfer Error Interrupt */
39 #define STM32_DMA_DMEI			BIT(2) /* Direct Mode Error Interrupt */
40 #define STM32_DMA_FEI			BIT(0) /* FIFO Error Interrupt */
41 #define STM32_DMA_MASKI			(STM32_DMA_TCI \
42 					 | STM32_DMA_TEI \
43 					 | STM32_DMA_DMEI \
44 					 | STM32_DMA_FEI)
45 
46 /* DMA Stream x Configuration Register */
47 #define STM32_DMA_SCR(x)		(0x0010 + 0x18 * (x)) /* x = 0..7 */
48 #define STM32_DMA_SCR_REQ(n)		((n & 0x7) << 25)
49 #define STM32_DMA_SCR_MBURST_MASK	GENMASK(24, 23)
50 #define STM32_DMA_SCR_MBURST(n)	        ((n & 0x3) << 23)
51 #define STM32_DMA_SCR_PBURST_MASK	GENMASK(22, 21)
52 #define STM32_DMA_SCR_PBURST(n)	        ((n & 0x3) << 21)
53 #define STM32_DMA_SCR_PL_MASK		GENMASK(17, 16)
54 #define STM32_DMA_SCR_PL(n)		((n & 0x3) << 16)
55 #define STM32_DMA_SCR_MSIZE_MASK	GENMASK(14, 13)
56 #define STM32_DMA_SCR_MSIZE(n)		((n & 0x3) << 13)
57 #define STM32_DMA_SCR_PSIZE_MASK	GENMASK(12, 11)
58 #define STM32_DMA_SCR_PSIZE(n)		((n & 0x3) << 11)
59 #define STM32_DMA_SCR_PSIZE_GET(n)	((n & STM32_DMA_SCR_PSIZE_MASK) >> 11)
60 #define STM32_DMA_SCR_DIR_MASK		GENMASK(7, 6)
61 #define STM32_DMA_SCR_DIR(n)		((n & 0x3) << 6)
62 #define STM32_DMA_SCR_CT		BIT(19) /* Target in double buffer */
63 #define STM32_DMA_SCR_DBM		BIT(18) /* Double Buffer Mode */
64 #define STM32_DMA_SCR_PINCOS		BIT(15) /* Peripheral inc offset size */
65 #define STM32_DMA_SCR_MINC		BIT(10) /* Memory increment mode */
66 #define STM32_DMA_SCR_PINC		BIT(9) /* Peripheral increment mode */
67 #define STM32_DMA_SCR_CIRC		BIT(8) /* Circular mode */
68 #define STM32_DMA_SCR_PFCTRL		BIT(5) /* Peripheral Flow Controller */
69 #define STM32_DMA_SCR_TCIE		BIT(4) /* Transfer Complete Int Enable
70 						*/
71 #define STM32_DMA_SCR_TEIE		BIT(2) /* Transfer Error Int Enable */
72 #define STM32_DMA_SCR_DMEIE		BIT(1) /* Direct Mode Err Int Enable */
73 #define STM32_DMA_SCR_EN		BIT(0) /* Stream Enable */
74 #define STM32_DMA_SCR_CFG_MASK		(STM32_DMA_SCR_PINC \
75 					| STM32_DMA_SCR_MINC \
76 					| STM32_DMA_SCR_PINCOS \
77 					| STM32_DMA_SCR_PL_MASK)
78 #define STM32_DMA_SCR_IRQ_MASK		(STM32_DMA_SCR_TCIE \
79 					| STM32_DMA_SCR_TEIE \
80 					| STM32_DMA_SCR_DMEIE)
81 
82 /* DMA Stream x number of data register */
83 #define STM32_DMA_SNDTR(x)		(0x0014 + 0x18 * (x))
84 
85 /* DMA stream peripheral address register */
86 #define STM32_DMA_SPAR(x)		(0x0018 + 0x18 * (x))
87 
88 /* DMA stream x memory 0 address register */
89 #define STM32_DMA_SM0AR(x)		(0x001c + 0x18 * (x))
90 
91 /* DMA stream x memory 1 address register */
92 #define STM32_DMA_SM1AR(x)		(0x0020 + 0x18 * (x))
93 
94 /* DMA stream x FIFO control register */
95 #define STM32_DMA_SFCR(x)		(0x0024 + 0x18 * (x))
96 #define STM32_DMA_SFCR_FTH_MASK		GENMASK(1, 0)
97 #define STM32_DMA_SFCR_FTH(n)		(n & STM32_DMA_SFCR_FTH_MASK)
98 #define STM32_DMA_SFCR_FEIE		BIT(7) /* FIFO error interrupt enable */
99 #define STM32_DMA_SFCR_DMDIS		BIT(2) /* Direct mode disable */
100 #define STM32_DMA_SFCR_MASK		(STM32_DMA_SFCR_FEIE \
101 					| STM32_DMA_SFCR_DMDIS)
102 
103 /* DMA direction */
104 #define STM32_DMA_DEV_TO_MEM		0x00
105 #define	STM32_DMA_MEM_TO_DEV		0x01
106 #define	STM32_DMA_MEM_TO_MEM		0x02
107 
108 /* DMA priority level */
109 #define STM32_DMA_PRIORITY_LOW		0x00
110 #define STM32_DMA_PRIORITY_MEDIUM	0x01
111 #define STM32_DMA_PRIORITY_HIGH		0x02
112 #define STM32_DMA_PRIORITY_VERY_HIGH	0x03
113 
114 /* DMA FIFO threshold selection */
115 #define STM32_DMA_FIFO_THRESHOLD_1QUARTERFULL		0x00
116 #define STM32_DMA_FIFO_THRESHOLD_HALFFULL		0x01
117 #define STM32_DMA_FIFO_THRESHOLD_3QUARTERSFULL		0x02
118 #define STM32_DMA_FIFO_THRESHOLD_FULL			0x03
119 
120 #define STM32_DMA_MAX_DATA_ITEMS	0xffff
121 /*
122  * Valid transfer starts from @0 to @0xFFFE leading to unaligned scatter
123  * gather at boundary. Thus it's safer to round down this value on FIFO
124  * size (16 Bytes)
125  */
126 #define STM32_DMA_ALIGNED_MAX_DATA_ITEMS	\
127 	ALIGN_DOWN(STM32_DMA_MAX_DATA_ITEMS, 16)
128 #define STM32_DMA_MAX_CHANNELS		0x08
129 #define STM32_DMA_MAX_REQUEST_ID	0x08
130 #define STM32_DMA_MAX_DATA_PARAM	0x03
131 #define STM32_DMA_FIFO_SIZE		16	/* FIFO is 16 bytes */
132 #define STM32_DMA_MIN_BURST		4
133 #define STM32_DMA_MAX_BURST		16
134 
135 /* DMA Features */
136 #define STM32_DMA_THRESHOLD_FTR_MASK	GENMASK(1, 0)
137 #define STM32_DMA_THRESHOLD_FTR_GET(n)	((n) & STM32_DMA_THRESHOLD_FTR_MASK)
138 
139 enum stm32_dma_width {
140 	STM32_DMA_BYTE,
141 	STM32_DMA_HALF_WORD,
142 	STM32_DMA_WORD,
143 };
144 
145 enum stm32_dma_burst_size {
146 	STM32_DMA_BURST_SINGLE,
147 	STM32_DMA_BURST_INCR4,
148 	STM32_DMA_BURST_INCR8,
149 	STM32_DMA_BURST_INCR16,
150 };
151 
152 /**
153  * struct stm32_dma_cfg - STM32 DMA custom configuration
154  * @channel_id: channel ID
155  * @request_line: DMA request
156  * @stream_config: 32bit mask specifying the DMA channel configuration
157  * @features: 32bit mask specifying the DMA Feature list
158  */
159 struct stm32_dma_cfg {
160 	u32 channel_id;
161 	u32 request_line;
162 	u32 stream_config;
163 	u32 features;
164 };
165 
166 struct stm32_dma_chan_reg {
167 	u32 dma_lisr;
168 	u32 dma_hisr;
169 	u32 dma_lifcr;
170 	u32 dma_hifcr;
171 	u32 dma_scr;
172 	u32 dma_sndtr;
173 	u32 dma_spar;
174 	u32 dma_sm0ar;
175 	u32 dma_sm1ar;
176 	u32 dma_sfcr;
177 };
178 
179 struct stm32_dma_sg_req {
180 	u32 len;
181 	struct stm32_dma_chan_reg chan_reg;
182 };
183 
184 struct stm32_dma_desc {
185 	struct virt_dma_desc vdesc;
186 	bool cyclic;
187 	u32 num_sgs;
188 	struct stm32_dma_sg_req sg_req[];
189 };
190 
191 struct stm32_dma_chan {
192 	struct virt_dma_chan vchan;
193 	bool config_init;
194 	bool busy;
195 	u32 id;
196 	u32 irq;
197 	struct stm32_dma_desc *desc;
198 	u32 next_sg;
199 	struct dma_slave_config	dma_sconfig;
200 	struct stm32_dma_chan_reg chan_reg;
201 	u32 threshold;
202 	u32 mem_burst;
203 	u32 mem_width;
204 };
205 
206 struct stm32_dma_device {
207 	struct dma_device ddev;
208 	void __iomem *base;
209 	struct clk *clk;
210 	struct reset_control *rst;
211 	bool mem2mem;
212 	struct stm32_dma_chan chan[STM32_DMA_MAX_CHANNELS];
213 };
214 
215 static struct stm32_dma_device *stm32_dma_get_dev(struct stm32_dma_chan *chan)
216 {
217 	return container_of(chan->vchan.chan.device, struct stm32_dma_device,
218 			    ddev);
219 }
220 
221 static struct stm32_dma_chan *to_stm32_dma_chan(struct dma_chan *c)
222 {
223 	return container_of(c, struct stm32_dma_chan, vchan.chan);
224 }
225 
226 static struct stm32_dma_desc *to_stm32_dma_desc(struct virt_dma_desc *vdesc)
227 {
228 	return container_of(vdesc, struct stm32_dma_desc, vdesc);
229 }
230 
231 static struct device *chan2dev(struct stm32_dma_chan *chan)
232 {
233 	return &chan->vchan.chan.dev->device;
234 }
235 
236 static u32 stm32_dma_read(struct stm32_dma_device *dmadev, u32 reg)
237 {
238 	return readl_relaxed(dmadev->base + reg);
239 }
240 
241 static void stm32_dma_write(struct stm32_dma_device *dmadev, u32 reg, u32 val)
242 {
243 	writel_relaxed(val, dmadev->base + reg);
244 }
245 
246 static struct stm32_dma_desc *stm32_dma_alloc_desc(u32 num_sgs)
247 {
248 	return kzalloc(sizeof(struct stm32_dma_desc) +
249 		       sizeof(struct stm32_dma_sg_req) * num_sgs, GFP_NOWAIT);
250 }
251 
252 static int stm32_dma_get_width(struct stm32_dma_chan *chan,
253 			       enum dma_slave_buswidth width)
254 {
255 	switch (width) {
256 	case DMA_SLAVE_BUSWIDTH_1_BYTE:
257 		return STM32_DMA_BYTE;
258 	case DMA_SLAVE_BUSWIDTH_2_BYTES:
259 		return STM32_DMA_HALF_WORD;
260 	case DMA_SLAVE_BUSWIDTH_4_BYTES:
261 		return STM32_DMA_WORD;
262 	default:
263 		dev_err(chan2dev(chan), "Dma bus width not supported\n");
264 		return -EINVAL;
265 	}
266 }
267 
268 static enum dma_slave_buswidth stm32_dma_get_max_width(u32 buf_len,
269 						       u32 threshold)
270 {
271 	enum dma_slave_buswidth max_width;
272 
273 	if (threshold == STM32_DMA_FIFO_THRESHOLD_FULL)
274 		max_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
275 	else
276 		max_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
277 
278 	while ((buf_len < max_width  || buf_len % max_width) &&
279 	       max_width > DMA_SLAVE_BUSWIDTH_1_BYTE)
280 		max_width = max_width >> 1;
281 
282 	return max_width;
283 }
284 
285 static bool stm32_dma_fifo_threshold_is_allowed(u32 burst, u32 threshold,
286 						enum dma_slave_buswidth width)
287 {
288 	u32 remaining;
289 
290 	if (width != DMA_SLAVE_BUSWIDTH_UNDEFINED) {
291 		if (burst != 0) {
292 			/*
293 			 * If number of beats fit in several whole bursts
294 			 * this configuration is allowed.
295 			 */
296 			remaining = ((STM32_DMA_FIFO_SIZE / width) *
297 				     (threshold + 1) / 4) % burst;
298 
299 			if (remaining == 0)
300 				return true;
301 		} else {
302 			return true;
303 		}
304 	}
305 
306 	return false;
307 }
308 
309 static bool stm32_dma_is_burst_possible(u32 buf_len, u32 threshold)
310 {
311 	/*
312 	 * Buffer or period length has to be aligned on FIFO depth.
313 	 * Otherwise bytes may be stuck within FIFO at buffer or period
314 	 * length.
315 	 */
316 	return ((buf_len % ((threshold + 1) * 4)) == 0);
317 }
318 
319 static u32 stm32_dma_get_best_burst(u32 buf_len, u32 max_burst, u32 threshold,
320 				    enum dma_slave_buswidth width)
321 {
322 	u32 best_burst = max_burst;
323 
324 	if (best_burst == 1 || !stm32_dma_is_burst_possible(buf_len, threshold))
325 		return 0;
326 
327 	while ((buf_len < best_burst * width && best_burst > 1) ||
328 	       !stm32_dma_fifo_threshold_is_allowed(best_burst, threshold,
329 						    width)) {
330 		if (best_burst > STM32_DMA_MIN_BURST)
331 			best_burst = best_burst >> 1;
332 		else
333 			best_burst = 0;
334 	}
335 
336 	return best_burst;
337 }
338 
339 static int stm32_dma_get_burst(struct stm32_dma_chan *chan, u32 maxburst)
340 {
341 	switch (maxburst) {
342 	case 0:
343 	case 1:
344 		return STM32_DMA_BURST_SINGLE;
345 	case 4:
346 		return STM32_DMA_BURST_INCR4;
347 	case 8:
348 		return STM32_DMA_BURST_INCR8;
349 	case 16:
350 		return STM32_DMA_BURST_INCR16;
351 	default:
352 		dev_err(chan2dev(chan), "Dma burst size not supported\n");
353 		return -EINVAL;
354 	}
355 }
356 
357 static void stm32_dma_set_fifo_config(struct stm32_dma_chan *chan,
358 				      u32 src_burst, u32 dst_burst)
359 {
360 	chan->chan_reg.dma_sfcr &= ~STM32_DMA_SFCR_MASK;
361 	chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_DMEIE;
362 
363 	if (!src_burst && !dst_burst) {
364 		/* Using direct mode */
365 		chan->chan_reg.dma_scr |= STM32_DMA_SCR_DMEIE;
366 	} else {
367 		/* Using FIFO mode */
368 		chan->chan_reg.dma_sfcr |= STM32_DMA_SFCR_MASK;
369 	}
370 }
371 
372 static int stm32_dma_slave_config(struct dma_chan *c,
373 				  struct dma_slave_config *config)
374 {
375 	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
376 
377 	memcpy(&chan->dma_sconfig, config, sizeof(*config));
378 
379 	chan->config_init = true;
380 
381 	return 0;
382 }
383 
384 static u32 stm32_dma_irq_status(struct stm32_dma_chan *chan)
385 {
386 	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
387 	u32 flags, dma_isr;
388 
389 	/*
390 	 * Read "flags" from DMA_xISR register corresponding to the selected
391 	 * DMA channel at the correct bit offset inside that register.
392 	 *
393 	 * If (ch % 4) is 2 or 3, left shift the mask by 16 bits.
394 	 * If (ch % 4) is 1 or 3, additionally left shift the mask by 6 bits.
395 	 */
396 
397 	if (chan->id & 4)
398 		dma_isr = stm32_dma_read(dmadev, STM32_DMA_HISR);
399 	else
400 		dma_isr = stm32_dma_read(dmadev, STM32_DMA_LISR);
401 
402 	flags = dma_isr >> (((chan->id & 2) << 3) | ((chan->id & 1) * 6));
403 
404 	return flags & STM32_DMA_MASKI;
405 }
406 
407 static void stm32_dma_irq_clear(struct stm32_dma_chan *chan, u32 flags)
408 {
409 	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
410 	u32 dma_ifcr;
411 
412 	/*
413 	 * Write "flags" to the DMA_xIFCR register corresponding to the selected
414 	 * DMA channel at the correct bit offset inside that register.
415 	 *
416 	 * If (ch % 4) is 2 or 3, left shift the mask by 16 bits.
417 	 * If (ch % 4) is 1 or 3, additionally left shift the mask by 6 bits.
418 	 */
419 	flags &= STM32_DMA_MASKI;
420 	dma_ifcr = flags << (((chan->id & 2) << 3) | ((chan->id & 1) * 6));
421 
422 	if (chan->id & 4)
423 		stm32_dma_write(dmadev, STM32_DMA_HIFCR, dma_ifcr);
424 	else
425 		stm32_dma_write(dmadev, STM32_DMA_LIFCR, dma_ifcr);
426 }
427 
428 static int stm32_dma_disable_chan(struct stm32_dma_chan *chan)
429 {
430 	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
431 	unsigned long timeout = jiffies + msecs_to_jiffies(5000);
432 	u32 dma_scr, id;
433 
434 	id = chan->id;
435 	dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
436 
437 	if (dma_scr & STM32_DMA_SCR_EN) {
438 		dma_scr &= ~STM32_DMA_SCR_EN;
439 		stm32_dma_write(dmadev, STM32_DMA_SCR(id), dma_scr);
440 
441 		do {
442 			dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
443 			dma_scr &= STM32_DMA_SCR_EN;
444 			if (!dma_scr)
445 				break;
446 
447 			if (time_after_eq(jiffies, timeout)) {
448 				dev_err(chan2dev(chan), "%s: timeout!\n",
449 					__func__);
450 				return -EBUSY;
451 			}
452 			cond_resched();
453 		} while (1);
454 	}
455 
456 	return 0;
457 }
458 
459 static void stm32_dma_stop(struct stm32_dma_chan *chan)
460 {
461 	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
462 	u32 dma_scr, dma_sfcr, status;
463 	int ret;
464 
465 	/* Disable interrupts */
466 	dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
467 	dma_scr &= ~STM32_DMA_SCR_IRQ_MASK;
468 	stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), dma_scr);
469 	dma_sfcr = stm32_dma_read(dmadev, STM32_DMA_SFCR(chan->id));
470 	dma_sfcr &= ~STM32_DMA_SFCR_FEIE;
471 	stm32_dma_write(dmadev, STM32_DMA_SFCR(chan->id), dma_sfcr);
472 
473 	/* Disable DMA */
474 	ret = stm32_dma_disable_chan(chan);
475 	if (ret < 0)
476 		return;
477 
478 	/* Clear interrupt status if it is there */
479 	status = stm32_dma_irq_status(chan);
480 	if (status) {
481 		dev_dbg(chan2dev(chan), "%s(): clearing interrupt: 0x%08x\n",
482 			__func__, status);
483 		stm32_dma_irq_clear(chan, status);
484 	}
485 
486 	chan->busy = false;
487 }
488 
489 static int stm32_dma_terminate_all(struct dma_chan *c)
490 {
491 	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
492 	unsigned long flags;
493 	LIST_HEAD(head);
494 
495 	spin_lock_irqsave(&chan->vchan.lock, flags);
496 
497 	if (chan->busy) {
498 		stm32_dma_stop(chan);
499 		chan->desc = NULL;
500 	}
501 
502 	vchan_get_all_descriptors(&chan->vchan, &head);
503 	spin_unlock_irqrestore(&chan->vchan.lock, flags);
504 	vchan_dma_desc_free_list(&chan->vchan, &head);
505 
506 	return 0;
507 }
508 
509 static void stm32_dma_synchronize(struct dma_chan *c)
510 {
511 	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
512 
513 	vchan_synchronize(&chan->vchan);
514 }
515 
516 static void stm32_dma_dump_reg(struct stm32_dma_chan *chan)
517 {
518 	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
519 	u32 scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
520 	u32 ndtr = stm32_dma_read(dmadev, STM32_DMA_SNDTR(chan->id));
521 	u32 spar = stm32_dma_read(dmadev, STM32_DMA_SPAR(chan->id));
522 	u32 sm0ar = stm32_dma_read(dmadev, STM32_DMA_SM0AR(chan->id));
523 	u32 sm1ar = stm32_dma_read(dmadev, STM32_DMA_SM1AR(chan->id));
524 	u32 sfcr = stm32_dma_read(dmadev, STM32_DMA_SFCR(chan->id));
525 
526 	dev_dbg(chan2dev(chan), "SCR:   0x%08x\n", scr);
527 	dev_dbg(chan2dev(chan), "NDTR:  0x%08x\n", ndtr);
528 	dev_dbg(chan2dev(chan), "SPAR:  0x%08x\n", spar);
529 	dev_dbg(chan2dev(chan), "SM0AR: 0x%08x\n", sm0ar);
530 	dev_dbg(chan2dev(chan), "SM1AR: 0x%08x\n", sm1ar);
531 	dev_dbg(chan2dev(chan), "SFCR:  0x%08x\n", sfcr);
532 }
533 
534 static void stm32_dma_configure_next_sg(struct stm32_dma_chan *chan);
535 
536 static void stm32_dma_start_transfer(struct stm32_dma_chan *chan)
537 {
538 	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
539 	struct virt_dma_desc *vdesc;
540 	struct stm32_dma_sg_req *sg_req;
541 	struct stm32_dma_chan_reg *reg;
542 	u32 status;
543 	int ret;
544 
545 	ret = stm32_dma_disable_chan(chan);
546 	if (ret < 0)
547 		return;
548 
549 	if (!chan->desc) {
550 		vdesc = vchan_next_desc(&chan->vchan);
551 		if (!vdesc)
552 			return;
553 
554 		chan->desc = to_stm32_dma_desc(vdesc);
555 		chan->next_sg = 0;
556 	}
557 
558 	if (chan->next_sg == chan->desc->num_sgs)
559 		chan->next_sg = 0;
560 
561 	sg_req = &chan->desc->sg_req[chan->next_sg];
562 	reg = &sg_req->chan_reg;
563 
564 	stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), reg->dma_scr);
565 	stm32_dma_write(dmadev, STM32_DMA_SPAR(chan->id), reg->dma_spar);
566 	stm32_dma_write(dmadev, STM32_DMA_SM0AR(chan->id), reg->dma_sm0ar);
567 	stm32_dma_write(dmadev, STM32_DMA_SFCR(chan->id), reg->dma_sfcr);
568 	stm32_dma_write(dmadev, STM32_DMA_SM1AR(chan->id), reg->dma_sm1ar);
569 	stm32_dma_write(dmadev, STM32_DMA_SNDTR(chan->id), reg->dma_sndtr);
570 
571 	chan->next_sg++;
572 
573 	/* Clear interrupt status if it is there */
574 	status = stm32_dma_irq_status(chan);
575 	if (status)
576 		stm32_dma_irq_clear(chan, status);
577 
578 	if (chan->desc->cyclic)
579 		stm32_dma_configure_next_sg(chan);
580 
581 	stm32_dma_dump_reg(chan);
582 
583 	/* Start DMA */
584 	reg->dma_scr |= STM32_DMA_SCR_EN;
585 	stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), reg->dma_scr);
586 
587 	chan->busy = true;
588 
589 	dev_dbg(chan2dev(chan), "vchan %pK: started\n", &chan->vchan);
590 }
591 
592 static void stm32_dma_configure_next_sg(struct stm32_dma_chan *chan)
593 {
594 	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
595 	struct stm32_dma_sg_req *sg_req;
596 	u32 dma_scr, dma_sm0ar, dma_sm1ar, id;
597 
598 	id = chan->id;
599 	dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
600 
601 	if (dma_scr & STM32_DMA_SCR_DBM) {
602 		if (chan->next_sg == chan->desc->num_sgs)
603 			chan->next_sg = 0;
604 
605 		sg_req = &chan->desc->sg_req[chan->next_sg];
606 
607 		if (dma_scr & STM32_DMA_SCR_CT) {
608 			dma_sm0ar = sg_req->chan_reg.dma_sm0ar;
609 			stm32_dma_write(dmadev, STM32_DMA_SM0AR(id), dma_sm0ar);
610 			dev_dbg(chan2dev(chan), "CT=1 <=> SM0AR: 0x%08x\n",
611 				stm32_dma_read(dmadev, STM32_DMA_SM0AR(id)));
612 		} else {
613 			dma_sm1ar = sg_req->chan_reg.dma_sm1ar;
614 			stm32_dma_write(dmadev, STM32_DMA_SM1AR(id), dma_sm1ar);
615 			dev_dbg(chan2dev(chan), "CT=0 <=> SM1AR: 0x%08x\n",
616 				stm32_dma_read(dmadev, STM32_DMA_SM1AR(id)));
617 		}
618 	}
619 }
620 
621 static void stm32_dma_handle_chan_done(struct stm32_dma_chan *chan)
622 {
623 	if (chan->desc) {
624 		if (chan->desc->cyclic) {
625 			vchan_cyclic_callback(&chan->desc->vdesc);
626 			chan->next_sg++;
627 			stm32_dma_configure_next_sg(chan);
628 		} else {
629 			chan->busy = false;
630 			if (chan->next_sg == chan->desc->num_sgs) {
631 				list_del(&chan->desc->vdesc.node);
632 				vchan_cookie_complete(&chan->desc->vdesc);
633 				chan->desc = NULL;
634 			}
635 			stm32_dma_start_transfer(chan);
636 		}
637 	}
638 }
639 
640 static irqreturn_t stm32_dma_chan_irq(int irq, void *devid)
641 {
642 	struct stm32_dma_chan *chan = devid;
643 	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
644 	u32 status, scr, sfcr;
645 
646 	spin_lock(&chan->vchan.lock);
647 
648 	status = stm32_dma_irq_status(chan);
649 	scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
650 	sfcr = stm32_dma_read(dmadev, STM32_DMA_SFCR(chan->id));
651 
652 	if (status & STM32_DMA_TCI) {
653 		stm32_dma_irq_clear(chan, STM32_DMA_TCI);
654 		if (scr & STM32_DMA_SCR_TCIE)
655 			stm32_dma_handle_chan_done(chan);
656 		status &= ~STM32_DMA_TCI;
657 	}
658 	if (status & STM32_DMA_HTI) {
659 		stm32_dma_irq_clear(chan, STM32_DMA_HTI);
660 		status &= ~STM32_DMA_HTI;
661 	}
662 	if (status & STM32_DMA_FEI) {
663 		stm32_dma_irq_clear(chan, STM32_DMA_FEI);
664 		status &= ~STM32_DMA_FEI;
665 		if (sfcr & STM32_DMA_SFCR_FEIE) {
666 			if (!(scr & STM32_DMA_SCR_EN))
667 				dev_err(chan2dev(chan), "FIFO Error\n");
668 			else
669 				dev_dbg(chan2dev(chan), "FIFO over/underrun\n");
670 		}
671 	}
672 	if (status) {
673 		stm32_dma_irq_clear(chan, status);
674 		dev_err(chan2dev(chan), "DMA error: status=0x%08x\n", status);
675 		if (!(scr & STM32_DMA_SCR_EN))
676 			dev_err(chan2dev(chan), "chan disabled by HW\n");
677 	}
678 
679 	spin_unlock(&chan->vchan.lock);
680 
681 	return IRQ_HANDLED;
682 }
683 
684 static void stm32_dma_issue_pending(struct dma_chan *c)
685 {
686 	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
687 	unsigned long flags;
688 
689 	spin_lock_irqsave(&chan->vchan.lock, flags);
690 	if (vchan_issue_pending(&chan->vchan) && !chan->desc && !chan->busy) {
691 		dev_dbg(chan2dev(chan), "vchan %pK: issued\n", &chan->vchan);
692 		stm32_dma_start_transfer(chan);
693 
694 	}
695 	spin_unlock_irqrestore(&chan->vchan.lock, flags);
696 }
697 
698 static int stm32_dma_set_xfer_param(struct stm32_dma_chan *chan,
699 				    enum dma_transfer_direction direction,
700 				    enum dma_slave_buswidth *buswidth,
701 				    u32 buf_len)
702 {
703 	enum dma_slave_buswidth src_addr_width, dst_addr_width;
704 	int src_bus_width, dst_bus_width;
705 	int src_burst_size, dst_burst_size;
706 	u32 src_maxburst, dst_maxburst, src_best_burst, dst_best_burst;
707 	u32 dma_scr, threshold;
708 
709 	src_addr_width = chan->dma_sconfig.src_addr_width;
710 	dst_addr_width = chan->dma_sconfig.dst_addr_width;
711 	src_maxburst = chan->dma_sconfig.src_maxburst;
712 	dst_maxburst = chan->dma_sconfig.dst_maxburst;
713 	threshold = chan->threshold;
714 
715 	switch (direction) {
716 	case DMA_MEM_TO_DEV:
717 		/* Set device data size */
718 		dst_bus_width = stm32_dma_get_width(chan, dst_addr_width);
719 		if (dst_bus_width < 0)
720 			return dst_bus_width;
721 
722 		/* Set device burst size */
723 		dst_best_burst = stm32_dma_get_best_burst(buf_len,
724 							  dst_maxburst,
725 							  threshold,
726 							  dst_addr_width);
727 
728 		dst_burst_size = stm32_dma_get_burst(chan, dst_best_burst);
729 		if (dst_burst_size < 0)
730 			return dst_burst_size;
731 
732 		/* Set memory data size */
733 		src_addr_width = stm32_dma_get_max_width(buf_len, threshold);
734 		chan->mem_width = src_addr_width;
735 		src_bus_width = stm32_dma_get_width(chan, src_addr_width);
736 		if (src_bus_width < 0)
737 			return src_bus_width;
738 
739 		/* Set memory burst size */
740 		src_maxburst = STM32_DMA_MAX_BURST;
741 		src_best_burst = stm32_dma_get_best_burst(buf_len,
742 							  src_maxburst,
743 							  threshold,
744 							  src_addr_width);
745 		src_burst_size = stm32_dma_get_burst(chan, src_best_burst);
746 		if (src_burst_size < 0)
747 			return src_burst_size;
748 
749 		dma_scr = STM32_DMA_SCR_DIR(STM32_DMA_MEM_TO_DEV) |
750 			STM32_DMA_SCR_PSIZE(dst_bus_width) |
751 			STM32_DMA_SCR_MSIZE(src_bus_width) |
752 			STM32_DMA_SCR_PBURST(dst_burst_size) |
753 			STM32_DMA_SCR_MBURST(src_burst_size);
754 
755 		/* Set FIFO threshold */
756 		chan->chan_reg.dma_sfcr &= ~STM32_DMA_SFCR_FTH_MASK;
757 		chan->chan_reg.dma_sfcr |= STM32_DMA_SFCR_FTH(threshold);
758 
759 		/* Set peripheral address */
760 		chan->chan_reg.dma_spar = chan->dma_sconfig.dst_addr;
761 		*buswidth = dst_addr_width;
762 		break;
763 
764 	case DMA_DEV_TO_MEM:
765 		/* Set device data size */
766 		src_bus_width = stm32_dma_get_width(chan, src_addr_width);
767 		if (src_bus_width < 0)
768 			return src_bus_width;
769 
770 		/* Set device burst size */
771 		src_best_burst = stm32_dma_get_best_burst(buf_len,
772 							  src_maxburst,
773 							  threshold,
774 							  src_addr_width);
775 		chan->mem_burst = src_best_burst;
776 		src_burst_size = stm32_dma_get_burst(chan, src_best_burst);
777 		if (src_burst_size < 0)
778 			return src_burst_size;
779 
780 		/* Set memory data size */
781 		dst_addr_width = stm32_dma_get_max_width(buf_len, threshold);
782 		chan->mem_width = dst_addr_width;
783 		dst_bus_width = stm32_dma_get_width(chan, dst_addr_width);
784 		if (dst_bus_width < 0)
785 			return dst_bus_width;
786 
787 		/* Set memory burst size */
788 		dst_maxburst = STM32_DMA_MAX_BURST;
789 		dst_best_burst = stm32_dma_get_best_burst(buf_len,
790 							  dst_maxburst,
791 							  threshold,
792 							  dst_addr_width);
793 		chan->mem_burst = dst_best_burst;
794 		dst_burst_size = stm32_dma_get_burst(chan, dst_best_burst);
795 		if (dst_burst_size < 0)
796 			return dst_burst_size;
797 
798 		dma_scr = STM32_DMA_SCR_DIR(STM32_DMA_DEV_TO_MEM) |
799 			STM32_DMA_SCR_PSIZE(src_bus_width) |
800 			STM32_DMA_SCR_MSIZE(dst_bus_width) |
801 			STM32_DMA_SCR_PBURST(src_burst_size) |
802 			STM32_DMA_SCR_MBURST(dst_burst_size);
803 
804 		/* Set FIFO threshold */
805 		chan->chan_reg.dma_sfcr &= ~STM32_DMA_SFCR_FTH_MASK;
806 		chan->chan_reg.dma_sfcr |= STM32_DMA_SFCR_FTH(threshold);
807 
808 		/* Set peripheral address */
809 		chan->chan_reg.dma_spar = chan->dma_sconfig.src_addr;
810 		*buswidth = chan->dma_sconfig.src_addr_width;
811 		break;
812 
813 	default:
814 		dev_err(chan2dev(chan), "Dma direction is not supported\n");
815 		return -EINVAL;
816 	}
817 
818 	stm32_dma_set_fifo_config(chan, src_best_burst, dst_best_burst);
819 
820 	/* Set DMA control register */
821 	chan->chan_reg.dma_scr &= ~(STM32_DMA_SCR_DIR_MASK |
822 			STM32_DMA_SCR_PSIZE_MASK | STM32_DMA_SCR_MSIZE_MASK |
823 			STM32_DMA_SCR_PBURST_MASK | STM32_DMA_SCR_MBURST_MASK);
824 	chan->chan_reg.dma_scr |= dma_scr;
825 
826 	return 0;
827 }
828 
829 static void stm32_dma_clear_reg(struct stm32_dma_chan_reg *regs)
830 {
831 	memset(regs, 0, sizeof(struct stm32_dma_chan_reg));
832 }
833 
834 static struct dma_async_tx_descriptor *stm32_dma_prep_slave_sg(
835 	struct dma_chan *c, struct scatterlist *sgl,
836 	u32 sg_len, enum dma_transfer_direction direction,
837 	unsigned long flags, void *context)
838 {
839 	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
840 	struct stm32_dma_desc *desc;
841 	struct scatterlist *sg;
842 	enum dma_slave_buswidth buswidth;
843 	u32 nb_data_items;
844 	int i, ret;
845 
846 	if (!chan->config_init) {
847 		dev_err(chan2dev(chan), "dma channel is not configured\n");
848 		return NULL;
849 	}
850 
851 	if (sg_len < 1) {
852 		dev_err(chan2dev(chan), "Invalid segment length %d\n", sg_len);
853 		return NULL;
854 	}
855 
856 	desc = stm32_dma_alloc_desc(sg_len);
857 	if (!desc)
858 		return NULL;
859 
860 	/* Set peripheral flow controller */
861 	if (chan->dma_sconfig.device_fc)
862 		chan->chan_reg.dma_scr |= STM32_DMA_SCR_PFCTRL;
863 	else
864 		chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_PFCTRL;
865 
866 	for_each_sg(sgl, sg, sg_len, i) {
867 		ret = stm32_dma_set_xfer_param(chan, direction, &buswidth,
868 					       sg_dma_len(sg));
869 		if (ret < 0)
870 			goto err;
871 
872 		desc->sg_req[i].len = sg_dma_len(sg);
873 
874 		nb_data_items = desc->sg_req[i].len / buswidth;
875 		if (nb_data_items > STM32_DMA_ALIGNED_MAX_DATA_ITEMS) {
876 			dev_err(chan2dev(chan), "nb items not supported\n");
877 			goto err;
878 		}
879 
880 		stm32_dma_clear_reg(&desc->sg_req[i].chan_reg);
881 		desc->sg_req[i].chan_reg.dma_scr = chan->chan_reg.dma_scr;
882 		desc->sg_req[i].chan_reg.dma_sfcr = chan->chan_reg.dma_sfcr;
883 		desc->sg_req[i].chan_reg.dma_spar = chan->chan_reg.dma_spar;
884 		desc->sg_req[i].chan_reg.dma_sm0ar = sg_dma_address(sg);
885 		desc->sg_req[i].chan_reg.dma_sm1ar = sg_dma_address(sg);
886 		desc->sg_req[i].chan_reg.dma_sndtr = nb_data_items;
887 	}
888 
889 	desc->num_sgs = sg_len;
890 	desc->cyclic = false;
891 
892 	return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
893 
894 err:
895 	kfree(desc);
896 	return NULL;
897 }
898 
899 static struct dma_async_tx_descriptor *stm32_dma_prep_dma_cyclic(
900 	struct dma_chan *c, dma_addr_t buf_addr, size_t buf_len,
901 	size_t period_len, enum dma_transfer_direction direction,
902 	unsigned long flags)
903 {
904 	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
905 	struct stm32_dma_desc *desc;
906 	enum dma_slave_buswidth buswidth;
907 	u32 num_periods, nb_data_items;
908 	int i, ret;
909 
910 	if (!buf_len || !period_len) {
911 		dev_err(chan2dev(chan), "Invalid buffer/period len\n");
912 		return NULL;
913 	}
914 
915 	if (!chan->config_init) {
916 		dev_err(chan2dev(chan), "dma channel is not configured\n");
917 		return NULL;
918 	}
919 
920 	if (buf_len % period_len) {
921 		dev_err(chan2dev(chan), "buf_len not multiple of period_len\n");
922 		return NULL;
923 	}
924 
925 	/*
926 	 * We allow to take more number of requests till DMA is
927 	 * not started. The driver will loop over all requests.
928 	 * Once DMA is started then new requests can be queued only after
929 	 * terminating the DMA.
930 	 */
931 	if (chan->busy) {
932 		dev_err(chan2dev(chan), "Request not allowed when dma busy\n");
933 		return NULL;
934 	}
935 
936 	ret = stm32_dma_set_xfer_param(chan, direction, &buswidth, period_len);
937 	if (ret < 0)
938 		return NULL;
939 
940 	nb_data_items = period_len / buswidth;
941 	if (nb_data_items > STM32_DMA_ALIGNED_MAX_DATA_ITEMS) {
942 		dev_err(chan2dev(chan), "number of items not supported\n");
943 		return NULL;
944 	}
945 
946 	/*  Enable Circular mode or double buffer mode */
947 	if (buf_len == period_len)
948 		chan->chan_reg.dma_scr |= STM32_DMA_SCR_CIRC;
949 	else
950 		chan->chan_reg.dma_scr |= STM32_DMA_SCR_DBM;
951 
952 	/* Clear periph ctrl if client set it */
953 	chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_PFCTRL;
954 
955 	num_periods = buf_len / period_len;
956 
957 	desc = stm32_dma_alloc_desc(num_periods);
958 	if (!desc)
959 		return NULL;
960 
961 	for (i = 0; i < num_periods; i++) {
962 		desc->sg_req[i].len = period_len;
963 
964 		stm32_dma_clear_reg(&desc->sg_req[i].chan_reg);
965 		desc->sg_req[i].chan_reg.dma_scr = chan->chan_reg.dma_scr;
966 		desc->sg_req[i].chan_reg.dma_sfcr = chan->chan_reg.dma_sfcr;
967 		desc->sg_req[i].chan_reg.dma_spar = chan->chan_reg.dma_spar;
968 		desc->sg_req[i].chan_reg.dma_sm0ar = buf_addr;
969 		desc->sg_req[i].chan_reg.dma_sm1ar = buf_addr;
970 		desc->sg_req[i].chan_reg.dma_sndtr = nb_data_items;
971 		buf_addr += period_len;
972 	}
973 
974 	desc->num_sgs = num_periods;
975 	desc->cyclic = true;
976 
977 	return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
978 }
979 
980 static struct dma_async_tx_descriptor *stm32_dma_prep_dma_memcpy(
981 	struct dma_chan *c, dma_addr_t dest,
982 	dma_addr_t src, size_t len, unsigned long flags)
983 {
984 	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
985 	enum dma_slave_buswidth max_width;
986 	struct stm32_dma_desc *desc;
987 	size_t xfer_count, offset;
988 	u32 num_sgs, best_burst, dma_burst, threshold;
989 	int i;
990 
991 	num_sgs = DIV_ROUND_UP(len, STM32_DMA_ALIGNED_MAX_DATA_ITEMS);
992 	desc = stm32_dma_alloc_desc(num_sgs);
993 	if (!desc)
994 		return NULL;
995 
996 	threshold = chan->threshold;
997 
998 	for (offset = 0, i = 0; offset < len; offset += xfer_count, i++) {
999 		xfer_count = min_t(size_t, len - offset,
1000 				   STM32_DMA_ALIGNED_MAX_DATA_ITEMS);
1001 
1002 		/* Compute best burst size */
1003 		max_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1004 		best_burst = stm32_dma_get_best_burst(len, STM32_DMA_MAX_BURST,
1005 						      threshold, max_width);
1006 		dma_burst = stm32_dma_get_burst(chan, best_burst);
1007 
1008 		stm32_dma_clear_reg(&desc->sg_req[i].chan_reg);
1009 		desc->sg_req[i].chan_reg.dma_scr =
1010 			STM32_DMA_SCR_DIR(STM32_DMA_MEM_TO_MEM) |
1011 			STM32_DMA_SCR_PBURST(dma_burst) |
1012 			STM32_DMA_SCR_MBURST(dma_burst) |
1013 			STM32_DMA_SCR_MINC |
1014 			STM32_DMA_SCR_PINC |
1015 			STM32_DMA_SCR_TCIE |
1016 			STM32_DMA_SCR_TEIE;
1017 		desc->sg_req[i].chan_reg.dma_sfcr |= STM32_DMA_SFCR_MASK;
1018 		desc->sg_req[i].chan_reg.dma_sfcr |=
1019 			STM32_DMA_SFCR_FTH(threshold);
1020 		desc->sg_req[i].chan_reg.dma_spar = src + offset;
1021 		desc->sg_req[i].chan_reg.dma_sm0ar = dest + offset;
1022 		desc->sg_req[i].chan_reg.dma_sndtr = xfer_count;
1023 		desc->sg_req[i].len = xfer_count;
1024 	}
1025 
1026 	desc->num_sgs = num_sgs;
1027 	desc->cyclic = false;
1028 
1029 	return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
1030 }
1031 
1032 static u32 stm32_dma_get_remaining_bytes(struct stm32_dma_chan *chan)
1033 {
1034 	u32 dma_scr, width, ndtr;
1035 	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
1036 
1037 	dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
1038 	width = STM32_DMA_SCR_PSIZE_GET(dma_scr);
1039 	ndtr = stm32_dma_read(dmadev, STM32_DMA_SNDTR(chan->id));
1040 
1041 	return ndtr << width;
1042 }
1043 
1044 /**
1045  * stm32_dma_is_current_sg - check that expected sg_req is currently transferred
1046  * @chan: dma channel
1047  *
1048  * This function called when IRQ are disable, checks that the hardware has not
1049  * switched on the next transfer in double buffer mode. The test is done by
1050  * comparing the next_sg memory address with the hardware related register
1051  * (based on CT bit value).
1052  *
1053  * Returns true if expected current transfer is still running or double
1054  * buffer mode is not activated.
1055  */
1056 static bool stm32_dma_is_current_sg(struct stm32_dma_chan *chan)
1057 {
1058 	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
1059 	struct stm32_dma_sg_req *sg_req;
1060 	u32 dma_scr, dma_smar, id;
1061 
1062 	id = chan->id;
1063 	dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
1064 
1065 	if (!(dma_scr & STM32_DMA_SCR_DBM))
1066 		return true;
1067 
1068 	sg_req = &chan->desc->sg_req[chan->next_sg];
1069 
1070 	if (dma_scr & STM32_DMA_SCR_CT) {
1071 		dma_smar = stm32_dma_read(dmadev, STM32_DMA_SM0AR(id));
1072 		return (dma_smar == sg_req->chan_reg.dma_sm0ar);
1073 	}
1074 
1075 	dma_smar = stm32_dma_read(dmadev, STM32_DMA_SM1AR(id));
1076 
1077 	return (dma_smar == sg_req->chan_reg.dma_sm1ar);
1078 }
1079 
1080 static size_t stm32_dma_desc_residue(struct stm32_dma_chan *chan,
1081 				     struct stm32_dma_desc *desc,
1082 				     u32 next_sg)
1083 {
1084 	u32 modulo, burst_size;
1085 	u32 residue;
1086 	u32 n_sg = next_sg;
1087 	struct stm32_dma_sg_req *sg_req = &chan->desc->sg_req[chan->next_sg];
1088 	int i;
1089 
1090 	/*
1091 	 * Calculate the residue means compute the descriptors
1092 	 * information:
1093 	 * - the sg_req currently transferred
1094 	 * - the Hardware remaining position in this sg (NDTR bits field).
1095 	 *
1096 	 * A race condition may occur if DMA is running in cyclic or double
1097 	 * buffer mode, since the DMA register are automatically reloaded at end
1098 	 * of period transfer. The hardware may have switched to the next
1099 	 * transfer (CT bit updated) just before the position (SxNDTR reg) is
1100 	 * read.
1101 	 * In this case the SxNDTR reg could (or not) correspond to the new
1102 	 * transfer position, and not the expected one.
1103 	 * The strategy implemented in the stm32 driver is to:
1104 	 *  - read the SxNDTR register
1105 	 *  - crosscheck that hardware is still in current transfer.
1106 	 * In case of switch, we can assume that the DMA is at the beginning of
1107 	 * the next transfer. So we approximate the residue in consequence, by
1108 	 * pointing on the beginning of next transfer.
1109 	 *
1110 	 * This race condition doesn't apply for none cyclic mode, as double
1111 	 * buffer is not used. In such situation registers are updated by the
1112 	 * software.
1113 	 */
1114 
1115 	residue = stm32_dma_get_remaining_bytes(chan);
1116 
1117 	if (!stm32_dma_is_current_sg(chan)) {
1118 		n_sg++;
1119 		if (n_sg == chan->desc->num_sgs)
1120 			n_sg = 0;
1121 		residue = sg_req->len;
1122 	}
1123 
1124 	/*
1125 	 * In cyclic mode, for the last period, residue = remaining bytes
1126 	 * from NDTR,
1127 	 * else for all other periods in cyclic mode, and in sg mode,
1128 	 * residue = remaining bytes from NDTR + remaining
1129 	 * periods/sg to be transferred
1130 	 */
1131 	if (!chan->desc->cyclic || n_sg != 0)
1132 		for (i = n_sg; i < desc->num_sgs; i++)
1133 			residue += desc->sg_req[i].len;
1134 
1135 	if (!chan->mem_burst)
1136 		return residue;
1137 
1138 	burst_size = chan->mem_burst * chan->mem_width;
1139 	modulo = residue % burst_size;
1140 	if (modulo)
1141 		residue = residue - modulo + burst_size;
1142 
1143 	return residue;
1144 }
1145 
1146 static enum dma_status stm32_dma_tx_status(struct dma_chan *c,
1147 					   dma_cookie_t cookie,
1148 					   struct dma_tx_state *state)
1149 {
1150 	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
1151 	struct virt_dma_desc *vdesc;
1152 	enum dma_status status;
1153 	unsigned long flags;
1154 	u32 residue = 0;
1155 
1156 	status = dma_cookie_status(c, cookie, state);
1157 	if (status == DMA_COMPLETE || !state)
1158 		return status;
1159 
1160 	spin_lock_irqsave(&chan->vchan.lock, flags);
1161 	vdesc = vchan_find_desc(&chan->vchan, cookie);
1162 	if (chan->desc && cookie == chan->desc->vdesc.tx.cookie)
1163 		residue = stm32_dma_desc_residue(chan, chan->desc,
1164 						 chan->next_sg);
1165 	else if (vdesc)
1166 		residue = stm32_dma_desc_residue(chan,
1167 						 to_stm32_dma_desc(vdesc), 0);
1168 	dma_set_residue(state, residue);
1169 
1170 	spin_unlock_irqrestore(&chan->vchan.lock, flags);
1171 
1172 	return status;
1173 }
1174 
1175 static int stm32_dma_alloc_chan_resources(struct dma_chan *c)
1176 {
1177 	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
1178 	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
1179 	int ret;
1180 
1181 	chan->config_init = false;
1182 
1183 	ret = pm_runtime_get_sync(dmadev->ddev.dev);
1184 	if (ret < 0)
1185 		return ret;
1186 
1187 	ret = stm32_dma_disable_chan(chan);
1188 	if (ret < 0)
1189 		pm_runtime_put(dmadev->ddev.dev);
1190 
1191 	return ret;
1192 }
1193 
1194 static void stm32_dma_free_chan_resources(struct dma_chan *c)
1195 {
1196 	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
1197 	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
1198 	unsigned long flags;
1199 
1200 	dev_dbg(chan2dev(chan), "Freeing channel %d\n", chan->id);
1201 
1202 	if (chan->busy) {
1203 		spin_lock_irqsave(&chan->vchan.lock, flags);
1204 		stm32_dma_stop(chan);
1205 		chan->desc = NULL;
1206 		spin_unlock_irqrestore(&chan->vchan.lock, flags);
1207 	}
1208 
1209 	pm_runtime_put(dmadev->ddev.dev);
1210 
1211 	vchan_free_chan_resources(to_virt_chan(c));
1212 }
1213 
1214 static void stm32_dma_desc_free(struct virt_dma_desc *vdesc)
1215 {
1216 	kfree(container_of(vdesc, struct stm32_dma_desc, vdesc));
1217 }
1218 
1219 static void stm32_dma_set_config(struct stm32_dma_chan *chan,
1220 				 struct stm32_dma_cfg *cfg)
1221 {
1222 	stm32_dma_clear_reg(&chan->chan_reg);
1223 
1224 	chan->chan_reg.dma_scr = cfg->stream_config & STM32_DMA_SCR_CFG_MASK;
1225 	chan->chan_reg.dma_scr |= STM32_DMA_SCR_REQ(cfg->request_line);
1226 
1227 	/* Enable Interrupts  */
1228 	chan->chan_reg.dma_scr |= STM32_DMA_SCR_TEIE | STM32_DMA_SCR_TCIE;
1229 
1230 	chan->threshold = STM32_DMA_THRESHOLD_FTR_GET(cfg->features);
1231 }
1232 
1233 static struct dma_chan *stm32_dma_of_xlate(struct of_phandle_args *dma_spec,
1234 					   struct of_dma *ofdma)
1235 {
1236 	struct stm32_dma_device *dmadev = ofdma->of_dma_data;
1237 	struct device *dev = dmadev->ddev.dev;
1238 	struct stm32_dma_cfg cfg;
1239 	struct stm32_dma_chan *chan;
1240 	struct dma_chan *c;
1241 
1242 	if (dma_spec->args_count < 4) {
1243 		dev_err(dev, "Bad number of cells\n");
1244 		return NULL;
1245 	}
1246 
1247 	cfg.channel_id = dma_spec->args[0];
1248 	cfg.request_line = dma_spec->args[1];
1249 	cfg.stream_config = dma_spec->args[2];
1250 	cfg.features = dma_spec->args[3];
1251 
1252 	if (cfg.channel_id >= STM32_DMA_MAX_CHANNELS ||
1253 	    cfg.request_line >= STM32_DMA_MAX_REQUEST_ID) {
1254 		dev_err(dev, "Bad channel and/or request id\n");
1255 		return NULL;
1256 	}
1257 
1258 	chan = &dmadev->chan[cfg.channel_id];
1259 
1260 	c = dma_get_slave_channel(&chan->vchan.chan);
1261 	if (!c) {
1262 		dev_err(dev, "No more channels available\n");
1263 		return NULL;
1264 	}
1265 
1266 	stm32_dma_set_config(chan, &cfg);
1267 
1268 	return c;
1269 }
1270 
1271 static const struct of_device_id stm32_dma_of_match[] = {
1272 	{ .compatible = "st,stm32-dma", },
1273 	{ /* sentinel */ },
1274 };
1275 MODULE_DEVICE_TABLE(of, stm32_dma_of_match);
1276 
1277 static int stm32_dma_probe(struct platform_device *pdev)
1278 {
1279 	struct stm32_dma_chan *chan;
1280 	struct stm32_dma_device *dmadev;
1281 	struct dma_device *dd;
1282 	const struct of_device_id *match;
1283 	struct resource *res;
1284 	int i, ret;
1285 
1286 	match = of_match_device(stm32_dma_of_match, &pdev->dev);
1287 	if (!match) {
1288 		dev_err(&pdev->dev, "Error: No device match found\n");
1289 		return -ENODEV;
1290 	}
1291 
1292 	dmadev = devm_kzalloc(&pdev->dev, sizeof(*dmadev), GFP_KERNEL);
1293 	if (!dmadev)
1294 		return -ENOMEM;
1295 
1296 	dd = &dmadev->ddev;
1297 
1298 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1299 	dmadev->base = devm_ioremap_resource(&pdev->dev, res);
1300 	if (IS_ERR(dmadev->base))
1301 		return PTR_ERR(dmadev->base);
1302 
1303 	dmadev->clk = devm_clk_get(&pdev->dev, NULL);
1304 	if (IS_ERR(dmadev->clk)) {
1305 		dev_err(&pdev->dev, "Error: Missing controller clock\n");
1306 		return PTR_ERR(dmadev->clk);
1307 	}
1308 
1309 	ret = clk_prepare_enable(dmadev->clk);
1310 	if (ret < 0) {
1311 		dev_err(&pdev->dev, "clk_prep_enable error: %d\n", ret);
1312 		return ret;
1313 	}
1314 
1315 	dmadev->mem2mem = of_property_read_bool(pdev->dev.of_node,
1316 						"st,mem2mem");
1317 
1318 	dmadev->rst = devm_reset_control_get(&pdev->dev, NULL);
1319 	if (!IS_ERR(dmadev->rst)) {
1320 		reset_control_assert(dmadev->rst);
1321 		udelay(2);
1322 		reset_control_deassert(dmadev->rst);
1323 	}
1324 
1325 	dma_cap_set(DMA_SLAVE, dd->cap_mask);
1326 	dma_cap_set(DMA_PRIVATE, dd->cap_mask);
1327 	dma_cap_set(DMA_CYCLIC, dd->cap_mask);
1328 	dd->device_alloc_chan_resources = stm32_dma_alloc_chan_resources;
1329 	dd->device_free_chan_resources = stm32_dma_free_chan_resources;
1330 	dd->device_tx_status = stm32_dma_tx_status;
1331 	dd->device_issue_pending = stm32_dma_issue_pending;
1332 	dd->device_prep_slave_sg = stm32_dma_prep_slave_sg;
1333 	dd->device_prep_dma_cyclic = stm32_dma_prep_dma_cyclic;
1334 	dd->device_config = stm32_dma_slave_config;
1335 	dd->device_terminate_all = stm32_dma_terminate_all;
1336 	dd->device_synchronize = stm32_dma_synchronize;
1337 	dd->src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
1338 		BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
1339 		BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
1340 	dd->dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
1341 		BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
1342 		BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
1343 	dd->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1344 	dd->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1345 	dd->max_burst = STM32_DMA_MAX_BURST;
1346 	dd->dev = &pdev->dev;
1347 	INIT_LIST_HEAD(&dd->channels);
1348 
1349 	if (dmadev->mem2mem) {
1350 		dma_cap_set(DMA_MEMCPY, dd->cap_mask);
1351 		dd->device_prep_dma_memcpy = stm32_dma_prep_dma_memcpy;
1352 		dd->directions |= BIT(DMA_MEM_TO_MEM);
1353 	}
1354 
1355 	for (i = 0; i < STM32_DMA_MAX_CHANNELS; i++) {
1356 		chan = &dmadev->chan[i];
1357 		chan->id = i;
1358 		chan->vchan.desc_free = stm32_dma_desc_free;
1359 		vchan_init(&chan->vchan, dd);
1360 	}
1361 
1362 	ret = dma_async_device_register(dd);
1363 	if (ret)
1364 		goto clk_free;
1365 
1366 	for (i = 0; i < STM32_DMA_MAX_CHANNELS; i++) {
1367 		chan = &dmadev->chan[i];
1368 		chan->irq = platform_get_irq(pdev, i);
1369 		ret = platform_get_irq(pdev, i);
1370 		if (ret < 0)  {
1371 			if (ret != -EPROBE_DEFER)
1372 				dev_err(&pdev->dev,
1373 					"No irq resource for chan %d\n", i);
1374 			goto err_unregister;
1375 		}
1376 		chan->irq = ret;
1377 
1378 		ret = devm_request_irq(&pdev->dev, chan->irq,
1379 				       stm32_dma_chan_irq, 0,
1380 				       dev_name(chan2dev(chan)), chan);
1381 		if (ret) {
1382 			dev_err(&pdev->dev,
1383 				"request_irq failed with err %d channel %d\n",
1384 				ret, i);
1385 			goto err_unregister;
1386 		}
1387 	}
1388 
1389 	ret = of_dma_controller_register(pdev->dev.of_node,
1390 					 stm32_dma_of_xlate, dmadev);
1391 	if (ret < 0) {
1392 		dev_err(&pdev->dev,
1393 			"STM32 DMA DMA OF registration failed %d\n", ret);
1394 		goto err_unregister;
1395 	}
1396 
1397 	platform_set_drvdata(pdev, dmadev);
1398 
1399 	pm_runtime_set_active(&pdev->dev);
1400 	pm_runtime_enable(&pdev->dev);
1401 	pm_runtime_get_noresume(&pdev->dev);
1402 	pm_runtime_put(&pdev->dev);
1403 
1404 	dev_info(&pdev->dev, "STM32 DMA driver registered\n");
1405 
1406 	return 0;
1407 
1408 err_unregister:
1409 	dma_async_device_unregister(dd);
1410 clk_free:
1411 	clk_disable_unprepare(dmadev->clk);
1412 
1413 	return ret;
1414 }
1415 
1416 #ifdef CONFIG_PM
1417 static int stm32_dma_runtime_suspend(struct device *dev)
1418 {
1419 	struct stm32_dma_device *dmadev = dev_get_drvdata(dev);
1420 
1421 	clk_disable_unprepare(dmadev->clk);
1422 
1423 	return 0;
1424 }
1425 
1426 static int stm32_dma_runtime_resume(struct device *dev)
1427 {
1428 	struct stm32_dma_device *dmadev = dev_get_drvdata(dev);
1429 	int ret;
1430 
1431 	ret = clk_prepare_enable(dmadev->clk);
1432 	if (ret) {
1433 		dev_err(dev, "failed to prepare_enable clock\n");
1434 		return ret;
1435 	}
1436 
1437 	return 0;
1438 }
1439 #endif
1440 
1441 static const struct dev_pm_ops stm32_dma_pm_ops = {
1442 	SET_RUNTIME_PM_OPS(stm32_dma_runtime_suspend,
1443 			   stm32_dma_runtime_resume, NULL)
1444 };
1445 
1446 static struct platform_driver stm32_dma_driver = {
1447 	.driver = {
1448 		.name = "stm32-dma",
1449 		.of_match_table = stm32_dma_of_match,
1450 		.pm = &stm32_dma_pm_ops,
1451 	},
1452 };
1453 
1454 static int __init stm32_dma_init(void)
1455 {
1456 	return platform_driver_probe(&stm32_dma_driver, stm32_dma_probe);
1457 }
1458 subsys_initcall(stm32_dma_init);
1459