xref: /linux/drivers/edac/edac_mc.c (revision 2da68a77)
1 /*
2  * edac_mc kernel module
3  * (C) 2005, 2006 Linux Networx (http://lnxi.com)
4  * This file may be distributed under the terms of the
5  * GNU General Public License.
6  *
7  * Written by Thayne Harbaugh
8  * Based on work by Dan Hollis <goemon at anime dot net> and others.
9  *	http://www.anime.net/~goemon/linux-ecc/
10  *
11  * Modified by Dave Peterson and Doug Thompson
12  *
13  */
14 
15 #include <linux/module.h>
16 #include <linux/proc_fs.h>
17 #include <linux/kernel.h>
18 #include <linux/types.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/sysctl.h>
22 #include <linux/highmem.h>
23 #include <linux/timer.h>
24 #include <linux/slab.h>
25 #include <linux/jiffies.h>
26 #include <linux/spinlock.h>
27 #include <linux/list.h>
28 #include <linux/ctype.h>
29 #include <linux/edac.h>
30 #include <linux/bitops.h>
31 #include <linux/uaccess.h>
32 #include <asm/page.h>
33 #include "edac_mc.h"
34 #include "edac_module.h"
35 #include <ras/ras_event.h>
36 
37 #ifdef CONFIG_EDAC_ATOMIC_SCRUB
38 #include <asm/edac.h>
39 #else
40 #define edac_atomic_scrub(va, size) do { } while (0)
41 #endif
42 
43 int edac_op_state = EDAC_OPSTATE_INVAL;
44 EXPORT_SYMBOL_GPL(edac_op_state);
45 
46 /* lock to memory controller's control array */
47 static DEFINE_MUTEX(mem_ctls_mutex);
48 static LIST_HEAD(mc_devices);
49 
50 /*
51  * Used to lock EDAC MC to just one module, avoiding two drivers e. g.
52  *	apei/ghes and i7core_edac to be used at the same time.
53  */
54 static const char *edac_mc_owner;
55 
56 static struct mem_ctl_info *error_desc_to_mci(struct edac_raw_error_desc *e)
57 {
58 	return container_of(e, struct mem_ctl_info, error_desc);
59 }
60 
61 unsigned int edac_dimm_info_location(struct dimm_info *dimm, char *buf,
62 				     unsigned int len)
63 {
64 	struct mem_ctl_info *mci = dimm->mci;
65 	int i, n, count = 0;
66 	char *p = buf;
67 
68 	for (i = 0; i < mci->n_layers; i++) {
69 		n = scnprintf(p, len, "%s %d ",
70 			      edac_layer_name[mci->layers[i].type],
71 			      dimm->location[i]);
72 		p += n;
73 		len -= n;
74 		count += n;
75 	}
76 
77 	return count;
78 }
79 
80 #ifdef CONFIG_EDAC_DEBUG
81 
82 static void edac_mc_dump_channel(struct rank_info *chan)
83 {
84 	edac_dbg(4, "  channel->chan_idx = %d\n", chan->chan_idx);
85 	edac_dbg(4, "    channel = %p\n", chan);
86 	edac_dbg(4, "    channel->csrow = %p\n", chan->csrow);
87 	edac_dbg(4, "    channel->dimm = %p\n", chan->dimm);
88 }
89 
90 static void edac_mc_dump_dimm(struct dimm_info *dimm)
91 {
92 	char location[80];
93 
94 	if (!dimm->nr_pages)
95 		return;
96 
97 	edac_dimm_info_location(dimm, location, sizeof(location));
98 
99 	edac_dbg(4, "%s%i: %smapped as virtual row %d, chan %d\n",
100 		 dimm->mci->csbased ? "rank" : "dimm",
101 		 dimm->idx, location, dimm->csrow, dimm->cschannel);
102 	edac_dbg(4, "  dimm = %p\n", dimm);
103 	edac_dbg(4, "  dimm->label = '%s'\n", dimm->label);
104 	edac_dbg(4, "  dimm->nr_pages = 0x%x\n", dimm->nr_pages);
105 	edac_dbg(4, "  dimm->grain = %d\n", dimm->grain);
106 }
107 
108 static void edac_mc_dump_csrow(struct csrow_info *csrow)
109 {
110 	edac_dbg(4, "csrow->csrow_idx = %d\n", csrow->csrow_idx);
111 	edac_dbg(4, "  csrow = %p\n", csrow);
112 	edac_dbg(4, "  csrow->first_page = 0x%lx\n", csrow->first_page);
113 	edac_dbg(4, "  csrow->last_page = 0x%lx\n", csrow->last_page);
114 	edac_dbg(4, "  csrow->page_mask = 0x%lx\n", csrow->page_mask);
115 	edac_dbg(4, "  csrow->nr_channels = %d\n", csrow->nr_channels);
116 	edac_dbg(4, "  csrow->channels = %p\n", csrow->channels);
117 	edac_dbg(4, "  csrow->mci = %p\n", csrow->mci);
118 }
119 
120 static void edac_mc_dump_mci(struct mem_ctl_info *mci)
121 {
122 	edac_dbg(3, "\tmci = %p\n", mci);
123 	edac_dbg(3, "\tmci->mtype_cap = %lx\n", mci->mtype_cap);
124 	edac_dbg(3, "\tmci->edac_ctl_cap = %lx\n", mci->edac_ctl_cap);
125 	edac_dbg(3, "\tmci->edac_cap = %lx\n", mci->edac_cap);
126 	edac_dbg(4, "\tmci->edac_check = %p\n", mci->edac_check);
127 	edac_dbg(3, "\tmci->nr_csrows = %d, csrows = %p\n",
128 		 mci->nr_csrows, mci->csrows);
129 	edac_dbg(3, "\tmci->nr_dimms = %d, dimms = %p\n",
130 		 mci->tot_dimms, mci->dimms);
131 	edac_dbg(3, "\tdev = %p\n", mci->pdev);
132 	edac_dbg(3, "\tmod_name:ctl_name = %s:%s\n",
133 		 mci->mod_name, mci->ctl_name);
134 	edac_dbg(3, "\tpvt_info = %p\n\n", mci->pvt_info);
135 }
136 
137 #endif				/* CONFIG_EDAC_DEBUG */
138 
139 const char * const edac_mem_types[] = {
140 	[MEM_EMPTY]	= "Empty",
141 	[MEM_RESERVED]	= "Reserved",
142 	[MEM_UNKNOWN]	= "Unknown",
143 	[MEM_FPM]	= "FPM",
144 	[MEM_EDO]	= "EDO",
145 	[MEM_BEDO]	= "BEDO",
146 	[MEM_SDR]	= "Unbuffered-SDR",
147 	[MEM_RDR]	= "Registered-SDR",
148 	[MEM_DDR]	= "Unbuffered-DDR",
149 	[MEM_RDDR]	= "Registered-DDR",
150 	[MEM_RMBS]	= "RMBS",
151 	[MEM_DDR2]	= "Unbuffered-DDR2",
152 	[MEM_FB_DDR2]	= "FullyBuffered-DDR2",
153 	[MEM_RDDR2]	= "Registered-DDR2",
154 	[MEM_XDR]	= "XDR",
155 	[MEM_DDR3]	= "Unbuffered-DDR3",
156 	[MEM_RDDR3]	= "Registered-DDR3",
157 	[MEM_LRDDR3]	= "Load-Reduced-DDR3-RAM",
158 	[MEM_LPDDR3]	= "Low-Power-DDR3-RAM",
159 	[MEM_DDR4]	= "Unbuffered-DDR4",
160 	[MEM_RDDR4]	= "Registered-DDR4",
161 	[MEM_LPDDR4]	= "Low-Power-DDR4-RAM",
162 	[MEM_LRDDR4]	= "Load-Reduced-DDR4-RAM",
163 	[MEM_DDR5]	= "Unbuffered-DDR5",
164 	[MEM_RDDR5]	= "Registered-DDR5",
165 	[MEM_LRDDR5]	= "Load-Reduced-DDR5-RAM",
166 	[MEM_NVDIMM]	= "Non-volatile-RAM",
167 	[MEM_WIO2]	= "Wide-IO-2",
168 	[MEM_HBM2]	= "High-bandwidth-memory-Gen2",
169 };
170 EXPORT_SYMBOL_GPL(edac_mem_types);
171 
172 static void _edac_mc_free(struct mem_ctl_info *mci)
173 {
174 	put_device(&mci->dev);
175 }
176 
177 static void mci_release(struct device *dev)
178 {
179 	struct mem_ctl_info *mci = container_of(dev, struct mem_ctl_info, dev);
180 	struct csrow_info *csr;
181 	int i, chn, row;
182 
183 	if (mci->dimms) {
184 		for (i = 0; i < mci->tot_dimms; i++)
185 			kfree(mci->dimms[i]);
186 		kfree(mci->dimms);
187 	}
188 
189 	if (mci->csrows) {
190 		for (row = 0; row < mci->nr_csrows; row++) {
191 			csr = mci->csrows[row];
192 			if (!csr)
193 				continue;
194 
195 			if (csr->channels) {
196 				for (chn = 0; chn < mci->num_cschannel; chn++)
197 					kfree(csr->channels[chn]);
198 				kfree(csr->channels);
199 			}
200 			kfree(csr);
201 		}
202 		kfree(mci->csrows);
203 	}
204 	kfree(mci->pvt_info);
205 	kfree(mci->layers);
206 	kfree(mci);
207 }
208 
209 static int edac_mc_alloc_csrows(struct mem_ctl_info *mci)
210 {
211 	unsigned int tot_channels = mci->num_cschannel;
212 	unsigned int tot_csrows = mci->nr_csrows;
213 	unsigned int row, chn;
214 
215 	/*
216 	 * Alocate and fill the csrow/channels structs
217 	 */
218 	mci->csrows = kcalloc(tot_csrows, sizeof(*mci->csrows), GFP_KERNEL);
219 	if (!mci->csrows)
220 		return -ENOMEM;
221 
222 	for (row = 0; row < tot_csrows; row++) {
223 		struct csrow_info *csr;
224 
225 		csr = kzalloc(sizeof(**mci->csrows), GFP_KERNEL);
226 		if (!csr)
227 			return -ENOMEM;
228 
229 		mci->csrows[row] = csr;
230 		csr->csrow_idx = row;
231 		csr->mci = mci;
232 		csr->nr_channels = tot_channels;
233 		csr->channels = kcalloc(tot_channels, sizeof(*csr->channels),
234 					GFP_KERNEL);
235 		if (!csr->channels)
236 			return -ENOMEM;
237 
238 		for (chn = 0; chn < tot_channels; chn++) {
239 			struct rank_info *chan;
240 
241 			chan = kzalloc(sizeof(**csr->channels), GFP_KERNEL);
242 			if (!chan)
243 				return -ENOMEM;
244 
245 			csr->channels[chn] = chan;
246 			chan->chan_idx = chn;
247 			chan->csrow = csr;
248 		}
249 	}
250 
251 	return 0;
252 }
253 
254 static int edac_mc_alloc_dimms(struct mem_ctl_info *mci)
255 {
256 	unsigned int pos[EDAC_MAX_LAYERS];
257 	unsigned int row, chn, idx;
258 	int layer;
259 	void *p;
260 
261 	/*
262 	 * Allocate and fill the dimm structs
263 	 */
264 	mci->dimms  = kcalloc(mci->tot_dimms, sizeof(*mci->dimms), GFP_KERNEL);
265 	if (!mci->dimms)
266 		return -ENOMEM;
267 
268 	memset(&pos, 0, sizeof(pos));
269 	row = 0;
270 	chn = 0;
271 	for (idx = 0; idx < mci->tot_dimms; idx++) {
272 		struct dimm_info *dimm;
273 		struct rank_info *chan;
274 		int n, len;
275 
276 		chan = mci->csrows[row]->channels[chn];
277 
278 		dimm = kzalloc(sizeof(**mci->dimms), GFP_KERNEL);
279 		if (!dimm)
280 			return -ENOMEM;
281 		mci->dimms[idx] = dimm;
282 		dimm->mci = mci;
283 		dimm->idx = idx;
284 
285 		/*
286 		 * Copy DIMM location and initialize it.
287 		 */
288 		len = sizeof(dimm->label);
289 		p = dimm->label;
290 		n = scnprintf(p, len, "mc#%u", mci->mc_idx);
291 		p += n;
292 		len -= n;
293 		for (layer = 0; layer < mci->n_layers; layer++) {
294 			n = scnprintf(p, len, "%s#%u",
295 				      edac_layer_name[mci->layers[layer].type],
296 				      pos[layer]);
297 			p += n;
298 			len -= n;
299 			dimm->location[layer] = pos[layer];
300 		}
301 
302 		/* Link it to the csrows old API data */
303 		chan->dimm = dimm;
304 		dimm->csrow = row;
305 		dimm->cschannel = chn;
306 
307 		/* Increment csrow location */
308 		if (mci->layers[0].is_virt_csrow) {
309 			chn++;
310 			if (chn == mci->num_cschannel) {
311 				chn = 0;
312 				row++;
313 			}
314 		} else {
315 			row++;
316 			if (row == mci->nr_csrows) {
317 				row = 0;
318 				chn++;
319 			}
320 		}
321 
322 		/* Increment dimm location */
323 		for (layer = mci->n_layers - 1; layer >= 0; layer--) {
324 			pos[layer]++;
325 			if (pos[layer] < mci->layers[layer].size)
326 				break;
327 			pos[layer] = 0;
328 		}
329 	}
330 
331 	return 0;
332 }
333 
334 struct mem_ctl_info *edac_mc_alloc(unsigned int mc_num,
335 				   unsigned int n_layers,
336 				   struct edac_mc_layer *layers,
337 				   unsigned int sz_pvt)
338 {
339 	struct mem_ctl_info *mci;
340 	struct edac_mc_layer *layer;
341 	unsigned int idx, tot_dimms = 1;
342 	unsigned int tot_csrows = 1, tot_channels = 1;
343 	bool per_rank = false;
344 
345 	if (WARN_ON(n_layers > EDAC_MAX_LAYERS || n_layers == 0))
346 		return NULL;
347 
348 	/*
349 	 * Calculate the total amount of dimms and csrows/cschannels while
350 	 * in the old API emulation mode
351 	 */
352 	for (idx = 0; idx < n_layers; idx++) {
353 		tot_dimms *= layers[idx].size;
354 
355 		if (layers[idx].is_virt_csrow)
356 			tot_csrows *= layers[idx].size;
357 		else
358 			tot_channels *= layers[idx].size;
359 
360 		if (layers[idx].type == EDAC_MC_LAYER_CHIP_SELECT)
361 			per_rank = true;
362 	}
363 
364 	mci = kzalloc(sizeof(struct mem_ctl_info), GFP_KERNEL);
365 	if (!mci)
366 		return NULL;
367 
368 	mci->layers = kcalloc(n_layers, sizeof(struct edac_mc_layer), GFP_KERNEL);
369 	if (!mci->layers)
370 		goto error;
371 
372 	mci->pvt_info = kzalloc(sz_pvt, GFP_KERNEL);
373 	if (!mci->pvt_info)
374 		goto error;
375 
376 	mci->dev.release = mci_release;
377 	device_initialize(&mci->dev);
378 
379 	/* setup index and various internal pointers */
380 	mci->mc_idx = mc_num;
381 	mci->tot_dimms = tot_dimms;
382 	mci->n_layers = n_layers;
383 	memcpy(mci->layers, layers, sizeof(*layer) * n_layers);
384 	mci->nr_csrows = tot_csrows;
385 	mci->num_cschannel = tot_channels;
386 	mci->csbased = per_rank;
387 
388 	if (edac_mc_alloc_csrows(mci))
389 		goto error;
390 
391 	if (edac_mc_alloc_dimms(mci))
392 		goto error;
393 
394 	mci->op_state = OP_ALLOC;
395 
396 	return mci;
397 
398 error:
399 	_edac_mc_free(mci);
400 
401 	return NULL;
402 }
403 EXPORT_SYMBOL_GPL(edac_mc_alloc);
404 
405 void edac_mc_free(struct mem_ctl_info *mci)
406 {
407 	edac_dbg(1, "\n");
408 
409 	_edac_mc_free(mci);
410 }
411 EXPORT_SYMBOL_GPL(edac_mc_free);
412 
413 bool edac_has_mcs(void)
414 {
415 	bool ret;
416 
417 	mutex_lock(&mem_ctls_mutex);
418 
419 	ret = list_empty(&mc_devices);
420 
421 	mutex_unlock(&mem_ctls_mutex);
422 
423 	return !ret;
424 }
425 EXPORT_SYMBOL_GPL(edac_has_mcs);
426 
427 /* Caller must hold mem_ctls_mutex */
428 static struct mem_ctl_info *__find_mci_by_dev(struct device *dev)
429 {
430 	struct mem_ctl_info *mci;
431 	struct list_head *item;
432 
433 	edac_dbg(3, "\n");
434 
435 	list_for_each(item, &mc_devices) {
436 		mci = list_entry(item, struct mem_ctl_info, link);
437 
438 		if (mci->pdev == dev)
439 			return mci;
440 	}
441 
442 	return NULL;
443 }
444 
445 /**
446  * find_mci_by_dev
447  *
448  *	scan list of controllers looking for the one that manages
449  *	the 'dev' device
450  * @dev: pointer to a struct device related with the MCI
451  */
452 struct mem_ctl_info *find_mci_by_dev(struct device *dev)
453 {
454 	struct mem_ctl_info *ret;
455 
456 	mutex_lock(&mem_ctls_mutex);
457 	ret = __find_mci_by_dev(dev);
458 	mutex_unlock(&mem_ctls_mutex);
459 
460 	return ret;
461 }
462 EXPORT_SYMBOL_GPL(find_mci_by_dev);
463 
464 /*
465  * edac_mc_workq_function
466  *	performs the operation scheduled by a workq request
467  */
468 static void edac_mc_workq_function(struct work_struct *work_req)
469 {
470 	struct delayed_work *d_work = to_delayed_work(work_req);
471 	struct mem_ctl_info *mci = to_edac_mem_ctl_work(d_work);
472 
473 	mutex_lock(&mem_ctls_mutex);
474 
475 	if (mci->op_state != OP_RUNNING_POLL) {
476 		mutex_unlock(&mem_ctls_mutex);
477 		return;
478 	}
479 
480 	if (edac_op_state == EDAC_OPSTATE_POLL)
481 		mci->edac_check(mci);
482 
483 	mutex_unlock(&mem_ctls_mutex);
484 
485 	/* Queue ourselves again. */
486 	edac_queue_work(&mci->work, msecs_to_jiffies(edac_mc_get_poll_msec()));
487 }
488 
489 /*
490  * edac_mc_reset_delay_period(unsigned long value)
491  *
492  *	user space has updated our poll period value, need to
493  *	reset our workq delays
494  */
495 void edac_mc_reset_delay_period(unsigned long value)
496 {
497 	struct mem_ctl_info *mci;
498 	struct list_head *item;
499 
500 	mutex_lock(&mem_ctls_mutex);
501 
502 	list_for_each(item, &mc_devices) {
503 		mci = list_entry(item, struct mem_ctl_info, link);
504 
505 		if (mci->op_state == OP_RUNNING_POLL)
506 			edac_mod_work(&mci->work, value);
507 	}
508 	mutex_unlock(&mem_ctls_mutex);
509 }
510 
511 
512 
513 /* Return 0 on success, 1 on failure.
514  * Before calling this function, caller must
515  * assign a unique value to mci->mc_idx.
516  *
517  *	locking model:
518  *
519  *		called with the mem_ctls_mutex lock held
520  */
521 static int add_mc_to_global_list(struct mem_ctl_info *mci)
522 {
523 	struct list_head *item, *insert_before;
524 	struct mem_ctl_info *p;
525 
526 	insert_before = &mc_devices;
527 
528 	p = __find_mci_by_dev(mci->pdev);
529 	if (unlikely(p != NULL))
530 		goto fail0;
531 
532 	list_for_each(item, &mc_devices) {
533 		p = list_entry(item, struct mem_ctl_info, link);
534 
535 		if (p->mc_idx >= mci->mc_idx) {
536 			if (unlikely(p->mc_idx == mci->mc_idx))
537 				goto fail1;
538 
539 			insert_before = item;
540 			break;
541 		}
542 	}
543 
544 	list_add_tail_rcu(&mci->link, insert_before);
545 	return 0;
546 
547 fail0:
548 	edac_printk(KERN_WARNING, EDAC_MC,
549 		"%s (%s) %s %s already assigned %d\n", dev_name(p->pdev),
550 		edac_dev_name(mci), p->mod_name, p->ctl_name, p->mc_idx);
551 	return 1;
552 
553 fail1:
554 	edac_printk(KERN_WARNING, EDAC_MC,
555 		"bug in low-level driver: attempt to assign\n"
556 		"    duplicate mc_idx %d in %s()\n", p->mc_idx, __func__);
557 	return 1;
558 }
559 
560 static int del_mc_from_global_list(struct mem_ctl_info *mci)
561 {
562 	list_del_rcu(&mci->link);
563 
564 	/* these are for safe removal of devices from global list while
565 	 * NMI handlers may be traversing list
566 	 */
567 	synchronize_rcu();
568 	INIT_LIST_HEAD(&mci->link);
569 
570 	return list_empty(&mc_devices);
571 }
572 
573 struct mem_ctl_info *edac_mc_find(int idx)
574 {
575 	struct mem_ctl_info *mci;
576 	struct list_head *item;
577 
578 	mutex_lock(&mem_ctls_mutex);
579 
580 	list_for_each(item, &mc_devices) {
581 		mci = list_entry(item, struct mem_ctl_info, link);
582 		if (mci->mc_idx == idx)
583 			goto unlock;
584 	}
585 
586 	mci = NULL;
587 unlock:
588 	mutex_unlock(&mem_ctls_mutex);
589 	return mci;
590 }
591 EXPORT_SYMBOL(edac_mc_find);
592 
593 const char *edac_get_owner(void)
594 {
595 	return edac_mc_owner;
596 }
597 EXPORT_SYMBOL_GPL(edac_get_owner);
598 
599 /* FIXME - should a warning be printed if no error detection? correction? */
600 int edac_mc_add_mc_with_groups(struct mem_ctl_info *mci,
601 			       const struct attribute_group **groups)
602 {
603 	int ret = -EINVAL;
604 	edac_dbg(0, "\n");
605 
606 #ifdef CONFIG_EDAC_DEBUG
607 	if (edac_debug_level >= 3)
608 		edac_mc_dump_mci(mci);
609 
610 	if (edac_debug_level >= 4) {
611 		struct dimm_info *dimm;
612 		int i;
613 
614 		for (i = 0; i < mci->nr_csrows; i++) {
615 			struct csrow_info *csrow = mci->csrows[i];
616 			u32 nr_pages = 0;
617 			int j;
618 
619 			for (j = 0; j < csrow->nr_channels; j++)
620 				nr_pages += csrow->channels[j]->dimm->nr_pages;
621 			if (!nr_pages)
622 				continue;
623 			edac_mc_dump_csrow(csrow);
624 			for (j = 0; j < csrow->nr_channels; j++)
625 				if (csrow->channels[j]->dimm->nr_pages)
626 					edac_mc_dump_channel(csrow->channels[j]);
627 		}
628 
629 		mci_for_each_dimm(mci, dimm)
630 			edac_mc_dump_dimm(dimm);
631 	}
632 #endif
633 	mutex_lock(&mem_ctls_mutex);
634 
635 	if (edac_mc_owner && edac_mc_owner != mci->mod_name) {
636 		ret = -EPERM;
637 		goto fail0;
638 	}
639 
640 	if (add_mc_to_global_list(mci))
641 		goto fail0;
642 
643 	/* set load time so that error rate can be tracked */
644 	mci->start_time = jiffies;
645 
646 	mci->bus = edac_get_sysfs_subsys();
647 
648 	if (edac_create_sysfs_mci_device(mci, groups)) {
649 		edac_mc_printk(mci, KERN_WARNING,
650 			"failed to create sysfs device\n");
651 		goto fail1;
652 	}
653 
654 	if (mci->edac_check) {
655 		mci->op_state = OP_RUNNING_POLL;
656 
657 		INIT_DELAYED_WORK(&mci->work, edac_mc_workq_function);
658 		edac_queue_work(&mci->work, msecs_to_jiffies(edac_mc_get_poll_msec()));
659 
660 	} else {
661 		mci->op_state = OP_RUNNING_INTERRUPT;
662 	}
663 
664 	/* Report action taken */
665 	edac_mc_printk(mci, KERN_INFO,
666 		"Giving out device to module %s controller %s: DEV %s (%s)\n",
667 		mci->mod_name, mci->ctl_name, mci->dev_name,
668 		edac_op_state_to_string(mci->op_state));
669 
670 	edac_mc_owner = mci->mod_name;
671 
672 	mutex_unlock(&mem_ctls_mutex);
673 	return 0;
674 
675 fail1:
676 	del_mc_from_global_list(mci);
677 
678 fail0:
679 	mutex_unlock(&mem_ctls_mutex);
680 	return ret;
681 }
682 EXPORT_SYMBOL_GPL(edac_mc_add_mc_with_groups);
683 
684 struct mem_ctl_info *edac_mc_del_mc(struct device *dev)
685 {
686 	struct mem_ctl_info *mci;
687 
688 	edac_dbg(0, "\n");
689 
690 	mutex_lock(&mem_ctls_mutex);
691 
692 	/* find the requested mci struct in the global list */
693 	mci = __find_mci_by_dev(dev);
694 	if (mci == NULL) {
695 		mutex_unlock(&mem_ctls_mutex);
696 		return NULL;
697 	}
698 
699 	/* mark MCI offline: */
700 	mci->op_state = OP_OFFLINE;
701 
702 	if (del_mc_from_global_list(mci))
703 		edac_mc_owner = NULL;
704 
705 	mutex_unlock(&mem_ctls_mutex);
706 
707 	if (mci->edac_check)
708 		edac_stop_work(&mci->work);
709 
710 	/* remove from sysfs */
711 	edac_remove_sysfs_mci_device(mci);
712 
713 	edac_printk(KERN_INFO, EDAC_MC,
714 		"Removed device %d for %s %s: DEV %s\n", mci->mc_idx,
715 		mci->mod_name, mci->ctl_name, edac_dev_name(mci));
716 
717 	return mci;
718 }
719 EXPORT_SYMBOL_GPL(edac_mc_del_mc);
720 
721 static void edac_mc_scrub_block(unsigned long page, unsigned long offset,
722 				u32 size)
723 {
724 	struct page *pg;
725 	void *virt_addr;
726 	unsigned long flags = 0;
727 
728 	edac_dbg(3, "\n");
729 
730 	/* ECC error page was not in our memory. Ignore it. */
731 	if (!pfn_valid(page))
732 		return;
733 
734 	/* Find the actual page structure then map it and fix */
735 	pg = pfn_to_page(page);
736 
737 	if (PageHighMem(pg))
738 		local_irq_save(flags);
739 
740 	virt_addr = kmap_atomic(pg);
741 
742 	/* Perform architecture specific atomic scrub operation */
743 	edac_atomic_scrub(virt_addr + offset, size);
744 
745 	/* Unmap and complete */
746 	kunmap_atomic(virt_addr);
747 
748 	if (PageHighMem(pg))
749 		local_irq_restore(flags);
750 }
751 
752 /* FIXME - should return -1 */
753 int edac_mc_find_csrow_by_page(struct mem_ctl_info *mci, unsigned long page)
754 {
755 	struct csrow_info **csrows = mci->csrows;
756 	int row, i, j, n;
757 
758 	edac_dbg(1, "MC%d: 0x%lx\n", mci->mc_idx, page);
759 	row = -1;
760 
761 	for (i = 0; i < mci->nr_csrows; i++) {
762 		struct csrow_info *csrow = csrows[i];
763 		n = 0;
764 		for (j = 0; j < csrow->nr_channels; j++) {
765 			struct dimm_info *dimm = csrow->channels[j]->dimm;
766 			n += dimm->nr_pages;
767 		}
768 		if (n == 0)
769 			continue;
770 
771 		edac_dbg(3, "MC%d: first(0x%lx) page(0x%lx) last(0x%lx) mask(0x%lx)\n",
772 			 mci->mc_idx,
773 			 csrow->first_page, page, csrow->last_page,
774 			 csrow->page_mask);
775 
776 		if ((page >= csrow->first_page) &&
777 		    (page <= csrow->last_page) &&
778 		    ((page & csrow->page_mask) ==
779 		     (csrow->first_page & csrow->page_mask))) {
780 			row = i;
781 			break;
782 		}
783 	}
784 
785 	if (row == -1)
786 		edac_mc_printk(mci, KERN_ERR,
787 			"could not look up page error address %lx\n",
788 			(unsigned long)page);
789 
790 	return row;
791 }
792 EXPORT_SYMBOL_GPL(edac_mc_find_csrow_by_page);
793 
794 const char *edac_layer_name[] = {
795 	[EDAC_MC_LAYER_BRANCH] = "branch",
796 	[EDAC_MC_LAYER_CHANNEL] = "channel",
797 	[EDAC_MC_LAYER_SLOT] = "slot",
798 	[EDAC_MC_LAYER_CHIP_SELECT] = "csrow",
799 	[EDAC_MC_LAYER_ALL_MEM] = "memory",
800 };
801 EXPORT_SYMBOL_GPL(edac_layer_name);
802 
803 static void edac_inc_ce_error(struct edac_raw_error_desc *e)
804 {
805 	int pos[EDAC_MAX_LAYERS] = { e->top_layer, e->mid_layer, e->low_layer };
806 	struct mem_ctl_info *mci = error_desc_to_mci(e);
807 	struct dimm_info *dimm = edac_get_dimm(mci, pos[0], pos[1], pos[2]);
808 
809 	mci->ce_mc += e->error_count;
810 
811 	if (dimm)
812 		dimm->ce_count += e->error_count;
813 	else
814 		mci->ce_noinfo_count += e->error_count;
815 }
816 
817 static void edac_inc_ue_error(struct edac_raw_error_desc *e)
818 {
819 	int pos[EDAC_MAX_LAYERS] = { e->top_layer, e->mid_layer, e->low_layer };
820 	struct mem_ctl_info *mci = error_desc_to_mci(e);
821 	struct dimm_info *dimm = edac_get_dimm(mci, pos[0], pos[1], pos[2]);
822 
823 	mci->ue_mc += e->error_count;
824 
825 	if (dimm)
826 		dimm->ue_count += e->error_count;
827 	else
828 		mci->ue_noinfo_count += e->error_count;
829 }
830 
831 static void edac_ce_error(struct edac_raw_error_desc *e)
832 {
833 	struct mem_ctl_info *mci = error_desc_to_mci(e);
834 	unsigned long remapped_page;
835 
836 	if (edac_mc_get_log_ce()) {
837 		edac_mc_printk(mci, KERN_WARNING,
838 			"%d CE %s%son %s (%s page:0x%lx offset:0x%lx grain:%ld syndrome:0x%lx%s%s)\n",
839 			e->error_count, e->msg,
840 			*e->msg ? " " : "",
841 			e->label, e->location, e->page_frame_number, e->offset_in_page,
842 			e->grain, e->syndrome,
843 			*e->other_detail ? " - " : "",
844 			e->other_detail);
845 	}
846 
847 	edac_inc_ce_error(e);
848 
849 	if (mci->scrub_mode == SCRUB_SW_SRC) {
850 		/*
851 			* Some memory controllers (called MCs below) can remap
852 			* memory so that it is still available at a different
853 			* address when PCI devices map into memory.
854 			* MC's that can't do this, lose the memory where PCI
855 			* devices are mapped. This mapping is MC-dependent
856 			* and so we call back into the MC driver for it to
857 			* map the MC page to a physical (CPU) page which can
858 			* then be mapped to a virtual page - which can then
859 			* be scrubbed.
860 			*/
861 		remapped_page = mci->ctl_page_to_phys ?
862 			mci->ctl_page_to_phys(mci, e->page_frame_number) :
863 			e->page_frame_number;
864 
865 		edac_mc_scrub_block(remapped_page, e->offset_in_page, e->grain);
866 	}
867 }
868 
869 static void edac_ue_error(struct edac_raw_error_desc *e)
870 {
871 	struct mem_ctl_info *mci = error_desc_to_mci(e);
872 
873 	if (edac_mc_get_log_ue()) {
874 		edac_mc_printk(mci, KERN_WARNING,
875 			"%d UE %s%son %s (%s page:0x%lx offset:0x%lx grain:%ld%s%s)\n",
876 			e->error_count, e->msg,
877 			*e->msg ? " " : "",
878 			e->label, e->location, e->page_frame_number, e->offset_in_page,
879 			e->grain,
880 			*e->other_detail ? " - " : "",
881 			e->other_detail);
882 	}
883 
884 	edac_inc_ue_error(e);
885 
886 	if (edac_mc_get_panic_on_ue()) {
887 		panic("UE %s%son %s (%s page:0x%lx offset:0x%lx grain:%ld%s%s)\n",
888 			e->msg,
889 			*e->msg ? " " : "",
890 			e->label, e->location, e->page_frame_number, e->offset_in_page,
891 			e->grain,
892 			*e->other_detail ? " - " : "",
893 			e->other_detail);
894 	}
895 }
896 
897 static void edac_inc_csrow(struct edac_raw_error_desc *e, int row, int chan)
898 {
899 	struct mem_ctl_info *mci = error_desc_to_mci(e);
900 	enum hw_event_mc_err_type type = e->type;
901 	u16 count = e->error_count;
902 
903 	if (row < 0)
904 		return;
905 
906 	edac_dbg(4, "csrow/channel to increment: (%d,%d)\n", row, chan);
907 
908 	if (type == HW_EVENT_ERR_CORRECTED) {
909 		mci->csrows[row]->ce_count += count;
910 		if (chan >= 0)
911 			mci->csrows[row]->channels[chan]->ce_count += count;
912 	} else {
913 		mci->csrows[row]->ue_count += count;
914 	}
915 }
916 
917 void edac_raw_mc_handle_error(struct edac_raw_error_desc *e)
918 {
919 	struct mem_ctl_info *mci = error_desc_to_mci(e);
920 	u8 grain_bits;
921 
922 	/* Sanity-check driver-supplied grain value. */
923 	if (WARN_ON_ONCE(!e->grain))
924 		e->grain = 1;
925 
926 	grain_bits = fls_long(e->grain - 1);
927 
928 	/* Report the error via the trace interface */
929 	if (IS_ENABLED(CONFIG_RAS))
930 		trace_mc_event(e->type, e->msg, e->label, e->error_count,
931 			       mci->mc_idx, e->top_layer, e->mid_layer,
932 			       e->low_layer,
933 			       (e->page_frame_number << PAGE_SHIFT) | e->offset_in_page,
934 			       grain_bits, e->syndrome, e->other_detail);
935 
936 	if (e->type == HW_EVENT_ERR_CORRECTED)
937 		edac_ce_error(e);
938 	else
939 		edac_ue_error(e);
940 }
941 EXPORT_SYMBOL_GPL(edac_raw_mc_handle_error);
942 
943 void edac_mc_handle_error(const enum hw_event_mc_err_type type,
944 			  struct mem_ctl_info *mci,
945 			  const u16 error_count,
946 			  const unsigned long page_frame_number,
947 			  const unsigned long offset_in_page,
948 			  const unsigned long syndrome,
949 			  const int top_layer,
950 			  const int mid_layer,
951 			  const int low_layer,
952 			  const char *msg,
953 			  const char *other_detail)
954 {
955 	struct dimm_info *dimm;
956 	char *p, *end;
957 	int row = -1, chan = -1;
958 	int pos[EDAC_MAX_LAYERS] = { top_layer, mid_layer, low_layer };
959 	int i, n_labels = 0;
960 	struct edac_raw_error_desc *e = &mci->error_desc;
961 	bool any_memory = true;
962 	const char *prefix;
963 
964 	edac_dbg(3, "MC%d\n", mci->mc_idx);
965 
966 	/* Fills the error report buffer */
967 	memset(e, 0, sizeof (*e));
968 	e->error_count = error_count;
969 	e->type = type;
970 	e->top_layer = top_layer;
971 	e->mid_layer = mid_layer;
972 	e->low_layer = low_layer;
973 	e->page_frame_number = page_frame_number;
974 	e->offset_in_page = offset_in_page;
975 	e->syndrome = syndrome;
976 	/* need valid strings here for both: */
977 	e->msg = msg ?: "";
978 	e->other_detail = other_detail ?: "";
979 
980 	/*
981 	 * Check if the event report is consistent and if the memory location is
982 	 * known. If it is, the DIMM(s) label info will be filled and the DIMM's
983 	 * error counters will be incremented.
984 	 */
985 	for (i = 0; i < mci->n_layers; i++) {
986 		if (pos[i] >= (int)mci->layers[i].size) {
987 
988 			edac_mc_printk(mci, KERN_ERR,
989 				       "INTERNAL ERROR: %s value is out of range (%d >= %d)\n",
990 				       edac_layer_name[mci->layers[i].type],
991 				       pos[i], mci->layers[i].size);
992 			/*
993 			 * Instead of just returning it, let's use what's
994 			 * known about the error. The increment routines and
995 			 * the DIMM filter logic will do the right thing by
996 			 * pointing the likely damaged DIMMs.
997 			 */
998 			pos[i] = -1;
999 		}
1000 		if (pos[i] >= 0)
1001 			any_memory = false;
1002 	}
1003 
1004 	/*
1005 	 * Get the dimm label/grain that applies to the match criteria.
1006 	 * As the error algorithm may not be able to point to just one memory
1007 	 * stick, the logic here will get all possible labels that could
1008 	 * pottentially be affected by the error.
1009 	 * On FB-DIMM memory controllers, for uncorrected errors, it is common
1010 	 * to have only the MC channel and the MC dimm (also called "branch")
1011 	 * but the channel is not known, as the memory is arranged in pairs,
1012 	 * where each memory belongs to a separate channel within the same
1013 	 * branch.
1014 	 */
1015 	p = e->label;
1016 	*p = '\0';
1017 	end = p + sizeof(e->label);
1018 	prefix = "";
1019 
1020 	mci_for_each_dimm(mci, dimm) {
1021 		if (top_layer >= 0 && top_layer != dimm->location[0])
1022 			continue;
1023 		if (mid_layer >= 0 && mid_layer != dimm->location[1])
1024 			continue;
1025 		if (low_layer >= 0 && low_layer != dimm->location[2])
1026 			continue;
1027 
1028 		/* get the max grain, over the error match range */
1029 		if (dimm->grain > e->grain)
1030 			e->grain = dimm->grain;
1031 
1032 		/*
1033 		 * If the error is memory-controller wide, there's no need to
1034 		 * seek for the affected DIMMs because the whole channel/memory
1035 		 * controller/... may be affected. Also, don't show errors for
1036 		 * empty DIMM slots.
1037 		 */
1038 		if (!dimm->nr_pages)
1039 			continue;
1040 
1041 		n_labels++;
1042 		if (n_labels > EDAC_MAX_LABELS) {
1043 			p = e->label;
1044 			*p = '\0';
1045 		} else {
1046 			p += scnprintf(p, end - p, "%s%s", prefix, dimm->label);
1047 			prefix = OTHER_LABEL;
1048 		}
1049 
1050 		/*
1051 		 * get csrow/channel of the DIMM, in order to allow
1052 		 * incrementing the compat API counters
1053 		 */
1054 		edac_dbg(4, "%s csrows map: (%d,%d)\n",
1055 			mci->csbased ? "rank" : "dimm",
1056 			dimm->csrow, dimm->cschannel);
1057 		if (row == -1)
1058 			row = dimm->csrow;
1059 		else if (row >= 0 && row != dimm->csrow)
1060 			row = -2;
1061 
1062 		if (chan == -1)
1063 			chan = dimm->cschannel;
1064 		else if (chan >= 0 && chan != dimm->cschannel)
1065 			chan = -2;
1066 	}
1067 
1068 	if (any_memory)
1069 		strscpy(e->label, "any memory", sizeof(e->label));
1070 	else if (!*e->label)
1071 		strscpy(e->label, "unknown memory", sizeof(e->label));
1072 
1073 	edac_inc_csrow(e, row, chan);
1074 
1075 	/* Fill the RAM location data */
1076 	p = e->location;
1077 	end = p + sizeof(e->location);
1078 	prefix = "";
1079 
1080 	for (i = 0; i < mci->n_layers; i++) {
1081 		if (pos[i] < 0)
1082 			continue;
1083 
1084 		p += scnprintf(p, end - p, "%s%s:%d", prefix,
1085 			       edac_layer_name[mci->layers[i].type], pos[i]);
1086 		prefix = " ";
1087 	}
1088 
1089 	edac_raw_mc_handle_error(e);
1090 }
1091 EXPORT_SYMBOL_GPL(edac_mc_handle_error);
1092