xref: /linux/drivers/edac/i5400_edac.c (revision de3910eb)
1 /*
2  * Intel 5400 class Memory Controllers kernel module (Seaburg)
3  *
4  * This file may be distributed under the terms of the
5  * GNU General Public License.
6  *
7  * Copyright (c) 2008 by:
8  *	 Ben Woodard <woodard@redhat.com>
9  *	 Mauro Carvalho Chehab <mchehab@redhat.com>
10  *
11  * Red Hat Inc. http://www.redhat.com
12  *
13  * Forked and adapted from the i5000_edac driver which was
14  * written by Douglas Thompson Linux Networx <norsk5@xmission.com>
15  *
16  * This module is based on the following document:
17  *
18  * Intel 5400 Chipset Memory Controller Hub (MCH) - Datasheet
19  * 	http://developer.intel.com/design/chipsets/datashts/313070.htm
20  *
21  * This Memory Controller manages DDR2 FB-DIMMs. It has 2 branches, each with
22  * 2 channels operating in lockstep no-mirror mode. Each channel can have up to
23  * 4 dimm's, each with up to 8GB.
24  *
25  */
26 
27 #include <linux/module.h>
28 #include <linux/init.h>
29 #include <linux/pci.h>
30 #include <linux/pci_ids.h>
31 #include <linux/slab.h>
32 #include <linux/edac.h>
33 #include <linux/mmzone.h>
34 
35 #include "edac_core.h"
36 
37 /*
38  * Alter this version for the I5400 module when modifications are made
39  */
40 #define I5400_REVISION    " Ver: 1.0.0"
41 
42 #define EDAC_MOD_STR      "i5400_edac"
43 
44 #define i5400_printk(level, fmt, arg...) \
45 	edac_printk(level, "i5400", fmt, ##arg)
46 
47 #define i5400_mc_printk(mci, level, fmt, arg...) \
48 	edac_mc_chipset_printk(mci, level, "i5400", fmt, ##arg)
49 
50 /* Limits for i5400 */
51 #define MAX_BRANCHES		2
52 #define CHANNELS_PER_BRANCH	2
53 #define DIMMS_PER_CHANNEL	4
54 #define	MAX_CHANNELS		(MAX_BRANCHES * CHANNELS_PER_BRANCH)
55 
56 /* Device 16,
57  * Function 0: System Address
58  * Function 1: Memory Branch Map, Control, Errors Register
59  * Function 2: FSB Error Registers
60  *
61  * All 3 functions of Device 16 (0,1,2) share the SAME DID and
62  * uses PCI_DEVICE_ID_INTEL_5400_ERR for device 16 (0,1,2),
63  * PCI_DEVICE_ID_INTEL_5400_FBD0 and PCI_DEVICE_ID_INTEL_5400_FBD1
64  * for device 21 (0,1).
65  */
66 
67 	/* OFFSETS for Function 0 */
68 #define		AMBASE			0x48 /* AMB Mem Mapped Reg Region Base */
69 #define		MAXCH			0x56 /* Max Channel Number */
70 #define		MAXDIMMPERCH		0x57 /* Max DIMM PER Channel Number */
71 
72 	/* OFFSETS for Function 1 */
73 #define		TOLM			0x6C
74 #define		REDMEMB			0x7C
75 #define			REC_ECC_LOCATOR_ODD(x)	((x) & 0x3fe00) /* bits [17:9] indicate ODD, [8:0]  indicate EVEN */
76 #define		MIR0			0x80
77 #define		MIR1			0x84
78 #define		AMIR0			0x8c
79 #define		AMIR1			0x90
80 
81 	/* Fatal error registers */
82 #define		FERR_FAT_FBD		0x98	/* also called as FERR_FAT_FB_DIMM at datasheet */
83 #define			FERR_FAT_FBDCHAN (3<<28)	/* channel index where the highest-order error occurred */
84 
85 #define		NERR_FAT_FBD		0x9c
86 #define		FERR_NF_FBD		0xa0	/* also called as FERR_NFAT_FB_DIMM at datasheet */
87 
88 	/* Non-fatal error register */
89 #define		NERR_NF_FBD		0xa4
90 
91 	/* Enable error mask */
92 #define		EMASK_FBD		0xa8
93 
94 #define		ERR0_FBD		0xac
95 #define		ERR1_FBD		0xb0
96 #define		ERR2_FBD		0xb4
97 #define		MCERR_FBD		0xb8
98 
99 	/* No OFFSETS for Device 16 Function 2 */
100 
101 /*
102  * Device 21,
103  * Function 0: Memory Map Branch 0
104  *
105  * Device 22,
106  * Function 0: Memory Map Branch 1
107  */
108 
109 	/* OFFSETS for Function 0 */
110 #define AMBPRESENT_0	0x64
111 #define AMBPRESENT_1	0x66
112 #define MTR0		0x80
113 #define MTR1		0x82
114 #define MTR2		0x84
115 #define MTR3		0x86
116 
117 	/* OFFSETS for Function 1 */
118 #define NRECFGLOG		0x74
119 #define RECFGLOG		0x78
120 #define NRECMEMA		0xbe
121 #define NRECMEMB		0xc0
122 #define NRECFB_DIMMA		0xc4
123 #define NRECFB_DIMMB		0xc8
124 #define NRECFB_DIMMC		0xcc
125 #define NRECFB_DIMMD		0xd0
126 #define NRECFB_DIMME		0xd4
127 #define NRECFB_DIMMF		0xd8
128 #define REDMEMA			0xdC
129 #define RECMEMA			0xf0
130 #define RECMEMB			0xf4
131 #define RECFB_DIMMA		0xf8
132 #define RECFB_DIMMB		0xec
133 #define RECFB_DIMMC		0xf0
134 #define RECFB_DIMMD		0xf4
135 #define RECFB_DIMME		0xf8
136 #define RECFB_DIMMF		0xfC
137 
138 /*
139  * Error indicator bits and masks
140  * Error masks are according with Table 5-17 of i5400 datasheet
141  */
142 
143 enum error_mask {
144 	EMASK_M1  = 1<<0,  /* Memory Write error on non-redundant retry */
145 	EMASK_M2  = 1<<1,  /* Memory or FB-DIMM configuration CRC read error */
146 	EMASK_M3  = 1<<2,  /* Reserved */
147 	EMASK_M4  = 1<<3,  /* Uncorrectable Data ECC on Replay */
148 	EMASK_M5  = 1<<4,  /* Aliased Uncorrectable Non-Mirrored Demand Data ECC */
149 	EMASK_M6  = 1<<5,  /* Unsupported on i5400 */
150 	EMASK_M7  = 1<<6,  /* Aliased Uncorrectable Resilver- or Spare-Copy Data ECC */
151 	EMASK_M8  = 1<<7,  /* Aliased Uncorrectable Patrol Data ECC */
152 	EMASK_M9  = 1<<8,  /* Non-Aliased Uncorrectable Non-Mirrored Demand Data ECC */
153 	EMASK_M10 = 1<<9,  /* Unsupported on i5400 */
154 	EMASK_M11 = 1<<10, /* Non-Aliased Uncorrectable Resilver- or Spare-Copy Data ECC  */
155 	EMASK_M12 = 1<<11, /* Non-Aliased Uncorrectable Patrol Data ECC */
156 	EMASK_M13 = 1<<12, /* Memory Write error on first attempt */
157 	EMASK_M14 = 1<<13, /* FB-DIMM Configuration Write error on first attempt */
158 	EMASK_M15 = 1<<14, /* Memory or FB-DIMM configuration CRC read error */
159 	EMASK_M16 = 1<<15, /* Channel Failed-Over Occurred */
160 	EMASK_M17 = 1<<16, /* Correctable Non-Mirrored Demand Data ECC */
161 	EMASK_M18 = 1<<17, /* Unsupported on i5400 */
162 	EMASK_M19 = 1<<18, /* Correctable Resilver- or Spare-Copy Data ECC */
163 	EMASK_M20 = 1<<19, /* Correctable Patrol Data ECC */
164 	EMASK_M21 = 1<<20, /* FB-DIMM Northbound parity error on FB-DIMM Sync Status */
165 	EMASK_M22 = 1<<21, /* SPD protocol Error */
166 	EMASK_M23 = 1<<22, /* Non-Redundant Fast Reset Timeout */
167 	EMASK_M24 = 1<<23, /* Refresh error */
168 	EMASK_M25 = 1<<24, /* Memory Write error on redundant retry */
169 	EMASK_M26 = 1<<25, /* Redundant Fast Reset Timeout */
170 	EMASK_M27 = 1<<26, /* Correctable Counter Threshold Exceeded */
171 	EMASK_M28 = 1<<27, /* DIMM-Spare Copy Completed */
172 	EMASK_M29 = 1<<28, /* DIMM-Isolation Completed */
173 };
174 
175 /*
176  * Names to translate bit error into something useful
177  */
178 static const char *error_name[] = {
179 	[0]  = "Memory Write error on non-redundant retry",
180 	[1]  = "Memory or FB-DIMM configuration CRC read error",
181 	/* Reserved */
182 	[3]  = "Uncorrectable Data ECC on Replay",
183 	[4]  = "Aliased Uncorrectable Non-Mirrored Demand Data ECC",
184 	/* M6 Unsupported on i5400 */
185 	[6]  = "Aliased Uncorrectable Resilver- or Spare-Copy Data ECC",
186 	[7]  = "Aliased Uncorrectable Patrol Data ECC",
187 	[8]  = "Non-Aliased Uncorrectable Non-Mirrored Demand Data ECC",
188 	/* M10 Unsupported on i5400 */
189 	[10] = "Non-Aliased Uncorrectable Resilver- or Spare-Copy Data ECC",
190 	[11] = "Non-Aliased Uncorrectable Patrol Data ECC",
191 	[12] = "Memory Write error on first attempt",
192 	[13] = "FB-DIMM Configuration Write error on first attempt",
193 	[14] = "Memory or FB-DIMM configuration CRC read error",
194 	[15] = "Channel Failed-Over Occurred",
195 	[16] = "Correctable Non-Mirrored Demand Data ECC",
196 	/* M18 Unsupported on i5400 */
197 	[18] = "Correctable Resilver- or Spare-Copy Data ECC",
198 	[19] = "Correctable Patrol Data ECC",
199 	[20] = "FB-DIMM Northbound parity error on FB-DIMM Sync Status",
200 	[21] = "SPD protocol Error",
201 	[22] = "Non-Redundant Fast Reset Timeout",
202 	[23] = "Refresh error",
203 	[24] = "Memory Write error on redundant retry",
204 	[25] = "Redundant Fast Reset Timeout",
205 	[26] = "Correctable Counter Threshold Exceeded",
206 	[27] = "DIMM-Spare Copy Completed",
207 	[28] = "DIMM-Isolation Completed",
208 };
209 
210 /* Fatal errors */
211 #define ERROR_FAT_MASK		(EMASK_M1 | \
212 				 EMASK_M2 | \
213 				 EMASK_M23)
214 
215 /* Correctable errors */
216 #define ERROR_NF_CORRECTABLE	(EMASK_M27 | \
217 				 EMASK_M20 | \
218 				 EMASK_M19 | \
219 				 EMASK_M18 | \
220 				 EMASK_M17 | \
221 				 EMASK_M16)
222 #define ERROR_NF_DIMM_SPARE	(EMASK_M29 | \
223 				 EMASK_M28)
224 #define ERROR_NF_SPD_PROTOCOL	(EMASK_M22)
225 #define ERROR_NF_NORTH_CRC	(EMASK_M21)
226 
227 /* Recoverable errors */
228 #define ERROR_NF_RECOVERABLE	(EMASK_M26 | \
229 				 EMASK_M25 | \
230 				 EMASK_M24 | \
231 				 EMASK_M15 | \
232 				 EMASK_M14 | \
233 				 EMASK_M13 | \
234 				 EMASK_M12 | \
235 				 EMASK_M11 | \
236 				 EMASK_M9  | \
237 				 EMASK_M8  | \
238 				 EMASK_M7  | \
239 				 EMASK_M5)
240 
241 /* uncorrectable errors */
242 #define ERROR_NF_UNCORRECTABLE	(EMASK_M4)
243 
244 /* mask to all non-fatal errors */
245 #define ERROR_NF_MASK		(ERROR_NF_CORRECTABLE   | \
246 				 ERROR_NF_UNCORRECTABLE | \
247 				 ERROR_NF_RECOVERABLE   | \
248 				 ERROR_NF_DIMM_SPARE    | \
249 				 ERROR_NF_SPD_PROTOCOL  | \
250 				 ERROR_NF_NORTH_CRC)
251 
252 /*
253  * Define error masks for the several registers
254  */
255 
256 /* Enable all fatal and non fatal errors */
257 #define ENABLE_EMASK_ALL	(ERROR_FAT_MASK | ERROR_NF_MASK)
258 
259 /* mask for fatal error registers */
260 #define FERR_FAT_MASK ERROR_FAT_MASK
261 
262 /* masks for non-fatal error register */
263 static inline int to_nf_mask(unsigned int mask)
264 {
265 	return (mask & EMASK_M29) | (mask >> 3);
266 };
267 
268 static inline int from_nf_ferr(unsigned int mask)
269 {
270 	return (mask & EMASK_M29) |		/* Bit 28 */
271 	       (mask & ((1 << 28) - 1) << 3);	/* Bits 0 to 27 */
272 };
273 
274 #define FERR_NF_MASK		to_nf_mask(ERROR_NF_MASK)
275 #define FERR_NF_CORRECTABLE	to_nf_mask(ERROR_NF_CORRECTABLE)
276 #define FERR_NF_DIMM_SPARE	to_nf_mask(ERROR_NF_DIMM_SPARE)
277 #define FERR_NF_SPD_PROTOCOL	to_nf_mask(ERROR_NF_SPD_PROTOCOL)
278 #define FERR_NF_NORTH_CRC	to_nf_mask(ERROR_NF_NORTH_CRC)
279 #define FERR_NF_RECOVERABLE	to_nf_mask(ERROR_NF_RECOVERABLE)
280 #define FERR_NF_UNCORRECTABLE	to_nf_mask(ERROR_NF_UNCORRECTABLE)
281 
282 /* Defines to extract the vaious fields from the
283  *	MTRx - Memory Technology Registers
284  */
285 #define MTR_DIMMS_PRESENT(mtr)		((mtr) & (1 << 10))
286 #define MTR_DIMMS_ETHROTTLE(mtr)	((mtr) & (1 << 9))
287 #define MTR_DRAM_WIDTH(mtr)		(((mtr) & (1 << 8)) ? 8 : 4)
288 #define MTR_DRAM_BANKS(mtr)		(((mtr) & (1 << 6)) ? 8 : 4)
289 #define MTR_DRAM_BANKS_ADDR_BITS(mtr)	((MTR_DRAM_BANKS(mtr) == 8) ? 3 : 2)
290 #define MTR_DIMM_RANK(mtr)		(((mtr) >> 5) & 0x1)
291 #define MTR_DIMM_RANK_ADDR_BITS(mtr)	(MTR_DIMM_RANK(mtr) ? 2 : 1)
292 #define MTR_DIMM_ROWS(mtr)		(((mtr) >> 2) & 0x3)
293 #define MTR_DIMM_ROWS_ADDR_BITS(mtr)	(MTR_DIMM_ROWS(mtr) + 13)
294 #define MTR_DIMM_COLS(mtr)		((mtr) & 0x3)
295 #define MTR_DIMM_COLS_ADDR_BITS(mtr)	(MTR_DIMM_COLS(mtr) + 10)
296 
297 /* This applies to FERR_NF_FB-DIMM as well as FERR_FAT_FB-DIMM */
298 static inline int extract_fbdchan_indx(u32 x)
299 {
300 	return (x>>28) & 0x3;
301 }
302 
303 #ifdef CONFIG_EDAC_DEBUG
304 /* MTR NUMROW */
305 static const char *numrow_toString[] = {
306 	"8,192 - 13 rows",
307 	"16,384 - 14 rows",
308 	"32,768 - 15 rows",
309 	"65,536 - 16 rows"
310 };
311 
312 /* MTR NUMCOL */
313 static const char *numcol_toString[] = {
314 	"1,024 - 10 columns",
315 	"2,048 - 11 columns",
316 	"4,096 - 12 columns",
317 	"reserved"
318 };
319 #endif
320 
321 /* Device name and register DID (Device ID) */
322 struct i5400_dev_info {
323 	const char *ctl_name;	/* name for this device */
324 	u16 fsb_mapping_errors;	/* DID for the branchmap,control */
325 };
326 
327 /* Table of devices attributes supported by this driver */
328 static const struct i5400_dev_info i5400_devs[] = {
329 	{
330 		.ctl_name = "I5400",
331 		.fsb_mapping_errors = PCI_DEVICE_ID_INTEL_5400_ERR,
332 	},
333 };
334 
335 struct i5400_dimm_info {
336 	int megabytes;		/* size, 0 means not present  */
337 };
338 
339 /* driver private data structure */
340 struct i5400_pvt {
341 	struct pci_dev *system_address;		/* 16.0 */
342 	struct pci_dev *branchmap_werrors;	/* 16.1 */
343 	struct pci_dev *fsb_error_regs;		/* 16.2 */
344 	struct pci_dev *branch_0;		/* 21.0 */
345 	struct pci_dev *branch_1;		/* 22.0 */
346 
347 	u16 tolm;				/* top of low memory */
348 	u64 ambase;				/* AMB BAR */
349 
350 	u16 mir0, mir1;
351 
352 	u16 b0_mtr[DIMMS_PER_CHANNEL];	/* Memory Technlogy Reg */
353 	u16 b0_ambpresent0;			/* Branch 0, Channel 0 */
354 	u16 b0_ambpresent1;			/* Brnach 0, Channel 1 */
355 
356 	u16 b1_mtr[DIMMS_PER_CHANNEL];	/* Memory Technlogy Reg */
357 	u16 b1_ambpresent0;			/* Branch 1, Channel 8 */
358 	u16 b1_ambpresent1;			/* Branch 1, Channel 1 */
359 
360 	/* DIMM information matrix, allocating architecture maximums */
361 	struct i5400_dimm_info dimm_info[DIMMS_PER_CHANNEL][MAX_CHANNELS];
362 
363 	/* Actual values for this controller */
364 	int maxch;				/* Max channels */
365 	int maxdimmperch;			/* Max DIMMs per channel */
366 };
367 
368 /* I5400 MCH error information retrieved from Hardware */
369 struct i5400_error_info {
370 	/* These registers are always read from the MC */
371 	u32 ferr_fat_fbd;	/* First Errors Fatal */
372 	u32 nerr_fat_fbd;	/* Next Errors Fatal */
373 	u32 ferr_nf_fbd;	/* First Errors Non-Fatal */
374 	u32 nerr_nf_fbd;	/* Next Errors Non-Fatal */
375 
376 	/* These registers are input ONLY if there was a Recoverable Error */
377 	u32 redmemb;		/* Recoverable Mem Data Error log B */
378 	u16 recmema;		/* Recoverable Mem Error log A */
379 	u32 recmemb;		/* Recoverable Mem Error log B */
380 
381 	/* These registers are input ONLY if there was a Non-Rec Error */
382 	u16 nrecmema;		/* Non-Recoverable Mem log A */
383 	u16 nrecmemb;		/* Non-Recoverable Mem log B */
384 
385 };
386 
387 /* note that nrec_rdwr changed from NRECMEMA to NRECMEMB between the 5000 and
388    5400 better to use an inline function than a macro in this case */
389 static inline int nrec_bank(struct i5400_error_info *info)
390 {
391 	return ((info->nrecmema) >> 12) & 0x7;
392 }
393 static inline int nrec_rank(struct i5400_error_info *info)
394 {
395 	return ((info->nrecmema) >> 8) & 0xf;
396 }
397 static inline int nrec_buf_id(struct i5400_error_info *info)
398 {
399 	return ((info->nrecmema)) & 0xff;
400 }
401 static inline int nrec_rdwr(struct i5400_error_info *info)
402 {
403 	return (info->nrecmemb) >> 31;
404 }
405 /* This applies to both NREC and REC string so it can be used with nrec_rdwr
406    and rec_rdwr */
407 static inline const char *rdwr_str(int rdwr)
408 {
409 	return rdwr ? "Write" : "Read";
410 }
411 static inline int nrec_cas(struct i5400_error_info *info)
412 {
413 	return ((info->nrecmemb) >> 16) & 0x1fff;
414 }
415 static inline int nrec_ras(struct i5400_error_info *info)
416 {
417 	return (info->nrecmemb) & 0xffff;
418 }
419 static inline int rec_bank(struct i5400_error_info *info)
420 {
421 	return ((info->recmema) >> 12) & 0x7;
422 }
423 static inline int rec_rank(struct i5400_error_info *info)
424 {
425 	return ((info->recmema) >> 8) & 0xf;
426 }
427 static inline int rec_rdwr(struct i5400_error_info *info)
428 {
429 	return (info->recmemb) >> 31;
430 }
431 static inline int rec_cas(struct i5400_error_info *info)
432 {
433 	return ((info->recmemb) >> 16) & 0x1fff;
434 }
435 static inline int rec_ras(struct i5400_error_info *info)
436 {
437 	return (info->recmemb) & 0xffff;
438 }
439 
440 static struct edac_pci_ctl_info *i5400_pci;
441 
442 /*
443  *	i5400_get_error_info	Retrieve the hardware error information from
444  *				the hardware and cache it in the 'info'
445  *				structure
446  */
447 static void i5400_get_error_info(struct mem_ctl_info *mci,
448 				 struct i5400_error_info *info)
449 {
450 	struct i5400_pvt *pvt;
451 	u32 value;
452 
453 	pvt = mci->pvt_info;
454 
455 	/* read in the 1st FATAL error register */
456 	pci_read_config_dword(pvt->branchmap_werrors, FERR_FAT_FBD, &value);
457 
458 	/* Mask only the bits that the doc says are valid
459 	 */
460 	value &= (FERR_FAT_FBDCHAN | FERR_FAT_MASK);
461 
462 	/* If there is an error, then read in the
463 	   NEXT FATAL error register and the Memory Error Log Register A
464 	 */
465 	if (value & FERR_FAT_MASK) {
466 		info->ferr_fat_fbd = value;
467 
468 		/* harvest the various error data we need */
469 		pci_read_config_dword(pvt->branchmap_werrors,
470 				NERR_FAT_FBD, &info->nerr_fat_fbd);
471 		pci_read_config_word(pvt->branchmap_werrors,
472 				NRECMEMA, &info->nrecmema);
473 		pci_read_config_word(pvt->branchmap_werrors,
474 				NRECMEMB, &info->nrecmemb);
475 
476 		/* Clear the error bits, by writing them back */
477 		pci_write_config_dword(pvt->branchmap_werrors,
478 				FERR_FAT_FBD, value);
479 	} else {
480 		info->ferr_fat_fbd = 0;
481 		info->nerr_fat_fbd = 0;
482 		info->nrecmema = 0;
483 		info->nrecmemb = 0;
484 	}
485 
486 	/* read in the 1st NON-FATAL error register */
487 	pci_read_config_dword(pvt->branchmap_werrors, FERR_NF_FBD, &value);
488 
489 	/* If there is an error, then read in the 1st NON-FATAL error
490 	 * register as well */
491 	if (value & FERR_NF_MASK) {
492 		info->ferr_nf_fbd = value;
493 
494 		/* harvest the various error data we need */
495 		pci_read_config_dword(pvt->branchmap_werrors,
496 				NERR_NF_FBD, &info->nerr_nf_fbd);
497 		pci_read_config_word(pvt->branchmap_werrors,
498 				RECMEMA, &info->recmema);
499 		pci_read_config_dword(pvt->branchmap_werrors,
500 				RECMEMB, &info->recmemb);
501 		pci_read_config_dword(pvt->branchmap_werrors,
502 				REDMEMB, &info->redmemb);
503 
504 		/* Clear the error bits, by writing them back */
505 		pci_write_config_dword(pvt->branchmap_werrors,
506 				FERR_NF_FBD, value);
507 	} else {
508 		info->ferr_nf_fbd = 0;
509 		info->nerr_nf_fbd = 0;
510 		info->recmema = 0;
511 		info->recmemb = 0;
512 		info->redmemb = 0;
513 	}
514 }
515 
516 /*
517  * i5400_proccess_non_recoverable_info(struct mem_ctl_info *mci,
518  * 					struct i5400_error_info *info,
519  * 					int handle_errors);
520  *
521  *	handle the Intel FATAL and unrecoverable errors, if any
522  */
523 static void i5400_proccess_non_recoverable_info(struct mem_ctl_info *mci,
524 				    struct i5400_error_info *info,
525 				    unsigned long allErrors)
526 {
527 	char msg[EDAC_MC_LABEL_LEN + 1 + 90 + 80];
528 	int branch;
529 	int channel;
530 	int bank;
531 	int buf_id;
532 	int rank;
533 	int rdwr;
534 	int ras, cas;
535 	int errnum;
536 	char *type = NULL;
537 	enum hw_event_mc_err_type tp_event = HW_EVENT_ERR_UNCORRECTED;
538 
539 	if (!allErrors)
540 		return;		/* if no error, return now */
541 
542 	if (allErrors &  ERROR_FAT_MASK) {
543 		type = "FATAL";
544 		tp_event = HW_EVENT_ERR_FATAL;
545 	} else if (allErrors & FERR_NF_UNCORRECTABLE)
546 		type = "NON-FATAL uncorrected";
547 	else
548 		type = "NON-FATAL recoverable";
549 
550 	/* ONLY ONE of the possible error bits will be set, as per the docs */
551 
552 	branch = extract_fbdchan_indx(info->ferr_fat_fbd);
553 	channel = branch;
554 
555 	/* Use the NON-Recoverable macros to extract data */
556 	bank = nrec_bank(info);
557 	rank = nrec_rank(info);
558 	buf_id = nrec_buf_id(info);
559 	rdwr = nrec_rdwr(info);
560 	ras = nrec_ras(info);
561 	cas = nrec_cas(info);
562 
563 	debugf0("\t\tDIMM= %d  Channels= %d,%d  (Branch= %d "
564 		"DRAM Bank= %d Buffer ID = %d rdwr= %s ras= %d cas= %d)\n",
565 		rank, channel, channel + 1, branch >> 1, bank,
566 		buf_id, rdwr_str(rdwr), ras, cas);
567 
568 	/* Only 1 bit will be on */
569 	errnum = find_first_bit(&allErrors, ARRAY_SIZE(error_name));
570 
571 	/* Form out message */
572 	snprintf(msg, sizeof(msg),
573 		 "Bank=%d Buffer ID = %d RAS=%d CAS=%d Err=0x%lx (%s)",
574 		 bank, buf_id, ras, cas, allErrors, error_name[errnum]);
575 
576 	edac_mc_handle_error(tp_event, mci, 0, 0, 0,
577 			     branch >> 1, -1, rank,
578 			     rdwr ? "Write error" : "Read error",
579 			     msg, NULL);
580 }
581 
582 /*
583  * i5400_process_fatal_error_info(struct mem_ctl_info *mci,
584  * 				struct i5400_error_info *info,
585  * 				int handle_errors);
586  *
587  *	handle the Intel NON-FATAL errors, if any
588  */
589 static void i5400_process_nonfatal_error_info(struct mem_ctl_info *mci,
590 					struct i5400_error_info *info)
591 {
592 	char msg[EDAC_MC_LABEL_LEN + 1 + 90 + 80];
593 	unsigned long allErrors;
594 	int branch;
595 	int channel;
596 	int bank;
597 	int rank;
598 	int rdwr;
599 	int ras, cas;
600 	int errnum;
601 
602 	/* mask off the Error bits that are possible */
603 	allErrors = from_nf_ferr(info->ferr_nf_fbd & FERR_NF_MASK);
604 	if (!allErrors)
605 		return;		/* if no error, return now */
606 
607 	/* ONLY ONE of the possible error bits will be set, as per the docs */
608 
609 	if (allErrors & (ERROR_NF_UNCORRECTABLE | ERROR_NF_RECOVERABLE)) {
610 		i5400_proccess_non_recoverable_info(mci, info, allErrors);
611 		return;
612 	}
613 
614 	/* Correctable errors */
615 	if (allErrors & ERROR_NF_CORRECTABLE) {
616 		debugf0("\tCorrected bits= 0x%lx\n", allErrors);
617 
618 		branch = extract_fbdchan_indx(info->ferr_nf_fbd);
619 
620 		channel = 0;
621 		if (REC_ECC_LOCATOR_ODD(info->redmemb))
622 			channel = 1;
623 
624 		/* Convert channel to be based from zero, instead of
625 		 * from branch base of 0 */
626 		channel += branch;
627 
628 		bank = rec_bank(info);
629 		rank = rec_rank(info);
630 		rdwr = rec_rdwr(info);
631 		ras = rec_ras(info);
632 		cas = rec_cas(info);
633 
634 		/* Only 1 bit will be on */
635 		errnum = find_first_bit(&allErrors, ARRAY_SIZE(error_name));
636 
637 		debugf0("\t\tDIMM= %d Channel= %d  (Branch %d "
638 			"DRAM Bank= %d rdwr= %s ras= %d cas= %d)\n",
639 			rank, channel, branch >> 1, bank,
640 			rdwr_str(rdwr), ras, cas);
641 
642 		/* Form out message */
643 		snprintf(msg, sizeof(msg),
644 			 "Corrected error (Branch=%d DRAM-Bank=%d RDWR=%s "
645 			 "RAS=%d CAS=%d, CE Err=0x%lx (%s))",
646 			 branch >> 1, bank, rdwr_str(rdwr), ras, cas,
647 			 allErrors, error_name[errnum]);
648 
649 		edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 0, 0, 0,
650 				     branch >> 1, channel % 2, rank,
651 				     rdwr ? "Write error" : "Read error",
652 				     msg, NULL);
653 
654 		return;
655 	}
656 
657 	/* Miscellaneous errors */
658 	errnum = find_first_bit(&allErrors, ARRAY_SIZE(error_name));
659 
660 	branch = extract_fbdchan_indx(info->ferr_nf_fbd);
661 
662 	i5400_mc_printk(mci, KERN_EMERG,
663 			"Non-Fatal misc error (Branch=%d Err=%#lx (%s))",
664 			branch >> 1, allErrors, error_name[errnum]);
665 }
666 
667 /*
668  *	i5400_process_error_info	Process the error info that is
669  *	in the 'info' structure, previously retrieved from hardware
670  */
671 static void i5400_process_error_info(struct mem_ctl_info *mci,
672 				struct i5400_error_info *info)
673 {	u32 allErrors;
674 
675 	/* First handle any fatal errors that occurred */
676 	allErrors = (info->ferr_fat_fbd & FERR_FAT_MASK);
677 	i5400_proccess_non_recoverable_info(mci, info, allErrors);
678 
679 	/* now handle any non-fatal errors that occurred */
680 	i5400_process_nonfatal_error_info(mci, info);
681 }
682 
683 /*
684  *	i5400_clear_error	Retrieve any error from the hardware
685  *				but do NOT process that error.
686  *				Used for 'clearing' out of previous errors
687  *				Called by the Core module.
688  */
689 static void i5400_clear_error(struct mem_ctl_info *mci)
690 {
691 	struct i5400_error_info info;
692 
693 	i5400_get_error_info(mci, &info);
694 }
695 
696 /*
697  *	i5400_check_error	Retrieve and process errors reported by the
698  *				hardware. Called by the Core module.
699  */
700 static void i5400_check_error(struct mem_ctl_info *mci)
701 {
702 	struct i5400_error_info info;
703 	debugf4("MC%d: %s: %s()\n", mci->mc_idx, __FILE__, __func__);
704 	i5400_get_error_info(mci, &info);
705 	i5400_process_error_info(mci, &info);
706 }
707 
708 /*
709  *	i5400_put_devices	'put' all the devices that we have
710  *				reserved via 'get'
711  */
712 static void i5400_put_devices(struct mem_ctl_info *mci)
713 {
714 	struct i5400_pvt *pvt;
715 
716 	pvt = mci->pvt_info;
717 
718 	/* Decrement usage count for devices */
719 	pci_dev_put(pvt->branch_1);
720 	pci_dev_put(pvt->branch_0);
721 	pci_dev_put(pvt->fsb_error_regs);
722 	pci_dev_put(pvt->branchmap_werrors);
723 }
724 
725 /*
726  *	i5400_get_devices	Find and perform 'get' operation on the MCH's
727  *			device/functions we want to reference for this driver
728  *
729  *			Need to 'get' device 16 func 1 and func 2
730  */
731 static int i5400_get_devices(struct mem_ctl_info *mci, int dev_idx)
732 {
733 	struct i5400_pvt *pvt;
734 	struct pci_dev *pdev;
735 
736 	pvt = mci->pvt_info;
737 	pvt->branchmap_werrors = NULL;
738 	pvt->fsb_error_regs = NULL;
739 	pvt->branch_0 = NULL;
740 	pvt->branch_1 = NULL;
741 
742 	/* Attempt to 'get' the MCH register we want */
743 	pdev = NULL;
744 	while (1) {
745 		pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
746 				      PCI_DEVICE_ID_INTEL_5400_ERR, pdev);
747 		if (!pdev) {
748 			/* End of list, leave */
749 			i5400_printk(KERN_ERR,
750 				"'system address,Process Bus' "
751 				"device not found:"
752 				"vendor 0x%x device 0x%x ERR func 1 "
753 				"(broken BIOS?)\n",
754 				PCI_VENDOR_ID_INTEL,
755 				PCI_DEVICE_ID_INTEL_5400_ERR);
756 			return -ENODEV;
757 		}
758 
759 		/* Store device 16 func 1 */
760 		if (PCI_FUNC(pdev->devfn) == 1)
761 			break;
762 	}
763 	pvt->branchmap_werrors = pdev;
764 
765 	pdev = NULL;
766 	while (1) {
767 		pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
768 				      PCI_DEVICE_ID_INTEL_5400_ERR, pdev);
769 		if (!pdev) {
770 			/* End of list, leave */
771 			i5400_printk(KERN_ERR,
772 				"'system address,Process Bus' "
773 				"device not found:"
774 				"vendor 0x%x device 0x%x ERR func 2 "
775 				"(broken BIOS?)\n",
776 				PCI_VENDOR_ID_INTEL,
777 				PCI_DEVICE_ID_INTEL_5400_ERR);
778 
779 			pci_dev_put(pvt->branchmap_werrors);
780 			return -ENODEV;
781 		}
782 
783 		/* Store device 16 func 2 */
784 		if (PCI_FUNC(pdev->devfn) == 2)
785 			break;
786 	}
787 	pvt->fsb_error_regs = pdev;
788 
789 	debugf1("System Address, processor bus- PCI Bus ID: %s  %x:%x\n",
790 		pci_name(pvt->system_address),
791 		pvt->system_address->vendor, pvt->system_address->device);
792 	debugf1("Branchmap, control and errors - PCI Bus ID: %s  %x:%x\n",
793 		pci_name(pvt->branchmap_werrors),
794 		pvt->branchmap_werrors->vendor, pvt->branchmap_werrors->device);
795 	debugf1("FSB Error Regs - PCI Bus ID: %s  %x:%x\n",
796 		pci_name(pvt->fsb_error_regs),
797 		pvt->fsb_error_regs->vendor, pvt->fsb_error_regs->device);
798 
799 	pvt->branch_0 = pci_get_device(PCI_VENDOR_ID_INTEL,
800 				       PCI_DEVICE_ID_INTEL_5400_FBD0, NULL);
801 	if (!pvt->branch_0) {
802 		i5400_printk(KERN_ERR,
803 			"MC: 'BRANCH 0' device not found:"
804 			"vendor 0x%x device 0x%x Func 0 (broken BIOS?)\n",
805 			PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_5400_FBD0);
806 
807 		pci_dev_put(pvt->fsb_error_regs);
808 		pci_dev_put(pvt->branchmap_werrors);
809 		return -ENODEV;
810 	}
811 
812 	/* If this device claims to have more than 2 channels then
813 	 * fetch Branch 1's information
814 	 */
815 	if (pvt->maxch < CHANNELS_PER_BRANCH)
816 		return 0;
817 
818 	pvt->branch_1 = pci_get_device(PCI_VENDOR_ID_INTEL,
819 				       PCI_DEVICE_ID_INTEL_5400_FBD1, NULL);
820 	if (!pvt->branch_1) {
821 		i5400_printk(KERN_ERR,
822 			"MC: 'BRANCH 1' device not found:"
823 			"vendor 0x%x device 0x%x Func 0 "
824 			"(broken BIOS?)\n",
825 			PCI_VENDOR_ID_INTEL,
826 			PCI_DEVICE_ID_INTEL_5400_FBD1);
827 
828 		pci_dev_put(pvt->branch_0);
829 		pci_dev_put(pvt->fsb_error_regs);
830 		pci_dev_put(pvt->branchmap_werrors);
831 		return -ENODEV;
832 	}
833 
834 	return 0;
835 }
836 
837 /*
838  *	determine_amb_present
839  *
840  *		the information is contained in DIMMS_PER_CHANNEL different
841  *		registers determining which of the DIMMS_PER_CHANNEL requires
842  *              knowing which channel is in question
843  *
844  *	2 branches, each with 2 channels
845  *		b0_ambpresent0 for channel '0'
846  *		b0_ambpresent1 for channel '1'
847  *		b1_ambpresent0 for channel '2'
848  *		b1_ambpresent1 for channel '3'
849  */
850 static int determine_amb_present_reg(struct i5400_pvt *pvt, int channel)
851 {
852 	int amb_present;
853 
854 	if (channel < CHANNELS_PER_BRANCH) {
855 		if (channel & 0x1)
856 			amb_present = pvt->b0_ambpresent1;
857 		else
858 			amb_present = pvt->b0_ambpresent0;
859 	} else {
860 		if (channel & 0x1)
861 			amb_present = pvt->b1_ambpresent1;
862 		else
863 			amb_present = pvt->b1_ambpresent0;
864 	}
865 
866 	return amb_present;
867 }
868 
869 /*
870  * determine_mtr(pvt, dimm, channel)
871  *
872  * return the proper MTR register as determine by the dimm and desired channel
873  */
874 static int determine_mtr(struct i5400_pvt *pvt, int dimm, int channel)
875 {
876 	int mtr;
877 	int n;
878 
879 	/* There is one MTR for each slot pair of FB-DIMMs,
880 	   Each slot pair may be at branch 0 or branch 1.
881 	 */
882 	n = dimm;
883 
884 	if (n >= DIMMS_PER_CHANNEL) {
885 		debugf0("ERROR: trying to access an invalid dimm: %d\n",
886 			dimm);
887 		return 0;
888 	}
889 
890 	if (channel < CHANNELS_PER_BRANCH)
891 		mtr = pvt->b0_mtr[n];
892 	else
893 		mtr = pvt->b1_mtr[n];
894 
895 	return mtr;
896 }
897 
898 /*
899  */
900 static void decode_mtr(int slot_row, u16 mtr)
901 {
902 	int ans;
903 
904 	ans = MTR_DIMMS_PRESENT(mtr);
905 
906 	debugf2("\tMTR%d=0x%x:  DIMMs are %s\n", slot_row, mtr,
907 		ans ? "Present" : "NOT Present");
908 	if (!ans)
909 		return;
910 
911 	debugf2("\t\tWIDTH: x%d\n", MTR_DRAM_WIDTH(mtr));
912 
913 	debugf2("\t\tELECTRICAL THROTTLING is %s\n",
914 		MTR_DIMMS_ETHROTTLE(mtr) ? "enabled" : "disabled");
915 
916 	debugf2("\t\tNUMBANK: %d bank(s)\n", MTR_DRAM_BANKS(mtr));
917 	debugf2("\t\tNUMRANK: %s\n", MTR_DIMM_RANK(mtr) ? "double" : "single");
918 	debugf2("\t\tNUMROW: %s\n", numrow_toString[MTR_DIMM_ROWS(mtr)]);
919 	debugf2("\t\tNUMCOL: %s\n", numcol_toString[MTR_DIMM_COLS(mtr)]);
920 }
921 
922 static void handle_channel(struct i5400_pvt *pvt, int dimm, int channel,
923 			struct i5400_dimm_info *dinfo)
924 {
925 	int mtr;
926 	int amb_present_reg;
927 	int addrBits;
928 
929 	mtr = determine_mtr(pvt, dimm, channel);
930 	if (MTR_DIMMS_PRESENT(mtr)) {
931 		amb_present_reg = determine_amb_present_reg(pvt, channel);
932 
933 		/* Determine if there is a DIMM present in this DIMM slot */
934 		if (amb_present_reg & (1 << dimm)) {
935 			/* Start with the number of bits for a Bank
936 			 * on the DRAM */
937 			addrBits = MTR_DRAM_BANKS_ADDR_BITS(mtr);
938 			/* Add thenumber of ROW bits */
939 			addrBits += MTR_DIMM_ROWS_ADDR_BITS(mtr);
940 			/* add the number of COLUMN bits */
941 			addrBits += MTR_DIMM_COLS_ADDR_BITS(mtr);
942 			/* add the number of RANK bits */
943 			addrBits += MTR_DIMM_RANK(mtr);
944 
945 			addrBits += 6;	/* add 64 bits per DIMM */
946 			addrBits -= 20;	/* divide by 2^^20 */
947 			addrBits -= 3;	/* 8 bits per bytes */
948 
949 			dinfo->megabytes = 1 << addrBits;
950 		}
951 	}
952 }
953 
954 /*
955  *	calculate_dimm_size
956  *
957  *	also will output a DIMM matrix map, if debug is enabled, for viewing
958  *	how the DIMMs are populated
959  */
960 static void calculate_dimm_size(struct i5400_pvt *pvt)
961 {
962 	struct i5400_dimm_info *dinfo;
963 	int dimm, max_dimms;
964 	char *p, *mem_buffer;
965 	int space, n;
966 	int channel, branch;
967 
968 	/* ================= Generate some debug output ================= */
969 	space = PAGE_SIZE;
970 	mem_buffer = p = kmalloc(space, GFP_KERNEL);
971 	if (p == NULL) {
972 		i5400_printk(KERN_ERR, "MC: %s:%s() kmalloc() failed\n",
973 			__FILE__, __func__);
974 		return;
975 	}
976 
977 	/* Scan all the actual DIMMS
978 	 * and calculate the information for each DIMM
979 	 * Start with the highest dimm first, to display it first
980 	 * and work toward the 0th dimm
981 	 */
982 	max_dimms = pvt->maxdimmperch;
983 	for (dimm = max_dimms - 1; dimm >= 0; dimm--) {
984 
985 		/* on an odd dimm, first output a 'boundary' marker,
986 		 * then reset the message buffer  */
987 		if (dimm & 0x1) {
988 			n = snprintf(p, space, "---------------------------"
989 					"-------------------------------");
990 			p += n;
991 			space -= n;
992 			debugf2("%s\n", mem_buffer);
993 			p = mem_buffer;
994 			space = PAGE_SIZE;
995 		}
996 		n = snprintf(p, space, "dimm %2d    ", dimm);
997 		p += n;
998 		space -= n;
999 
1000 		for (channel = 0; channel < pvt->maxch; channel++) {
1001 			dinfo = &pvt->dimm_info[dimm][channel];
1002 			handle_channel(pvt, dimm, channel, dinfo);
1003 			n = snprintf(p, space, "%4d MB   | ", dinfo->megabytes);
1004 			p += n;
1005 			space -= n;
1006 		}
1007 		debugf2("%s\n", mem_buffer);
1008 		p = mem_buffer;
1009 		space = PAGE_SIZE;
1010 	}
1011 
1012 	/* Output the last bottom 'boundary' marker */
1013 	n = snprintf(p, space, "---------------------------"
1014 			"-------------------------------");
1015 	p += n;
1016 	space -= n;
1017 	debugf2("%s\n", mem_buffer);
1018 	p = mem_buffer;
1019 	space = PAGE_SIZE;
1020 
1021 	/* now output the 'channel' labels */
1022 	n = snprintf(p, space, "           ");
1023 	p += n;
1024 	space -= n;
1025 	for (channel = 0; channel < pvt->maxch; channel++) {
1026 		n = snprintf(p, space, "channel %d | ", channel);
1027 		p += n;
1028 		space -= n;
1029 	}
1030 
1031 	space -= n;
1032 	debugf2("%s\n", mem_buffer);
1033 	p = mem_buffer;
1034 	space = PAGE_SIZE;
1035 
1036 	n = snprintf(p, space, "           ");
1037 	p += n;
1038 	for (branch = 0; branch < MAX_BRANCHES; branch++) {
1039 		n = snprintf(p, space, "       branch %d       | ", branch);
1040 		p += n;
1041 		space -= n;
1042 	}
1043 
1044 	/* output the last message and free buffer */
1045 	debugf2("%s\n", mem_buffer);
1046 	kfree(mem_buffer);
1047 }
1048 
1049 /*
1050  *	i5400_get_mc_regs	read in the necessary registers and
1051  *				cache locally
1052  *
1053  *			Fills in the private data members
1054  */
1055 static void i5400_get_mc_regs(struct mem_ctl_info *mci)
1056 {
1057 	struct i5400_pvt *pvt;
1058 	u32 actual_tolm;
1059 	u16 limit;
1060 	int slot_row;
1061 	int maxch;
1062 	int maxdimmperch;
1063 	int way0, way1;
1064 
1065 	pvt = mci->pvt_info;
1066 
1067 	pci_read_config_dword(pvt->system_address, AMBASE,
1068 			(u32 *) &pvt->ambase);
1069 	pci_read_config_dword(pvt->system_address, AMBASE + sizeof(u32),
1070 			((u32 *) &pvt->ambase) + sizeof(u32));
1071 
1072 	maxdimmperch = pvt->maxdimmperch;
1073 	maxch = pvt->maxch;
1074 
1075 	debugf2("AMBASE= 0x%lx  MAXCH= %d  MAX-DIMM-Per-CH= %d\n",
1076 		(long unsigned int)pvt->ambase, pvt->maxch, pvt->maxdimmperch);
1077 
1078 	/* Get the Branch Map regs */
1079 	pci_read_config_word(pvt->branchmap_werrors, TOLM, &pvt->tolm);
1080 	pvt->tolm >>= 12;
1081 	debugf2("\nTOLM (number of 256M regions) =%u (0x%x)\n", pvt->tolm,
1082 		pvt->tolm);
1083 
1084 	actual_tolm = (u32) ((1000l * pvt->tolm) >> (30 - 28));
1085 	debugf2("Actual TOLM byte addr=%u.%03u GB (0x%x)\n",
1086 		actual_tolm/1000, actual_tolm % 1000, pvt->tolm << 28);
1087 
1088 	pci_read_config_word(pvt->branchmap_werrors, MIR0, &pvt->mir0);
1089 	pci_read_config_word(pvt->branchmap_werrors, MIR1, &pvt->mir1);
1090 
1091 	/* Get the MIR[0-1] regs */
1092 	limit = (pvt->mir0 >> 4) & 0x0fff;
1093 	way0 = pvt->mir0 & 0x1;
1094 	way1 = pvt->mir0 & 0x2;
1095 	debugf2("MIR0: limit= 0x%x  WAY1= %u  WAY0= %x\n", limit, way1, way0);
1096 	limit = (pvt->mir1 >> 4) & 0xfff;
1097 	way0 = pvt->mir1 & 0x1;
1098 	way1 = pvt->mir1 & 0x2;
1099 	debugf2("MIR1: limit= 0x%x  WAY1= %u  WAY0= %x\n", limit, way1, way0);
1100 
1101 	/* Get the set of MTR[0-3] regs by each branch */
1102 	for (slot_row = 0; slot_row < DIMMS_PER_CHANNEL; slot_row++) {
1103 		int where = MTR0 + (slot_row * sizeof(u16));
1104 
1105 		/* Branch 0 set of MTR registers */
1106 		pci_read_config_word(pvt->branch_0, where,
1107 				&pvt->b0_mtr[slot_row]);
1108 
1109 		debugf2("MTR%d where=0x%x B0 value=0x%x\n", slot_row, where,
1110 			pvt->b0_mtr[slot_row]);
1111 
1112 		if (pvt->maxch < CHANNELS_PER_BRANCH) {
1113 			pvt->b1_mtr[slot_row] = 0;
1114 			continue;
1115 		}
1116 
1117 		/* Branch 1 set of MTR registers */
1118 		pci_read_config_word(pvt->branch_1, where,
1119 				&pvt->b1_mtr[slot_row]);
1120 		debugf2("MTR%d where=0x%x B1 value=0x%x\n", slot_row, where,
1121 			pvt->b1_mtr[slot_row]);
1122 	}
1123 
1124 	/* Read and dump branch 0's MTRs */
1125 	debugf2("\nMemory Technology Registers:\n");
1126 	debugf2("   Branch 0:\n");
1127 	for (slot_row = 0; slot_row < DIMMS_PER_CHANNEL; slot_row++)
1128 		decode_mtr(slot_row, pvt->b0_mtr[slot_row]);
1129 
1130 	pci_read_config_word(pvt->branch_0, AMBPRESENT_0,
1131 			&pvt->b0_ambpresent0);
1132 	debugf2("\t\tAMB-Branch 0-present0 0x%x:\n", pvt->b0_ambpresent0);
1133 	pci_read_config_word(pvt->branch_0, AMBPRESENT_1,
1134 			&pvt->b0_ambpresent1);
1135 	debugf2("\t\tAMB-Branch 0-present1 0x%x:\n", pvt->b0_ambpresent1);
1136 
1137 	/* Only if we have 2 branchs (4 channels) */
1138 	if (pvt->maxch < CHANNELS_PER_BRANCH) {
1139 		pvt->b1_ambpresent0 = 0;
1140 		pvt->b1_ambpresent1 = 0;
1141 	} else {
1142 		/* Read and dump  branch 1's MTRs */
1143 		debugf2("   Branch 1:\n");
1144 		for (slot_row = 0; slot_row < DIMMS_PER_CHANNEL; slot_row++)
1145 			decode_mtr(slot_row, pvt->b1_mtr[slot_row]);
1146 
1147 		pci_read_config_word(pvt->branch_1, AMBPRESENT_0,
1148 				&pvt->b1_ambpresent0);
1149 		debugf2("\t\tAMB-Branch 1-present0 0x%x:\n",
1150 			pvt->b1_ambpresent0);
1151 		pci_read_config_word(pvt->branch_1, AMBPRESENT_1,
1152 				&pvt->b1_ambpresent1);
1153 		debugf2("\t\tAMB-Branch 1-present1 0x%x:\n",
1154 			pvt->b1_ambpresent1);
1155 	}
1156 
1157 	/* Go and determine the size of each DIMM and place in an
1158 	 * orderly matrix */
1159 	calculate_dimm_size(pvt);
1160 }
1161 
1162 /*
1163  *	i5400_init_dimms	Initialize the 'dimms' table within
1164  *				the mci control	structure with the
1165  *				addressing of memory.
1166  *
1167  *	return:
1168  *		0	success
1169  *		1	no actual memory found on this MC
1170  */
1171 static int i5400_init_dimms(struct mem_ctl_info *mci)
1172 {
1173 	struct i5400_pvt *pvt;
1174 	struct dimm_info *dimm;
1175 	int ndimms, channel_count;
1176 	int max_dimms;
1177 	int mtr;
1178 	int size_mb;
1179 	int  channel, slot;
1180 
1181 	pvt = mci->pvt_info;
1182 
1183 	channel_count = pvt->maxch;
1184 	max_dimms = pvt->maxdimmperch;
1185 
1186 	ndimms = 0;
1187 
1188 	/*
1189 	 * FIXME: remove  pvt->dimm_info[slot][channel] and use the 3
1190 	 * layers here.
1191 	 */
1192 	for (channel = 0; channel < mci->layers[0].size * mci->layers[1].size;
1193 	     channel++) {
1194 		for (slot = 0; slot < mci->layers[2].size; slot++) {
1195 			mtr = determine_mtr(pvt, slot, channel);
1196 
1197 			/* if no DIMMS on this slot, continue */
1198 			if (!MTR_DIMMS_PRESENT(mtr))
1199 				continue;
1200 
1201 			dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms, mci->n_layers,
1202 				       channel / 2, channel % 2, slot);
1203 
1204 			size_mb =  pvt->dimm_info[slot][channel].megabytes;
1205 
1206 			debugf2("%s: dimm (branch %d channel %d slot %d): %d.%03d GB\n",
1207 				__func__,
1208 				channel / 2, channel % 2, slot,
1209 				size_mb / 1000, size_mb % 1000);
1210 
1211 			dimm->nr_pages = size_mb << 8;
1212 			dimm->grain = 8;
1213 			dimm->dtype = MTR_DRAM_WIDTH(mtr) ? DEV_X8 : DEV_X4;
1214 			dimm->mtype = MEM_FB_DDR2;
1215 			/*
1216 			 * The eccc mechanism is SDDC (aka SECC), with
1217 			 * is similar to Chipkill.
1218 			 */
1219 			dimm->edac_mode = MTR_DRAM_WIDTH(mtr) ?
1220 					  EDAC_S8ECD8ED : EDAC_S4ECD4ED;
1221 			ndimms++;
1222 		}
1223 	}
1224 
1225 	/*
1226 	 * When just one memory is provided, it should be at location (0,0,0).
1227 	 * With such single-DIMM mode, the SDCC algorithm degrades to SECDEC+.
1228 	 */
1229 	if (ndimms == 1)
1230 		mci->dimms[0]->edac_mode = EDAC_SECDED;
1231 
1232 	return (ndimms == 0);
1233 }
1234 
1235 /*
1236  *	i5400_enable_error_reporting
1237  *			Turn on the memory reporting features of the hardware
1238  */
1239 static void i5400_enable_error_reporting(struct mem_ctl_info *mci)
1240 {
1241 	struct i5400_pvt *pvt;
1242 	u32 fbd_error_mask;
1243 
1244 	pvt = mci->pvt_info;
1245 
1246 	/* Read the FBD Error Mask Register */
1247 	pci_read_config_dword(pvt->branchmap_werrors, EMASK_FBD,
1248 			&fbd_error_mask);
1249 
1250 	/* Enable with a '0' */
1251 	fbd_error_mask &= ~(ENABLE_EMASK_ALL);
1252 
1253 	pci_write_config_dword(pvt->branchmap_werrors, EMASK_FBD,
1254 			fbd_error_mask);
1255 }
1256 
1257 /*
1258  *	i5400_probe1	Probe for ONE instance of device to see if it is
1259  *			present.
1260  *	return:
1261  *		0 for FOUND a device
1262  *		< 0 for error code
1263  */
1264 static int i5400_probe1(struct pci_dev *pdev, int dev_idx)
1265 {
1266 	struct mem_ctl_info *mci;
1267 	struct i5400_pvt *pvt;
1268 	struct edac_mc_layer layers[3];
1269 
1270 	if (dev_idx >= ARRAY_SIZE(i5400_devs))
1271 		return -EINVAL;
1272 
1273 	debugf0("MC: %s: %s(), pdev bus %u dev=0x%x fn=0x%x\n",
1274 		__FILE__, __func__,
1275 		pdev->bus->number,
1276 		PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
1277 
1278 	/* We only are looking for func 0 of the set */
1279 	if (PCI_FUNC(pdev->devfn) != 0)
1280 		return -ENODEV;
1281 
1282 	/*
1283 	 * allocate a new MC control structure
1284 	 *
1285 	 * This drivers uses the DIMM slot as "csrow" and the rest as "channel".
1286 	 */
1287 	layers[0].type = EDAC_MC_LAYER_BRANCH;
1288 	layers[0].size = MAX_BRANCHES;
1289 	layers[0].is_virt_csrow = false;
1290 	layers[1].type = EDAC_MC_LAYER_CHANNEL;
1291 	layers[1].size = CHANNELS_PER_BRANCH;
1292 	layers[1].is_virt_csrow = false;
1293 	layers[2].type = EDAC_MC_LAYER_SLOT;
1294 	layers[2].size = DIMMS_PER_CHANNEL;
1295 	layers[2].is_virt_csrow = true;
1296 	mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers, sizeof(*pvt));
1297 	if (mci == NULL)
1298 		return -ENOMEM;
1299 
1300 	debugf0("MC: %s: %s(): mci = %p\n", __FILE__, __func__, mci);
1301 
1302 	mci->pdev = &pdev->dev;	/* record ptr  to the generic device */
1303 
1304 	pvt = mci->pvt_info;
1305 	pvt->system_address = pdev;	/* Record this device in our private */
1306 	pvt->maxch = MAX_CHANNELS;
1307 	pvt->maxdimmperch = DIMMS_PER_CHANNEL;
1308 
1309 	/* 'get' the pci devices we want to reserve for our use */
1310 	if (i5400_get_devices(mci, dev_idx))
1311 		goto fail0;
1312 
1313 	/* Time to get serious */
1314 	i5400_get_mc_regs(mci);	/* retrieve the hardware registers */
1315 
1316 	mci->mc_idx = 0;
1317 	mci->mtype_cap = MEM_FLAG_FB_DDR2;
1318 	mci->edac_ctl_cap = EDAC_FLAG_NONE;
1319 	mci->edac_cap = EDAC_FLAG_NONE;
1320 	mci->mod_name = "i5400_edac.c";
1321 	mci->mod_ver = I5400_REVISION;
1322 	mci->ctl_name = i5400_devs[dev_idx].ctl_name;
1323 	mci->dev_name = pci_name(pdev);
1324 	mci->ctl_page_to_phys = NULL;
1325 
1326 	/* Set the function pointer to an actual operation function */
1327 	mci->edac_check = i5400_check_error;
1328 
1329 	/* initialize the MC control structure 'dimms' table
1330 	 * with the mapping and control information */
1331 	if (i5400_init_dimms(mci)) {
1332 		debugf0("MC: Setting mci->edac_cap to EDAC_FLAG_NONE\n"
1333 			"    because i5400_init_dimms() returned nonzero "
1334 			"value\n");
1335 		mci->edac_cap = EDAC_FLAG_NONE;	/* no dimms found */
1336 	} else {
1337 		debugf1("MC: Enable error reporting now\n");
1338 		i5400_enable_error_reporting(mci);
1339 	}
1340 
1341 	/* add this new MC control structure to EDAC's list of MCs */
1342 	if (edac_mc_add_mc(mci)) {
1343 		debugf0("MC: %s: %s(): failed edac_mc_add_mc()\n",
1344 			__FILE__, __func__);
1345 		/* FIXME: perhaps some code should go here that disables error
1346 		 * reporting if we just enabled it
1347 		 */
1348 		goto fail1;
1349 	}
1350 
1351 	i5400_clear_error(mci);
1352 
1353 	/* allocating generic PCI control info */
1354 	i5400_pci = edac_pci_create_generic_ctl(&pdev->dev, EDAC_MOD_STR);
1355 	if (!i5400_pci) {
1356 		printk(KERN_WARNING
1357 			"%s(): Unable to create PCI control\n",
1358 			__func__);
1359 		printk(KERN_WARNING
1360 			"%s(): PCI error report via EDAC not setup\n",
1361 			__func__);
1362 	}
1363 
1364 	return 0;
1365 
1366 	/* Error exit unwinding stack */
1367 fail1:
1368 
1369 	i5400_put_devices(mci);
1370 
1371 fail0:
1372 	edac_mc_free(mci);
1373 	return -ENODEV;
1374 }
1375 
1376 /*
1377  *	i5400_init_one	constructor for one instance of device
1378  *
1379  * 	returns:
1380  *		negative on error
1381  *		count (>= 0)
1382  */
1383 static int __devinit i5400_init_one(struct pci_dev *pdev,
1384 				const struct pci_device_id *id)
1385 {
1386 	int rc;
1387 
1388 	debugf0("MC: %s: %s()\n", __FILE__, __func__);
1389 
1390 	/* wake up device */
1391 	rc = pci_enable_device(pdev);
1392 	if (rc)
1393 		return rc;
1394 
1395 	/* now probe and enable the device */
1396 	return i5400_probe1(pdev, id->driver_data);
1397 }
1398 
1399 /*
1400  *	i5400_remove_one	destructor for one instance of device
1401  *
1402  */
1403 static void __devexit i5400_remove_one(struct pci_dev *pdev)
1404 {
1405 	struct mem_ctl_info *mci;
1406 
1407 	debugf0("%s: %s()\n", __FILE__, __func__);
1408 
1409 	if (i5400_pci)
1410 		edac_pci_release_generic_ctl(i5400_pci);
1411 
1412 	mci = edac_mc_del_mc(&pdev->dev);
1413 	if (!mci)
1414 		return;
1415 
1416 	/* retrieve references to resources, and free those resources */
1417 	i5400_put_devices(mci);
1418 
1419 	edac_mc_free(mci);
1420 }
1421 
1422 /*
1423  *	pci_device_id	table for which devices we are looking for
1424  *
1425  *	The "E500P" device is the first device supported.
1426  */
1427 static DEFINE_PCI_DEVICE_TABLE(i5400_pci_tbl) = {
1428 	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_5400_ERR)},
1429 	{0,}			/* 0 terminated list. */
1430 };
1431 
1432 MODULE_DEVICE_TABLE(pci, i5400_pci_tbl);
1433 
1434 /*
1435  *	i5400_driver	pci_driver structure for this module
1436  *
1437  */
1438 static struct pci_driver i5400_driver = {
1439 	.name = "i5400_edac",
1440 	.probe = i5400_init_one,
1441 	.remove = __devexit_p(i5400_remove_one),
1442 	.id_table = i5400_pci_tbl,
1443 };
1444 
1445 /*
1446  *	i5400_init		Module entry function
1447  *			Try to initialize this module for its devices
1448  */
1449 static int __init i5400_init(void)
1450 {
1451 	int pci_rc;
1452 
1453 	debugf2("MC: %s: %s()\n", __FILE__, __func__);
1454 
1455 	/* Ensure that the OPSTATE is set correctly for POLL or NMI */
1456 	opstate_init();
1457 
1458 	pci_rc = pci_register_driver(&i5400_driver);
1459 
1460 	return (pci_rc < 0) ? pci_rc : 0;
1461 }
1462 
1463 /*
1464  *	i5400_exit()	Module exit function
1465  *			Unregister the driver
1466  */
1467 static void __exit i5400_exit(void)
1468 {
1469 	debugf2("MC: %s: %s()\n", __FILE__, __func__);
1470 	pci_unregister_driver(&i5400_driver);
1471 }
1472 
1473 module_init(i5400_init);
1474 module_exit(i5400_exit);
1475 
1476 MODULE_LICENSE("GPL");
1477 MODULE_AUTHOR("Ben Woodard <woodard@redhat.com>");
1478 MODULE_AUTHOR("Mauro Carvalho Chehab <mchehab@redhat.com>");
1479 MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)");
1480 MODULE_DESCRIPTION("MC Driver for Intel I5400 memory controllers - "
1481 		   I5400_REVISION);
1482 
1483 module_param(edac_op_state, int, 0444);
1484 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
1485