1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2013 Linaro Ltd;  <roy.franz@linaro.org>
4  */
5 #include <linux/efi.h>
6 #include <asm/efi.h>
7 
8 #include "efistub.h"
9 
10 efi_status_t check_platform_features(efi_system_table_t *sys_table_arg)
11 {
12 	int block;
13 
14 	/* non-LPAE kernels can run anywhere */
15 	if (!IS_ENABLED(CONFIG_ARM_LPAE))
16 		return EFI_SUCCESS;
17 
18 	/* LPAE kernels need compatible hardware */
19 	block = cpuid_feature_extract(CPUID_EXT_MMFR0, 0);
20 	if (block < 5) {
21 		pr_efi_err(sys_table_arg, "This LPAE kernel is not supported by your CPU\n");
22 		return EFI_UNSUPPORTED;
23 	}
24 	return EFI_SUCCESS;
25 }
26 
27 static efi_guid_t screen_info_guid = LINUX_EFI_ARM_SCREEN_INFO_TABLE_GUID;
28 
29 struct screen_info *alloc_screen_info(efi_system_table_t *sys_table_arg)
30 {
31 	struct screen_info *si;
32 	efi_status_t status;
33 
34 	/*
35 	 * Unlike on arm64, where we can directly fill out the screen_info
36 	 * structure from the stub, we need to allocate a buffer to hold
37 	 * its contents while we hand over to the kernel proper from the
38 	 * decompressor.
39 	 */
40 	status = efi_call_early(allocate_pool, EFI_RUNTIME_SERVICES_DATA,
41 				sizeof(*si), (void **)&si);
42 
43 	if (status != EFI_SUCCESS)
44 		return NULL;
45 
46 	status = efi_call_early(install_configuration_table,
47 				&screen_info_guid, si);
48 	if (status == EFI_SUCCESS)
49 		return si;
50 
51 	efi_call_early(free_pool, si);
52 	return NULL;
53 }
54 
55 void free_screen_info(efi_system_table_t *sys_table_arg, struct screen_info *si)
56 {
57 	if (!si)
58 		return;
59 
60 	efi_call_early(install_configuration_table, &screen_info_guid, NULL);
61 	efi_call_early(free_pool, si);
62 }
63 
64 static efi_status_t reserve_kernel_base(efi_system_table_t *sys_table_arg,
65 					unsigned long dram_base,
66 					unsigned long *reserve_addr,
67 					unsigned long *reserve_size)
68 {
69 	efi_physical_addr_t alloc_addr;
70 	efi_memory_desc_t *memory_map;
71 	unsigned long nr_pages, map_size, desc_size, buff_size;
72 	efi_status_t status;
73 	unsigned long l;
74 
75 	struct efi_boot_memmap map = {
76 		.map		= &memory_map,
77 		.map_size	= &map_size,
78 		.desc_size	= &desc_size,
79 		.desc_ver	= NULL,
80 		.key_ptr	= NULL,
81 		.buff_size	= &buff_size,
82 	};
83 
84 	/*
85 	 * Reserve memory for the uncompressed kernel image. This is
86 	 * all that prevents any future allocations from conflicting
87 	 * with the kernel. Since we can't tell from the compressed
88 	 * image how much DRAM the kernel actually uses (due to BSS
89 	 * size uncertainty) we allocate the maximum possible size.
90 	 * Do this very early, as prints can cause memory allocations
91 	 * that may conflict with this.
92 	 */
93 	alloc_addr = dram_base + MAX_UNCOMP_KERNEL_SIZE;
94 	nr_pages = MAX_UNCOMP_KERNEL_SIZE / EFI_PAGE_SIZE;
95 	status = efi_call_early(allocate_pages, EFI_ALLOCATE_MAX_ADDRESS,
96 				EFI_BOOT_SERVICES_DATA, nr_pages, &alloc_addr);
97 	if (status == EFI_SUCCESS) {
98 		if (alloc_addr == dram_base) {
99 			*reserve_addr = alloc_addr;
100 			*reserve_size = MAX_UNCOMP_KERNEL_SIZE;
101 			return EFI_SUCCESS;
102 		}
103 		/*
104 		 * If we end up here, the allocation succeeded but starts below
105 		 * dram_base. This can only occur if the real base of DRAM is
106 		 * not a multiple of 128 MB, in which case dram_base will have
107 		 * been rounded up. Since this implies that a part of the region
108 		 * was already occupied, we need to fall through to the code
109 		 * below to ensure that the existing allocations don't conflict.
110 		 * For this reason, we use EFI_BOOT_SERVICES_DATA above and not
111 		 * EFI_LOADER_DATA, which we wouldn't able to distinguish from
112 		 * allocations that we want to disallow.
113 		 */
114 	}
115 
116 	/*
117 	 * If the allocation above failed, we may still be able to proceed:
118 	 * if the only allocations in the region are of types that will be
119 	 * released to the OS after ExitBootServices(), the decompressor can
120 	 * safely overwrite them.
121 	 */
122 	status = efi_get_memory_map(sys_table_arg, &map);
123 	if (status != EFI_SUCCESS) {
124 		pr_efi_err(sys_table_arg,
125 			   "reserve_kernel_base(): Unable to retrieve memory map.\n");
126 		return status;
127 	}
128 
129 	for (l = 0; l < map_size; l += desc_size) {
130 		efi_memory_desc_t *desc;
131 		u64 start, end;
132 
133 		desc = (void *)memory_map + l;
134 		start = desc->phys_addr;
135 		end = start + desc->num_pages * EFI_PAGE_SIZE;
136 
137 		/* Skip if entry does not intersect with region */
138 		if (start >= dram_base + MAX_UNCOMP_KERNEL_SIZE ||
139 		    end <= dram_base)
140 			continue;
141 
142 		switch (desc->type) {
143 		case EFI_BOOT_SERVICES_CODE:
144 		case EFI_BOOT_SERVICES_DATA:
145 			/* Ignore types that are released to the OS anyway */
146 			continue;
147 
148 		case EFI_CONVENTIONAL_MEMORY:
149 			/*
150 			 * Reserve the intersection between this entry and the
151 			 * region.
152 			 */
153 			start = max(start, (u64)dram_base);
154 			end = min(end, (u64)dram_base + MAX_UNCOMP_KERNEL_SIZE);
155 
156 			status = efi_call_early(allocate_pages,
157 						EFI_ALLOCATE_ADDRESS,
158 						EFI_LOADER_DATA,
159 						(end - start) / EFI_PAGE_SIZE,
160 						&start);
161 			if (status != EFI_SUCCESS) {
162 				pr_efi_err(sys_table_arg,
163 					"reserve_kernel_base(): alloc failed.\n");
164 				goto out;
165 			}
166 			break;
167 
168 		case EFI_LOADER_CODE:
169 		case EFI_LOADER_DATA:
170 			/*
171 			 * These regions may be released and reallocated for
172 			 * another purpose (including EFI_RUNTIME_SERVICE_DATA)
173 			 * at any time during the execution of the OS loader,
174 			 * so we cannot consider them as safe.
175 			 */
176 		default:
177 			/*
178 			 * Treat any other allocation in the region as unsafe */
179 			status = EFI_OUT_OF_RESOURCES;
180 			goto out;
181 		}
182 	}
183 
184 	status = EFI_SUCCESS;
185 out:
186 	efi_call_early(free_pool, memory_map);
187 	return status;
188 }
189 
190 efi_status_t handle_kernel_image(efi_system_table_t *sys_table,
191 				 unsigned long *image_addr,
192 				 unsigned long *image_size,
193 				 unsigned long *reserve_addr,
194 				 unsigned long *reserve_size,
195 				 unsigned long dram_base,
196 				 efi_loaded_image_t *image)
197 {
198 	efi_status_t status;
199 
200 	/*
201 	 * Verify that the DRAM base address is compatible with the ARM
202 	 * boot protocol, which determines the base of DRAM by masking
203 	 * off the low 27 bits of the address at which the zImage is
204 	 * loaded. These assumptions are made by the decompressor,
205 	 * before any memory map is available.
206 	 */
207 	dram_base = round_up(dram_base, SZ_128M);
208 
209 	status = reserve_kernel_base(sys_table, dram_base, reserve_addr,
210 				     reserve_size);
211 	if (status != EFI_SUCCESS) {
212 		pr_efi_err(sys_table, "Unable to allocate memory for uncompressed kernel.\n");
213 		return status;
214 	}
215 
216 	/*
217 	 * Relocate the zImage, so that it appears in the lowest 128 MB
218 	 * memory window.
219 	 */
220 	*image_size = image->image_size;
221 	status = efi_relocate_kernel(sys_table, image_addr, *image_size,
222 				     *image_size,
223 				     dram_base + MAX_UNCOMP_KERNEL_SIZE, 0);
224 	if (status != EFI_SUCCESS) {
225 		pr_efi_err(sys_table, "Failed to relocate kernel.\n");
226 		efi_free(sys_table, *reserve_size, *reserve_addr);
227 		*reserve_size = 0;
228 		return status;
229 	}
230 
231 	/*
232 	 * Check to see if we were able to allocate memory low enough
233 	 * in memory. The kernel determines the base of DRAM from the
234 	 * address at which the zImage is loaded.
235 	 */
236 	if (*image_addr + *image_size > dram_base + ZIMAGE_OFFSET_LIMIT) {
237 		pr_efi_err(sys_table, "Failed to relocate kernel, no low memory available.\n");
238 		efi_free(sys_table, *reserve_size, *reserve_addr);
239 		*reserve_size = 0;
240 		efi_free(sys_table, *image_size, *image_addr);
241 		*image_size = 0;
242 		return EFI_LOAD_ERROR;
243 	}
244 	return EFI_SUCCESS;
245 }
246