xref: /linux/drivers/dma/tegra20-apb-dma.c (revision 44f57d78)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * DMA driver for Nvidia's Tegra20 APB DMA controller.
4  *
5  * Copyright (c) 2012-2013, NVIDIA CORPORATION.  All rights reserved.
6  */
7 
8 #include <linux/bitops.h>
9 #include <linux/clk.h>
10 #include <linux/delay.h>
11 #include <linux/dmaengine.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/err.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
16 #include <linux/io.h>
17 #include <linux/mm.h>
18 #include <linux/module.h>
19 #include <linux/of.h>
20 #include <linux/of_device.h>
21 #include <linux/of_dma.h>
22 #include <linux/platform_device.h>
23 #include <linux/pm.h>
24 #include <linux/pm_runtime.h>
25 #include <linux/reset.h>
26 #include <linux/slab.h>
27 
28 #include "dmaengine.h"
29 
30 #define CREATE_TRACE_POINTS
31 #include <trace/events/tegra_apb_dma.h>
32 
33 #define TEGRA_APBDMA_GENERAL			0x0
34 #define TEGRA_APBDMA_GENERAL_ENABLE		BIT(31)
35 
36 #define TEGRA_APBDMA_CONTROL			0x010
37 #define TEGRA_APBDMA_IRQ_MASK			0x01c
38 #define TEGRA_APBDMA_IRQ_MASK_SET		0x020
39 
40 /* CSR register */
41 #define TEGRA_APBDMA_CHAN_CSR			0x00
42 #define TEGRA_APBDMA_CSR_ENB			BIT(31)
43 #define TEGRA_APBDMA_CSR_IE_EOC			BIT(30)
44 #define TEGRA_APBDMA_CSR_HOLD			BIT(29)
45 #define TEGRA_APBDMA_CSR_DIR			BIT(28)
46 #define TEGRA_APBDMA_CSR_ONCE			BIT(27)
47 #define TEGRA_APBDMA_CSR_FLOW			BIT(21)
48 #define TEGRA_APBDMA_CSR_REQ_SEL_SHIFT		16
49 #define TEGRA_APBDMA_CSR_REQ_SEL_MASK		0x1F
50 #define TEGRA_APBDMA_CSR_WCOUNT_MASK		0xFFFC
51 
52 /* STATUS register */
53 #define TEGRA_APBDMA_CHAN_STATUS		0x004
54 #define TEGRA_APBDMA_STATUS_BUSY		BIT(31)
55 #define TEGRA_APBDMA_STATUS_ISE_EOC		BIT(30)
56 #define TEGRA_APBDMA_STATUS_HALT		BIT(29)
57 #define TEGRA_APBDMA_STATUS_PING_PONG		BIT(28)
58 #define TEGRA_APBDMA_STATUS_COUNT_SHIFT		2
59 #define TEGRA_APBDMA_STATUS_COUNT_MASK		0xFFFC
60 
61 #define TEGRA_APBDMA_CHAN_CSRE			0x00C
62 #define TEGRA_APBDMA_CHAN_CSRE_PAUSE		(1 << 31)
63 
64 /* AHB memory address */
65 #define TEGRA_APBDMA_CHAN_AHBPTR		0x010
66 
67 /* AHB sequence register */
68 #define TEGRA_APBDMA_CHAN_AHBSEQ		0x14
69 #define TEGRA_APBDMA_AHBSEQ_INTR_ENB		BIT(31)
70 #define TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_8		(0 << 28)
71 #define TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_16	(1 << 28)
72 #define TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_32	(2 << 28)
73 #define TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_64	(3 << 28)
74 #define TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_128	(4 << 28)
75 #define TEGRA_APBDMA_AHBSEQ_DATA_SWAP		BIT(27)
76 #define TEGRA_APBDMA_AHBSEQ_BURST_1		(4 << 24)
77 #define TEGRA_APBDMA_AHBSEQ_BURST_4		(5 << 24)
78 #define TEGRA_APBDMA_AHBSEQ_BURST_8		(6 << 24)
79 #define TEGRA_APBDMA_AHBSEQ_DBL_BUF		BIT(19)
80 #define TEGRA_APBDMA_AHBSEQ_WRAP_SHIFT		16
81 #define TEGRA_APBDMA_AHBSEQ_WRAP_NONE		0
82 
83 /* APB address */
84 #define TEGRA_APBDMA_CHAN_APBPTR		0x018
85 
86 /* APB sequence register */
87 #define TEGRA_APBDMA_CHAN_APBSEQ		0x01c
88 #define TEGRA_APBDMA_APBSEQ_BUS_WIDTH_8		(0 << 28)
89 #define TEGRA_APBDMA_APBSEQ_BUS_WIDTH_16	(1 << 28)
90 #define TEGRA_APBDMA_APBSEQ_BUS_WIDTH_32	(2 << 28)
91 #define TEGRA_APBDMA_APBSEQ_BUS_WIDTH_64	(3 << 28)
92 #define TEGRA_APBDMA_APBSEQ_BUS_WIDTH_128	(4 << 28)
93 #define TEGRA_APBDMA_APBSEQ_DATA_SWAP		BIT(27)
94 #define TEGRA_APBDMA_APBSEQ_WRAP_WORD_1		(1 << 16)
95 
96 /* Tegra148 specific registers */
97 #define TEGRA_APBDMA_CHAN_WCOUNT		0x20
98 
99 #define TEGRA_APBDMA_CHAN_WORD_TRANSFER		0x24
100 
101 /*
102  * If any burst is in flight and DMA paused then this is the time to complete
103  * on-flight burst and update DMA status register.
104  */
105 #define TEGRA_APBDMA_BURST_COMPLETE_TIME	20
106 
107 /* Channel base address offset from APBDMA base address */
108 #define TEGRA_APBDMA_CHANNEL_BASE_ADD_OFFSET	0x1000
109 
110 #define TEGRA_APBDMA_SLAVE_ID_INVALID	(TEGRA_APBDMA_CSR_REQ_SEL_MASK + 1)
111 
112 struct tegra_dma;
113 
114 /*
115  * tegra_dma_chip_data Tegra chip specific DMA data
116  * @nr_channels: Number of channels available in the controller.
117  * @channel_reg_size: Channel register size/stride.
118  * @max_dma_count: Maximum DMA transfer count supported by DMA controller.
119  * @support_channel_pause: Support channel wise pause of dma.
120  * @support_separate_wcount_reg: Support separate word count register.
121  */
122 struct tegra_dma_chip_data {
123 	int nr_channels;
124 	int channel_reg_size;
125 	int max_dma_count;
126 	bool support_channel_pause;
127 	bool support_separate_wcount_reg;
128 };
129 
130 /* DMA channel registers */
131 struct tegra_dma_channel_regs {
132 	unsigned long	csr;
133 	unsigned long	ahb_ptr;
134 	unsigned long	apb_ptr;
135 	unsigned long	ahb_seq;
136 	unsigned long	apb_seq;
137 	unsigned long	wcount;
138 };
139 
140 /*
141  * tegra_dma_sg_req: DMA request details to configure hardware. This
142  * contains the details for one transfer to configure DMA hw.
143  * The client's request for data transfer can be broken into multiple
144  * sub-transfer as per requester details and hw support.
145  * This sub transfer get added in the list of transfer and point to Tegra
146  * DMA descriptor which manages the transfer details.
147  */
148 struct tegra_dma_sg_req {
149 	struct tegra_dma_channel_regs	ch_regs;
150 	unsigned int			req_len;
151 	bool				configured;
152 	bool				last_sg;
153 	struct list_head		node;
154 	struct tegra_dma_desc		*dma_desc;
155 };
156 
157 /*
158  * tegra_dma_desc: Tegra DMA descriptors which manages the client requests.
159  * This descriptor keep track of transfer status, callbacks and request
160  * counts etc.
161  */
162 struct tegra_dma_desc {
163 	struct dma_async_tx_descriptor	txd;
164 	unsigned int			bytes_requested;
165 	unsigned int			bytes_transferred;
166 	enum dma_status			dma_status;
167 	struct list_head		node;
168 	struct list_head		tx_list;
169 	struct list_head		cb_node;
170 	int				cb_count;
171 };
172 
173 struct tegra_dma_channel;
174 
175 typedef void (*dma_isr_handler)(struct tegra_dma_channel *tdc,
176 				bool to_terminate);
177 
178 /* tegra_dma_channel: Channel specific information */
179 struct tegra_dma_channel {
180 	struct dma_chan		dma_chan;
181 	char			name[12];
182 	bool			config_init;
183 	int			id;
184 	int			irq;
185 	void __iomem		*chan_addr;
186 	spinlock_t		lock;
187 	bool			busy;
188 	struct tegra_dma	*tdma;
189 	bool			cyclic;
190 
191 	/* Different lists for managing the requests */
192 	struct list_head	free_sg_req;
193 	struct list_head	pending_sg_req;
194 	struct list_head	free_dma_desc;
195 	struct list_head	cb_desc;
196 
197 	/* ISR handler and tasklet for bottom half of isr handling */
198 	dma_isr_handler		isr_handler;
199 	struct tasklet_struct	tasklet;
200 
201 	/* Channel-slave specific configuration */
202 	unsigned int slave_id;
203 	struct dma_slave_config dma_sconfig;
204 	struct tegra_dma_channel_regs	channel_reg;
205 };
206 
207 /* tegra_dma: Tegra DMA specific information */
208 struct tegra_dma {
209 	struct dma_device		dma_dev;
210 	struct device			*dev;
211 	struct clk			*dma_clk;
212 	struct reset_control		*rst;
213 	spinlock_t			global_lock;
214 	void __iomem			*base_addr;
215 	const struct tegra_dma_chip_data *chip_data;
216 
217 	/*
218 	 * Counter for managing global pausing of the DMA controller.
219 	 * Only applicable for devices that don't support individual
220 	 * channel pausing.
221 	 */
222 	u32				global_pause_count;
223 
224 	/* Some register need to be cache before suspend */
225 	u32				reg_gen;
226 
227 	/* Last member of the structure */
228 	struct tegra_dma_channel channels[0];
229 };
230 
231 static inline void tdma_write(struct tegra_dma *tdma, u32 reg, u32 val)
232 {
233 	writel(val, tdma->base_addr + reg);
234 }
235 
236 static inline u32 tdma_read(struct tegra_dma *tdma, u32 reg)
237 {
238 	return readl(tdma->base_addr + reg);
239 }
240 
241 static inline void tdc_write(struct tegra_dma_channel *tdc,
242 		u32 reg, u32 val)
243 {
244 	writel(val, tdc->chan_addr + reg);
245 }
246 
247 static inline u32 tdc_read(struct tegra_dma_channel *tdc, u32 reg)
248 {
249 	return readl(tdc->chan_addr + reg);
250 }
251 
252 static inline struct tegra_dma_channel *to_tegra_dma_chan(struct dma_chan *dc)
253 {
254 	return container_of(dc, struct tegra_dma_channel, dma_chan);
255 }
256 
257 static inline struct tegra_dma_desc *txd_to_tegra_dma_desc(
258 		struct dma_async_tx_descriptor *td)
259 {
260 	return container_of(td, struct tegra_dma_desc, txd);
261 }
262 
263 static inline struct device *tdc2dev(struct tegra_dma_channel *tdc)
264 {
265 	return &tdc->dma_chan.dev->device;
266 }
267 
268 static dma_cookie_t tegra_dma_tx_submit(struct dma_async_tx_descriptor *tx);
269 static int tegra_dma_runtime_suspend(struct device *dev);
270 static int tegra_dma_runtime_resume(struct device *dev);
271 
272 /* Get DMA desc from free list, if not there then allocate it.  */
273 static struct tegra_dma_desc *tegra_dma_desc_get(
274 		struct tegra_dma_channel *tdc)
275 {
276 	struct tegra_dma_desc *dma_desc;
277 	unsigned long flags;
278 
279 	spin_lock_irqsave(&tdc->lock, flags);
280 
281 	/* Do not allocate if desc are waiting for ack */
282 	list_for_each_entry(dma_desc, &tdc->free_dma_desc, node) {
283 		if (async_tx_test_ack(&dma_desc->txd)) {
284 			list_del(&dma_desc->node);
285 			spin_unlock_irqrestore(&tdc->lock, flags);
286 			dma_desc->txd.flags = 0;
287 			return dma_desc;
288 		}
289 	}
290 
291 	spin_unlock_irqrestore(&tdc->lock, flags);
292 
293 	/* Allocate DMA desc */
294 	dma_desc = kzalloc(sizeof(*dma_desc), GFP_NOWAIT);
295 	if (!dma_desc)
296 		return NULL;
297 
298 	dma_async_tx_descriptor_init(&dma_desc->txd, &tdc->dma_chan);
299 	dma_desc->txd.tx_submit = tegra_dma_tx_submit;
300 	dma_desc->txd.flags = 0;
301 	return dma_desc;
302 }
303 
304 static void tegra_dma_desc_put(struct tegra_dma_channel *tdc,
305 		struct tegra_dma_desc *dma_desc)
306 {
307 	unsigned long flags;
308 
309 	spin_lock_irqsave(&tdc->lock, flags);
310 	if (!list_empty(&dma_desc->tx_list))
311 		list_splice_init(&dma_desc->tx_list, &tdc->free_sg_req);
312 	list_add_tail(&dma_desc->node, &tdc->free_dma_desc);
313 	spin_unlock_irqrestore(&tdc->lock, flags);
314 }
315 
316 static struct tegra_dma_sg_req *tegra_dma_sg_req_get(
317 		struct tegra_dma_channel *tdc)
318 {
319 	struct tegra_dma_sg_req *sg_req = NULL;
320 	unsigned long flags;
321 
322 	spin_lock_irqsave(&tdc->lock, flags);
323 	if (!list_empty(&tdc->free_sg_req)) {
324 		sg_req = list_first_entry(&tdc->free_sg_req,
325 					typeof(*sg_req), node);
326 		list_del(&sg_req->node);
327 		spin_unlock_irqrestore(&tdc->lock, flags);
328 		return sg_req;
329 	}
330 	spin_unlock_irqrestore(&tdc->lock, flags);
331 
332 	sg_req = kzalloc(sizeof(struct tegra_dma_sg_req), GFP_NOWAIT);
333 
334 	return sg_req;
335 }
336 
337 static int tegra_dma_slave_config(struct dma_chan *dc,
338 		struct dma_slave_config *sconfig)
339 {
340 	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
341 
342 	if (!list_empty(&tdc->pending_sg_req)) {
343 		dev_err(tdc2dev(tdc), "Configuration not allowed\n");
344 		return -EBUSY;
345 	}
346 
347 	memcpy(&tdc->dma_sconfig, sconfig, sizeof(*sconfig));
348 	if (tdc->slave_id == TEGRA_APBDMA_SLAVE_ID_INVALID &&
349 	    sconfig->device_fc) {
350 		if (sconfig->slave_id > TEGRA_APBDMA_CSR_REQ_SEL_MASK)
351 			return -EINVAL;
352 		tdc->slave_id = sconfig->slave_id;
353 	}
354 	tdc->config_init = true;
355 	return 0;
356 }
357 
358 static void tegra_dma_global_pause(struct tegra_dma_channel *tdc,
359 	bool wait_for_burst_complete)
360 {
361 	struct tegra_dma *tdma = tdc->tdma;
362 
363 	spin_lock(&tdma->global_lock);
364 
365 	if (tdc->tdma->global_pause_count == 0) {
366 		tdma_write(tdma, TEGRA_APBDMA_GENERAL, 0);
367 		if (wait_for_burst_complete)
368 			udelay(TEGRA_APBDMA_BURST_COMPLETE_TIME);
369 	}
370 
371 	tdc->tdma->global_pause_count++;
372 
373 	spin_unlock(&tdma->global_lock);
374 }
375 
376 static void tegra_dma_global_resume(struct tegra_dma_channel *tdc)
377 {
378 	struct tegra_dma *tdma = tdc->tdma;
379 
380 	spin_lock(&tdma->global_lock);
381 
382 	if (WARN_ON(tdc->tdma->global_pause_count == 0))
383 		goto out;
384 
385 	if (--tdc->tdma->global_pause_count == 0)
386 		tdma_write(tdma, TEGRA_APBDMA_GENERAL,
387 			   TEGRA_APBDMA_GENERAL_ENABLE);
388 
389 out:
390 	spin_unlock(&tdma->global_lock);
391 }
392 
393 static void tegra_dma_pause(struct tegra_dma_channel *tdc,
394 	bool wait_for_burst_complete)
395 {
396 	struct tegra_dma *tdma = tdc->tdma;
397 
398 	if (tdma->chip_data->support_channel_pause) {
399 		tdc_write(tdc, TEGRA_APBDMA_CHAN_CSRE,
400 				TEGRA_APBDMA_CHAN_CSRE_PAUSE);
401 		if (wait_for_burst_complete)
402 			udelay(TEGRA_APBDMA_BURST_COMPLETE_TIME);
403 	} else {
404 		tegra_dma_global_pause(tdc, wait_for_burst_complete);
405 	}
406 }
407 
408 static void tegra_dma_resume(struct tegra_dma_channel *tdc)
409 {
410 	struct tegra_dma *tdma = tdc->tdma;
411 
412 	if (tdma->chip_data->support_channel_pause) {
413 		tdc_write(tdc, TEGRA_APBDMA_CHAN_CSRE, 0);
414 	} else {
415 		tegra_dma_global_resume(tdc);
416 	}
417 }
418 
419 static void tegra_dma_stop(struct tegra_dma_channel *tdc)
420 {
421 	u32 csr;
422 	u32 status;
423 
424 	/* Disable interrupts */
425 	csr = tdc_read(tdc, TEGRA_APBDMA_CHAN_CSR);
426 	csr &= ~TEGRA_APBDMA_CSR_IE_EOC;
427 	tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR, csr);
428 
429 	/* Disable DMA */
430 	csr &= ~TEGRA_APBDMA_CSR_ENB;
431 	tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR, csr);
432 
433 	/* Clear interrupt status if it is there */
434 	status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
435 	if (status & TEGRA_APBDMA_STATUS_ISE_EOC) {
436 		dev_dbg(tdc2dev(tdc), "%s():clearing interrupt\n", __func__);
437 		tdc_write(tdc, TEGRA_APBDMA_CHAN_STATUS, status);
438 	}
439 	tdc->busy = false;
440 }
441 
442 static void tegra_dma_start(struct tegra_dma_channel *tdc,
443 		struct tegra_dma_sg_req *sg_req)
444 {
445 	struct tegra_dma_channel_regs *ch_regs = &sg_req->ch_regs;
446 
447 	tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR, ch_regs->csr);
448 	tdc_write(tdc, TEGRA_APBDMA_CHAN_APBSEQ, ch_regs->apb_seq);
449 	tdc_write(tdc, TEGRA_APBDMA_CHAN_APBPTR, ch_regs->apb_ptr);
450 	tdc_write(tdc, TEGRA_APBDMA_CHAN_AHBSEQ, ch_regs->ahb_seq);
451 	tdc_write(tdc, TEGRA_APBDMA_CHAN_AHBPTR, ch_regs->ahb_ptr);
452 	if (tdc->tdma->chip_data->support_separate_wcount_reg)
453 		tdc_write(tdc, TEGRA_APBDMA_CHAN_WCOUNT, ch_regs->wcount);
454 
455 	/* Start DMA */
456 	tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR,
457 				ch_regs->csr | TEGRA_APBDMA_CSR_ENB);
458 }
459 
460 static void tegra_dma_configure_for_next(struct tegra_dma_channel *tdc,
461 		struct tegra_dma_sg_req *nsg_req)
462 {
463 	unsigned long status;
464 
465 	/*
466 	 * The DMA controller reloads the new configuration for next transfer
467 	 * after last burst of current transfer completes.
468 	 * If there is no IEC status then this makes sure that last burst
469 	 * has not be completed. There may be case that last burst is on
470 	 * flight and so it can complete but because DMA is paused, it
471 	 * will not generates interrupt as well as not reload the new
472 	 * configuration.
473 	 * If there is already IEC status then interrupt handler need to
474 	 * load new configuration.
475 	 */
476 	tegra_dma_pause(tdc, false);
477 	status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
478 
479 	/*
480 	 * If interrupt is pending then do nothing as the ISR will handle
481 	 * the programing for new request.
482 	 */
483 	if (status & TEGRA_APBDMA_STATUS_ISE_EOC) {
484 		dev_err(tdc2dev(tdc),
485 			"Skipping new configuration as interrupt is pending\n");
486 		tegra_dma_resume(tdc);
487 		return;
488 	}
489 
490 	/* Safe to program new configuration */
491 	tdc_write(tdc, TEGRA_APBDMA_CHAN_APBPTR, nsg_req->ch_regs.apb_ptr);
492 	tdc_write(tdc, TEGRA_APBDMA_CHAN_AHBPTR, nsg_req->ch_regs.ahb_ptr);
493 	if (tdc->tdma->chip_data->support_separate_wcount_reg)
494 		tdc_write(tdc, TEGRA_APBDMA_CHAN_WCOUNT,
495 						nsg_req->ch_regs.wcount);
496 	tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR,
497 				nsg_req->ch_regs.csr | TEGRA_APBDMA_CSR_ENB);
498 	nsg_req->configured = true;
499 
500 	tegra_dma_resume(tdc);
501 }
502 
503 static void tdc_start_head_req(struct tegra_dma_channel *tdc)
504 {
505 	struct tegra_dma_sg_req *sg_req;
506 
507 	if (list_empty(&tdc->pending_sg_req))
508 		return;
509 
510 	sg_req = list_first_entry(&tdc->pending_sg_req,
511 					typeof(*sg_req), node);
512 	tegra_dma_start(tdc, sg_req);
513 	sg_req->configured = true;
514 	tdc->busy = true;
515 }
516 
517 static void tdc_configure_next_head_desc(struct tegra_dma_channel *tdc)
518 {
519 	struct tegra_dma_sg_req *hsgreq;
520 	struct tegra_dma_sg_req *hnsgreq;
521 
522 	if (list_empty(&tdc->pending_sg_req))
523 		return;
524 
525 	hsgreq = list_first_entry(&tdc->pending_sg_req, typeof(*hsgreq), node);
526 	if (!list_is_last(&hsgreq->node, &tdc->pending_sg_req)) {
527 		hnsgreq = list_first_entry(&hsgreq->node,
528 					typeof(*hnsgreq), node);
529 		tegra_dma_configure_for_next(tdc, hnsgreq);
530 	}
531 }
532 
533 static inline int get_current_xferred_count(struct tegra_dma_channel *tdc,
534 	struct tegra_dma_sg_req *sg_req, unsigned long status)
535 {
536 	return sg_req->req_len - (status & TEGRA_APBDMA_STATUS_COUNT_MASK) - 4;
537 }
538 
539 static void tegra_dma_abort_all(struct tegra_dma_channel *tdc)
540 {
541 	struct tegra_dma_sg_req *sgreq;
542 	struct tegra_dma_desc *dma_desc;
543 
544 	while (!list_empty(&tdc->pending_sg_req)) {
545 		sgreq = list_first_entry(&tdc->pending_sg_req,
546 						typeof(*sgreq), node);
547 		list_move_tail(&sgreq->node, &tdc->free_sg_req);
548 		if (sgreq->last_sg) {
549 			dma_desc = sgreq->dma_desc;
550 			dma_desc->dma_status = DMA_ERROR;
551 			list_add_tail(&dma_desc->node, &tdc->free_dma_desc);
552 
553 			/* Add in cb list if it is not there. */
554 			if (!dma_desc->cb_count)
555 				list_add_tail(&dma_desc->cb_node,
556 							&tdc->cb_desc);
557 			dma_desc->cb_count++;
558 		}
559 	}
560 	tdc->isr_handler = NULL;
561 }
562 
563 static bool handle_continuous_head_request(struct tegra_dma_channel *tdc,
564 		struct tegra_dma_sg_req *last_sg_req, bool to_terminate)
565 {
566 	struct tegra_dma_sg_req *hsgreq = NULL;
567 
568 	if (list_empty(&tdc->pending_sg_req)) {
569 		dev_err(tdc2dev(tdc), "DMA is running without req\n");
570 		tegra_dma_stop(tdc);
571 		return false;
572 	}
573 
574 	/*
575 	 * Check that head req on list should be in flight.
576 	 * If it is not in flight then abort transfer as
577 	 * looping of transfer can not continue.
578 	 */
579 	hsgreq = list_first_entry(&tdc->pending_sg_req, typeof(*hsgreq), node);
580 	if (!hsgreq->configured) {
581 		tegra_dma_stop(tdc);
582 		dev_err(tdc2dev(tdc), "Error in DMA transfer, aborting DMA\n");
583 		tegra_dma_abort_all(tdc);
584 		return false;
585 	}
586 
587 	/* Configure next request */
588 	if (!to_terminate)
589 		tdc_configure_next_head_desc(tdc);
590 	return true;
591 }
592 
593 static void handle_once_dma_done(struct tegra_dma_channel *tdc,
594 	bool to_terminate)
595 {
596 	struct tegra_dma_sg_req *sgreq;
597 	struct tegra_dma_desc *dma_desc;
598 
599 	tdc->busy = false;
600 	sgreq = list_first_entry(&tdc->pending_sg_req, typeof(*sgreq), node);
601 	dma_desc = sgreq->dma_desc;
602 	dma_desc->bytes_transferred += sgreq->req_len;
603 
604 	list_del(&sgreq->node);
605 	if (sgreq->last_sg) {
606 		dma_desc->dma_status = DMA_COMPLETE;
607 		dma_cookie_complete(&dma_desc->txd);
608 		if (!dma_desc->cb_count)
609 			list_add_tail(&dma_desc->cb_node, &tdc->cb_desc);
610 		dma_desc->cb_count++;
611 		list_add_tail(&dma_desc->node, &tdc->free_dma_desc);
612 	}
613 	list_add_tail(&sgreq->node, &tdc->free_sg_req);
614 
615 	/* Do not start DMA if it is going to be terminate */
616 	if (to_terminate || list_empty(&tdc->pending_sg_req))
617 		return;
618 
619 	tdc_start_head_req(tdc);
620 }
621 
622 static void handle_cont_sngl_cycle_dma_done(struct tegra_dma_channel *tdc,
623 		bool to_terminate)
624 {
625 	struct tegra_dma_sg_req *sgreq;
626 	struct tegra_dma_desc *dma_desc;
627 	bool st;
628 
629 	sgreq = list_first_entry(&tdc->pending_sg_req, typeof(*sgreq), node);
630 	dma_desc = sgreq->dma_desc;
631 	/* if we dma for long enough the transfer count will wrap */
632 	dma_desc->bytes_transferred =
633 		(dma_desc->bytes_transferred + sgreq->req_len) %
634 		dma_desc->bytes_requested;
635 
636 	/* Callback need to be call */
637 	if (!dma_desc->cb_count)
638 		list_add_tail(&dma_desc->cb_node, &tdc->cb_desc);
639 	dma_desc->cb_count++;
640 
641 	/* If not last req then put at end of pending list */
642 	if (!list_is_last(&sgreq->node, &tdc->pending_sg_req)) {
643 		list_move_tail(&sgreq->node, &tdc->pending_sg_req);
644 		sgreq->configured = false;
645 		st = handle_continuous_head_request(tdc, sgreq, to_terminate);
646 		if (!st)
647 			dma_desc->dma_status = DMA_ERROR;
648 	}
649 }
650 
651 static void tegra_dma_tasklet(unsigned long data)
652 {
653 	struct tegra_dma_channel *tdc = (struct tegra_dma_channel *)data;
654 	struct dmaengine_desc_callback cb;
655 	struct tegra_dma_desc *dma_desc;
656 	unsigned long flags;
657 	int cb_count;
658 
659 	spin_lock_irqsave(&tdc->lock, flags);
660 	while (!list_empty(&tdc->cb_desc)) {
661 		dma_desc  = list_first_entry(&tdc->cb_desc,
662 					typeof(*dma_desc), cb_node);
663 		list_del(&dma_desc->cb_node);
664 		dmaengine_desc_get_callback(&dma_desc->txd, &cb);
665 		cb_count = dma_desc->cb_count;
666 		dma_desc->cb_count = 0;
667 		trace_tegra_dma_complete_cb(&tdc->dma_chan, cb_count,
668 					    cb.callback);
669 		spin_unlock_irqrestore(&tdc->lock, flags);
670 		while (cb_count--)
671 			dmaengine_desc_callback_invoke(&cb, NULL);
672 		spin_lock_irqsave(&tdc->lock, flags);
673 	}
674 	spin_unlock_irqrestore(&tdc->lock, flags);
675 }
676 
677 static irqreturn_t tegra_dma_isr(int irq, void *dev_id)
678 {
679 	struct tegra_dma_channel *tdc = dev_id;
680 	unsigned long status;
681 	unsigned long flags;
682 
683 	spin_lock_irqsave(&tdc->lock, flags);
684 
685 	trace_tegra_dma_isr(&tdc->dma_chan, irq);
686 	status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
687 	if (status & TEGRA_APBDMA_STATUS_ISE_EOC) {
688 		tdc_write(tdc, TEGRA_APBDMA_CHAN_STATUS, status);
689 		tdc->isr_handler(tdc, false);
690 		tasklet_schedule(&tdc->tasklet);
691 		spin_unlock_irqrestore(&tdc->lock, flags);
692 		return IRQ_HANDLED;
693 	}
694 
695 	spin_unlock_irqrestore(&tdc->lock, flags);
696 	dev_info(tdc2dev(tdc),
697 		"Interrupt already served status 0x%08lx\n", status);
698 	return IRQ_NONE;
699 }
700 
701 static dma_cookie_t tegra_dma_tx_submit(struct dma_async_tx_descriptor *txd)
702 {
703 	struct tegra_dma_desc *dma_desc = txd_to_tegra_dma_desc(txd);
704 	struct tegra_dma_channel *tdc = to_tegra_dma_chan(txd->chan);
705 	unsigned long flags;
706 	dma_cookie_t cookie;
707 
708 	spin_lock_irqsave(&tdc->lock, flags);
709 	dma_desc->dma_status = DMA_IN_PROGRESS;
710 	cookie = dma_cookie_assign(&dma_desc->txd);
711 	list_splice_tail_init(&dma_desc->tx_list, &tdc->pending_sg_req);
712 	spin_unlock_irqrestore(&tdc->lock, flags);
713 	return cookie;
714 }
715 
716 static void tegra_dma_issue_pending(struct dma_chan *dc)
717 {
718 	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
719 	unsigned long flags;
720 
721 	spin_lock_irqsave(&tdc->lock, flags);
722 	if (list_empty(&tdc->pending_sg_req)) {
723 		dev_err(tdc2dev(tdc), "No DMA request\n");
724 		goto end;
725 	}
726 	if (!tdc->busy) {
727 		tdc_start_head_req(tdc);
728 
729 		/* Continuous single mode: Configure next req */
730 		if (tdc->cyclic) {
731 			/*
732 			 * Wait for 1 burst time for configure DMA for
733 			 * next transfer.
734 			 */
735 			udelay(TEGRA_APBDMA_BURST_COMPLETE_TIME);
736 			tdc_configure_next_head_desc(tdc);
737 		}
738 	}
739 end:
740 	spin_unlock_irqrestore(&tdc->lock, flags);
741 }
742 
743 static int tegra_dma_terminate_all(struct dma_chan *dc)
744 {
745 	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
746 	struct tegra_dma_sg_req *sgreq;
747 	struct tegra_dma_desc *dma_desc;
748 	unsigned long flags;
749 	unsigned long status;
750 	unsigned long wcount;
751 	bool was_busy;
752 
753 	spin_lock_irqsave(&tdc->lock, flags);
754 	if (list_empty(&tdc->pending_sg_req)) {
755 		spin_unlock_irqrestore(&tdc->lock, flags);
756 		return 0;
757 	}
758 
759 	if (!tdc->busy)
760 		goto skip_dma_stop;
761 
762 	/* Pause DMA before checking the queue status */
763 	tegra_dma_pause(tdc, true);
764 
765 	status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
766 	if (status & TEGRA_APBDMA_STATUS_ISE_EOC) {
767 		dev_dbg(tdc2dev(tdc), "%s():handling isr\n", __func__);
768 		tdc->isr_handler(tdc, true);
769 		status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
770 	}
771 	if (tdc->tdma->chip_data->support_separate_wcount_reg)
772 		wcount = tdc_read(tdc, TEGRA_APBDMA_CHAN_WORD_TRANSFER);
773 	else
774 		wcount = status;
775 
776 	was_busy = tdc->busy;
777 	tegra_dma_stop(tdc);
778 
779 	if (!list_empty(&tdc->pending_sg_req) && was_busy) {
780 		sgreq = list_first_entry(&tdc->pending_sg_req,
781 					typeof(*sgreq), node);
782 		sgreq->dma_desc->bytes_transferred +=
783 				get_current_xferred_count(tdc, sgreq, wcount);
784 	}
785 	tegra_dma_resume(tdc);
786 
787 skip_dma_stop:
788 	tegra_dma_abort_all(tdc);
789 
790 	while (!list_empty(&tdc->cb_desc)) {
791 		dma_desc  = list_first_entry(&tdc->cb_desc,
792 					typeof(*dma_desc), cb_node);
793 		list_del(&dma_desc->cb_node);
794 		dma_desc->cb_count = 0;
795 	}
796 	spin_unlock_irqrestore(&tdc->lock, flags);
797 	return 0;
798 }
799 
800 static enum dma_status tegra_dma_tx_status(struct dma_chan *dc,
801 	dma_cookie_t cookie, struct dma_tx_state *txstate)
802 {
803 	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
804 	struct tegra_dma_desc *dma_desc;
805 	struct tegra_dma_sg_req *sg_req;
806 	enum dma_status ret;
807 	unsigned long flags;
808 	unsigned int residual;
809 
810 	ret = dma_cookie_status(dc, cookie, txstate);
811 	if (ret == DMA_COMPLETE)
812 		return ret;
813 
814 	spin_lock_irqsave(&tdc->lock, flags);
815 
816 	/* Check on wait_ack desc status */
817 	list_for_each_entry(dma_desc, &tdc->free_dma_desc, node) {
818 		if (dma_desc->txd.cookie == cookie) {
819 			ret = dma_desc->dma_status;
820 			goto found;
821 		}
822 	}
823 
824 	/* Check in pending list */
825 	list_for_each_entry(sg_req, &tdc->pending_sg_req, node) {
826 		dma_desc = sg_req->dma_desc;
827 		if (dma_desc->txd.cookie == cookie) {
828 			ret = dma_desc->dma_status;
829 			goto found;
830 		}
831 	}
832 
833 	dev_dbg(tdc2dev(tdc), "cookie %d not found\n", cookie);
834 	dma_desc = NULL;
835 
836 found:
837 	if (dma_desc && txstate) {
838 		residual = dma_desc->bytes_requested -
839 			   (dma_desc->bytes_transferred %
840 			    dma_desc->bytes_requested);
841 		dma_set_residue(txstate, residual);
842 	}
843 
844 	trace_tegra_dma_tx_status(&tdc->dma_chan, cookie, txstate);
845 	spin_unlock_irqrestore(&tdc->lock, flags);
846 	return ret;
847 }
848 
849 static inline int get_bus_width(struct tegra_dma_channel *tdc,
850 		enum dma_slave_buswidth slave_bw)
851 {
852 	switch (slave_bw) {
853 	case DMA_SLAVE_BUSWIDTH_1_BYTE:
854 		return TEGRA_APBDMA_APBSEQ_BUS_WIDTH_8;
855 	case DMA_SLAVE_BUSWIDTH_2_BYTES:
856 		return TEGRA_APBDMA_APBSEQ_BUS_WIDTH_16;
857 	case DMA_SLAVE_BUSWIDTH_4_BYTES:
858 		return TEGRA_APBDMA_APBSEQ_BUS_WIDTH_32;
859 	case DMA_SLAVE_BUSWIDTH_8_BYTES:
860 		return TEGRA_APBDMA_APBSEQ_BUS_WIDTH_64;
861 	default:
862 		dev_warn(tdc2dev(tdc),
863 			"slave bw is not supported, using 32bits\n");
864 		return TEGRA_APBDMA_APBSEQ_BUS_WIDTH_32;
865 	}
866 }
867 
868 static inline int get_burst_size(struct tegra_dma_channel *tdc,
869 	u32 burst_size, enum dma_slave_buswidth slave_bw, int len)
870 {
871 	int burst_byte;
872 	int burst_ahb_width;
873 
874 	/*
875 	 * burst_size from client is in terms of the bus_width.
876 	 * convert them into AHB memory width which is 4 byte.
877 	 */
878 	burst_byte = burst_size * slave_bw;
879 	burst_ahb_width = burst_byte / 4;
880 
881 	/* If burst size is 0 then calculate the burst size based on length */
882 	if (!burst_ahb_width) {
883 		if (len & 0xF)
884 			return TEGRA_APBDMA_AHBSEQ_BURST_1;
885 		else if ((len >> 4) & 0x1)
886 			return TEGRA_APBDMA_AHBSEQ_BURST_4;
887 		else
888 			return TEGRA_APBDMA_AHBSEQ_BURST_8;
889 	}
890 	if (burst_ahb_width < 4)
891 		return TEGRA_APBDMA_AHBSEQ_BURST_1;
892 	else if (burst_ahb_width < 8)
893 		return TEGRA_APBDMA_AHBSEQ_BURST_4;
894 	else
895 		return TEGRA_APBDMA_AHBSEQ_BURST_8;
896 }
897 
898 static int get_transfer_param(struct tegra_dma_channel *tdc,
899 	enum dma_transfer_direction direction, unsigned long *apb_addr,
900 	unsigned long *apb_seq,	unsigned long *csr, unsigned int *burst_size,
901 	enum dma_slave_buswidth *slave_bw)
902 {
903 	switch (direction) {
904 	case DMA_MEM_TO_DEV:
905 		*apb_addr = tdc->dma_sconfig.dst_addr;
906 		*apb_seq = get_bus_width(tdc, tdc->dma_sconfig.dst_addr_width);
907 		*burst_size = tdc->dma_sconfig.dst_maxburst;
908 		*slave_bw = tdc->dma_sconfig.dst_addr_width;
909 		*csr = TEGRA_APBDMA_CSR_DIR;
910 		return 0;
911 
912 	case DMA_DEV_TO_MEM:
913 		*apb_addr = tdc->dma_sconfig.src_addr;
914 		*apb_seq = get_bus_width(tdc, tdc->dma_sconfig.src_addr_width);
915 		*burst_size = tdc->dma_sconfig.src_maxburst;
916 		*slave_bw = tdc->dma_sconfig.src_addr_width;
917 		*csr = 0;
918 		return 0;
919 
920 	default:
921 		dev_err(tdc2dev(tdc), "DMA direction is not supported\n");
922 		return -EINVAL;
923 	}
924 	return -EINVAL;
925 }
926 
927 static void tegra_dma_prep_wcount(struct tegra_dma_channel *tdc,
928 	struct tegra_dma_channel_regs *ch_regs, u32 len)
929 {
930 	u32 len_field = (len - 4) & 0xFFFC;
931 
932 	if (tdc->tdma->chip_data->support_separate_wcount_reg)
933 		ch_regs->wcount = len_field;
934 	else
935 		ch_regs->csr |= len_field;
936 }
937 
938 static struct dma_async_tx_descriptor *tegra_dma_prep_slave_sg(
939 	struct dma_chan *dc, struct scatterlist *sgl, unsigned int sg_len,
940 	enum dma_transfer_direction direction, unsigned long flags,
941 	void *context)
942 {
943 	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
944 	struct tegra_dma_desc *dma_desc;
945 	unsigned int i;
946 	struct scatterlist *sg;
947 	unsigned long csr, ahb_seq, apb_ptr, apb_seq;
948 	struct list_head req_list;
949 	struct tegra_dma_sg_req  *sg_req = NULL;
950 	u32 burst_size;
951 	enum dma_slave_buswidth slave_bw;
952 
953 	if (!tdc->config_init) {
954 		dev_err(tdc2dev(tdc), "DMA channel is not configured\n");
955 		return NULL;
956 	}
957 	if (sg_len < 1) {
958 		dev_err(tdc2dev(tdc), "Invalid segment length %d\n", sg_len);
959 		return NULL;
960 	}
961 
962 	if (get_transfer_param(tdc, direction, &apb_ptr, &apb_seq, &csr,
963 				&burst_size, &slave_bw) < 0)
964 		return NULL;
965 
966 	INIT_LIST_HEAD(&req_list);
967 
968 	ahb_seq = TEGRA_APBDMA_AHBSEQ_INTR_ENB;
969 	ahb_seq |= TEGRA_APBDMA_AHBSEQ_WRAP_NONE <<
970 					TEGRA_APBDMA_AHBSEQ_WRAP_SHIFT;
971 	ahb_seq |= TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_32;
972 
973 	csr |= TEGRA_APBDMA_CSR_ONCE;
974 
975 	if (tdc->slave_id != TEGRA_APBDMA_SLAVE_ID_INVALID) {
976 		csr |= TEGRA_APBDMA_CSR_FLOW;
977 		csr |= tdc->slave_id << TEGRA_APBDMA_CSR_REQ_SEL_SHIFT;
978 	}
979 
980 	if (flags & DMA_PREP_INTERRUPT)
981 		csr |= TEGRA_APBDMA_CSR_IE_EOC;
982 
983 	apb_seq |= TEGRA_APBDMA_APBSEQ_WRAP_WORD_1;
984 
985 	dma_desc = tegra_dma_desc_get(tdc);
986 	if (!dma_desc) {
987 		dev_err(tdc2dev(tdc), "DMA descriptors not available\n");
988 		return NULL;
989 	}
990 	INIT_LIST_HEAD(&dma_desc->tx_list);
991 	INIT_LIST_HEAD(&dma_desc->cb_node);
992 	dma_desc->cb_count = 0;
993 	dma_desc->bytes_requested = 0;
994 	dma_desc->bytes_transferred = 0;
995 	dma_desc->dma_status = DMA_IN_PROGRESS;
996 
997 	/* Make transfer requests */
998 	for_each_sg(sgl, sg, sg_len, i) {
999 		u32 len, mem;
1000 
1001 		mem = sg_dma_address(sg);
1002 		len = sg_dma_len(sg);
1003 
1004 		if ((len & 3) || (mem & 3) ||
1005 				(len > tdc->tdma->chip_data->max_dma_count)) {
1006 			dev_err(tdc2dev(tdc),
1007 				"DMA length/memory address is not supported\n");
1008 			tegra_dma_desc_put(tdc, dma_desc);
1009 			return NULL;
1010 		}
1011 
1012 		sg_req = tegra_dma_sg_req_get(tdc);
1013 		if (!sg_req) {
1014 			dev_err(tdc2dev(tdc), "DMA sg-req not available\n");
1015 			tegra_dma_desc_put(tdc, dma_desc);
1016 			return NULL;
1017 		}
1018 
1019 		ahb_seq |= get_burst_size(tdc, burst_size, slave_bw, len);
1020 		dma_desc->bytes_requested += len;
1021 
1022 		sg_req->ch_regs.apb_ptr = apb_ptr;
1023 		sg_req->ch_regs.ahb_ptr = mem;
1024 		sg_req->ch_regs.csr = csr;
1025 		tegra_dma_prep_wcount(tdc, &sg_req->ch_regs, len);
1026 		sg_req->ch_regs.apb_seq = apb_seq;
1027 		sg_req->ch_regs.ahb_seq = ahb_seq;
1028 		sg_req->configured = false;
1029 		sg_req->last_sg = false;
1030 		sg_req->dma_desc = dma_desc;
1031 		sg_req->req_len = len;
1032 
1033 		list_add_tail(&sg_req->node, &dma_desc->tx_list);
1034 	}
1035 	sg_req->last_sg = true;
1036 	if (flags & DMA_CTRL_ACK)
1037 		dma_desc->txd.flags = DMA_CTRL_ACK;
1038 
1039 	/*
1040 	 * Make sure that mode should not be conflicting with currently
1041 	 * configured mode.
1042 	 */
1043 	if (!tdc->isr_handler) {
1044 		tdc->isr_handler = handle_once_dma_done;
1045 		tdc->cyclic = false;
1046 	} else {
1047 		if (tdc->cyclic) {
1048 			dev_err(tdc2dev(tdc), "DMA configured in cyclic mode\n");
1049 			tegra_dma_desc_put(tdc, dma_desc);
1050 			return NULL;
1051 		}
1052 	}
1053 
1054 	return &dma_desc->txd;
1055 }
1056 
1057 static struct dma_async_tx_descriptor *tegra_dma_prep_dma_cyclic(
1058 	struct dma_chan *dc, dma_addr_t buf_addr, size_t buf_len,
1059 	size_t period_len, enum dma_transfer_direction direction,
1060 	unsigned long flags)
1061 {
1062 	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
1063 	struct tegra_dma_desc *dma_desc = NULL;
1064 	struct tegra_dma_sg_req *sg_req = NULL;
1065 	unsigned long csr, ahb_seq, apb_ptr, apb_seq;
1066 	int len;
1067 	size_t remain_len;
1068 	dma_addr_t mem = buf_addr;
1069 	u32 burst_size;
1070 	enum dma_slave_buswidth slave_bw;
1071 
1072 	if (!buf_len || !period_len) {
1073 		dev_err(tdc2dev(tdc), "Invalid buffer/period len\n");
1074 		return NULL;
1075 	}
1076 
1077 	if (!tdc->config_init) {
1078 		dev_err(tdc2dev(tdc), "DMA slave is not configured\n");
1079 		return NULL;
1080 	}
1081 
1082 	/*
1083 	 * We allow to take more number of requests till DMA is
1084 	 * not started. The driver will loop over all requests.
1085 	 * Once DMA is started then new requests can be queued only after
1086 	 * terminating the DMA.
1087 	 */
1088 	if (tdc->busy) {
1089 		dev_err(tdc2dev(tdc), "Request not allowed when DMA running\n");
1090 		return NULL;
1091 	}
1092 
1093 	/*
1094 	 * We only support cycle transfer when buf_len is multiple of
1095 	 * period_len.
1096 	 */
1097 	if (buf_len % period_len) {
1098 		dev_err(tdc2dev(tdc), "buf_len is not multiple of period_len\n");
1099 		return NULL;
1100 	}
1101 
1102 	len = period_len;
1103 	if ((len & 3) || (buf_addr & 3) ||
1104 			(len > tdc->tdma->chip_data->max_dma_count)) {
1105 		dev_err(tdc2dev(tdc), "Req len/mem address is not correct\n");
1106 		return NULL;
1107 	}
1108 
1109 	if (get_transfer_param(tdc, direction, &apb_ptr, &apb_seq, &csr,
1110 				&burst_size, &slave_bw) < 0)
1111 		return NULL;
1112 
1113 	ahb_seq = TEGRA_APBDMA_AHBSEQ_INTR_ENB;
1114 	ahb_seq |= TEGRA_APBDMA_AHBSEQ_WRAP_NONE <<
1115 					TEGRA_APBDMA_AHBSEQ_WRAP_SHIFT;
1116 	ahb_seq |= TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_32;
1117 
1118 	if (tdc->slave_id != TEGRA_APBDMA_SLAVE_ID_INVALID) {
1119 		csr |= TEGRA_APBDMA_CSR_FLOW;
1120 		csr |= tdc->slave_id << TEGRA_APBDMA_CSR_REQ_SEL_SHIFT;
1121 	}
1122 
1123 	if (flags & DMA_PREP_INTERRUPT)
1124 		csr |= TEGRA_APBDMA_CSR_IE_EOC;
1125 
1126 	apb_seq |= TEGRA_APBDMA_APBSEQ_WRAP_WORD_1;
1127 
1128 	dma_desc = tegra_dma_desc_get(tdc);
1129 	if (!dma_desc) {
1130 		dev_err(tdc2dev(tdc), "not enough descriptors available\n");
1131 		return NULL;
1132 	}
1133 
1134 	INIT_LIST_HEAD(&dma_desc->tx_list);
1135 	INIT_LIST_HEAD(&dma_desc->cb_node);
1136 	dma_desc->cb_count = 0;
1137 
1138 	dma_desc->bytes_transferred = 0;
1139 	dma_desc->bytes_requested = buf_len;
1140 	remain_len = buf_len;
1141 
1142 	/* Split transfer equal to period size */
1143 	while (remain_len) {
1144 		sg_req = tegra_dma_sg_req_get(tdc);
1145 		if (!sg_req) {
1146 			dev_err(tdc2dev(tdc), "DMA sg-req not available\n");
1147 			tegra_dma_desc_put(tdc, dma_desc);
1148 			return NULL;
1149 		}
1150 
1151 		ahb_seq |= get_burst_size(tdc, burst_size, slave_bw, len);
1152 		sg_req->ch_regs.apb_ptr = apb_ptr;
1153 		sg_req->ch_regs.ahb_ptr = mem;
1154 		sg_req->ch_regs.csr = csr;
1155 		tegra_dma_prep_wcount(tdc, &sg_req->ch_regs, len);
1156 		sg_req->ch_regs.apb_seq = apb_seq;
1157 		sg_req->ch_regs.ahb_seq = ahb_seq;
1158 		sg_req->configured = false;
1159 		sg_req->last_sg = false;
1160 		sg_req->dma_desc = dma_desc;
1161 		sg_req->req_len = len;
1162 
1163 		list_add_tail(&sg_req->node, &dma_desc->tx_list);
1164 		remain_len -= len;
1165 		mem += len;
1166 	}
1167 	sg_req->last_sg = true;
1168 	if (flags & DMA_CTRL_ACK)
1169 		dma_desc->txd.flags = DMA_CTRL_ACK;
1170 
1171 	/*
1172 	 * Make sure that mode should not be conflicting with currently
1173 	 * configured mode.
1174 	 */
1175 	if (!tdc->isr_handler) {
1176 		tdc->isr_handler = handle_cont_sngl_cycle_dma_done;
1177 		tdc->cyclic = true;
1178 	} else {
1179 		if (!tdc->cyclic) {
1180 			dev_err(tdc2dev(tdc), "DMA configuration conflict\n");
1181 			tegra_dma_desc_put(tdc, dma_desc);
1182 			return NULL;
1183 		}
1184 	}
1185 
1186 	return &dma_desc->txd;
1187 }
1188 
1189 static int tegra_dma_alloc_chan_resources(struct dma_chan *dc)
1190 {
1191 	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
1192 	struct tegra_dma *tdma = tdc->tdma;
1193 	int ret;
1194 
1195 	dma_cookie_init(&tdc->dma_chan);
1196 	tdc->config_init = false;
1197 
1198 	ret = pm_runtime_get_sync(tdma->dev);
1199 	if (ret < 0)
1200 		return ret;
1201 
1202 	return 0;
1203 }
1204 
1205 static void tegra_dma_free_chan_resources(struct dma_chan *dc)
1206 {
1207 	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
1208 	struct tegra_dma *tdma = tdc->tdma;
1209 	struct tegra_dma_desc *dma_desc;
1210 	struct tegra_dma_sg_req *sg_req;
1211 	struct list_head dma_desc_list;
1212 	struct list_head sg_req_list;
1213 	unsigned long flags;
1214 
1215 	INIT_LIST_HEAD(&dma_desc_list);
1216 	INIT_LIST_HEAD(&sg_req_list);
1217 
1218 	dev_dbg(tdc2dev(tdc), "Freeing channel %d\n", tdc->id);
1219 
1220 	if (tdc->busy)
1221 		tegra_dma_terminate_all(dc);
1222 
1223 	spin_lock_irqsave(&tdc->lock, flags);
1224 	list_splice_init(&tdc->pending_sg_req, &sg_req_list);
1225 	list_splice_init(&tdc->free_sg_req, &sg_req_list);
1226 	list_splice_init(&tdc->free_dma_desc, &dma_desc_list);
1227 	INIT_LIST_HEAD(&tdc->cb_desc);
1228 	tdc->config_init = false;
1229 	tdc->isr_handler = NULL;
1230 	spin_unlock_irqrestore(&tdc->lock, flags);
1231 
1232 	while (!list_empty(&dma_desc_list)) {
1233 		dma_desc = list_first_entry(&dma_desc_list,
1234 					typeof(*dma_desc), node);
1235 		list_del(&dma_desc->node);
1236 		kfree(dma_desc);
1237 	}
1238 
1239 	while (!list_empty(&sg_req_list)) {
1240 		sg_req = list_first_entry(&sg_req_list, typeof(*sg_req), node);
1241 		list_del(&sg_req->node);
1242 		kfree(sg_req);
1243 	}
1244 	pm_runtime_put(tdma->dev);
1245 
1246 	tdc->slave_id = TEGRA_APBDMA_SLAVE_ID_INVALID;
1247 }
1248 
1249 static struct dma_chan *tegra_dma_of_xlate(struct of_phandle_args *dma_spec,
1250 					   struct of_dma *ofdma)
1251 {
1252 	struct tegra_dma *tdma = ofdma->of_dma_data;
1253 	struct dma_chan *chan;
1254 	struct tegra_dma_channel *tdc;
1255 
1256 	if (dma_spec->args[0] > TEGRA_APBDMA_CSR_REQ_SEL_MASK) {
1257 		dev_err(tdma->dev, "Invalid slave id: %d\n", dma_spec->args[0]);
1258 		return NULL;
1259 	}
1260 
1261 	chan = dma_get_any_slave_channel(&tdma->dma_dev);
1262 	if (!chan)
1263 		return NULL;
1264 
1265 	tdc = to_tegra_dma_chan(chan);
1266 	tdc->slave_id = dma_spec->args[0];
1267 
1268 	return chan;
1269 }
1270 
1271 /* Tegra20 specific DMA controller information */
1272 static const struct tegra_dma_chip_data tegra20_dma_chip_data = {
1273 	.nr_channels		= 16,
1274 	.channel_reg_size	= 0x20,
1275 	.max_dma_count		= 1024UL * 64,
1276 	.support_channel_pause	= false,
1277 	.support_separate_wcount_reg = false,
1278 };
1279 
1280 /* Tegra30 specific DMA controller information */
1281 static const struct tegra_dma_chip_data tegra30_dma_chip_data = {
1282 	.nr_channels		= 32,
1283 	.channel_reg_size	= 0x20,
1284 	.max_dma_count		= 1024UL * 64,
1285 	.support_channel_pause	= false,
1286 	.support_separate_wcount_reg = false,
1287 };
1288 
1289 /* Tegra114 specific DMA controller information */
1290 static const struct tegra_dma_chip_data tegra114_dma_chip_data = {
1291 	.nr_channels		= 32,
1292 	.channel_reg_size	= 0x20,
1293 	.max_dma_count		= 1024UL * 64,
1294 	.support_channel_pause	= true,
1295 	.support_separate_wcount_reg = false,
1296 };
1297 
1298 /* Tegra148 specific DMA controller information */
1299 static const struct tegra_dma_chip_data tegra148_dma_chip_data = {
1300 	.nr_channels		= 32,
1301 	.channel_reg_size	= 0x40,
1302 	.max_dma_count		= 1024UL * 64,
1303 	.support_channel_pause	= true,
1304 	.support_separate_wcount_reg = true,
1305 };
1306 
1307 static int tegra_dma_probe(struct platform_device *pdev)
1308 {
1309 	struct resource *res;
1310 	struct tegra_dma *tdma;
1311 	int ret;
1312 	int i;
1313 	const struct tegra_dma_chip_data *cdata;
1314 
1315 	cdata = of_device_get_match_data(&pdev->dev);
1316 	if (!cdata) {
1317 		dev_err(&pdev->dev, "Error: No device match data found\n");
1318 		return -ENODEV;
1319 	}
1320 
1321 	tdma = devm_kzalloc(&pdev->dev,
1322 			    struct_size(tdma, channels, cdata->nr_channels),
1323 			    GFP_KERNEL);
1324 	if (!tdma)
1325 		return -ENOMEM;
1326 
1327 	tdma->dev = &pdev->dev;
1328 	tdma->chip_data = cdata;
1329 	platform_set_drvdata(pdev, tdma);
1330 
1331 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1332 	tdma->base_addr = devm_ioremap_resource(&pdev->dev, res);
1333 	if (IS_ERR(tdma->base_addr))
1334 		return PTR_ERR(tdma->base_addr);
1335 
1336 	tdma->dma_clk = devm_clk_get(&pdev->dev, NULL);
1337 	if (IS_ERR(tdma->dma_clk)) {
1338 		dev_err(&pdev->dev, "Error: Missing controller clock\n");
1339 		return PTR_ERR(tdma->dma_clk);
1340 	}
1341 
1342 	tdma->rst = devm_reset_control_get(&pdev->dev, "dma");
1343 	if (IS_ERR(tdma->rst)) {
1344 		dev_err(&pdev->dev, "Error: Missing reset\n");
1345 		return PTR_ERR(tdma->rst);
1346 	}
1347 
1348 	spin_lock_init(&tdma->global_lock);
1349 
1350 	pm_runtime_enable(&pdev->dev);
1351 	if (!pm_runtime_enabled(&pdev->dev))
1352 		ret = tegra_dma_runtime_resume(&pdev->dev);
1353 	else
1354 		ret = pm_runtime_get_sync(&pdev->dev);
1355 
1356 	if (ret < 0) {
1357 		pm_runtime_disable(&pdev->dev);
1358 		return ret;
1359 	}
1360 
1361 	/* Reset DMA controller */
1362 	reset_control_assert(tdma->rst);
1363 	udelay(2);
1364 	reset_control_deassert(tdma->rst);
1365 
1366 	/* Enable global DMA registers */
1367 	tdma_write(tdma, TEGRA_APBDMA_GENERAL, TEGRA_APBDMA_GENERAL_ENABLE);
1368 	tdma_write(tdma, TEGRA_APBDMA_CONTROL, 0);
1369 	tdma_write(tdma, TEGRA_APBDMA_IRQ_MASK_SET, 0xFFFFFFFFul);
1370 
1371 	pm_runtime_put(&pdev->dev);
1372 
1373 	INIT_LIST_HEAD(&tdma->dma_dev.channels);
1374 	for (i = 0; i < cdata->nr_channels; i++) {
1375 		struct tegra_dma_channel *tdc = &tdma->channels[i];
1376 
1377 		tdc->chan_addr = tdma->base_addr +
1378 				 TEGRA_APBDMA_CHANNEL_BASE_ADD_OFFSET +
1379 				 (i * cdata->channel_reg_size);
1380 
1381 		res = platform_get_resource(pdev, IORESOURCE_IRQ, i);
1382 		if (!res) {
1383 			ret = -EINVAL;
1384 			dev_err(&pdev->dev, "No irq resource for chan %d\n", i);
1385 			goto err_irq;
1386 		}
1387 		tdc->irq = res->start;
1388 		snprintf(tdc->name, sizeof(tdc->name), "apbdma.%d", i);
1389 		ret = request_irq(tdc->irq, tegra_dma_isr, 0, tdc->name, tdc);
1390 		if (ret) {
1391 			dev_err(&pdev->dev,
1392 				"request_irq failed with err %d channel %d\n",
1393 				ret, i);
1394 			goto err_irq;
1395 		}
1396 
1397 		tdc->dma_chan.device = &tdma->dma_dev;
1398 		dma_cookie_init(&tdc->dma_chan);
1399 		list_add_tail(&tdc->dma_chan.device_node,
1400 				&tdma->dma_dev.channels);
1401 		tdc->tdma = tdma;
1402 		tdc->id = i;
1403 		tdc->slave_id = TEGRA_APBDMA_SLAVE_ID_INVALID;
1404 
1405 		tasklet_init(&tdc->tasklet, tegra_dma_tasklet,
1406 				(unsigned long)tdc);
1407 		spin_lock_init(&tdc->lock);
1408 
1409 		INIT_LIST_HEAD(&tdc->pending_sg_req);
1410 		INIT_LIST_HEAD(&tdc->free_sg_req);
1411 		INIT_LIST_HEAD(&tdc->free_dma_desc);
1412 		INIT_LIST_HEAD(&tdc->cb_desc);
1413 	}
1414 
1415 	dma_cap_set(DMA_SLAVE, tdma->dma_dev.cap_mask);
1416 	dma_cap_set(DMA_PRIVATE, tdma->dma_dev.cap_mask);
1417 	dma_cap_set(DMA_CYCLIC, tdma->dma_dev.cap_mask);
1418 
1419 	tdma->global_pause_count = 0;
1420 	tdma->dma_dev.dev = &pdev->dev;
1421 	tdma->dma_dev.device_alloc_chan_resources =
1422 					tegra_dma_alloc_chan_resources;
1423 	tdma->dma_dev.device_free_chan_resources =
1424 					tegra_dma_free_chan_resources;
1425 	tdma->dma_dev.device_prep_slave_sg = tegra_dma_prep_slave_sg;
1426 	tdma->dma_dev.device_prep_dma_cyclic = tegra_dma_prep_dma_cyclic;
1427 	tdma->dma_dev.src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
1428 		BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
1429 		BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) |
1430 		BIT(DMA_SLAVE_BUSWIDTH_8_BYTES);
1431 	tdma->dma_dev.dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
1432 		BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
1433 		BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) |
1434 		BIT(DMA_SLAVE_BUSWIDTH_8_BYTES);
1435 	tdma->dma_dev.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1436 	/*
1437 	 * XXX The hardware appears to support
1438 	 * DMA_RESIDUE_GRANULARITY_BURST-level reporting, but it's
1439 	 * only used by this driver during tegra_dma_terminate_all()
1440 	 */
1441 	tdma->dma_dev.residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT;
1442 	tdma->dma_dev.device_config = tegra_dma_slave_config;
1443 	tdma->dma_dev.device_terminate_all = tegra_dma_terminate_all;
1444 	tdma->dma_dev.device_tx_status = tegra_dma_tx_status;
1445 	tdma->dma_dev.device_issue_pending = tegra_dma_issue_pending;
1446 
1447 	ret = dma_async_device_register(&tdma->dma_dev);
1448 	if (ret < 0) {
1449 		dev_err(&pdev->dev,
1450 			"Tegra20 APB DMA driver registration failed %d\n", ret);
1451 		goto err_irq;
1452 	}
1453 
1454 	ret = of_dma_controller_register(pdev->dev.of_node,
1455 					 tegra_dma_of_xlate, tdma);
1456 	if (ret < 0) {
1457 		dev_err(&pdev->dev,
1458 			"Tegra20 APB DMA OF registration failed %d\n", ret);
1459 		goto err_unregister_dma_dev;
1460 	}
1461 
1462 	dev_info(&pdev->dev, "Tegra20 APB DMA driver register %d channels\n",
1463 			cdata->nr_channels);
1464 	return 0;
1465 
1466 err_unregister_dma_dev:
1467 	dma_async_device_unregister(&tdma->dma_dev);
1468 err_irq:
1469 	while (--i >= 0) {
1470 		struct tegra_dma_channel *tdc = &tdma->channels[i];
1471 
1472 		free_irq(tdc->irq, tdc);
1473 		tasklet_kill(&tdc->tasklet);
1474 	}
1475 
1476 	pm_runtime_disable(&pdev->dev);
1477 	if (!pm_runtime_status_suspended(&pdev->dev))
1478 		tegra_dma_runtime_suspend(&pdev->dev);
1479 	return ret;
1480 }
1481 
1482 static int tegra_dma_remove(struct platform_device *pdev)
1483 {
1484 	struct tegra_dma *tdma = platform_get_drvdata(pdev);
1485 	int i;
1486 	struct tegra_dma_channel *tdc;
1487 
1488 	dma_async_device_unregister(&tdma->dma_dev);
1489 
1490 	for (i = 0; i < tdma->chip_data->nr_channels; ++i) {
1491 		tdc = &tdma->channels[i];
1492 		free_irq(tdc->irq, tdc);
1493 		tasklet_kill(&tdc->tasklet);
1494 	}
1495 
1496 	pm_runtime_disable(&pdev->dev);
1497 	if (!pm_runtime_status_suspended(&pdev->dev))
1498 		tegra_dma_runtime_suspend(&pdev->dev);
1499 
1500 	return 0;
1501 }
1502 
1503 static int tegra_dma_runtime_suspend(struct device *dev)
1504 {
1505 	struct tegra_dma *tdma = dev_get_drvdata(dev);
1506 	int i;
1507 
1508 	tdma->reg_gen = tdma_read(tdma, TEGRA_APBDMA_GENERAL);
1509 	for (i = 0; i < tdma->chip_data->nr_channels; i++) {
1510 		struct tegra_dma_channel *tdc = &tdma->channels[i];
1511 		struct tegra_dma_channel_regs *ch_reg = &tdc->channel_reg;
1512 
1513 		/* Only save the state of DMA channels that are in use */
1514 		if (!tdc->config_init)
1515 			continue;
1516 
1517 		ch_reg->csr = tdc_read(tdc, TEGRA_APBDMA_CHAN_CSR);
1518 		ch_reg->ahb_ptr = tdc_read(tdc, TEGRA_APBDMA_CHAN_AHBPTR);
1519 		ch_reg->apb_ptr = tdc_read(tdc, TEGRA_APBDMA_CHAN_APBPTR);
1520 		ch_reg->ahb_seq = tdc_read(tdc, TEGRA_APBDMA_CHAN_AHBSEQ);
1521 		ch_reg->apb_seq = tdc_read(tdc, TEGRA_APBDMA_CHAN_APBSEQ);
1522 		if (tdma->chip_data->support_separate_wcount_reg)
1523 			ch_reg->wcount = tdc_read(tdc,
1524 						  TEGRA_APBDMA_CHAN_WCOUNT);
1525 	}
1526 
1527 	clk_disable_unprepare(tdma->dma_clk);
1528 
1529 	return 0;
1530 }
1531 
1532 static int tegra_dma_runtime_resume(struct device *dev)
1533 {
1534 	struct tegra_dma *tdma = dev_get_drvdata(dev);
1535 	int i, ret;
1536 
1537 	ret = clk_prepare_enable(tdma->dma_clk);
1538 	if (ret < 0) {
1539 		dev_err(dev, "clk_enable failed: %d\n", ret);
1540 		return ret;
1541 	}
1542 
1543 	tdma_write(tdma, TEGRA_APBDMA_GENERAL, tdma->reg_gen);
1544 	tdma_write(tdma, TEGRA_APBDMA_CONTROL, 0);
1545 	tdma_write(tdma, TEGRA_APBDMA_IRQ_MASK_SET, 0xFFFFFFFFul);
1546 
1547 	for (i = 0; i < tdma->chip_data->nr_channels; i++) {
1548 		struct tegra_dma_channel *tdc = &tdma->channels[i];
1549 		struct tegra_dma_channel_regs *ch_reg = &tdc->channel_reg;
1550 
1551 		/* Only restore the state of DMA channels that are in use */
1552 		if (!tdc->config_init)
1553 			continue;
1554 
1555 		if (tdma->chip_data->support_separate_wcount_reg)
1556 			tdc_write(tdc, TEGRA_APBDMA_CHAN_WCOUNT,
1557 				  ch_reg->wcount);
1558 		tdc_write(tdc, TEGRA_APBDMA_CHAN_APBSEQ, ch_reg->apb_seq);
1559 		tdc_write(tdc, TEGRA_APBDMA_CHAN_APBPTR, ch_reg->apb_ptr);
1560 		tdc_write(tdc, TEGRA_APBDMA_CHAN_AHBSEQ, ch_reg->ahb_seq);
1561 		tdc_write(tdc, TEGRA_APBDMA_CHAN_AHBPTR, ch_reg->ahb_ptr);
1562 		tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR,
1563 			(ch_reg->csr & ~TEGRA_APBDMA_CSR_ENB));
1564 	}
1565 
1566 	return 0;
1567 }
1568 
1569 static const struct dev_pm_ops tegra_dma_dev_pm_ops = {
1570 	SET_RUNTIME_PM_OPS(tegra_dma_runtime_suspend, tegra_dma_runtime_resume,
1571 			   NULL)
1572 	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
1573 				pm_runtime_force_resume)
1574 };
1575 
1576 static const struct of_device_id tegra_dma_of_match[] = {
1577 	{
1578 		.compatible = "nvidia,tegra148-apbdma",
1579 		.data = &tegra148_dma_chip_data,
1580 	}, {
1581 		.compatible = "nvidia,tegra114-apbdma",
1582 		.data = &tegra114_dma_chip_data,
1583 	}, {
1584 		.compatible = "nvidia,tegra30-apbdma",
1585 		.data = &tegra30_dma_chip_data,
1586 	}, {
1587 		.compatible = "nvidia,tegra20-apbdma",
1588 		.data = &tegra20_dma_chip_data,
1589 	}, {
1590 	},
1591 };
1592 MODULE_DEVICE_TABLE(of, tegra_dma_of_match);
1593 
1594 static struct platform_driver tegra_dmac_driver = {
1595 	.driver = {
1596 		.name	= "tegra-apbdma",
1597 		.pm	= &tegra_dma_dev_pm_ops,
1598 		.of_match_table = tegra_dma_of_match,
1599 	},
1600 	.probe		= tegra_dma_probe,
1601 	.remove		= tegra_dma_remove,
1602 };
1603 
1604 module_platform_driver(tegra_dmac_driver);
1605 
1606 MODULE_ALIAS("platform:tegra20-apbdma");
1607 MODULE_DESCRIPTION("NVIDIA Tegra APB DMA Controller driver");
1608 MODULE_AUTHOR("Laxman Dewangan <ldewangan@nvidia.com>");
1609 MODULE_LICENSE("GPL v2");
1610