1 /*
2  * Copyright 2019 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  */
23 
24 #include "amdgpu_ras_eeprom.h"
25 #include "amdgpu.h"
26 #include "amdgpu_ras.h"
27 #include <linux/bits.h>
28 #include "atom.h"
29 #include "amdgpu_eeprom.h"
30 #include "amdgpu_atomfirmware.h"
31 #include <linux/debugfs.h>
32 #include <linux/uaccess.h>
33 
34 #include "amdgpu_reset.h"
35 
36 /* These are memory addresses as would be seen by one or more EEPROM
37  * chips strung on the I2C bus, usually by manipulating pins 1-3 of a
38  * set of EEPROM devices. They form a continuous memory space.
39  *
40  * The I2C device address includes the device type identifier, 1010b,
41  * which is a reserved value and indicates that this is an I2C EEPROM
42  * device. It also includes the top 3 bits of the 19 bit EEPROM memory
43  * address, namely bits 18, 17, and 16. This makes up the 7 bit
44  * address sent on the I2C bus with bit 0 being the direction bit,
45  * which is not represented here, and sent by the hardware directly.
46  *
47  * For instance,
48  *   50h = 1010000b => device type identifier 1010b, bits 18:16 = 000b, address 0.
49  *   54h = 1010100b => --"--, bits 18:16 = 100b, address 40000h.
50  *   56h = 1010110b => --"--, bits 18:16 = 110b, address 60000h.
51  * Depending on the size of the I2C EEPROM device(s), bits 18:16 may
52  * address memory in a device or a device on the I2C bus, depending on
53  * the status of pins 1-3. See top of amdgpu_eeprom.c.
54  *
55  * The RAS table lives either at address 0 or address 40000h of EEPROM.
56  */
57 #define EEPROM_I2C_MADDR_0      0x0
58 #define EEPROM_I2C_MADDR_4      0x40000
59 
60 /*
61  * The 2 macros bellow represent the actual size in bytes that
62  * those entities occupy in the EEPROM memory.
63  * RAS_TABLE_RECORD_SIZE is different than sizeof(eeprom_table_record) which
64  * uses uint64 to store 6b fields such as retired_page.
65  */
66 #define RAS_TABLE_HEADER_SIZE   20
67 #define RAS_TABLE_RECORD_SIZE   24
68 
69 /* Table hdr is 'AMDR' */
70 #define RAS_TABLE_HDR_VAL       0x414d4452
71 
72 /* Bad GPU tag ‘BADG’ */
73 #define RAS_TABLE_HDR_BAD       0x42414447
74 
75 /*
76  * EEPROM Table structure v1
77  * ---------------------------------
78  * |                               |
79  * |     EEPROM TABLE HEADER       |
80  * |      ( size 20 Bytes )        |
81  * |                               |
82  * ---------------------------------
83  * |                               |
84  * |    BAD PAGE RECORD AREA       |
85  * |                               |
86  * ---------------------------------
87  */
88 
89 /* Assume 2-Mbit size EEPROM and take up the whole space. */
90 #define RAS_TBL_SIZE_BYTES      (256 * 1024)
91 #define RAS_TABLE_START         0
92 #define RAS_HDR_START           RAS_TABLE_START
93 #define RAS_RECORD_START        (RAS_HDR_START + RAS_TABLE_HEADER_SIZE)
94 #define RAS_MAX_RECORD_COUNT    ((RAS_TBL_SIZE_BYTES - RAS_TABLE_HEADER_SIZE) \
95 				 / RAS_TABLE_RECORD_SIZE)
96 
97 /*
98  * EEPROM Table structrue v2.1
99  * ---------------------------------
100  * |                               |
101  * |     EEPROM TABLE HEADER       |
102  * |      ( size 20 Bytes )        |
103  * |                               |
104  * ---------------------------------
105  * |                               |
106  * |     EEPROM TABLE RAS INFO     |
107  * | (available info size 4 Bytes) |
108  * |  ( reserved size 252 Bytes )  |
109  * |                               |
110  * ---------------------------------
111  * |                               |
112  * |     BAD PAGE RECORD AREA      |
113  * |                               |
114  * ---------------------------------
115  */
116 
117 /* EEPROM Table V2_1 */
118 #define RAS_TABLE_V2_1_INFO_SIZE       256
119 #define RAS_TABLE_V2_1_INFO_START      RAS_TABLE_HEADER_SIZE
120 #define RAS_RECORD_START_V2_1          (RAS_HDR_START + RAS_TABLE_HEADER_SIZE + \
121 					RAS_TABLE_V2_1_INFO_SIZE)
122 #define RAS_MAX_RECORD_COUNT_V2_1      ((RAS_TBL_SIZE_BYTES - RAS_TABLE_HEADER_SIZE - \
123 					RAS_TABLE_V2_1_INFO_SIZE) \
124 					/ RAS_TABLE_RECORD_SIZE)
125 
126 /* Given a zero-based index of an EEPROM RAS record, yields the EEPROM
127  * offset off of RAS_TABLE_START.  That is, this is something you can
128  * add to control->i2c_address, and then tell I2C layer to read
129  * from/write to there. _N is the so called absolute index,
130  * because it starts right after the table header.
131  */
132 #define RAS_INDEX_TO_OFFSET(_C, _N) ((_C)->ras_record_offset + \
133 				     (_N) * RAS_TABLE_RECORD_SIZE)
134 
135 #define RAS_OFFSET_TO_INDEX(_C, _O) (((_O) - \
136 				      (_C)->ras_record_offset) / RAS_TABLE_RECORD_SIZE)
137 
138 /* Given a 0-based relative record index, 0, 1, 2, ..., etc., off
139  * of "fri", return the absolute record index off of the end of
140  * the table header.
141  */
142 #define RAS_RI_TO_AI(_C, _I) (((_I) + (_C)->ras_fri) % \
143 			      (_C)->ras_max_record_count)
144 
145 #define RAS_NUM_RECS(_tbl_hdr)  (((_tbl_hdr)->tbl_size - \
146 				  RAS_TABLE_HEADER_SIZE) / RAS_TABLE_RECORD_SIZE)
147 
148 #define RAS_NUM_RECS_V2_1(_tbl_hdr)  (((_tbl_hdr)->tbl_size - \
149 				       RAS_TABLE_HEADER_SIZE - \
150 				       RAS_TABLE_V2_1_INFO_SIZE) / RAS_TABLE_RECORD_SIZE)
151 
152 #define to_amdgpu_device(x) ((container_of(x, struct amdgpu_ras, eeprom_control))->adev)
153 
154 static bool __is_ras_eeprom_supported(struct amdgpu_device *adev)
155 {
156 	switch (amdgpu_ip_version(adev, MP1_HWIP, 0)) {
157 	case IP_VERSION(11, 0, 2): /* VEGA20 and ARCTURUS */
158 	case IP_VERSION(11, 0, 7): /* Sienna cichlid */
159 	case IP_VERSION(13, 0, 0):
160 	case IP_VERSION(13, 0, 2): /* Aldebaran */
161 	case IP_VERSION(13, 0, 10):
162 		return true;
163 	case IP_VERSION(13, 0, 6):
164 		return (adev->gmc.is_app_apu) ? false : true;
165 	default:
166 		return false;
167 	}
168 }
169 
170 static bool __get_eeprom_i2c_addr(struct amdgpu_device *adev,
171 				  struct amdgpu_ras_eeprom_control *control)
172 {
173 	struct atom_context *atom_ctx = adev->mode_info.atom_context;
174 	u8 i2c_addr;
175 
176 	if (!control)
177 		return false;
178 
179 	if (amdgpu_atomfirmware_ras_rom_addr(adev, &i2c_addr)) {
180 		/* The address given by VBIOS is an 8-bit, wire-format
181 		 * address, i.e. the most significant byte.
182 		 *
183 		 * Normalize it to a 19-bit EEPROM address. Remove the
184 		 * device type identifier and make it a 7-bit address;
185 		 * then make it a 19-bit EEPROM address. See top of
186 		 * amdgpu_eeprom.c.
187 		 */
188 		i2c_addr = (i2c_addr & 0x0F) >> 1;
189 		control->i2c_address = ((u32) i2c_addr) << 16;
190 
191 		return true;
192 	}
193 
194 	switch (amdgpu_ip_version(adev, MP1_HWIP, 0)) {
195 	case IP_VERSION(11, 0, 2):
196 		/* VEGA20 and ARCTURUS */
197 		if (adev->asic_type == CHIP_VEGA20)
198 			control->i2c_address = EEPROM_I2C_MADDR_0;
199 		else if (strnstr(atom_ctx->vbios_pn,
200 				 "D342",
201 				 sizeof(atom_ctx->vbios_pn)))
202 			control->i2c_address = EEPROM_I2C_MADDR_0;
203 		else
204 			control->i2c_address = EEPROM_I2C_MADDR_4;
205 		return true;
206 	case IP_VERSION(11, 0, 7):
207 		control->i2c_address = EEPROM_I2C_MADDR_0;
208 		return true;
209 	case IP_VERSION(13, 0, 2):
210 		if (strnstr(atom_ctx->vbios_pn, "D673",
211 			    sizeof(atom_ctx->vbios_pn)))
212 			control->i2c_address = EEPROM_I2C_MADDR_4;
213 		else
214 			control->i2c_address = EEPROM_I2C_MADDR_0;
215 		return true;
216 	case IP_VERSION(13, 0, 0):
217 		if (strnstr(atom_ctx->vbios_pn, "D707",
218 			    sizeof(atom_ctx->vbios_pn)))
219 			control->i2c_address = EEPROM_I2C_MADDR_0;
220 		else
221 			control->i2c_address = EEPROM_I2C_MADDR_4;
222 		return true;
223 	case IP_VERSION(13, 0, 6):
224 	case IP_VERSION(13, 0, 10):
225 		control->i2c_address = EEPROM_I2C_MADDR_4;
226 		return true;
227 	default:
228 		return false;
229 	}
230 }
231 
232 static void
233 __encode_table_header_to_buf(struct amdgpu_ras_eeprom_table_header *hdr,
234 			     unsigned char *buf)
235 {
236 	u32 *pp = (uint32_t *)buf;
237 
238 	pp[0] = cpu_to_le32(hdr->header);
239 	pp[1] = cpu_to_le32(hdr->version);
240 	pp[2] = cpu_to_le32(hdr->first_rec_offset);
241 	pp[3] = cpu_to_le32(hdr->tbl_size);
242 	pp[4] = cpu_to_le32(hdr->checksum);
243 }
244 
245 static void
246 __decode_table_header_from_buf(struct amdgpu_ras_eeprom_table_header *hdr,
247 			       unsigned char *buf)
248 {
249 	u32 *pp = (uint32_t *)buf;
250 
251 	hdr->header	      = le32_to_cpu(pp[0]);
252 	hdr->version	      = le32_to_cpu(pp[1]);
253 	hdr->first_rec_offset = le32_to_cpu(pp[2]);
254 	hdr->tbl_size	      = le32_to_cpu(pp[3]);
255 	hdr->checksum	      = le32_to_cpu(pp[4]);
256 }
257 
258 static int __write_table_header(struct amdgpu_ras_eeprom_control *control)
259 {
260 	u8 buf[RAS_TABLE_HEADER_SIZE];
261 	struct amdgpu_device *adev = to_amdgpu_device(control);
262 	int res;
263 
264 	memset(buf, 0, sizeof(buf));
265 	__encode_table_header_to_buf(&control->tbl_hdr, buf);
266 
267 	/* i2c may be unstable in gpu reset */
268 	down_read(&adev->reset_domain->sem);
269 	res = amdgpu_eeprom_write(adev->pm.ras_eeprom_i2c_bus,
270 				  control->i2c_address +
271 				  control->ras_header_offset,
272 				  buf, RAS_TABLE_HEADER_SIZE);
273 	up_read(&adev->reset_domain->sem);
274 
275 	if (res < 0) {
276 		DRM_ERROR("Failed to write EEPROM table header:%d", res);
277 	} else if (res < RAS_TABLE_HEADER_SIZE) {
278 		DRM_ERROR("Short write:%d out of %d\n",
279 			  res, RAS_TABLE_HEADER_SIZE);
280 		res = -EIO;
281 	} else {
282 		res = 0;
283 	}
284 
285 	return res;
286 }
287 
288 static void
289 __encode_table_ras_info_to_buf(struct amdgpu_ras_eeprom_table_ras_info *rai,
290 			       unsigned char *buf)
291 {
292 	u32 *pp = (uint32_t *)buf;
293 	u32 tmp;
294 
295 	tmp = ((uint32_t)(rai->rma_status) & 0xFF) |
296 	      (((uint32_t)(rai->health_percent) << 8) & 0xFF00) |
297 	      (((uint32_t)(rai->ecc_page_threshold) << 16) & 0xFFFF0000);
298 	pp[0] = cpu_to_le32(tmp);
299 }
300 
301 static void
302 __decode_table_ras_info_from_buf(struct amdgpu_ras_eeprom_table_ras_info *rai,
303 				 unsigned char *buf)
304 {
305 	u32 *pp = (uint32_t *)buf;
306 	u32 tmp;
307 
308 	tmp = le32_to_cpu(pp[0]);
309 	rai->rma_status = tmp & 0xFF;
310 	rai->health_percent = (tmp >> 8) & 0xFF;
311 	rai->ecc_page_threshold = (tmp >> 16) & 0xFFFF;
312 }
313 
314 static int __write_table_ras_info(struct amdgpu_ras_eeprom_control *control)
315 {
316 	struct amdgpu_device *adev = to_amdgpu_device(control);
317 	u8 *buf;
318 	int res;
319 
320 	buf = kzalloc(RAS_TABLE_V2_1_INFO_SIZE, GFP_KERNEL);
321 	if (!buf) {
322 		DRM_ERROR("Failed to alloc buf to write table ras info\n");
323 		return -ENOMEM;
324 	}
325 
326 	__encode_table_ras_info_to_buf(&control->tbl_rai, buf);
327 
328 	/* i2c may be unstable in gpu reset */
329 	down_read(&adev->reset_domain->sem);
330 	res = amdgpu_eeprom_write(adev->pm.ras_eeprom_i2c_bus,
331 				  control->i2c_address +
332 				  control->ras_info_offset,
333 				  buf, RAS_TABLE_V2_1_INFO_SIZE);
334 	up_read(&adev->reset_domain->sem);
335 
336 	if (res < 0) {
337 		DRM_ERROR("Failed to write EEPROM table ras info:%d", res);
338 	} else if (res < RAS_TABLE_V2_1_INFO_SIZE) {
339 		DRM_ERROR("Short write:%d out of %d\n",
340 			  res, RAS_TABLE_V2_1_INFO_SIZE);
341 		res = -EIO;
342 	} else {
343 		res = 0;
344 	}
345 
346 	kfree(buf);
347 
348 	return res;
349 }
350 
351 static u8 __calc_hdr_byte_sum(const struct amdgpu_ras_eeprom_control *control)
352 {
353 	int ii;
354 	u8  *pp, csum;
355 	size_t sz;
356 
357 	/* Header checksum, skip checksum field in the calculation */
358 	sz = sizeof(control->tbl_hdr) - sizeof(control->tbl_hdr.checksum);
359 	pp = (u8 *) &control->tbl_hdr;
360 	csum = 0;
361 	for (ii = 0; ii < sz; ii++, pp++)
362 		csum += *pp;
363 
364 	return csum;
365 }
366 
367 static u8 __calc_ras_info_byte_sum(const struct amdgpu_ras_eeprom_control *control)
368 {
369 	int ii;
370 	u8  *pp, csum;
371 	size_t sz;
372 
373 	sz = sizeof(control->tbl_rai);
374 	pp = (u8 *) &control->tbl_rai;
375 	csum = 0;
376 	for (ii = 0; ii < sz; ii++, pp++)
377 		csum += *pp;
378 
379 	return csum;
380 }
381 
382 static int amdgpu_ras_eeprom_correct_header_tag(
383 	struct amdgpu_ras_eeprom_control *control,
384 	uint32_t header)
385 {
386 	struct amdgpu_ras_eeprom_table_header *hdr = &control->tbl_hdr;
387 	u8 *hh;
388 	int res;
389 	u8 csum;
390 
391 	csum = -hdr->checksum;
392 
393 	hh = (void *) &hdr->header;
394 	csum -= (hh[0] + hh[1] + hh[2] + hh[3]);
395 	hh = (void *) &header;
396 	csum += hh[0] + hh[1] + hh[2] + hh[3];
397 	csum = -csum;
398 	mutex_lock(&control->ras_tbl_mutex);
399 	hdr->header = header;
400 	hdr->checksum = csum;
401 	res = __write_table_header(control);
402 	mutex_unlock(&control->ras_tbl_mutex);
403 
404 	return res;
405 }
406 
407 /**
408  * amdgpu_ras_eeprom_reset_table -- Reset the RAS EEPROM table
409  * @control: pointer to control structure
410  *
411  * Reset the contents of the header of the RAS EEPROM table.
412  * Return 0 on success, -errno on error.
413  */
414 int amdgpu_ras_eeprom_reset_table(struct amdgpu_ras_eeprom_control *control)
415 {
416 	struct amdgpu_device *adev = to_amdgpu_device(control);
417 	struct amdgpu_ras_eeprom_table_header *hdr = &control->tbl_hdr;
418 	struct amdgpu_ras_eeprom_table_ras_info *rai = &control->tbl_rai;
419 	struct amdgpu_ras *con = amdgpu_ras_get_context(adev);
420 	u8 csum;
421 	int res;
422 
423 	mutex_lock(&control->ras_tbl_mutex);
424 
425 	hdr->header = RAS_TABLE_HDR_VAL;
426 	if (adev->umc.ras &&
427 	    adev->umc.ras->set_eeprom_table_version)
428 		adev->umc.ras->set_eeprom_table_version(hdr);
429 	else
430 		hdr->version = RAS_TABLE_VER_V1;
431 
432 	if (hdr->version == RAS_TABLE_VER_V2_1) {
433 		hdr->first_rec_offset = RAS_RECORD_START_V2_1;
434 		hdr->tbl_size = RAS_TABLE_HEADER_SIZE +
435 				RAS_TABLE_V2_1_INFO_SIZE;
436 		rai->rma_status = GPU_HEALTH_USABLE;
437 		/**
438 		 * GPU health represented as a percentage.
439 		 * 0 means worst health, 100 means fully health.
440 		 */
441 		rai->health_percent = 100;
442 		/* ecc_page_threshold = 0 means disable bad page retirement */
443 		rai->ecc_page_threshold = con->bad_page_cnt_threshold;
444 	} else {
445 		hdr->first_rec_offset = RAS_RECORD_START;
446 		hdr->tbl_size = RAS_TABLE_HEADER_SIZE;
447 	}
448 
449 	csum = __calc_hdr_byte_sum(control);
450 	if (hdr->version == RAS_TABLE_VER_V2_1)
451 		csum += __calc_ras_info_byte_sum(control);
452 	csum = -csum;
453 	hdr->checksum = csum;
454 	res = __write_table_header(control);
455 	if (!res && hdr->version > RAS_TABLE_VER_V1)
456 		res = __write_table_ras_info(control);
457 
458 	control->ras_num_recs = 0;
459 	control->ras_fri = 0;
460 
461 	amdgpu_dpm_send_hbm_bad_pages_num(adev, control->ras_num_recs);
462 
463 	control->bad_channel_bitmap = 0;
464 	amdgpu_dpm_send_hbm_bad_channel_flag(adev, control->bad_channel_bitmap);
465 	con->update_channel_flag = false;
466 
467 	amdgpu_ras_debugfs_set_ret_size(control);
468 
469 	mutex_unlock(&control->ras_tbl_mutex);
470 
471 	return res;
472 }
473 
474 static void
475 __encode_table_record_to_buf(struct amdgpu_ras_eeprom_control *control,
476 			     struct eeprom_table_record *record,
477 			     unsigned char *buf)
478 {
479 	__le64 tmp = 0;
480 	int i = 0;
481 
482 	/* Next are all record fields according to EEPROM page spec in LE foramt */
483 	buf[i++] = record->err_type;
484 
485 	buf[i++] = record->bank;
486 
487 	tmp = cpu_to_le64(record->ts);
488 	memcpy(buf + i, &tmp, 8);
489 	i += 8;
490 
491 	tmp = cpu_to_le64((record->offset & 0xffffffffffff));
492 	memcpy(buf + i, &tmp, 6);
493 	i += 6;
494 
495 	buf[i++] = record->mem_channel;
496 	buf[i++] = record->mcumc_id;
497 
498 	tmp = cpu_to_le64((record->retired_page & 0xffffffffffff));
499 	memcpy(buf + i, &tmp, 6);
500 }
501 
502 static void
503 __decode_table_record_from_buf(struct amdgpu_ras_eeprom_control *control,
504 			       struct eeprom_table_record *record,
505 			       unsigned char *buf)
506 {
507 	__le64 tmp = 0;
508 	int i =  0;
509 
510 	/* Next are all record fields according to EEPROM page spec in LE foramt */
511 	record->err_type = buf[i++];
512 
513 	record->bank = buf[i++];
514 
515 	memcpy(&tmp, buf + i, 8);
516 	record->ts = le64_to_cpu(tmp);
517 	i += 8;
518 
519 	memcpy(&tmp, buf + i, 6);
520 	record->offset = (le64_to_cpu(tmp) & 0xffffffffffff);
521 	i += 6;
522 
523 	record->mem_channel = buf[i++];
524 	record->mcumc_id = buf[i++];
525 
526 	memcpy(&tmp, buf + i,  6);
527 	record->retired_page = (le64_to_cpu(tmp) & 0xffffffffffff);
528 }
529 
530 bool amdgpu_ras_eeprom_check_err_threshold(struct amdgpu_device *adev)
531 {
532 	struct amdgpu_ras *con = amdgpu_ras_get_context(adev);
533 
534 	if (!__is_ras_eeprom_supported(adev) ||
535 	    !amdgpu_bad_page_threshold)
536 		return false;
537 
538 	/* skip check eeprom table for VEGA20 Gaming */
539 	if (!con)
540 		return false;
541 	else
542 		if (!(con->features & BIT(AMDGPU_RAS_BLOCK__UMC)))
543 			return false;
544 
545 	if (con->eeprom_control.tbl_hdr.header == RAS_TABLE_HDR_BAD) {
546 		if (amdgpu_bad_page_threshold == -1) {
547 			dev_warn(adev->dev, "RAS records:%d exceed threshold:%d",
548 				con->eeprom_control.ras_num_recs, con->bad_page_cnt_threshold);
549 			dev_warn(adev->dev,
550 				"But GPU can be operated due to bad_page_threshold = -1.\n");
551 			return false;
552 		} else {
553 			dev_warn(adev->dev, "This GPU is in BAD status.");
554 			dev_warn(adev->dev, "Please retire it or set a larger "
555 				 "threshold value when reloading driver.\n");
556 			return true;
557 		}
558 	}
559 
560 	return false;
561 }
562 
563 /**
564  * __amdgpu_ras_eeprom_write -- write indexed from buffer to EEPROM
565  * @control: pointer to control structure
566  * @buf: pointer to buffer containing data to write
567  * @fri: start writing at this index
568  * @num: number of records to write
569  *
570  * The caller must hold the table mutex in @control.
571  * Return 0 on success, -errno otherwise.
572  */
573 static int __amdgpu_ras_eeprom_write(struct amdgpu_ras_eeprom_control *control,
574 				     u8 *buf, const u32 fri, const u32 num)
575 {
576 	struct amdgpu_device *adev = to_amdgpu_device(control);
577 	u32 buf_size;
578 	int res;
579 
580 	/* i2c may be unstable in gpu reset */
581 	down_read(&adev->reset_domain->sem);
582 	buf_size = num * RAS_TABLE_RECORD_SIZE;
583 	res = amdgpu_eeprom_write(adev->pm.ras_eeprom_i2c_bus,
584 				  control->i2c_address +
585 				  RAS_INDEX_TO_OFFSET(control, fri),
586 				  buf, buf_size);
587 	up_read(&adev->reset_domain->sem);
588 	if (res < 0) {
589 		DRM_ERROR("Writing %d EEPROM table records error:%d",
590 			  num, res);
591 	} else if (res < buf_size) {
592 		/* Short write, return error.
593 		 */
594 		DRM_ERROR("Wrote %d records out of %d",
595 			  res / RAS_TABLE_RECORD_SIZE, num);
596 		res = -EIO;
597 	} else {
598 		res = 0;
599 	}
600 
601 	return res;
602 }
603 
604 static int
605 amdgpu_ras_eeprom_append_table(struct amdgpu_ras_eeprom_control *control,
606 			       struct eeprom_table_record *record,
607 			       const u32 num)
608 {
609 	struct amdgpu_ras *con = amdgpu_ras_get_context(to_amdgpu_device(control));
610 	u32 a, b, i;
611 	u8 *buf, *pp;
612 	int res;
613 
614 	buf = kcalloc(num, RAS_TABLE_RECORD_SIZE, GFP_KERNEL);
615 	if (!buf)
616 		return -ENOMEM;
617 
618 	/* Encode all of them in one go.
619 	 */
620 	pp = buf;
621 	for (i = 0; i < num; i++, pp += RAS_TABLE_RECORD_SIZE) {
622 		__encode_table_record_to_buf(control, &record[i], pp);
623 
624 		/* update bad channel bitmap */
625 		if ((record[i].mem_channel < BITS_PER_TYPE(control->bad_channel_bitmap)) &&
626 		    !(control->bad_channel_bitmap & (1 << record[i].mem_channel))) {
627 			control->bad_channel_bitmap |= 1 << record[i].mem_channel;
628 			con->update_channel_flag = true;
629 		}
630 	}
631 
632 	/* a, first record index to write into.
633 	 * b, last record index to write into.
634 	 * a = first index to read (fri) + number of records in the table,
635 	 * b = a + @num - 1.
636 	 * Let N = control->ras_max_num_record_count, then we have,
637 	 * case 0: 0 <= a <= b < N,
638 	 *   just append @num records starting at a;
639 	 * case 1: 0 <= a < N <= b,
640 	 *   append (N - a) records starting at a, and
641 	 *   append the remainder,  b % N + 1, starting at 0.
642 	 * case 2: 0 <= fri < N <= a <= b, then modulo N we get two subcases,
643 	 * case 2a: 0 <= a <= b < N
644 	 *   append num records starting at a; and fix fri if b overwrote it,
645 	 *   and since a <= b, if b overwrote it then a must've also,
646 	 *   and if b didn't overwrite it, then a didn't also.
647 	 * case 2b: 0 <= b < a < N
648 	 *   write num records starting at a, which wraps around 0=N
649 	 *   and overwrite fri unconditionally. Now from case 2a,
650 	 *   this means that b eclipsed fri to overwrite it and wrap
651 	 *   around 0 again, i.e. b = 2N+r pre modulo N, so we unconditionally
652 	 *   set fri = b + 1 (mod N).
653 	 * Now, since fri is updated in every case, except the trivial case 0,
654 	 * the number of records present in the table after writing, is,
655 	 * num_recs - 1 = b - fri (mod N), and we take the positive value,
656 	 * by adding an arbitrary multiple of N before taking the modulo N
657 	 * as shown below.
658 	 */
659 	a = control->ras_fri + control->ras_num_recs;
660 	b = a + num  - 1;
661 	if (b < control->ras_max_record_count) {
662 		res = __amdgpu_ras_eeprom_write(control, buf, a, num);
663 	} else if (a < control->ras_max_record_count) {
664 		u32 g0, g1;
665 
666 		g0 = control->ras_max_record_count - a;
667 		g1 = b % control->ras_max_record_count + 1;
668 		res = __amdgpu_ras_eeprom_write(control, buf, a, g0);
669 		if (res)
670 			goto Out;
671 		res = __amdgpu_ras_eeprom_write(control,
672 						buf + g0 * RAS_TABLE_RECORD_SIZE,
673 						0, g1);
674 		if (res)
675 			goto Out;
676 		if (g1 > control->ras_fri)
677 			control->ras_fri = g1 % control->ras_max_record_count;
678 	} else {
679 		a %= control->ras_max_record_count;
680 		b %= control->ras_max_record_count;
681 
682 		if (a <= b) {
683 			/* Note that, b - a + 1 = num. */
684 			res = __amdgpu_ras_eeprom_write(control, buf, a, num);
685 			if (res)
686 				goto Out;
687 			if (b >= control->ras_fri)
688 				control->ras_fri = (b + 1) % control->ras_max_record_count;
689 		} else {
690 			u32 g0, g1;
691 
692 			/* b < a, which means, we write from
693 			 * a to the end of the table, and from
694 			 * the start of the table to b.
695 			 */
696 			g0 = control->ras_max_record_count - a;
697 			g1 = b + 1;
698 			res = __amdgpu_ras_eeprom_write(control, buf, a, g0);
699 			if (res)
700 				goto Out;
701 			res = __amdgpu_ras_eeprom_write(control,
702 							buf + g0 * RAS_TABLE_RECORD_SIZE,
703 							0, g1);
704 			if (res)
705 				goto Out;
706 			control->ras_fri = g1 % control->ras_max_record_count;
707 		}
708 	}
709 	control->ras_num_recs = 1 + (control->ras_max_record_count + b
710 				     - control->ras_fri)
711 		% control->ras_max_record_count;
712 Out:
713 	kfree(buf);
714 	return res;
715 }
716 
717 static int
718 amdgpu_ras_eeprom_update_header(struct amdgpu_ras_eeprom_control *control)
719 {
720 	struct amdgpu_device *adev = to_amdgpu_device(control);
721 	struct amdgpu_ras *ras = amdgpu_ras_get_context(adev);
722 	u8 *buf, *pp, csum;
723 	u32 buf_size;
724 	int res;
725 
726 	/* Modify the header if it exceeds.
727 	 */
728 	if (amdgpu_bad_page_threshold != 0 &&
729 	    control->ras_num_recs >= ras->bad_page_cnt_threshold) {
730 		dev_warn(adev->dev,
731 			"Saved bad pages %d reaches threshold value %d\n",
732 			control->ras_num_recs, ras->bad_page_cnt_threshold);
733 		control->tbl_hdr.header = RAS_TABLE_HDR_BAD;
734 		if (control->tbl_hdr.version == RAS_TABLE_VER_V2_1) {
735 			control->tbl_rai.rma_status = GPU_RETIRED__ECC_REACH_THRESHOLD;
736 			control->tbl_rai.health_percent = 0;
737 		}
738 
739 		/* ignore the -ENOTSUPP return value */
740 		amdgpu_dpm_send_rma_reason(adev);
741 	}
742 
743 	if (control->tbl_hdr.version == RAS_TABLE_VER_V2_1)
744 		control->tbl_hdr.tbl_size = RAS_TABLE_HEADER_SIZE +
745 					    RAS_TABLE_V2_1_INFO_SIZE +
746 					    control->ras_num_recs * RAS_TABLE_RECORD_SIZE;
747 	else
748 		control->tbl_hdr.tbl_size = RAS_TABLE_HEADER_SIZE +
749 					    control->ras_num_recs * RAS_TABLE_RECORD_SIZE;
750 	control->tbl_hdr.checksum = 0;
751 
752 	buf_size = control->ras_num_recs * RAS_TABLE_RECORD_SIZE;
753 	buf = kcalloc(control->ras_num_recs, RAS_TABLE_RECORD_SIZE, GFP_KERNEL);
754 	if (!buf) {
755 		DRM_ERROR("allocating memory for table of size %d bytes failed\n",
756 			  control->tbl_hdr.tbl_size);
757 		res = -ENOMEM;
758 		goto Out;
759 	}
760 
761 	down_read(&adev->reset_domain->sem);
762 	res = amdgpu_eeprom_read(adev->pm.ras_eeprom_i2c_bus,
763 				 control->i2c_address +
764 				 control->ras_record_offset,
765 				 buf, buf_size);
766 	up_read(&adev->reset_domain->sem);
767 	if (res < 0) {
768 		DRM_ERROR("EEPROM failed reading records:%d\n",
769 			  res);
770 		goto Out;
771 	} else if (res < buf_size) {
772 		DRM_ERROR("EEPROM read %d out of %d bytes\n",
773 			  res, buf_size);
774 		res = -EIO;
775 		goto Out;
776 	}
777 
778 	/**
779 	 * bad page records have been stored in eeprom,
780 	 * now calculate gpu health percent
781 	 */
782 	if (amdgpu_bad_page_threshold != 0 &&
783 	    control->tbl_hdr.version == RAS_TABLE_VER_V2_1 &&
784 	    control->ras_num_recs < ras->bad_page_cnt_threshold)
785 		control->tbl_rai.health_percent = ((ras->bad_page_cnt_threshold -
786 						   control->ras_num_recs) * 100) /
787 						   ras->bad_page_cnt_threshold;
788 
789 	/* Recalc the checksum.
790 	 */
791 	csum = 0;
792 	for (pp = buf; pp < buf + buf_size; pp++)
793 		csum += *pp;
794 
795 	csum += __calc_hdr_byte_sum(control);
796 	if (control->tbl_hdr.version == RAS_TABLE_VER_V2_1)
797 		csum += __calc_ras_info_byte_sum(control);
798 	/* avoid sign extension when assigning to "checksum" */
799 	csum = -csum;
800 	control->tbl_hdr.checksum = csum;
801 	res = __write_table_header(control);
802 	if (!res && control->tbl_hdr.version > RAS_TABLE_VER_V1)
803 		res = __write_table_ras_info(control);
804 Out:
805 	kfree(buf);
806 	return res;
807 }
808 
809 /**
810  * amdgpu_ras_eeprom_append -- append records to the EEPROM RAS table
811  * @control: pointer to control structure
812  * @record: array of records to append
813  * @num: number of records in @record array
814  *
815  * Append @num records to the table, calculate the checksum and write
816  * the table back to EEPROM. The maximum number of records that
817  * can be appended is between 1 and control->ras_max_record_count,
818  * regardless of how many records are already stored in the table.
819  *
820  * Return 0 on success or if EEPROM is not supported, -errno on error.
821  */
822 int amdgpu_ras_eeprom_append(struct amdgpu_ras_eeprom_control *control,
823 			     struct eeprom_table_record *record,
824 			     const u32 num)
825 {
826 	struct amdgpu_device *adev = to_amdgpu_device(control);
827 	int res;
828 
829 	if (!__is_ras_eeprom_supported(adev))
830 		return 0;
831 
832 	if (num == 0) {
833 		DRM_ERROR("will not append 0 records\n");
834 		return -EINVAL;
835 	} else if (num > control->ras_max_record_count) {
836 		DRM_ERROR("cannot append %d records than the size of table %d\n",
837 			  num, control->ras_max_record_count);
838 		return -EINVAL;
839 	}
840 
841 	mutex_lock(&control->ras_tbl_mutex);
842 
843 	res = amdgpu_ras_eeprom_append_table(control, record, num);
844 	if (!res)
845 		res = amdgpu_ras_eeprom_update_header(control);
846 	if (!res)
847 		amdgpu_ras_debugfs_set_ret_size(control);
848 
849 	mutex_unlock(&control->ras_tbl_mutex);
850 	return res;
851 }
852 
853 /**
854  * __amdgpu_ras_eeprom_read -- read indexed from EEPROM into buffer
855  * @control: pointer to control structure
856  * @buf: pointer to buffer to read into
857  * @fri: first record index, start reading at this index, absolute index
858  * @num: number of records to read
859  *
860  * The caller must hold the table mutex in @control.
861  * Return 0 on success, -errno otherwise.
862  */
863 static int __amdgpu_ras_eeprom_read(struct amdgpu_ras_eeprom_control *control,
864 				    u8 *buf, const u32 fri, const u32 num)
865 {
866 	struct amdgpu_device *adev = to_amdgpu_device(control);
867 	u32 buf_size;
868 	int res;
869 
870 	/* i2c may be unstable in gpu reset */
871 	down_read(&adev->reset_domain->sem);
872 	buf_size = num * RAS_TABLE_RECORD_SIZE;
873 	res = amdgpu_eeprom_read(adev->pm.ras_eeprom_i2c_bus,
874 				 control->i2c_address +
875 				 RAS_INDEX_TO_OFFSET(control, fri),
876 				 buf, buf_size);
877 	up_read(&adev->reset_domain->sem);
878 	if (res < 0) {
879 		DRM_ERROR("Reading %d EEPROM table records error:%d",
880 			  num, res);
881 	} else if (res < buf_size) {
882 		/* Short read, return error.
883 		 */
884 		DRM_ERROR("Read %d records out of %d",
885 			  res / RAS_TABLE_RECORD_SIZE, num);
886 		res = -EIO;
887 	} else {
888 		res = 0;
889 	}
890 
891 	return res;
892 }
893 
894 /**
895  * amdgpu_ras_eeprom_read -- read EEPROM
896  * @control: pointer to control structure
897  * @record: array of records to read into
898  * @num: number of records in @record
899  *
900  * Reads num records from the RAS table in EEPROM and
901  * writes the data into @record array.
902  *
903  * Returns 0 on success, -errno on error.
904  */
905 int amdgpu_ras_eeprom_read(struct amdgpu_ras_eeprom_control *control,
906 			   struct eeprom_table_record *record,
907 			   const u32 num)
908 {
909 	struct amdgpu_device *adev = to_amdgpu_device(control);
910 	struct amdgpu_ras *con = amdgpu_ras_get_context(adev);
911 	int i, res;
912 	u8 *buf, *pp;
913 	u32 g0, g1;
914 
915 	if (!__is_ras_eeprom_supported(adev))
916 		return 0;
917 
918 	if (num == 0) {
919 		DRM_ERROR("will not read 0 records\n");
920 		return -EINVAL;
921 	} else if (num > control->ras_num_recs) {
922 		DRM_ERROR("too many records to read:%d available:%d\n",
923 			  num, control->ras_num_recs);
924 		return -EINVAL;
925 	}
926 
927 	buf = kcalloc(num, RAS_TABLE_RECORD_SIZE, GFP_KERNEL);
928 	if (!buf)
929 		return -ENOMEM;
930 
931 	/* Determine how many records to read, from the first record
932 	 * index, fri, to the end of the table, and from the beginning
933 	 * of the table, such that the total number of records is
934 	 * @num, and we handle wrap around when fri > 0 and
935 	 * fri + num > RAS_MAX_RECORD_COUNT.
936 	 *
937 	 * First we compute the index of the last element
938 	 * which would be fetched from each region,
939 	 * g0 is in [fri, fri + num - 1], and
940 	 * g1 is in [0, RAS_MAX_RECORD_COUNT - 1].
941 	 * Then, if g0 < RAS_MAX_RECORD_COUNT, the index of
942 	 * the last element to fetch, we set g0 to _the number_
943 	 * of elements to fetch, @num, since we know that the last
944 	 * indexed to be fetched does not exceed the table.
945 	 *
946 	 * If, however, g0 >= RAS_MAX_RECORD_COUNT, then
947 	 * we set g0 to the number of elements to read
948 	 * until the end of the table, and g1 to the number of
949 	 * elements to read from the beginning of the table.
950 	 */
951 	g0 = control->ras_fri + num - 1;
952 	g1 = g0 % control->ras_max_record_count;
953 	if (g0 < control->ras_max_record_count) {
954 		g0 = num;
955 		g1 = 0;
956 	} else {
957 		g0 = control->ras_max_record_count - control->ras_fri;
958 		g1 += 1;
959 	}
960 
961 	mutex_lock(&control->ras_tbl_mutex);
962 	res = __amdgpu_ras_eeprom_read(control, buf, control->ras_fri, g0);
963 	if (res)
964 		goto Out;
965 	if (g1) {
966 		res = __amdgpu_ras_eeprom_read(control,
967 					       buf + g0 * RAS_TABLE_RECORD_SIZE,
968 					       0, g1);
969 		if (res)
970 			goto Out;
971 	}
972 
973 	res = 0;
974 
975 	/* Read up everything? Then transform.
976 	 */
977 	pp = buf;
978 	for (i = 0; i < num; i++, pp += RAS_TABLE_RECORD_SIZE) {
979 		__decode_table_record_from_buf(control, &record[i], pp);
980 
981 		/* update bad channel bitmap */
982 		if ((record[i].mem_channel < BITS_PER_TYPE(control->bad_channel_bitmap)) &&
983 		    !(control->bad_channel_bitmap & (1 << record[i].mem_channel))) {
984 			control->bad_channel_bitmap |= 1 << record[i].mem_channel;
985 			con->update_channel_flag = true;
986 		}
987 	}
988 Out:
989 	kfree(buf);
990 	mutex_unlock(&control->ras_tbl_mutex);
991 
992 	return res;
993 }
994 
995 uint32_t amdgpu_ras_eeprom_max_record_count(struct amdgpu_ras_eeprom_control *control)
996 {
997 	if (control->tbl_hdr.version == RAS_TABLE_VER_V2_1)
998 		return RAS_MAX_RECORD_COUNT_V2_1;
999 	else
1000 		return RAS_MAX_RECORD_COUNT;
1001 }
1002 
1003 static ssize_t
1004 amdgpu_ras_debugfs_eeprom_size_read(struct file *f, char __user *buf,
1005 				    size_t size, loff_t *pos)
1006 {
1007 	struct amdgpu_device *adev = (struct amdgpu_device *)file_inode(f)->i_private;
1008 	struct amdgpu_ras *ras = amdgpu_ras_get_context(adev);
1009 	struct amdgpu_ras_eeprom_control *control = ras ? &ras->eeprom_control : NULL;
1010 	u8 data[50];
1011 	int res;
1012 
1013 	if (!size)
1014 		return size;
1015 
1016 	if (!ras || !control) {
1017 		res = snprintf(data, sizeof(data), "Not supported\n");
1018 	} else {
1019 		res = snprintf(data, sizeof(data), "%d bytes or %d records\n",
1020 			       RAS_TBL_SIZE_BYTES, control->ras_max_record_count);
1021 	}
1022 
1023 	if (*pos >= res)
1024 		return 0;
1025 
1026 	res -= *pos;
1027 	res = min_t(size_t, res, size);
1028 
1029 	if (copy_to_user(buf, &data[*pos], res))
1030 		return -EFAULT;
1031 
1032 	*pos += res;
1033 
1034 	return res;
1035 }
1036 
1037 const struct file_operations amdgpu_ras_debugfs_eeprom_size_ops = {
1038 	.owner = THIS_MODULE,
1039 	.read = amdgpu_ras_debugfs_eeprom_size_read,
1040 	.write = NULL,
1041 	.llseek = default_llseek,
1042 };
1043 
1044 static const char *tbl_hdr_str = " Signature    Version  FirstOffs       Size   Checksum\n";
1045 static const char *tbl_hdr_fmt = "0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n";
1046 #define tbl_hdr_fmt_size (5 * (2+8) + 4 + 1)
1047 static const char *rec_hdr_str = "Index  Offset ErrType Bank/CU          TimeStamp      Offs/Addr MemChl MCUMCID    RetiredPage\n";
1048 static const char *rec_hdr_fmt = "%5d 0x%05X %7s    0x%02X 0x%016llX 0x%012llX   0x%02X    0x%02X 0x%012llX\n";
1049 #define rec_hdr_fmt_size (5 + 1 + 7 + 1 + 7 + 1 + 7 + 1 + 18 + 1 + 14 + 1 + 6 + 1 + 7 + 1 + 14 + 1)
1050 
1051 static const char *record_err_type_str[AMDGPU_RAS_EEPROM_ERR_COUNT] = {
1052 	"ignore",
1053 	"re",
1054 	"ue",
1055 };
1056 
1057 static loff_t amdgpu_ras_debugfs_table_size(struct amdgpu_ras_eeprom_control *control)
1058 {
1059 	return strlen(tbl_hdr_str) + tbl_hdr_fmt_size +
1060 		strlen(rec_hdr_str) + rec_hdr_fmt_size * control->ras_num_recs;
1061 }
1062 
1063 void amdgpu_ras_debugfs_set_ret_size(struct amdgpu_ras_eeprom_control *control)
1064 {
1065 	struct amdgpu_ras *ras = container_of(control, struct amdgpu_ras,
1066 					      eeprom_control);
1067 	struct dentry *de = ras->de_ras_eeprom_table;
1068 
1069 	if (de)
1070 		d_inode(de)->i_size = amdgpu_ras_debugfs_table_size(control);
1071 }
1072 
1073 static ssize_t amdgpu_ras_debugfs_table_read(struct file *f, char __user *buf,
1074 					     size_t size, loff_t *pos)
1075 {
1076 	struct amdgpu_device *adev = (struct amdgpu_device *)file_inode(f)->i_private;
1077 	struct amdgpu_ras *ras = amdgpu_ras_get_context(adev);
1078 	struct amdgpu_ras_eeprom_control *control = &ras->eeprom_control;
1079 	const size_t orig_size = size;
1080 	int res = -EFAULT;
1081 	size_t data_len;
1082 
1083 	mutex_lock(&control->ras_tbl_mutex);
1084 
1085 	/* We want *pos - data_len > 0, which means there's
1086 	 * bytes to be printed from data.
1087 	 */
1088 	data_len = strlen(tbl_hdr_str);
1089 	if (*pos < data_len) {
1090 		data_len -= *pos;
1091 		data_len = min_t(size_t, data_len, size);
1092 		if (copy_to_user(buf, &tbl_hdr_str[*pos], data_len))
1093 			goto Out;
1094 		buf += data_len;
1095 		size -= data_len;
1096 		*pos += data_len;
1097 	}
1098 
1099 	data_len = strlen(tbl_hdr_str) + tbl_hdr_fmt_size;
1100 	if (*pos < data_len && size > 0) {
1101 		u8 data[tbl_hdr_fmt_size + 1];
1102 		loff_t lpos;
1103 
1104 		snprintf(data, sizeof(data), tbl_hdr_fmt,
1105 			 control->tbl_hdr.header,
1106 			 control->tbl_hdr.version,
1107 			 control->tbl_hdr.first_rec_offset,
1108 			 control->tbl_hdr.tbl_size,
1109 			 control->tbl_hdr.checksum);
1110 
1111 		data_len -= *pos;
1112 		data_len = min_t(size_t, data_len, size);
1113 		lpos = *pos - strlen(tbl_hdr_str);
1114 		if (copy_to_user(buf, &data[lpos], data_len))
1115 			goto Out;
1116 		buf += data_len;
1117 		size -= data_len;
1118 		*pos += data_len;
1119 	}
1120 
1121 	data_len = strlen(tbl_hdr_str) + tbl_hdr_fmt_size + strlen(rec_hdr_str);
1122 	if (*pos < data_len && size > 0) {
1123 		loff_t lpos;
1124 
1125 		data_len -= *pos;
1126 		data_len = min_t(size_t, data_len, size);
1127 		lpos = *pos - strlen(tbl_hdr_str) - tbl_hdr_fmt_size;
1128 		if (copy_to_user(buf, &rec_hdr_str[lpos], data_len))
1129 			goto Out;
1130 		buf += data_len;
1131 		size -= data_len;
1132 		*pos += data_len;
1133 	}
1134 
1135 	data_len = amdgpu_ras_debugfs_table_size(control);
1136 	if (*pos < data_len && size > 0) {
1137 		u8 dare[RAS_TABLE_RECORD_SIZE];
1138 		u8 data[rec_hdr_fmt_size + 1];
1139 		struct eeprom_table_record record;
1140 		int s, r;
1141 
1142 		/* Find the starting record index
1143 		 */
1144 		s = *pos - strlen(tbl_hdr_str) - tbl_hdr_fmt_size -
1145 			strlen(rec_hdr_str);
1146 		s = s / rec_hdr_fmt_size;
1147 		r = *pos - strlen(tbl_hdr_str) - tbl_hdr_fmt_size -
1148 			strlen(rec_hdr_str);
1149 		r = r % rec_hdr_fmt_size;
1150 
1151 		for ( ; size > 0 && s < control->ras_num_recs; s++) {
1152 			u32 ai = RAS_RI_TO_AI(control, s);
1153 			/* Read a single record
1154 			 */
1155 			res = __amdgpu_ras_eeprom_read(control, dare, ai, 1);
1156 			if (res)
1157 				goto Out;
1158 			__decode_table_record_from_buf(control, &record, dare);
1159 			snprintf(data, sizeof(data), rec_hdr_fmt,
1160 				 s,
1161 				 RAS_INDEX_TO_OFFSET(control, ai),
1162 				 record_err_type_str[record.err_type],
1163 				 record.bank,
1164 				 record.ts,
1165 				 record.offset,
1166 				 record.mem_channel,
1167 				 record.mcumc_id,
1168 				 record.retired_page);
1169 
1170 			data_len = min_t(size_t, rec_hdr_fmt_size - r, size);
1171 			if (copy_to_user(buf, &data[r], data_len)) {
1172 				res = -EFAULT;
1173 				goto Out;
1174 			}
1175 			buf += data_len;
1176 			size -= data_len;
1177 			*pos += data_len;
1178 			r = 0;
1179 		}
1180 	}
1181 	res = 0;
1182 Out:
1183 	mutex_unlock(&control->ras_tbl_mutex);
1184 	return res < 0 ? res : orig_size - size;
1185 }
1186 
1187 static ssize_t
1188 amdgpu_ras_debugfs_eeprom_table_read(struct file *f, char __user *buf,
1189 				     size_t size, loff_t *pos)
1190 {
1191 	struct amdgpu_device *adev = (struct amdgpu_device *)file_inode(f)->i_private;
1192 	struct amdgpu_ras *ras = amdgpu_ras_get_context(adev);
1193 	struct amdgpu_ras_eeprom_control *control = ras ? &ras->eeprom_control : NULL;
1194 	u8 data[81];
1195 	int res;
1196 
1197 	if (!size)
1198 		return size;
1199 
1200 	if (!ras || !control) {
1201 		res = snprintf(data, sizeof(data), "Not supported\n");
1202 		if (*pos >= res)
1203 			return 0;
1204 
1205 		res -= *pos;
1206 		res = min_t(size_t, res, size);
1207 
1208 		if (copy_to_user(buf, &data[*pos], res))
1209 			return -EFAULT;
1210 
1211 		*pos += res;
1212 
1213 		return res;
1214 	} else {
1215 		return amdgpu_ras_debugfs_table_read(f, buf, size, pos);
1216 	}
1217 }
1218 
1219 const struct file_operations amdgpu_ras_debugfs_eeprom_table_ops = {
1220 	.owner = THIS_MODULE,
1221 	.read = amdgpu_ras_debugfs_eeprom_table_read,
1222 	.write = NULL,
1223 	.llseek = default_llseek,
1224 };
1225 
1226 /**
1227  * __verify_ras_table_checksum -- verify the RAS EEPROM table checksum
1228  * @control: pointer to control structure
1229  *
1230  * Check the checksum of the stored in EEPROM RAS table.
1231  *
1232  * Return 0 if the checksum is correct,
1233  * positive if it is not correct, and
1234  * -errno on I/O error.
1235  */
1236 static int __verify_ras_table_checksum(struct amdgpu_ras_eeprom_control *control)
1237 {
1238 	struct amdgpu_device *adev = to_amdgpu_device(control);
1239 	int buf_size, res;
1240 	u8  csum, *buf, *pp;
1241 
1242 	if (control->tbl_hdr.version == RAS_TABLE_VER_V2_1)
1243 		buf_size = RAS_TABLE_HEADER_SIZE +
1244 			   RAS_TABLE_V2_1_INFO_SIZE +
1245 			   control->ras_num_recs * RAS_TABLE_RECORD_SIZE;
1246 	else
1247 		buf_size = RAS_TABLE_HEADER_SIZE +
1248 			   control->ras_num_recs * RAS_TABLE_RECORD_SIZE;
1249 
1250 	buf = kzalloc(buf_size, GFP_KERNEL);
1251 	if (!buf) {
1252 		DRM_ERROR("Out of memory checking RAS table checksum.\n");
1253 		return -ENOMEM;
1254 	}
1255 
1256 	res = amdgpu_eeprom_read(adev->pm.ras_eeprom_i2c_bus,
1257 				 control->i2c_address +
1258 				 control->ras_header_offset,
1259 				 buf, buf_size);
1260 	if (res < buf_size) {
1261 		DRM_ERROR("Partial read for checksum, res:%d\n", res);
1262 		/* On partial reads, return -EIO.
1263 		 */
1264 		if (res >= 0)
1265 			res = -EIO;
1266 		goto Out;
1267 	}
1268 
1269 	csum = 0;
1270 	for (pp = buf; pp < buf + buf_size; pp++)
1271 		csum += *pp;
1272 Out:
1273 	kfree(buf);
1274 	return res < 0 ? res : csum;
1275 }
1276 
1277 static int __read_table_ras_info(struct amdgpu_ras_eeprom_control *control)
1278 {
1279 	struct amdgpu_ras_eeprom_table_ras_info *rai = &control->tbl_rai;
1280 	struct amdgpu_device *adev = to_amdgpu_device(control);
1281 	unsigned char *buf;
1282 	int res;
1283 
1284 	buf = kzalloc(RAS_TABLE_V2_1_INFO_SIZE, GFP_KERNEL);
1285 	if (!buf) {
1286 		DRM_ERROR("Failed to alloc buf to read EEPROM table ras info\n");
1287 		return -ENOMEM;
1288 	}
1289 
1290 	/**
1291 	 * EEPROM table V2_1 supports ras info,
1292 	 * read EEPROM table ras info
1293 	 */
1294 	res = amdgpu_eeprom_read(adev->pm.ras_eeprom_i2c_bus,
1295 				 control->i2c_address + control->ras_info_offset,
1296 				 buf, RAS_TABLE_V2_1_INFO_SIZE);
1297 	if (res < RAS_TABLE_V2_1_INFO_SIZE) {
1298 		DRM_ERROR("Failed to read EEPROM table ras info, res:%d", res);
1299 		res = res >= 0 ? -EIO : res;
1300 		goto Out;
1301 	}
1302 
1303 	__decode_table_ras_info_from_buf(rai, buf);
1304 
1305 Out:
1306 	kfree(buf);
1307 	return res == RAS_TABLE_V2_1_INFO_SIZE ? 0 : res;
1308 }
1309 
1310 int amdgpu_ras_eeprom_init(struct amdgpu_ras_eeprom_control *control,
1311 			   bool *exceed_err_limit)
1312 {
1313 	struct amdgpu_device *adev = to_amdgpu_device(control);
1314 	unsigned char buf[RAS_TABLE_HEADER_SIZE] = { 0 };
1315 	struct amdgpu_ras_eeprom_table_header *hdr = &control->tbl_hdr;
1316 	struct amdgpu_ras *ras = amdgpu_ras_get_context(adev);
1317 	int res;
1318 
1319 	*exceed_err_limit = false;
1320 
1321 	if (!__is_ras_eeprom_supported(adev))
1322 		return 0;
1323 
1324 	/* Verify i2c adapter is initialized */
1325 	if (!adev->pm.ras_eeprom_i2c_bus || !adev->pm.ras_eeprom_i2c_bus->algo)
1326 		return -ENOENT;
1327 
1328 	if (!__get_eeprom_i2c_addr(adev, control))
1329 		return -EINVAL;
1330 
1331 	control->ras_header_offset = RAS_HDR_START;
1332 	control->ras_info_offset = RAS_TABLE_V2_1_INFO_START;
1333 	mutex_init(&control->ras_tbl_mutex);
1334 
1335 	/* Read the table header from EEPROM address */
1336 	res = amdgpu_eeprom_read(adev->pm.ras_eeprom_i2c_bus,
1337 				 control->i2c_address + control->ras_header_offset,
1338 				 buf, RAS_TABLE_HEADER_SIZE);
1339 	if (res < RAS_TABLE_HEADER_SIZE) {
1340 		DRM_ERROR("Failed to read EEPROM table header, res:%d", res);
1341 		return res >= 0 ? -EIO : res;
1342 	}
1343 
1344 	__decode_table_header_from_buf(hdr, buf);
1345 
1346 	if (hdr->version == RAS_TABLE_VER_V2_1) {
1347 		control->ras_num_recs = RAS_NUM_RECS_V2_1(hdr);
1348 		control->ras_record_offset = RAS_RECORD_START_V2_1;
1349 		control->ras_max_record_count = RAS_MAX_RECORD_COUNT_V2_1;
1350 	} else {
1351 		control->ras_num_recs = RAS_NUM_RECS(hdr);
1352 		control->ras_record_offset = RAS_RECORD_START;
1353 		control->ras_max_record_count = RAS_MAX_RECORD_COUNT;
1354 	}
1355 	control->ras_fri = RAS_OFFSET_TO_INDEX(control, hdr->first_rec_offset);
1356 
1357 	if (hdr->header == RAS_TABLE_HDR_VAL) {
1358 		DRM_DEBUG_DRIVER("Found existing EEPROM table with %d records",
1359 				 control->ras_num_recs);
1360 
1361 		if (hdr->version == RAS_TABLE_VER_V2_1) {
1362 			res = __read_table_ras_info(control);
1363 			if (res)
1364 				return res;
1365 		}
1366 
1367 		res = __verify_ras_table_checksum(control);
1368 		if (res)
1369 			DRM_ERROR("RAS table incorrect checksum or error:%d\n",
1370 				  res);
1371 
1372 		/* Warn if we are at 90% of the threshold or above
1373 		 */
1374 		if (10 * control->ras_num_recs >= 9 * ras->bad_page_cnt_threshold)
1375 			dev_warn(adev->dev, "RAS records:%u exceeds 90%% of threshold:%d",
1376 					control->ras_num_recs,
1377 					ras->bad_page_cnt_threshold);
1378 	} else if (hdr->header == RAS_TABLE_HDR_BAD &&
1379 		   amdgpu_bad_page_threshold != 0) {
1380 		if (hdr->version == RAS_TABLE_VER_V2_1) {
1381 			res = __read_table_ras_info(control);
1382 			if (res)
1383 				return res;
1384 		}
1385 
1386 		res = __verify_ras_table_checksum(control);
1387 		if (res)
1388 			DRM_ERROR("RAS Table incorrect checksum or error:%d\n",
1389 				  res);
1390 		if (ras->bad_page_cnt_threshold > control->ras_num_recs) {
1391 			/* This means that, the threshold was increased since
1392 			 * the last time the system was booted, and now,
1393 			 * ras->bad_page_cnt_threshold - control->num_recs > 0,
1394 			 * so that at least one more record can be saved,
1395 			 * before the page count threshold is reached.
1396 			 */
1397 			dev_info(adev->dev,
1398 				 "records:%d threshold:%d, resetting "
1399 				 "RAS table header signature",
1400 				 control->ras_num_recs,
1401 				 ras->bad_page_cnt_threshold);
1402 			res = amdgpu_ras_eeprom_correct_header_tag(control,
1403 								   RAS_TABLE_HDR_VAL);
1404 		} else {
1405 			dev_err(adev->dev, "RAS records:%d exceed threshold:%d",
1406 				control->ras_num_recs, ras->bad_page_cnt_threshold);
1407 			if (amdgpu_bad_page_threshold == -1) {
1408 				dev_warn(adev->dev, "GPU will be initialized due to bad_page_threshold = -1.");
1409 				res = 0;
1410 			} else {
1411 				*exceed_err_limit = true;
1412 				dev_err(adev->dev,
1413 					"RAS records:%d exceed threshold:%d, "
1414 					"GPU will not be initialized. Replace this GPU or increase the threshold",
1415 					control->ras_num_recs, ras->bad_page_cnt_threshold);
1416 			}
1417 		}
1418 	} else {
1419 		DRM_INFO("Creating a new EEPROM table");
1420 
1421 		res = amdgpu_ras_eeprom_reset_table(control);
1422 	}
1423 
1424 	return res < 0 ? res : 0;
1425 }
1426