xref: /linux/drivers/gpu/drm/amd/amdgpu/amdgpu_ttm.c (revision 52338415)
1 /*
2  * Copyright 2009 Jerome Glisse.
3  * All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the
7  * "Software"), to deal in the Software without restriction, including
8  * without limitation the rights to use, copy, modify, merge, publish,
9  * distribute, sub license, and/or sell copies of the Software, and to
10  * permit persons to whom the Software is furnished to do so, subject to
11  * the following conditions:
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19  * USE OR OTHER DEALINGS IN THE SOFTWARE.
20  *
21  * The above copyright notice and this permission notice (including the
22  * next paragraph) shall be included in all copies or substantial portions
23  * of the Software.
24  *
25  */
26 /*
27  * Authors:
28  *    Jerome Glisse <glisse@freedesktop.org>
29  *    Thomas Hellstrom <thomas-at-tungstengraphics-dot-com>
30  *    Dave Airlie
31  */
32 
33 #include <linux/dma-mapping.h>
34 #include <linux/iommu.h>
35 #include <linux/hmm.h>
36 #include <linux/pagemap.h>
37 #include <linux/sched/task.h>
38 #include <linux/seq_file.h>
39 #include <linux/slab.h>
40 #include <linux/swap.h>
41 #include <linux/swiotlb.h>
42 
43 #include <drm/ttm/ttm_bo_api.h>
44 #include <drm/ttm/ttm_bo_driver.h>
45 #include <drm/ttm/ttm_placement.h>
46 #include <drm/ttm/ttm_module.h>
47 #include <drm/ttm/ttm_page_alloc.h>
48 
49 #include <drm/drm_debugfs.h>
50 #include <drm/amdgpu_drm.h>
51 
52 #include "amdgpu.h"
53 #include "amdgpu_object.h"
54 #include "amdgpu_trace.h"
55 #include "amdgpu_amdkfd.h"
56 #include "amdgpu_sdma.h"
57 #include "bif/bif_4_1_d.h"
58 
59 static int amdgpu_map_buffer(struct ttm_buffer_object *bo,
60 			     struct ttm_mem_reg *mem, unsigned num_pages,
61 			     uint64_t offset, unsigned window,
62 			     struct amdgpu_ring *ring,
63 			     uint64_t *addr);
64 
65 static int amdgpu_ttm_debugfs_init(struct amdgpu_device *adev);
66 static void amdgpu_ttm_debugfs_fini(struct amdgpu_device *adev);
67 
68 static int amdgpu_invalidate_caches(struct ttm_bo_device *bdev, uint32_t flags)
69 {
70 	return 0;
71 }
72 
73 /**
74  * amdgpu_init_mem_type - Initialize a memory manager for a specific type of
75  * memory request.
76  *
77  * @bdev: The TTM BO device object (contains a reference to amdgpu_device)
78  * @type: The type of memory requested
79  * @man: The memory type manager for each domain
80  *
81  * This is called by ttm_bo_init_mm() when a buffer object is being
82  * initialized.
83  */
84 static int amdgpu_init_mem_type(struct ttm_bo_device *bdev, uint32_t type,
85 				struct ttm_mem_type_manager *man)
86 {
87 	struct amdgpu_device *adev;
88 
89 	adev = amdgpu_ttm_adev(bdev);
90 
91 	switch (type) {
92 	case TTM_PL_SYSTEM:
93 		/* System memory */
94 		man->flags = TTM_MEMTYPE_FLAG_MAPPABLE;
95 		man->available_caching = TTM_PL_MASK_CACHING;
96 		man->default_caching = TTM_PL_FLAG_CACHED;
97 		break;
98 	case TTM_PL_TT:
99 		/* GTT memory  */
100 		man->func = &amdgpu_gtt_mgr_func;
101 		man->gpu_offset = adev->gmc.gart_start;
102 		man->available_caching = TTM_PL_MASK_CACHING;
103 		man->default_caching = TTM_PL_FLAG_CACHED;
104 		man->flags = TTM_MEMTYPE_FLAG_MAPPABLE | TTM_MEMTYPE_FLAG_CMA;
105 		break;
106 	case TTM_PL_VRAM:
107 		/* "On-card" video ram */
108 		man->func = &amdgpu_vram_mgr_func;
109 		man->gpu_offset = adev->gmc.vram_start;
110 		man->flags = TTM_MEMTYPE_FLAG_FIXED |
111 			     TTM_MEMTYPE_FLAG_MAPPABLE;
112 		man->available_caching = TTM_PL_FLAG_UNCACHED | TTM_PL_FLAG_WC;
113 		man->default_caching = TTM_PL_FLAG_WC;
114 		break;
115 	case AMDGPU_PL_GDS:
116 	case AMDGPU_PL_GWS:
117 	case AMDGPU_PL_OA:
118 		/* On-chip GDS memory*/
119 		man->func = &ttm_bo_manager_func;
120 		man->gpu_offset = 0;
121 		man->flags = TTM_MEMTYPE_FLAG_FIXED | TTM_MEMTYPE_FLAG_CMA;
122 		man->available_caching = TTM_PL_FLAG_UNCACHED;
123 		man->default_caching = TTM_PL_FLAG_UNCACHED;
124 		break;
125 	default:
126 		DRM_ERROR("Unsupported memory type %u\n", (unsigned)type);
127 		return -EINVAL;
128 	}
129 	return 0;
130 }
131 
132 /**
133  * amdgpu_evict_flags - Compute placement flags
134  *
135  * @bo: The buffer object to evict
136  * @placement: Possible destination(s) for evicted BO
137  *
138  * Fill in placement data when ttm_bo_evict() is called
139  */
140 static void amdgpu_evict_flags(struct ttm_buffer_object *bo,
141 				struct ttm_placement *placement)
142 {
143 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
144 	struct amdgpu_bo *abo;
145 	static const struct ttm_place placements = {
146 		.fpfn = 0,
147 		.lpfn = 0,
148 		.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_SYSTEM
149 	};
150 
151 	/* Don't handle scatter gather BOs */
152 	if (bo->type == ttm_bo_type_sg) {
153 		placement->num_placement = 0;
154 		placement->num_busy_placement = 0;
155 		return;
156 	}
157 
158 	/* Object isn't an AMDGPU object so ignore */
159 	if (!amdgpu_bo_is_amdgpu_bo(bo)) {
160 		placement->placement = &placements;
161 		placement->busy_placement = &placements;
162 		placement->num_placement = 1;
163 		placement->num_busy_placement = 1;
164 		return;
165 	}
166 
167 	abo = ttm_to_amdgpu_bo(bo);
168 	switch (bo->mem.mem_type) {
169 	case AMDGPU_PL_GDS:
170 	case AMDGPU_PL_GWS:
171 	case AMDGPU_PL_OA:
172 		placement->num_placement = 0;
173 		placement->num_busy_placement = 0;
174 		return;
175 
176 	case TTM_PL_VRAM:
177 		if (!adev->mman.buffer_funcs_enabled) {
178 			/* Move to system memory */
179 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
180 		} else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
181 			   !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) &&
182 			   amdgpu_bo_in_cpu_visible_vram(abo)) {
183 
184 			/* Try evicting to the CPU inaccessible part of VRAM
185 			 * first, but only set GTT as busy placement, so this
186 			 * BO will be evicted to GTT rather than causing other
187 			 * BOs to be evicted from VRAM
188 			 */
189 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM |
190 							 AMDGPU_GEM_DOMAIN_GTT);
191 			abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT;
192 			abo->placements[0].lpfn = 0;
193 			abo->placement.busy_placement = &abo->placements[1];
194 			abo->placement.num_busy_placement = 1;
195 		} else {
196 			/* Move to GTT memory */
197 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT);
198 		}
199 		break;
200 	case TTM_PL_TT:
201 	default:
202 		amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
203 		break;
204 	}
205 	*placement = abo->placement;
206 }
207 
208 /**
209  * amdgpu_verify_access - Verify access for a mmap call
210  *
211  * @bo:	The buffer object to map
212  * @filp: The file pointer from the process performing the mmap
213  *
214  * This is called by ttm_bo_mmap() to verify whether a process
215  * has the right to mmap a BO to their process space.
216  */
217 static int amdgpu_verify_access(struct ttm_buffer_object *bo, struct file *filp)
218 {
219 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
220 
221 	/*
222 	 * Don't verify access for KFD BOs. They don't have a GEM
223 	 * object associated with them.
224 	 */
225 	if (abo->kfd_bo)
226 		return 0;
227 
228 	if (amdgpu_ttm_tt_get_usermm(bo->ttm))
229 		return -EPERM;
230 	return drm_vma_node_verify_access(&abo->tbo.base.vma_node,
231 					  filp->private_data);
232 }
233 
234 /**
235  * amdgpu_move_null - Register memory for a buffer object
236  *
237  * @bo: The bo to assign the memory to
238  * @new_mem: The memory to be assigned.
239  *
240  * Assign the memory from new_mem to the memory of the buffer object bo.
241  */
242 static void amdgpu_move_null(struct ttm_buffer_object *bo,
243 			     struct ttm_mem_reg *new_mem)
244 {
245 	struct ttm_mem_reg *old_mem = &bo->mem;
246 
247 	BUG_ON(old_mem->mm_node != NULL);
248 	*old_mem = *new_mem;
249 	new_mem->mm_node = NULL;
250 }
251 
252 /**
253  * amdgpu_mm_node_addr - Compute the GPU relative offset of a GTT buffer.
254  *
255  * @bo: The bo to assign the memory to.
256  * @mm_node: Memory manager node for drm allocator.
257  * @mem: The region where the bo resides.
258  *
259  */
260 static uint64_t amdgpu_mm_node_addr(struct ttm_buffer_object *bo,
261 				    struct drm_mm_node *mm_node,
262 				    struct ttm_mem_reg *mem)
263 {
264 	uint64_t addr = 0;
265 
266 	if (mm_node->start != AMDGPU_BO_INVALID_OFFSET) {
267 		addr = mm_node->start << PAGE_SHIFT;
268 		addr += bo->bdev->man[mem->mem_type].gpu_offset;
269 	}
270 	return addr;
271 }
272 
273 /**
274  * amdgpu_find_mm_node - Helper function finds the drm_mm_node corresponding to
275  * @offset. It also modifies the offset to be within the drm_mm_node returned
276  *
277  * @mem: The region where the bo resides.
278  * @offset: The offset that drm_mm_node is used for finding.
279  *
280  */
281 static struct drm_mm_node *amdgpu_find_mm_node(struct ttm_mem_reg *mem,
282 					       unsigned long *offset)
283 {
284 	struct drm_mm_node *mm_node = mem->mm_node;
285 
286 	while (*offset >= (mm_node->size << PAGE_SHIFT)) {
287 		*offset -= (mm_node->size << PAGE_SHIFT);
288 		++mm_node;
289 	}
290 	return mm_node;
291 }
292 
293 /**
294  * amdgpu_copy_ttm_mem_to_mem - Helper function for copy
295  *
296  * The function copies @size bytes from {src->mem + src->offset} to
297  * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a
298  * move and different for a BO to BO copy.
299  *
300  * @f: Returns the last fence if multiple jobs are submitted.
301  */
302 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev,
303 			       struct amdgpu_copy_mem *src,
304 			       struct amdgpu_copy_mem *dst,
305 			       uint64_t size,
306 			       struct dma_resv *resv,
307 			       struct dma_fence **f)
308 {
309 	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
310 	struct drm_mm_node *src_mm, *dst_mm;
311 	uint64_t src_node_start, dst_node_start, src_node_size,
312 		 dst_node_size, src_page_offset, dst_page_offset;
313 	struct dma_fence *fence = NULL;
314 	int r = 0;
315 	const uint64_t GTT_MAX_BYTES = (AMDGPU_GTT_MAX_TRANSFER_SIZE *
316 					AMDGPU_GPU_PAGE_SIZE);
317 
318 	if (!adev->mman.buffer_funcs_enabled) {
319 		DRM_ERROR("Trying to move memory with ring turned off.\n");
320 		return -EINVAL;
321 	}
322 
323 	src_mm = amdgpu_find_mm_node(src->mem, &src->offset);
324 	src_node_start = amdgpu_mm_node_addr(src->bo, src_mm, src->mem) +
325 					     src->offset;
326 	src_node_size = (src_mm->size << PAGE_SHIFT) - src->offset;
327 	src_page_offset = src_node_start & (PAGE_SIZE - 1);
328 
329 	dst_mm = amdgpu_find_mm_node(dst->mem, &dst->offset);
330 	dst_node_start = amdgpu_mm_node_addr(dst->bo, dst_mm, dst->mem) +
331 					     dst->offset;
332 	dst_node_size = (dst_mm->size << PAGE_SHIFT) - dst->offset;
333 	dst_page_offset = dst_node_start & (PAGE_SIZE - 1);
334 
335 	mutex_lock(&adev->mman.gtt_window_lock);
336 
337 	while (size) {
338 		unsigned long cur_size;
339 		uint64_t from = src_node_start, to = dst_node_start;
340 		struct dma_fence *next;
341 
342 		/* Copy size cannot exceed GTT_MAX_BYTES. So if src or dst
343 		 * begins at an offset, then adjust the size accordingly
344 		 */
345 		cur_size = min3(min(src_node_size, dst_node_size), size,
346 				GTT_MAX_BYTES);
347 		if (cur_size + src_page_offset > GTT_MAX_BYTES ||
348 		    cur_size + dst_page_offset > GTT_MAX_BYTES)
349 			cur_size -= max(src_page_offset, dst_page_offset);
350 
351 		/* Map only what needs to be accessed. Map src to window 0 and
352 		 * dst to window 1
353 		 */
354 		if (src->mem->start == AMDGPU_BO_INVALID_OFFSET) {
355 			r = amdgpu_map_buffer(src->bo, src->mem,
356 					PFN_UP(cur_size + src_page_offset),
357 					src_node_start, 0, ring,
358 					&from);
359 			if (r)
360 				goto error;
361 			/* Adjust the offset because amdgpu_map_buffer returns
362 			 * start of mapped page
363 			 */
364 			from += src_page_offset;
365 		}
366 
367 		if (dst->mem->start == AMDGPU_BO_INVALID_OFFSET) {
368 			r = amdgpu_map_buffer(dst->bo, dst->mem,
369 					PFN_UP(cur_size + dst_page_offset),
370 					dst_node_start, 1, ring,
371 					&to);
372 			if (r)
373 				goto error;
374 			to += dst_page_offset;
375 		}
376 
377 		r = amdgpu_copy_buffer(ring, from, to, cur_size,
378 				       resv, &next, false, true);
379 		if (r)
380 			goto error;
381 
382 		dma_fence_put(fence);
383 		fence = next;
384 
385 		size -= cur_size;
386 		if (!size)
387 			break;
388 
389 		src_node_size -= cur_size;
390 		if (!src_node_size) {
391 			src_node_start = amdgpu_mm_node_addr(src->bo, ++src_mm,
392 							     src->mem);
393 			src_node_size = (src_mm->size << PAGE_SHIFT);
394 			src_page_offset = 0;
395 		} else {
396 			src_node_start += cur_size;
397 			src_page_offset = src_node_start & (PAGE_SIZE - 1);
398 		}
399 		dst_node_size -= cur_size;
400 		if (!dst_node_size) {
401 			dst_node_start = amdgpu_mm_node_addr(dst->bo, ++dst_mm,
402 							     dst->mem);
403 			dst_node_size = (dst_mm->size << PAGE_SHIFT);
404 			dst_page_offset = 0;
405 		} else {
406 			dst_node_start += cur_size;
407 			dst_page_offset = dst_node_start & (PAGE_SIZE - 1);
408 		}
409 	}
410 error:
411 	mutex_unlock(&adev->mman.gtt_window_lock);
412 	if (f)
413 		*f = dma_fence_get(fence);
414 	dma_fence_put(fence);
415 	return r;
416 }
417 
418 /**
419  * amdgpu_move_blit - Copy an entire buffer to another buffer
420  *
421  * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to
422  * help move buffers to and from VRAM.
423  */
424 static int amdgpu_move_blit(struct ttm_buffer_object *bo,
425 			    bool evict, bool no_wait_gpu,
426 			    struct ttm_mem_reg *new_mem,
427 			    struct ttm_mem_reg *old_mem)
428 {
429 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
430 	struct amdgpu_copy_mem src, dst;
431 	struct dma_fence *fence = NULL;
432 	int r;
433 
434 	src.bo = bo;
435 	dst.bo = bo;
436 	src.mem = old_mem;
437 	dst.mem = new_mem;
438 	src.offset = 0;
439 	dst.offset = 0;
440 
441 	r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst,
442 				       new_mem->num_pages << PAGE_SHIFT,
443 				       bo->base.resv, &fence);
444 	if (r)
445 		goto error;
446 
447 	/* clear the space being freed */
448 	if (old_mem->mem_type == TTM_PL_VRAM &&
449 	    (ttm_to_amdgpu_bo(bo)->flags &
450 	     AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) {
451 		struct dma_fence *wipe_fence = NULL;
452 
453 		r = amdgpu_fill_buffer(ttm_to_amdgpu_bo(bo), AMDGPU_POISON,
454 				       NULL, &wipe_fence);
455 		if (r) {
456 			goto error;
457 		} else if (wipe_fence) {
458 			dma_fence_put(fence);
459 			fence = wipe_fence;
460 		}
461 	}
462 
463 	/* Always block for VM page tables before committing the new location */
464 	if (bo->type == ttm_bo_type_kernel)
465 		r = ttm_bo_move_accel_cleanup(bo, fence, true, new_mem);
466 	else
467 		r = ttm_bo_pipeline_move(bo, fence, evict, new_mem);
468 	dma_fence_put(fence);
469 	return r;
470 
471 error:
472 	if (fence)
473 		dma_fence_wait(fence, false);
474 	dma_fence_put(fence);
475 	return r;
476 }
477 
478 /**
479  * amdgpu_move_vram_ram - Copy VRAM buffer to RAM buffer
480  *
481  * Called by amdgpu_bo_move().
482  */
483 static int amdgpu_move_vram_ram(struct ttm_buffer_object *bo, bool evict,
484 				struct ttm_operation_ctx *ctx,
485 				struct ttm_mem_reg *new_mem)
486 {
487 	struct amdgpu_device *adev;
488 	struct ttm_mem_reg *old_mem = &bo->mem;
489 	struct ttm_mem_reg tmp_mem;
490 	struct ttm_place placements;
491 	struct ttm_placement placement;
492 	int r;
493 
494 	adev = amdgpu_ttm_adev(bo->bdev);
495 
496 	/* create space/pages for new_mem in GTT space */
497 	tmp_mem = *new_mem;
498 	tmp_mem.mm_node = NULL;
499 	placement.num_placement = 1;
500 	placement.placement = &placements;
501 	placement.num_busy_placement = 1;
502 	placement.busy_placement = &placements;
503 	placements.fpfn = 0;
504 	placements.lpfn = 0;
505 	placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT;
506 	r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx);
507 	if (unlikely(r)) {
508 		pr_err("Failed to find GTT space for blit from VRAM\n");
509 		return r;
510 	}
511 
512 	/* set caching flags */
513 	r = ttm_tt_set_placement_caching(bo->ttm, tmp_mem.placement);
514 	if (unlikely(r)) {
515 		goto out_cleanup;
516 	}
517 
518 	/* Bind the memory to the GTT space */
519 	r = ttm_tt_bind(bo->ttm, &tmp_mem, ctx);
520 	if (unlikely(r)) {
521 		goto out_cleanup;
522 	}
523 
524 	/* blit VRAM to GTT */
525 	r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, &tmp_mem, old_mem);
526 	if (unlikely(r)) {
527 		goto out_cleanup;
528 	}
529 
530 	/* move BO (in tmp_mem) to new_mem */
531 	r = ttm_bo_move_ttm(bo, ctx, new_mem);
532 out_cleanup:
533 	ttm_bo_mem_put(bo, &tmp_mem);
534 	return r;
535 }
536 
537 /**
538  * amdgpu_move_ram_vram - Copy buffer from RAM to VRAM
539  *
540  * Called by amdgpu_bo_move().
541  */
542 static int amdgpu_move_ram_vram(struct ttm_buffer_object *bo, bool evict,
543 				struct ttm_operation_ctx *ctx,
544 				struct ttm_mem_reg *new_mem)
545 {
546 	struct amdgpu_device *adev;
547 	struct ttm_mem_reg *old_mem = &bo->mem;
548 	struct ttm_mem_reg tmp_mem;
549 	struct ttm_placement placement;
550 	struct ttm_place placements;
551 	int r;
552 
553 	adev = amdgpu_ttm_adev(bo->bdev);
554 
555 	/* make space in GTT for old_mem buffer */
556 	tmp_mem = *new_mem;
557 	tmp_mem.mm_node = NULL;
558 	placement.num_placement = 1;
559 	placement.placement = &placements;
560 	placement.num_busy_placement = 1;
561 	placement.busy_placement = &placements;
562 	placements.fpfn = 0;
563 	placements.lpfn = 0;
564 	placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT;
565 	r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx);
566 	if (unlikely(r)) {
567 		pr_err("Failed to find GTT space for blit to VRAM\n");
568 		return r;
569 	}
570 
571 	/* move/bind old memory to GTT space */
572 	r = ttm_bo_move_ttm(bo, ctx, &tmp_mem);
573 	if (unlikely(r)) {
574 		goto out_cleanup;
575 	}
576 
577 	/* copy to VRAM */
578 	r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, new_mem, old_mem);
579 	if (unlikely(r)) {
580 		goto out_cleanup;
581 	}
582 out_cleanup:
583 	ttm_bo_mem_put(bo, &tmp_mem);
584 	return r;
585 }
586 
587 /**
588  * amdgpu_mem_visible - Check that memory can be accessed by ttm_bo_move_memcpy
589  *
590  * Called by amdgpu_bo_move()
591  */
592 static bool amdgpu_mem_visible(struct amdgpu_device *adev,
593 			       struct ttm_mem_reg *mem)
594 {
595 	struct drm_mm_node *nodes = mem->mm_node;
596 
597 	if (mem->mem_type == TTM_PL_SYSTEM ||
598 	    mem->mem_type == TTM_PL_TT)
599 		return true;
600 	if (mem->mem_type != TTM_PL_VRAM)
601 		return false;
602 
603 	/* ttm_mem_reg_ioremap only supports contiguous memory */
604 	if (nodes->size != mem->num_pages)
605 		return false;
606 
607 	return ((nodes->start + nodes->size) << PAGE_SHIFT)
608 		<= adev->gmc.visible_vram_size;
609 }
610 
611 /**
612  * amdgpu_bo_move - Move a buffer object to a new memory location
613  *
614  * Called by ttm_bo_handle_move_mem()
615  */
616 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict,
617 			  struct ttm_operation_ctx *ctx,
618 			  struct ttm_mem_reg *new_mem)
619 {
620 	struct amdgpu_device *adev;
621 	struct amdgpu_bo *abo;
622 	struct ttm_mem_reg *old_mem = &bo->mem;
623 	int r;
624 
625 	/* Can't move a pinned BO */
626 	abo = ttm_to_amdgpu_bo(bo);
627 	if (WARN_ON_ONCE(abo->pin_count > 0))
628 		return -EINVAL;
629 
630 	adev = amdgpu_ttm_adev(bo->bdev);
631 
632 	if (old_mem->mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
633 		amdgpu_move_null(bo, new_mem);
634 		return 0;
635 	}
636 	if ((old_mem->mem_type == TTM_PL_TT &&
637 	     new_mem->mem_type == TTM_PL_SYSTEM) ||
638 	    (old_mem->mem_type == TTM_PL_SYSTEM &&
639 	     new_mem->mem_type == TTM_PL_TT)) {
640 		/* bind is enough */
641 		amdgpu_move_null(bo, new_mem);
642 		return 0;
643 	}
644 	if (old_mem->mem_type == AMDGPU_PL_GDS ||
645 	    old_mem->mem_type == AMDGPU_PL_GWS ||
646 	    old_mem->mem_type == AMDGPU_PL_OA ||
647 	    new_mem->mem_type == AMDGPU_PL_GDS ||
648 	    new_mem->mem_type == AMDGPU_PL_GWS ||
649 	    new_mem->mem_type == AMDGPU_PL_OA) {
650 		/* Nothing to save here */
651 		amdgpu_move_null(bo, new_mem);
652 		return 0;
653 	}
654 
655 	if (!adev->mman.buffer_funcs_enabled) {
656 		r = -ENODEV;
657 		goto memcpy;
658 	}
659 
660 	if (old_mem->mem_type == TTM_PL_VRAM &&
661 	    new_mem->mem_type == TTM_PL_SYSTEM) {
662 		r = amdgpu_move_vram_ram(bo, evict, ctx, new_mem);
663 	} else if (old_mem->mem_type == TTM_PL_SYSTEM &&
664 		   new_mem->mem_type == TTM_PL_VRAM) {
665 		r = amdgpu_move_ram_vram(bo, evict, ctx, new_mem);
666 	} else {
667 		r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu,
668 				     new_mem, old_mem);
669 	}
670 
671 	if (r) {
672 memcpy:
673 		/* Check that all memory is CPU accessible */
674 		if (!amdgpu_mem_visible(adev, old_mem) ||
675 		    !amdgpu_mem_visible(adev, new_mem)) {
676 			pr_err("Move buffer fallback to memcpy unavailable\n");
677 			return r;
678 		}
679 
680 		r = ttm_bo_move_memcpy(bo, ctx, new_mem);
681 		if (r)
682 			return r;
683 	}
684 
685 	if (bo->type == ttm_bo_type_device &&
686 	    new_mem->mem_type == TTM_PL_VRAM &&
687 	    old_mem->mem_type != TTM_PL_VRAM) {
688 		/* amdgpu_bo_fault_reserve_notify will re-set this if the CPU
689 		 * accesses the BO after it's moved.
690 		 */
691 		abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
692 	}
693 
694 	/* update statistics */
695 	atomic64_add((u64)bo->num_pages << PAGE_SHIFT, &adev->num_bytes_moved);
696 	return 0;
697 }
698 
699 /**
700  * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault
701  *
702  * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault()
703  */
704 static int amdgpu_ttm_io_mem_reserve(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
705 {
706 	struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
707 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
708 	struct drm_mm_node *mm_node = mem->mm_node;
709 
710 	mem->bus.addr = NULL;
711 	mem->bus.offset = 0;
712 	mem->bus.size = mem->num_pages << PAGE_SHIFT;
713 	mem->bus.base = 0;
714 	mem->bus.is_iomem = false;
715 	if (!(man->flags & TTM_MEMTYPE_FLAG_MAPPABLE))
716 		return -EINVAL;
717 	switch (mem->mem_type) {
718 	case TTM_PL_SYSTEM:
719 		/* system memory */
720 		return 0;
721 	case TTM_PL_TT:
722 		break;
723 	case TTM_PL_VRAM:
724 		mem->bus.offset = mem->start << PAGE_SHIFT;
725 		/* check if it's visible */
726 		if ((mem->bus.offset + mem->bus.size) > adev->gmc.visible_vram_size)
727 			return -EINVAL;
728 		/* Only physically contiguous buffers apply. In a contiguous
729 		 * buffer, size of the first mm_node would match the number of
730 		 * pages in ttm_mem_reg.
731 		 */
732 		if (adev->mman.aper_base_kaddr &&
733 		    (mm_node->size == mem->num_pages))
734 			mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr +
735 					mem->bus.offset;
736 
737 		mem->bus.base = adev->gmc.aper_base;
738 		mem->bus.is_iomem = true;
739 		break;
740 	default:
741 		return -EINVAL;
742 	}
743 	return 0;
744 }
745 
746 static void amdgpu_ttm_io_mem_free(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
747 {
748 }
749 
750 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
751 					   unsigned long page_offset)
752 {
753 	struct drm_mm_node *mm;
754 	unsigned long offset = (page_offset << PAGE_SHIFT);
755 
756 	mm = amdgpu_find_mm_node(&bo->mem, &offset);
757 	return (bo->mem.bus.base >> PAGE_SHIFT) + mm->start +
758 		(offset >> PAGE_SHIFT);
759 }
760 
761 /*
762  * TTM backend functions.
763  */
764 struct amdgpu_ttm_tt {
765 	struct ttm_dma_tt	ttm;
766 	u64			offset;
767 	uint64_t		userptr;
768 	struct task_struct	*usertask;
769 	uint32_t		userflags;
770 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
771 	struct hmm_range	*range;
772 #endif
773 };
774 
775 /**
776  * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user
777  * memory and start HMM tracking CPU page table update
778  *
779  * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only
780  * once afterwards to stop HMM tracking
781  */
782 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
783 
784 #define MAX_RETRY_HMM_RANGE_FAULT	16
785 
786 int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages)
787 {
788 	struct hmm_mirror *mirror = bo->mn ? &bo->mn->mirror : NULL;
789 	struct ttm_tt *ttm = bo->tbo.ttm;
790 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
791 	struct mm_struct *mm = gtt->usertask->mm;
792 	unsigned long start = gtt->userptr;
793 	struct vm_area_struct *vma;
794 	struct hmm_range *range;
795 	unsigned long i;
796 	uint64_t *pfns;
797 	int r = 0;
798 
799 	if (!mm) /* Happens during process shutdown */
800 		return -ESRCH;
801 
802 	if (unlikely(!mirror)) {
803 		DRM_DEBUG_DRIVER("Failed to get hmm_mirror\n");
804 		r = -EFAULT;
805 		goto out;
806 	}
807 
808 	vma = find_vma(mm, start);
809 	if (unlikely(!vma || start < vma->vm_start)) {
810 		r = -EFAULT;
811 		goto out;
812 	}
813 	if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) &&
814 		vma->vm_file)) {
815 		r = -EPERM;
816 		goto out;
817 	}
818 
819 	range = kzalloc(sizeof(*range), GFP_KERNEL);
820 	if (unlikely(!range)) {
821 		r = -ENOMEM;
822 		goto out;
823 	}
824 
825 	pfns = kvmalloc_array(ttm->num_pages, sizeof(*pfns), GFP_KERNEL);
826 	if (unlikely(!pfns)) {
827 		r = -ENOMEM;
828 		goto out_free_ranges;
829 	}
830 
831 	amdgpu_hmm_init_range(range);
832 	range->default_flags = range->flags[HMM_PFN_VALID];
833 	range->default_flags |= amdgpu_ttm_tt_is_readonly(ttm) ?
834 				0 : range->flags[HMM_PFN_WRITE];
835 	range->pfn_flags_mask = 0;
836 	range->pfns = pfns;
837 	range->start = start;
838 	range->end = start + ttm->num_pages * PAGE_SIZE;
839 
840 	hmm_range_register(range, mirror);
841 
842 	/*
843 	 * Just wait for range to be valid, safe to ignore return value as we
844 	 * will use the return value of hmm_range_fault() below under the
845 	 * mmap_sem to ascertain the validity of the range.
846 	 */
847 	hmm_range_wait_until_valid(range, HMM_RANGE_DEFAULT_TIMEOUT);
848 
849 	down_read(&mm->mmap_sem);
850 	r = hmm_range_fault(range, 0);
851 	up_read(&mm->mmap_sem);
852 
853 	if (unlikely(r < 0))
854 		goto out_free_pfns;
855 
856 	for (i = 0; i < ttm->num_pages; i++) {
857 		pages[i] = hmm_device_entry_to_page(range, pfns[i]);
858 		if (unlikely(!pages[i])) {
859 			pr_err("Page fault failed for pfn[%lu] = 0x%llx\n",
860 			       i, pfns[i]);
861 			r = -ENOMEM;
862 
863 			goto out_free_pfns;
864 		}
865 	}
866 
867 	gtt->range = range;
868 
869 	return 0;
870 
871 out_free_pfns:
872 	hmm_range_unregister(range);
873 	kvfree(pfns);
874 out_free_ranges:
875 	kfree(range);
876 out:
877 	return r;
878 }
879 
880 /**
881  * amdgpu_ttm_tt_userptr_range_done - stop HMM track the CPU page table change
882  * Check if the pages backing this ttm range have been invalidated
883  *
884  * Returns: true if pages are still valid
885  */
886 bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm)
887 {
888 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
889 	bool r = false;
890 
891 	if (!gtt || !gtt->userptr)
892 		return false;
893 
894 	DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%lx\n",
895 		gtt->userptr, ttm->num_pages);
896 
897 	WARN_ONCE(!gtt->range || !gtt->range->pfns,
898 		"No user pages to check\n");
899 
900 	if (gtt->range) {
901 		r = hmm_range_valid(gtt->range);
902 		hmm_range_unregister(gtt->range);
903 
904 		kvfree(gtt->range->pfns);
905 		kfree(gtt->range);
906 		gtt->range = NULL;
907 	}
908 
909 	return r;
910 }
911 #endif
912 
913 /**
914  * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary.
915  *
916  * Called by amdgpu_cs_list_validate(). This creates the page list
917  * that backs user memory and will ultimately be mapped into the device
918  * address space.
919  */
920 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages)
921 {
922 	unsigned long i;
923 
924 	for (i = 0; i < ttm->num_pages; ++i)
925 		ttm->pages[i] = pages ? pages[i] : NULL;
926 }
927 
928 /**
929  * amdgpu_ttm_tt_pin_userptr - 	prepare the sg table with the user pages
930  *
931  * Called by amdgpu_ttm_backend_bind()
932  **/
933 static int amdgpu_ttm_tt_pin_userptr(struct ttm_tt *ttm)
934 {
935 	struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
936 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
937 	unsigned nents;
938 	int r;
939 
940 	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
941 	enum dma_data_direction direction = write ?
942 		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
943 
944 	/* Allocate an SG array and squash pages into it */
945 	r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0,
946 				      ttm->num_pages << PAGE_SHIFT,
947 				      GFP_KERNEL);
948 	if (r)
949 		goto release_sg;
950 
951 	/* Map SG to device */
952 	r = -ENOMEM;
953 	nents = dma_map_sg(adev->dev, ttm->sg->sgl, ttm->sg->nents, direction);
954 	if (nents != ttm->sg->nents)
955 		goto release_sg;
956 
957 	/* convert SG to linear array of pages and dma addresses */
958 	drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages,
959 					 gtt->ttm.dma_address, ttm->num_pages);
960 
961 	return 0;
962 
963 release_sg:
964 	kfree(ttm->sg);
965 	return r;
966 }
967 
968 /**
969  * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages
970  */
971 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_tt *ttm)
972 {
973 	struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
974 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
975 
976 	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
977 	enum dma_data_direction direction = write ?
978 		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
979 
980 	/* double check that we don't free the table twice */
981 	if (!ttm->sg->sgl)
982 		return;
983 
984 	/* unmap the pages mapped to the device */
985 	dma_unmap_sg(adev->dev, ttm->sg->sgl, ttm->sg->nents, direction);
986 
987 	sg_free_table(ttm->sg);
988 
989 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
990 	if (gtt->range &&
991 	    ttm->pages[0] == hmm_device_entry_to_page(gtt->range,
992 						      gtt->range->pfns[0]))
993 		WARN_ONCE(1, "Missing get_user_page_done\n");
994 #endif
995 }
996 
997 int amdgpu_ttm_gart_bind(struct amdgpu_device *adev,
998 				struct ttm_buffer_object *tbo,
999 				uint64_t flags)
1000 {
1001 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo);
1002 	struct ttm_tt *ttm = tbo->ttm;
1003 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1004 	int r;
1005 
1006 	if (abo->flags & AMDGPU_GEM_CREATE_MQD_GFX9) {
1007 		uint64_t page_idx = 1;
1008 
1009 		r = amdgpu_gart_bind(adev, gtt->offset, page_idx,
1010 				ttm->pages, gtt->ttm.dma_address, flags);
1011 		if (r)
1012 			goto gart_bind_fail;
1013 
1014 		/* Patch mtype of the second part BO */
1015 		flags &= ~AMDGPU_PTE_MTYPE_VG10_MASK;
1016 		flags |= AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC);
1017 
1018 		r = amdgpu_gart_bind(adev,
1019 				gtt->offset + (page_idx << PAGE_SHIFT),
1020 				ttm->num_pages - page_idx,
1021 				&ttm->pages[page_idx],
1022 				&(gtt->ttm.dma_address[page_idx]), flags);
1023 	} else {
1024 		r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
1025 				     ttm->pages, gtt->ttm.dma_address, flags);
1026 	}
1027 
1028 gart_bind_fail:
1029 	if (r)
1030 		DRM_ERROR("failed to bind %lu pages at 0x%08llX\n",
1031 			  ttm->num_pages, gtt->offset);
1032 
1033 	return r;
1034 }
1035 
1036 /**
1037  * amdgpu_ttm_backend_bind - Bind GTT memory
1038  *
1039  * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem().
1040  * This handles binding GTT memory to the device address space.
1041  */
1042 static int amdgpu_ttm_backend_bind(struct ttm_tt *ttm,
1043 				   struct ttm_mem_reg *bo_mem)
1044 {
1045 	struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1046 	struct amdgpu_ttm_tt *gtt = (void*)ttm;
1047 	uint64_t flags;
1048 	int r = 0;
1049 
1050 	if (gtt->userptr) {
1051 		r = amdgpu_ttm_tt_pin_userptr(ttm);
1052 		if (r) {
1053 			DRM_ERROR("failed to pin userptr\n");
1054 			return r;
1055 		}
1056 	}
1057 	if (!ttm->num_pages) {
1058 		WARN(1, "nothing to bind %lu pages for mreg %p back %p!\n",
1059 		     ttm->num_pages, bo_mem, ttm);
1060 	}
1061 
1062 	if (bo_mem->mem_type == AMDGPU_PL_GDS ||
1063 	    bo_mem->mem_type == AMDGPU_PL_GWS ||
1064 	    bo_mem->mem_type == AMDGPU_PL_OA)
1065 		return -EINVAL;
1066 
1067 	if (!amdgpu_gtt_mgr_has_gart_addr(bo_mem)) {
1068 		gtt->offset = AMDGPU_BO_INVALID_OFFSET;
1069 		return 0;
1070 	}
1071 
1072 	/* compute PTE flags relevant to this BO memory */
1073 	flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem);
1074 
1075 	/* bind pages into GART page tables */
1076 	gtt->offset = (u64)bo_mem->start << PAGE_SHIFT;
1077 	r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
1078 		ttm->pages, gtt->ttm.dma_address, flags);
1079 
1080 	if (r)
1081 		DRM_ERROR("failed to bind %lu pages at 0x%08llX\n",
1082 			  ttm->num_pages, gtt->offset);
1083 	return r;
1084 }
1085 
1086 /**
1087  * amdgpu_ttm_alloc_gart - Allocate GART memory for buffer object
1088  */
1089 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo)
1090 {
1091 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
1092 	struct ttm_operation_ctx ctx = { false, false };
1093 	struct amdgpu_ttm_tt *gtt = (void*)bo->ttm;
1094 	struct ttm_mem_reg tmp;
1095 	struct ttm_placement placement;
1096 	struct ttm_place placements;
1097 	uint64_t addr, flags;
1098 	int r;
1099 
1100 	if (bo->mem.start != AMDGPU_BO_INVALID_OFFSET)
1101 		return 0;
1102 
1103 	addr = amdgpu_gmc_agp_addr(bo);
1104 	if (addr != AMDGPU_BO_INVALID_OFFSET) {
1105 		bo->mem.start = addr >> PAGE_SHIFT;
1106 	} else {
1107 
1108 		/* allocate GART space */
1109 		tmp = bo->mem;
1110 		tmp.mm_node = NULL;
1111 		placement.num_placement = 1;
1112 		placement.placement = &placements;
1113 		placement.num_busy_placement = 1;
1114 		placement.busy_placement = &placements;
1115 		placements.fpfn = 0;
1116 		placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT;
1117 		placements.flags = (bo->mem.placement & ~TTM_PL_MASK_MEM) |
1118 			TTM_PL_FLAG_TT;
1119 
1120 		r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx);
1121 		if (unlikely(r))
1122 			return r;
1123 
1124 		/* compute PTE flags for this buffer object */
1125 		flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, &tmp);
1126 
1127 		/* Bind pages */
1128 		gtt->offset = (u64)tmp.start << PAGE_SHIFT;
1129 		r = amdgpu_ttm_gart_bind(adev, bo, flags);
1130 		if (unlikely(r)) {
1131 			ttm_bo_mem_put(bo, &tmp);
1132 			return r;
1133 		}
1134 
1135 		ttm_bo_mem_put(bo, &bo->mem);
1136 		bo->mem = tmp;
1137 	}
1138 
1139 	bo->offset = (bo->mem.start << PAGE_SHIFT) +
1140 		bo->bdev->man[bo->mem.mem_type].gpu_offset;
1141 
1142 	return 0;
1143 }
1144 
1145 /**
1146  * amdgpu_ttm_recover_gart - Rebind GTT pages
1147  *
1148  * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to
1149  * rebind GTT pages during a GPU reset.
1150  */
1151 int amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo)
1152 {
1153 	struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev);
1154 	uint64_t flags;
1155 	int r;
1156 
1157 	if (!tbo->ttm)
1158 		return 0;
1159 
1160 	flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, &tbo->mem);
1161 	r = amdgpu_ttm_gart_bind(adev, tbo, flags);
1162 
1163 	return r;
1164 }
1165 
1166 /**
1167  * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages
1168  *
1169  * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and
1170  * ttm_tt_destroy().
1171  */
1172 static int amdgpu_ttm_backend_unbind(struct ttm_tt *ttm)
1173 {
1174 	struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1175 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1176 	int r;
1177 
1178 	/* if the pages have userptr pinning then clear that first */
1179 	if (gtt->userptr)
1180 		amdgpu_ttm_tt_unpin_userptr(ttm);
1181 
1182 	if (gtt->offset == AMDGPU_BO_INVALID_OFFSET)
1183 		return 0;
1184 
1185 	/* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */
1186 	r = amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages);
1187 	if (r)
1188 		DRM_ERROR("failed to unbind %lu pages at 0x%08llX\n",
1189 			  gtt->ttm.ttm.num_pages, gtt->offset);
1190 	return r;
1191 }
1192 
1193 static void amdgpu_ttm_backend_destroy(struct ttm_tt *ttm)
1194 {
1195 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1196 
1197 	if (gtt->usertask)
1198 		put_task_struct(gtt->usertask);
1199 
1200 	ttm_dma_tt_fini(&gtt->ttm);
1201 	kfree(gtt);
1202 }
1203 
1204 static struct ttm_backend_func amdgpu_backend_func = {
1205 	.bind = &amdgpu_ttm_backend_bind,
1206 	.unbind = &amdgpu_ttm_backend_unbind,
1207 	.destroy = &amdgpu_ttm_backend_destroy,
1208 };
1209 
1210 /**
1211  * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO
1212  *
1213  * @bo: The buffer object to create a GTT ttm_tt object around
1214  *
1215  * Called by ttm_tt_create().
1216  */
1217 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo,
1218 					   uint32_t page_flags)
1219 {
1220 	struct amdgpu_device *adev;
1221 	struct amdgpu_ttm_tt *gtt;
1222 
1223 	adev = amdgpu_ttm_adev(bo->bdev);
1224 
1225 	gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL);
1226 	if (gtt == NULL) {
1227 		return NULL;
1228 	}
1229 	gtt->ttm.ttm.func = &amdgpu_backend_func;
1230 
1231 	/* allocate space for the uninitialized page entries */
1232 	if (ttm_sg_tt_init(&gtt->ttm, bo, page_flags)) {
1233 		kfree(gtt);
1234 		return NULL;
1235 	}
1236 	return &gtt->ttm.ttm;
1237 }
1238 
1239 /**
1240  * amdgpu_ttm_tt_populate - Map GTT pages visible to the device
1241  *
1242  * Map the pages of a ttm_tt object to an address space visible
1243  * to the underlying device.
1244  */
1245 static int amdgpu_ttm_tt_populate(struct ttm_tt *ttm,
1246 			struct ttm_operation_ctx *ctx)
1247 {
1248 	struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1249 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1250 	bool slave = !!(ttm->page_flags & TTM_PAGE_FLAG_SG);
1251 
1252 	/* user pages are bound by amdgpu_ttm_tt_pin_userptr() */
1253 	if (gtt && gtt->userptr) {
1254 		ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL);
1255 		if (!ttm->sg)
1256 			return -ENOMEM;
1257 
1258 		ttm->page_flags |= TTM_PAGE_FLAG_SG;
1259 		ttm->state = tt_unbound;
1260 		return 0;
1261 	}
1262 
1263 	if (slave && ttm->sg) {
1264 		drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages,
1265 						 gtt->ttm.dma_address,
1266 						 ttm->num_pages);
1267 		ttm->state = tt_unbound;
1268 		return 0;
1269 	}
1270 
1271 #ifdef CONFIG_SWIOTLB
1272 	if (adev->need_swiotlb && swiotlb_nr_tbl()) {
1273 		return ttm_dma_populate(&gtt->ttm, adev->dev, ctx);
1274 	}
1275 #endif
1276 
1277 	/* fall back to generic helper to populate the page array
1278 	 * and map them to the device */
1279 	return ttm_populate_and_map_pages(adev->dev, &gtt->ttm, ctx);
1280 }
1281 
1282 /**
1283  * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays
1284  *
1285  * Unmaps pages of a ttm_tt object from the device address space and
1286  * unpopulates the page array backing it.
1287  */
1288 static void amdgpu_ttm_tt_unpopulate(struct ttm_tt *ttm)
1289 {
1290 	struct amdgpu_device *adev;
1291 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1292 	bool slave = !!(ttm->page_flags & TTM_PAGE_FLAG_SG);
1293 
1294 	if (gtt && gtt->userptr) {
1295 		amdgpu_ttm_tt_set_user_pages(ttm, NULL);
1296 		kfree(ttm->sg);
1297 		ttm->page_flags &= ~TTM_PAGE_FLAG_SG;
1298 		return;
1299 	}
1300 
1301 	if (slave)
1302 		return;
1303 
1304 	adev = amdgpu_ttm_adev(ttm->bdev);
1305 
1306 #ifdef CONFIG_SWIOTLB
1307 	if (adev->need_swiotlb && swiotlb_nr_tbl()) {
1308 		ttm_dma_unpopulate(&gtt->ttm, adev->dev);
1309 		return;
1310 	}
1311 #endif
1312 
1313 	/* fall back to generic helper to unmap and unpopulate array */
1314 	ttm_unmap_and_unpopulate_pages(adev->dev, &gtt->ttm);
1315 }
1316 
1317 /**
1318  * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current
1319  * task
1320  *
1321  * @ttm: The ttm_tt object to bind this userptr object to
1322  * @addr:  The address in the current tasks VM space to use
1323  * @flags: Requirements of userptr object.
1324  *
1325  * Called by amdgpu_gem_userptr_ioctl() to bind userptr pages
1326  * to current task
1327  */
1328 int amdgpu_ttm_tt_set_userptr(struct ttm_tt *ttm, uint64_t addr,
1329 			      uint32_t flags)
1330 {
1331 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1332 
1333 	if (gtt == NULL)
1334 		return -EINVAL;
1335 
1336 	gtt->userptr = addr;
1337 	gtt->userflags = flags;
1338 
1339 	if (gtt->usertask)
1340 		put_task_struct(gtt->usertask);
1341 	gtt->usertask = current->group_leader;
1342 	get_task_struct(gtt->usertask);
1343 
1344 	return 0;
1345 }
1346 
1347 /**
1348  * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object
1349  */
1350 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm)
1351 {
1352 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1353 
1354 	if (gtt == NULL)
1355 		return NULL;
1356 
1357 	if (gtt->usertask == NULL)
1358 		return NULL;
1359 
1360 	return gtt->usertask->mm;
1361 }
1362 
1363 /**
1364  * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an
1365  * address range for the current task.
1366  *
1367  */
1368 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start,
1369 				  unsigned long end)
1370 {
1371 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1372 	unsigned long size;
1373 
1374 	if (gtt == NULL || !gtt->userptr)
1375 		return false;
1376 
1377 	/* Return false if no part of the ttm_tt object lies within
1378 	 * the range
1379 	 */
1380 	size = (unsigned long)gtt->ttm.ttm.num_pages * PAGE_SIZE;
1381 	if (gtt->userptr > end || gtt->userptr + size <= start)
1382 		return false;
1383 
1384 	return true;
1385 }
1386 
1387 /**
1388  * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr?
1389  */
1390 bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm)
1391 {
1392 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1393 
1394 	if (gtt == NULL || !gtt->userptr)
1395 		return false;
1396 
1397 	return true;
1398 }
1399 
1400 /**
1401  * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only?
1402  */
1403 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm)
1404 {
1405 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1406 
1407 	if (gtt == NULL)
1408 		return false;
1409 
1410 	return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1411 }
1412 
1413 /**
1414  * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object
1415  *
1416  * @ttm: The ttm_tt object to compute the flags for
1417  * @mem: The memory registry backing this ttm_tt object
1418  *
1419  * Figure out the flags to use for a VM PDE (Page Directory Entry).
1420  */
1421 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_mem_reg *mem)
1422 {
1423 	uint64_t flags = 0;
1424 
1425 	if (mem && mem->mem_type != TTM_PL_SYSTEM)
1426 		flags |= AMDGPU_PTE_VALID;
1427 
1428 	if (mem && mem->mem_type == TTM_PL_TT) {
1429 		flags |= AMDGPU_PTE_SYSTEM;
1430 
1431 		if (ttm->caching_state == tt_cached)
1432 			flags |= AMDGPU_PTE_SNOOPED;
1433 	}
1434 
1435 	return flags;
1436 }
1437 
1438 /**
1439  * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object
1440  *
1441  * @ttm: The ttm_tt object to compute the flags for
1442  * @mem: The memory registry backing this ttm_tt object
1443 
1444  * Figure out the flags to use for a VM PTE (Page Table Entry).
1445  */
1446 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm,
1447 				 struct ttm_mem_reg *mem)
1448 {
1449 	uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem);
1450 
1451 	flags |= adev->gart.gart_pte_flags;
1452 	flags |= AMDGPU_PTE_READABLE;
1453 
1454 	if (!amdgpu_ttm_tt_is_readonly(ttm))
1455 		flags |= AMDGPU_PTE_WRITEABLE;
1456 
1457 	return flags;
1458 }
1459 
1460 /**
1461  * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer
1462  * object.
1463  *
1464  * Return true if eviction is sensible. Called by ttm_mem_evict_first() on
1465  * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until
1466  * it can find space for a new object and by ttm_bo_force_list_clean() which is
1467  * used to clean out a memory space.
1468  */
1469 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
1470 					    const struct ttm_place *place)
1471 {
1472 	unsigned long num_pages = bo->mem.num_pages;
1473 	struct drm_mm_node *node = bo->mem.mm_node;
1474 	struct dma_resv_list *flist;
1475 	struct dma_fence *f;
1476 	int i;
1477 
1478 	/* Don't evict VM page tables while they are busy, otherwise we can't
1479 	 * cleanly handle page faults.
1480 	 */
1481 	if (bo->type == ttm_bo_type_kernel &&
1482 	    !dma_resv_test_signaled_rcu(bo->base.resv, true))
1483 		return false;
1484 
1485 	/* If bo is a KFD BO, check if the bo belongs to the current process.
1486 	 * If true, then return false as any KFD process needs all its BOs to
1487 	 * be resident to run successfully
1488 	 */
1489 	flist = dma_resv_get_list(bo->base.resv);
1490 	if (flist) {
1491 		for (i = 0; i < flist->shared_count; ++i) {
1492 			f = rcu_dereference_protected(flist->shared[i],
1493 				dma_resv_held(bo->base.resv));
1494 			if (amdkfd_fence_check_mm(f, current->mm))
1495 				return false;
1496 		}
1497 	}
1498 
1499 	switch (bo->mem.mem_type) {
1500 	case TTM_PL_TT:
1501 		return true;
1502 
1503 	case TTM_PL_VRAM:
1504 		/* Check each drm MM node individually */
1505 		while (num_pages) {
1506 			if (place->fpfn < (node->start + node->size) &&
1507 			    !(place->lpfn && place->lpfn <= node->start))
1508 				return true;
1509 
1510 			num_pages -= node->size;
1511 			++node;
1512 		}
1513 		return false;
1514 
1515 	default:
1516 		break;
1517 	}
1518 
1519 	return ttm_bo_eviction_valuable(bo, place);
1520 }
1521 
1522 /**
1523  * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object.
1524  *
1525  * @bo:  The buffer object to read/write
1526  * @offset:  Offset into buffer object
1527  * @buf:  Secondary buffer to write/read from
1528  * @len: Length in bytes of access
1529  * @write:  true if writing
1530  *
1531  * This is used to access VRAM that backs a buffer object via MMIO
1532  * access for debugging purposes.
1533  */
1534 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo,
1535 				    unsigned long offset,
1536 				    void *buf, int len, int write)
1537 {
1538 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1539 	struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1540 	struct drm_mm_node *nodes;
1541 	uint32_t value = 0;
1542 	int ret = 0;
1543 	uint64_t pos;
1544 	unsigned long flags;
1545 
1546 	if (bo->mem.mem_type != TTM_PL_VRAM)
1547 		return -EIO;
1548 
1549 	nodes = amdgpu_find_mm_node(&abo->tbo.mem, &offset);
1550 	pos = (nodes->start << PAGE_SHIFT) + offset;
1551 
1552 	while (len && pos < adev->gmc.mc_vram_size) {
1553 		uint64_t aligned_pos = pos & ~(uint64_t)3;
1554 		uint32_t bytes = 4 - (pos & 3);
1555 		uint32_t shift = (pos & 3) * 8;
1556 		uint32_t mask = 0xffffffff << shift;
1557 
1558 		if (len < bytes) {
1559 			mask &= 0xffffffff >> (bytes - len) * 8;
1560 			bytes = len;
1561 		}
1562 
1563 		spin_lock_irqsave(&adev->mmio_idx_lock, flags);
1564 		WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)aligned_pos) | 0x80000000);
1565 		WREG32_NO_KIQ(mmMM_INDEX_HI, aligned_pos >> 31);
1566 		if (!write || mask != 0xffffffff)
1567 			value = RREG32_NO_KIQ(mmMM_DATA);
1568 		if (write) {
1569 			value &= ~mask;
1570 			value |= (*(uint32_t *)buf << shift) & mask;
1571 			WREG32_NO_KIQ(mmMM_DATA, value);
1572 		}
1573 		spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
1574 		if (!write) {
1575 			value = (value & mask) >> shift;
1576 			memcpy(buf, &value, bytes);
1577 		}
1578 
1579 		ret += bytes;
1580 		buf = (uint8_t *)buf + bytes;
1581 		pos += bytes;
1582 		len -= bytes;
1583 		if (pos >= (nodes->start + nodes->size) << PAGE_SHIFT) {
1584 			++nodes;
1585 			pos = (nodes->start << PAGE_SHIFT);
1586 		}
1587 	}
1588 
1589 	return ret;
1590 }
1591 
1592 static struct ttm_bo_driver amdgpu_bo_driver = {
1593 	.ttm_tt_create = &amdgpu_ttm_tt_create,
1594 	.ttm_tt_populate = &amdgpu_ttm_tt_populate,
1595 	.ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate,
1596 	.invalidate_caches = &amdgpu_invalidate_caches,
1597 	.init_mem_type = &amdgpu_init_mem_type,
1598 	.eviction_valuable = amdgpu_ttm_bo_eviction_valuable,
1599 	.evict_flags = &amdgpu_evict_flags,
1600 	.move = &amdgpu_bo_move,
1601 	.verify_access = &amdgpu_verify_access,
1602 	.move_notify = &amdgpu_bo_move_notify,
1603 	.release_notify = &amdgpu_bo_release_notify,
1604 	.fault_reserve_notify = &amdgpu_bo_fault_reserve_notify,
1605 	.io_mem_reserve = &amdgpu_ttm_io_mem_reserve,
1606 	.io_mem_free = &amdgpu_ttm_io_mem_free,
1607 	.io_mem_pfn = amdgpu_ttm_io_mem_pfn,
1608 	.access_memory = &amdgpu_ttm_access_memory,
1609 	.del_from_lru_notify = &amdgpu_vm_del_from_lru_notify
1610 };
1611 
1612 /*
1613  * Firmware Reservation functions
1614  */
1615 /**
1616  * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram
1617  *
1618  * @adev: amdgpu_device pointer
1619  *
1620  * free fw reserved vram if it has been reserved.
1621  */
1622 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev)
1623 {
1624 	amdgpu_bo_free_kernel(&adev->fw_vram_usage.reserved_bo,
1625 		NULL, &adev->fw_vram_usage.va);
1626 }
1627 
1628 /**
1629  * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw
1630  *
1631  * @adev: amdgpu_device pointer
1632  *
1633  * create bo vram reservation from fw.
1634  */
1635 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev)
1636 {
1637 	struct ttm_operation_ctx ctx = { false, false };
1638 	struct amdgpu_bo_param bp;
1639 	int r = 0;
1640 	int i;
1641 	u64 vram_size = adev->gmc.visible_vram_size;
1642 	u64 offset = adev->fw_vram_usage.start_offset;
1643 	u64 size = adev->fw_vram_usage.size;
1644 	struct amdgpu_bo *bo;
1645 
1646 	memset(&bp, 0, sizeof(bp));
1647 	bp.size = adev->fw_vram_usage.size;
1648 	bp.byte_align = PAGE_SIZE;
1649 	bp.domain = AMDGPU_GEM_DOMAIN_VRAM;
1650 	bp.flags = AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED |
1651 		AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS;
1652 	bp.type = ttm_bo_type_kernel;
1653 	bp.resv = NULL;
1654 	adev->fw_vram_usage.va = NULL;
1655 	adev->fw_vram_usage.reserved_bo = NULL;
1656 
1657 	if (adev->fw_vram_usage.size > 0 &&
1658 		adev->fw_vram_usage.size <= vram_size) {
1659 
1660 		r = amdgpu_bo_create(adev, &bp,
1661 				     &adev->fw_vram_usage.reserved_bo);
1662 		if (r)
1663 			goto error_create;
1664 
1665 		r = amdgpu_bo_reserve(adev->fw_vram_usage.reserved_bo, false);
1666 		if (r)
1667 			goto error_reserve;
1668 
1669 		/* remove the original mem node and create a new one at the
1670 		 * request position
1671 		 */
1672 		bo = adev->fw_vram_usage.reserved_bo;
1673 		offset = ALIGN(offset, PAGE_SIZE);
1674 		for (i = 0; i < bo->placement.num_placement; ++i) {
1675 			bo->placements[i].fpfn = offset >> PAGE_SHIFT;
1676 			bo->placements[i].lpfn = (offset + size) >> PAGE_SHIFT;
1677 		}
1678 
1679 		ttm_bo_mem_put(&bo->tbo, &bo->tbo.mem);
1680 		r = ttm_bo_mem_space(&bo->tbo, &bo->placement,
1681 				     &bo->tbo.mem, &ctx);
1682 		if (r)
1683 			goto error_pin;
1684 
1685 		r = amdgpu_bo_pin_restricted(adev->fw_vram_usage.reserved_bo,
1686 			AMDGPU_GEM_DOMAIN_VRAM,
1687 			adev->fw_vram_usage.start_offset,
1688 			(adev->fw_vram_usage.start_offset +
1689 			adev->fw_vram_usage.size));
1690 		if (r)
1691 			goto error_pin;
1692 		r = amdgpu_bo_kmap(adev->fw_vram_usage.reserved_bo,
1693 			&adev->fw_vram_usage.va);
1694 		if (r)
1695 			goto error_kmap;
1696 
1697 		amdgpu_bo_unreserve(adev->fw_vram_usage.reserved_bo);
1698 	}
1699 	return r;
1700 
1701 error_kmap:
1702 	amdgpu_bo_unpin(adev->fw_vram_usage.reserved_bo);
1703 error_pin:
1704 	amdgpu_bo_unreserve(adev->fw_vram_usage.reserved_bo);
1705 error_reserve:
1706 	amdgpu_bo_unref(&adev->fw_vram_usage.reserved_bo);
1707 error_create:
1708 	adev->fw_vram_usage.va = NULL;
1709 	adev->fw_vram_usage.reserved_bo = NULL;
1710 	return r;
1711 }
1712 /**
1713  * amdgpu_ttm_init - Init the memory management (ttm) as well as various
1714  * gtt/vram related fields.
1715  *
1716  * This initializes all of the memory space pools that the TTM layer
1717  * will need such as the GTT space (system memory mapped to the device),
1718  * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which
1719  * can be mapped per VMID.
1720  */
1721 int amdgpu_ttm_init(struct amdgpu_device *adev)
1722 {
1723 	uint64_t gtt_size;
1724 	int r;
1725 	u64 vis_vram_limit;
1726 	void *stolen_vga_buf;
1727 
1728 	mutex_init(&adev->mman.gtt_window_lock);
1729 
1730 	/* No others user of address space so set it to 0 */
1731 	r = ttm_bo_device_init(&adev->mman.bdev,
1732 			       &amdgpu_bo_driver,
1733 			       adev->ddev->anon_inode->i_mapping,
1734 			       dma_addressing_limited(adev->dev));
1735 	if (r) {
1736 		DRM_ERROR("failed initializing buffer object driver(%d).\n", r);
1737 		return r;
1738 	}
1739 	adev->mman.initialized = true;
1740 
1741 	/* We opt to avoid OOM on system pages allocations */
1742 	adev->mman.bdev.no_retry = true;
1743 
1744 	/* Initialize VRAM pool with all of VRAM divided into pages */
1745 	r = ttm_bo_init_mm(&adev->mman.bdev, TTM_PL_VRAM,
1746 				adev->gmc.real_vram_size >> PAGE_SHIFT);
1747 	if (r) {
1748 		DRM_ERROR("Failed initializing VRAM heap.\n");
1749 		return r;
1750 	}
1751 
1752 	/* Reduce size of CPU-visible VRAM if requested */
1753 	vis_vram_limit = (u64)amdgpu_vis_vram_limit * 1024 * 1024;
1754 	if (amdgpu_vis_vram_limit > 0 &&
1755 	    vis_vram_limit <= adev->gmc.visible_vram_size)
1756 		adev->gmc.visible_vram_size = vis_vram_limit;
1757 
1758 	/* Change the size here instead of the init above so only lpfn is affected */
1759 	amdgpu_ttm_set_buffer_funcs_status(adev, false);
1760 #ifdef CONFIG_64BIT
1761 	adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base,
1762 						adev->gmc.visible_vram_size);
1763 #endif
1764 
1765 	/*
1766 	 *The reserved vram for firmware must be pinned to the specified
1767 	 *place on the VRAM, so reserve it early.
1768 	 */
1769 	r = amdgpu_ttm_fw_reserve_vram_init(adev);
1770 	if (r) {
1771 		return r;
1772 	}
1773 
1774 	/* allocate memory as required for VGA
1775 	 * This is used for VGA emulation and pre-OS scanout buffers to
1776 	 * avoid display artifacts while transitioning between pre-OS
1777 	 * and driver.  */
1778 	r = amdgpu_bo_create_kernel(adev, adev->gmc.stolen_size, PAGE_SIZE,
1779 				    AMDGPU_GEM_DOMAIN_VRAM,
1780 				    &adev->stolen_vga_memory,
1781 				    NULL, &stolen_vga_buf);
1782 	if (r)
1783 		return r;
1784 	DRM_INFO("amdgpu: %uM of VRAM memory ready\n",
1785 		 (unsigned) (adev->gmc.real_vram_size / (1024 * 1024)));
1786 
1787 	/* Compute GTT size, either bsaed on 3/4th the size of RAM size
1788 	 * or whatever the user passed on module init */
1789 	if (amdgpu_gtt_size == -1) {
1790 		struct sysinfo si;
1791 
1792 		si_meminfo(&si);
1793 		gtt_size = min(max((AMDGPU_DEFAULT_GTT_SIZE_MB << 20),
1794 			       adev->gmc.mc_vram_size),
1795 			       ((uint64_t)si.totalram * si.mem_unit * 3/4));
1796 	}
1797 	else
1798 		gtt_size = (uint64_t)amdgpu_gtt_size << 20;
1799 
1800 	/* Initialize GTT memory pool */
1801 	r = ttm_bo_init_mm(&adev->mman.bdev, TTM_PL_TT, gtt_size >> PAGE_SHIFT);
1802 	if (r) {
1803 		DRM_ERROR("Failed initializing GTT heap.\n");
1804 		return r;
1805 	}
1806 	DRM_INFO("amdgpu: %uM of GTT memory ready.\n",
1807 		 (unsigned)(gtt_size / (1024 * 1024)));
1808 
1809 	/* Initialize various on-chip memory pools */
1810 	r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_GDS,
1811 			   adev->gds.gds_size);
1812 	if (r) {
1813 		DRM_ERROR("Failed initializing GDS heap.\n");
1814 		return r;
1815 	}
1816 
1817 	r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_GWS,
1818 			   adev->gds.gws_size);
1819 	if (r) {
1820 		DRM_ERROR("Failed initializing gws heap.\n");
1821 		return r;
1822 	}
1823 
1824 	r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_OA,
1825 			   adev->gds.oa_size);
1826 	if (r) {
1827 		DRM_ERROR("Failed initializing oa heap.\n");
1828 		return r;
1829 	}
1830 
1831 	/* Register debugfs entries for amdgpu_ttm */
1832 	r = amdgpu_ttm_debugfs_init(adev);
1833 	if (r) {
1834 		DRM_ERROR("Failed to init debugfs\n");
1835 		return r;
1836 	}
1837 	return 0;
1838 }
1839 
1840 /**
1841  * amdgpu_ttm_late_init - Handle any late initialization for amdgpu_ttm
1842  */
1843 void amdgpu_ttm_late_init(struct amdgpu_device *adev)
1844 {
1845 	void *stolen_vga_buf;
1846 	/* return the VGA stolen memory (if any) back to VRAM */
1847 	amdgpu_bo_free_kernel(&adev->stolen_vga_memory, NULL, &stolen_vga_buf);
1848 }
1849 
1850 /**
1851  * amdgpu_ttm_fini - De-initialize the TTM memory pools
1852  */
1853 void amdgpu_ttm_fini(struct amdgpu_device *adev)
1854 {
1855 	if (!adev->mman.initialized)
1856 		return;
1857 
1858 	amdgpu_ttm_debugfs_fini(adev);
1859 	amdgpu_ttm_fw_reserve_vram_fini(adev);
1860 	if (adev->mman.aper_base_kaddr)
1861 		iounmap(adev->mman.aper_base_kaddr);
1862 	adev->mman.aper_base_kaddr = NULL;
1863 
1864 	ttm_bo_clean_mm(&adev->mman.bdev, TTM_PL_VRAM);
1865 	ttm_bo_clean_mm(&adev->mman.bdev, TTM_PL_TT);
1866 	ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_GDS);
1867 	ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_GWS);
1868 	ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_OA);
1869 	ttm_bo_device_release(&adev->mman.bdev);
1870 	adev->mman.initialized = false;
1871 	DRM_INFO("amdgpu: ttm finalized\n");
1872 }
1873 
1874 /**
1875  * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions
1876  *
1877  * @adev: amdgpu_device pointer
1878  * @enable: true when we can use buffer functions.
1879  *
1880  * Enable/disable use of buffer functions during suspend/resume. This should
1881  * only be called at bootup or when userspace isn't running.
1882  */
1883 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable)
1884 {
1885 	struct ttm_mem_type_manager *man = &adev->mman.bdev.man[TTM_PL_VRAM];
1886 	uint64_t size;
1887 	int r;
1888 
1889 	if (!adev->mman.initialized || adev->in_gpu_reset ||
1890 	    adev->mman.buffer_funcs_enabled == enable)
1891 		return;
1892 
1893 	if (enable) {
1894 		struct amdgpu_ring *ring;
1895 		struct drm_sched_rq *rq;
1896 
1897 		ring = adev->mman.buffer_funcs_ring;
1898 		rq = &ring->sched.sched_rq[DRM_SCHED_PRIORITY_KERNEL];
1899 		r = drm_sched_entity_init(&adev->mman.entity, &rq, 1, NULL);
1900 		if (r) {
1901 			DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
1902 				  r);
1903 			return;
1904 		}
1905 	} else {
1906 		drm_sched_entity_destroy(&adev->mman.entity);
1907 		dma_fence_put(man->move);
1908 		man->move = NULL;
1909 	}
1910 
1911 	/* this just adjusts TTM size idea, which sets lpfn to the correct value */
1912 	if (enable)
1913 		size = adev->gmc.real_vram_size;
1914 	else
1915 		size = adev->gmc.visible_vram_size;
1916 	man->size = size >> PAGE_SHIFT;
1917 	adev->mman.buffer_funcs_enabled = enable;
1918 }
1919 
1920 int amdgpu_mmap(struct file *filp, struct vm_area_struct *vma)
1921 {
1922 	struct drm_file *file_priv = filp->private_data;
1923 	struct amdgpu_device *adev = file_priv->minor->dev->dev_private;
1924 
1925 	if (adev == NULL)
1926 		return -EINVAL;
1927 
1928 	return ttm_bo_mmap(filp, vma, &adev->mman.bdev);
1929 }
1930 
1931 static int amdgpu_map_buffer(struct ttm_buffer_object *bo,
1932 			     struct ttm_mem_reg *mem, unsigned num_pages,
1933 			     uint64_t offset, unsigned window,
1934 			     struct amdgpu_ring *ring,
1935 			     uint64_t *addr)
1936 {
1937 	struct amdgpu_ttm_tt *gtt = (void *)bo->ttm;
1938 	struct amdgpu_device *adev = ring->adev;
1939 	struct ttm_tt *ttm = bo->ttm;
1940 	struct amdgpu_job *job;
1941 	unsigned num_dw, num_bytes;
1942 	dma_addr_t *dma_address;
1943 	struct dma_fence *fence;
1944 	uint64_t src_addr, dst_addr;
1945 	uint64_t flags;
1946 	int r;
1947 
1948 	BUG_ON(adev->mman.buffer_funcs->copy_max_bytes <
1949 	       AMDGPU_GTT_MAX_TRANSFER_SIZE * 8);
1950 
1951 	*addr = adev->gmc.gart_start;
1952 	*addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE *
1953 		AMDGPU_GPU_PAGE_SIZE;
1954 
1955 	num_dw = adev->mman.buffer_funcs->copy_num_dw;
1956 	while (num_dw & 0x7)
1957 		num_dw++;
1958 
1959 	num_bytes = num_pages * 8;
1960 
1961 	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4 + num_bytes, &job);
1962 	if (r)
1963 		return r;
1964 
1965 	src_addr = num_dw * 4;
1966 	src_addr += job->ibs[0].gpu_addr;
1967 
1968 	dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo);
1969 	dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8;
1970 	amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr,
1971 				dst_addr, num_bytes);
1972 
1973 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
1974 	WARN_ON(job->ibs[0].length_dw > num_dw);
1975 
1976 	dma_address = &gtt->ttm.dma_address[offset >> PAGE_SHIFT];
1977 	flags = amdgpu_ttm_tt_pte_flags(adev, ttm, mem);
1978 	r = amdgpu_gart_map(adev, 0, num_pages, dma_address, flags,
1979 			    &job->ibs[0].ptr[num_dw]);
1980 	if (r)
1981 		goto error_free;
1982 
1983 	r = amdgpu_job_submit(job, &adev->mman.entity,
1984 			      AMDGPU_FENCE_OWNER_UNDEFINED, &fence);
1985 	if (r)
1986 		goto error_free;
1987 
1988 	dma_fence_put(fence);
1989 
1990 	return r;
1991 
1992 error_free:
1993 	amdgpu_job_free(job);
1994 	return r;
1995 }
1996 
1997 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset,
1998 		       uint64_t dst_offset, uint32_t byte_count,
1999 		       struct dma_resv *resv,
2000 		       struct dma_fence **fence, bool direct_submit,
2001 		       bool vm_needs_flush)
2002 {
2003 	struct amdgpu_device *adev = ring->adev;
2004 	struct amdgpu_job *job;
2005 
2006 	uint32_t max_bytes;
2007 	unsigned num_loops, num_dw;
2008 	unsigned i;
2009 	int r;
2010 
2011 	if (direct_submit && !ring->sched.ready) {
2012 		DRM_ERROR("Trying to move memory with ring turned off.\n");
2013 		return -EINVAL;
2014 	}
2015 
2016 	max_bytes = adev->mman.buffer_funcs->copy_max_bytes;
2017 	num_loops = DIV_ROUND_UP(byte_count, max_bytes);
2018 	num_dw = num_loops * adev->mman.buffer_funcs->copy_num_dw;
2019 
2020 	/* for IB padding */
2021 	while (num_dw & 0x7)
2022 		num_dw++;
2023 
2024 	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, &job);
2025 	if (r)
2026 		return r;
2027 
2028 	if (vm_needs_flush) {
2029 		job->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gart.bo);
2030 		job->vm_needs_flush = true;
2031 	}
2032 	if (resv) {
2033 		r = amdgpu_sync_resv(adev, &job->sync, resv,
2034 				     AMDGPU_FENCE_OWNER_UNDEFINED,
2035 				     false);
2036 		if (r) {
2037 			DRM_ERROR("sync failed (%d).\n", r);
2038 			goto error_free;
2039 		}
2040 	}
2041 
2042 	for (i = 0; i < num_loops; i++) {
2043 		uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
2044 
2045 		amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset,
2046 					dst_offset, cur_size_in_bytes);
2047 
2048 		src_offset += cur_size_in_bytes;
2049 		dst_offset += cur_size_in_bytes;
2050 		byte_count -= cur_size_in_bytes;
2051 	}
2052 
2053 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2054 	WARN_ON(job->ibs[0].length_dw > num_dw);
2055 	if (direct_submit)
2056 		r = amdgpu_job_submit_direct(job, ring, fence);
2057 	else
2058 		r = amdgpu_job_submit(job, &adev->mman.entity,
2059 				      AMDGPU_FENCE_OWNER_UNDEFINED, fence);
2060 	if (r)
2061 		goto error_free;
2062 
2063 	return r;
2064 
2065 error_free:
2066 	amdgpu_job_free(job);
2067 	DRM_ERROR("Error scheduling IBs (%d)\n", r);
2068 	return r;
2069 }
2070 
2071 int amdgpu_fill_buffer(struct amdgpu_bo *bo,
2072 		       uint32_t src_data,
2073 		       struct dma_resv *resv,
2074 		       struct dma_fence **fence)
2075 {
2076 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
2077 	uint32_t max_bytes = adev->mman.buffer_funcs->fill_max_bytes;
2078 	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
2079 
2080 	struct drm_mm_node *mm_node;
2081 	unsigned long num_pages;
2082 	unsigned int num_loops, num_dw;
2083 
2084 	struct amdgpu_job *job;
2085 	int r;
2086 
2087 	if (!adev->mman.buffer_funcs_enabled) {
2088 		DRM_ERROR("Trying to clear memory with ring turned off.\n");
2089 		return -EINVAL;
2090 	}
2091 
2092 	if (bo->tbo.mem.mem_type == TTM_PL_TT) {
2093 		r = amdgpu_ttm_alloc_gart(&bo->tbo);
2094 		if (r)
2095 			return r;
2096 	}
2097 
2098 	num_pages = bo->tbo.num_pages;
2099 	mm_node = bo->tbo.mem.mm_node;
2100 	num_loops = 0;
2101 	while (num_pages) {
2102 		uint64_t byte_count = mm_node->size << PAGE_SHIFT;
2103 
2104 		num_loops += DIV_ROUND_UP_ULL(byte_count, max_bytes);
2105 		num_pages -= mm_node->size;
2106 		++mm_node;
2107 	}
2108 	num_dw = num_loops * adev->mman.buffer_funcs->fill_num_dw;
2109 
2110 	/* for IB padding */
2111 	num_dw += 64;
2112 
2113 	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, &job);
2114 	if (r)
2115 		return r;
2116 
2117 	if (resv) {
2118 		r = amdgpu_sync_resv(adev, &job->sync, resv,
2119 				     AMDGPU_FENCE_OWNER_UNDEFINED, false);
2120 		if (r) {
2121 			DRM_ERROR("sync failed (%d).\n", r);
2122 			goto error_free;
2123 		}
2124 	}
2125 
2126 	num_pages = bo->tbo.num_pages;
2127 	mm_node = bo->tbo.mem.mm_node;
2128 
2129 	while (num_pages) {
2130 		uint64_t byte_count = mm_node->size << PAGE_SHIFT;
2131 		uint64_t dst_addr;
2132 
2133 		dst_addr = amdgpu_mm_node_addr(&bo->tbo, mm_node, &bo->tbo.mem);
2134 		while (byte_count) {
2135 			uint32_t cur_size_in_bytes = min_t(uint64_t, byte_count,
2136 							   max_bytes);
2137 
2138 			amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data,
2139 						dst_addr, cur_size_in_bytes);
2140 
2141 			dst_addr += cur_size_in_bytes;
2142 			byte_count -= cur_size_in_bytes;
2143 		}
2144 
2145 		num_pages -= mm_node->size;
2146 		++mm_node;
2147 	}
2148 
2149 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2150 	WARN_ON(job->ibs[0].length_dw > num_dw);
2151 	r = amdgpu_job_submit(job, &adev->mman.entity,
2152 			      AMDGPU_FENCE_OWNER_UNDEFINED, fence);
2153 	if (r)
2154 		goto error_free;
2155 
2156 	return 0;
2157 
2158 error_free:
2159 	amdgpu_job_free(job);
2160 	return r;
2161 }
2162 
2163 #if defined(CONFIG_DEBUG_FS)
2164 
2165 static int amdgpu_mm_dump_table(struct seq_file *m, void *data)
2166 {
2167 	struct drm_info_node *node = (struct drm_info_node *)m->private;
2168 	unsigned ttm_pl = (uintptr_t)node->info_ent->data;
2169 	struct drm_device *dev = node->minor->dev;
2170 	struct amdgpu_device *adev = dev->dev_private;
2171 	struct ttm_mem_type_manager *man = &adev->mman.bdev.man[ttm_pl];
2172 	struct drm_printer p = drm_seq_file_printer(m);
2173 
2174 	man->func->debug(man, &p);
2175 	return 0;
2176 }
2177 
2178 static const struct drm_info_list amdgpu_ttm_debugfs_list[] = {
2179 	{"amdgpu_vram_mm", amdgpu_mm_dump_table, 0, (void *)TTM_PL_VRAM},
2180 	{"amdgpu_gtt_mm", amdgpu_mm_dump_table, 0, (void *)TTM_PL_TT},
2181 	{"amdgpu_gds_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_GDS},
2182 	{"amdgpu_gws_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_GWS},
2183 	{"amdgpu_oa_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_OA},
2184 	{"ttm_page_pool", ttm_page_alloc_debugfs, 0, NULL},
2185 #ifdef CONFIG_SWIOTLB
2186 	{"ttm_dma_page_pool", ttm_dma_page_alloc_debugfs, 0, NULL}
2187 #endif
2188 };
2189 
2190 /**
2191  * amdgpu_ttm_vram_read - Linear read access to VRAM
2192  *
2193  * Accesses VRAM via MMIO for debugging purposes.
2194  */
2195 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf,
2196 				    size_t size, loff_t *pos)
2197 {
2198 	struct amdgpu_device *adev = file_inode(f)->i_private;
2199 	ssize_t result = 0;
2200 	int r;
2201 
2202 	if (size & 0x3 || *pos & 0x3)
2203 		return -EINVAL;
2204 
2205 	if (*pos >= adev->gmc.mc_vram_size)
2206 		return -ENXIO;
2207 
2208 	while (size) {
2209 		unsigned long flags;
2210 		uint32_t value;
2211 
2212 		if (*pos >= adev->gmc.mc_vram_size)
2213 			return result;
2214 
2215 		spin_lock_irqsave(&adev->mmio_idx_lock, flags);
2216 		WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)*pos) | 0x80000000);
2217 		WREG32_NO_KIQ(mmMM_INDEX_HI, *pos >> 31);
2218 		value = RREG32_NO_KIQ(mmMM_DATA);
2219 		spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
2220 
2221 		r = put_user(value, (uint32_t *)buf);
2222 		if (r)
2223 			return r;
2224 
2225 		result += 4;
2226 		buf += 4;
2227 		*pos += 4;
2228 		size -= 4;
2229 	}
2230 
2231 	return result;
2232 }
2233 
2234 /**
2235  * amdgpu_ttm_vram_write - Linear write access to VRAM
2236  *
2237  * Accesses VRAM via MMIO for debugging purposes.
2238  */
2239 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf,
2240 				    size_t size, loff_t *pos)
2241 {
2242 	struct amdgpu_device *adev = file_inode(f)->i_private;
2243 	ssize_t result = 0;
2244 	int r;
2245 
2246 	if (size & 0x3 || *pos & 0x3)
2247 		return -EINVAL;
2248 
2249 	if (*pos >= adev->gmc.mc_vram_size)
2250 		return -ENXIO;
2251 
2252 	while (size) {
2253 		unsigned long flags;
2254 		uint32_t value;
2255 
2256 		if (*pos >= adev->gmc.mc_vram_size)
2257 			return result;
2258 
2259 		r = get_user(value, (uint32_t *)buf);
2260 		if (r)
2261 			return r;
2262 
2263 		spin_lock_irqsave(&adev->mmio_idx_lock, flags);
2264 		WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)*pos) | 0x80000000);
2265 		WREG32_NO_KIQ(mmMM_INDEX_HI, *pos >> 31);
2266 		WREG32_NO_KIQ(mmMM_DATA, value);
2267 		spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
2268 
2269 		result += 4;
2270 		buf += 4;
2271 		*pos += 4;
2272 		size -= 4;
2273 	}
2274 
2275 	return result;
2276 }
2277 
2278 static const struct file_operations amdgpu_ttm_vram_fops = {
2279 	.owner = THIS_MODULE,
2280 	.read = amdgpu_ttm_vram_read,
2281 	.write = amdgpu_ttm_vram_write,
2282 	.llseek = default_llseek,
2283 };
2284 
2285 #ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS
2286 
2287 /**
2288  * amdgpu_ttm_gtt_read - Linear read access to GTT memory
2289  */
2290 static ssize_t amdgpu_ttm_gtt_read(struct file *f, char __user *buf,
2291 				   size_t size, loff_t *pos)
2292 {
2293 	struct amdgpu_device *adev = file_inode(f)->i_private;
2294 	ssize_t result = 0;
2295 	int r;
2296 
2297 	while (size) {
2298 		loff_t p = *pos / PAGE_SIZE;
2299 		unsigned off = *pos & ~PAGE_MASK;
2300 		size_t cur_size = min_t(size_t, size, PAGE_SIZE - off);
2301 		struct page *page;
2302 		void *ptr;
2303 
2304 		if (p >= adev->gart.num_cpu_pages)
2305 			return result;
2306 
2307 		page = adev->gart.pages[p];
2308 		if (page) {
2309 			ptr = kmap(page);
2310 			ptr += off;
2311 
2312 			r = copy_to_user(buf, ptr, cur_size);
2313 			kunmap(adev->gart.pages[p]);
2314 		} else
2315 			r = clear_user(buf, cur_size);
2316 
2317 		if (r)
2318 			return -EFAULT;
2319 
2320 		result += cur_size;
2321 		buf += cur_size;
2322 		*pos += cur_size;
2323 		size -= cur_size;
2324 	}
2325 
2326 	return result;
2327 }
2328 
2329 static const struct file_operations amdgpu_ttm_gtt_fops = {
2330 	.owner = THIS_MODULE,
2331 	.read = amdgpu_ttm_gtt_read,
2332 	.llseek = default_llseek
2333 };
2334 
2335 #endif
2336 
2337 /**
2338  * amdgpu_iomem_read - Virtual read access to GPU mapped memory
2339  *
2340  * This function is used to read memory that has been mapped to the
2341  * GPU and the known addresses are not physical addresses but instead
2342  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2343  */
2344 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf,
2345 				 size_t size, loff_t *pos)
2346 {
2347 	struct amdgpu_device *adev = file_inode(f)->i_private;
2348 	struct iommu_domain *dom;
2349 	ssize_t result = 0;
2350 	int r;
2351 
2352 	/* retrieve the IOMMU domain if any for this device */
2353 	dom = iommu_get_domain_for_dev(adev->dev);
2354 
2355 	while (size) {
2356 		phys_addr_t addr = *pos & PAGE_MASK;
2357 		loff_t off = *pos & ~PAGE_MASK;
2358 		size_t bytes = PAGE_SIZE - off;
2359 		unsigned long pfn;
2360 		struct page *p;
2361 		void *ptr;
2362 
2363 		bytes = bytes < size ? bytes : size;
2364 
2365 		/* Translate the bus address to a physical address.  If
2366 		 * the domain is NULL it means there is no IOMMU active
2367 		 * and the address translation is the identity
2368 		 */
2369 		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2370 
2371 		pfn = addr >> PAGE_SHIFT;
2372 		if (!pfn_valid(pfn))
2373 			return -EPERM;
2374 
2375 		p = pfn_to_page(pfn);
2376 		if (p->mapping != adev->mman.bdev.dev_mapping)
2377 			return -EPERM;
2378 
2379 		ptr = kmap(p);
2380 		r = copy_to_user(buf, ptr + off, bytes);
2381 		kunmap(p);
2382 		if (r)
2383 			return -EFAULT;
2384 
2385 		size -= bytes;
2386 		*pos += bytes;
2387 		result += bytes;
2388 	}
2389 
2390 	return result;
2391 }
2392 
2393 /**
2394  * amdgpu_iomem_write - Virtual write access to GPU mapped memory
2395  *
2396  * This function is used to write memory that has been mapped to the
2397  * GPU and the known addresses are not physical addresses but instead
2398  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2399  */
2400 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf,
2401 				 size_t size, loff_t *pos)
2402 {
2403 	struct amdgpu_device *adev = file_inode(f)->i_private;
2404 	struct iommu_domain *dom;
2405 	ssize_t result = 0;
2406 	int r;
2407 
2408 	dom = iommu_get_domain_for_dev(adev->dev);
2409 
2410 	while (size) {
2411 		phys_addr_t addr = *pos & PAGE_MASK;
2412 		loff_t off = *pos & ~PAGE_MASK;
2413 		size_t bytes = PAGE_SIZE - off;
2414 		unsigned long pfn;
2415 		struct page *p;
2416 		void *ptr;
2417 
2418 		bytes = bytes < size ? bytes : size;
2419 
2420 		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2421 
2422 		pfn = addr >> PAGE_SHIFT;
2423 		if (!pfn_valid(pfn))
2424 			return -EPERM;
2425 
2426 		p = pfn_to_page(pfn);
2427 		if (p->mapping != adev->mman.bdev.dev_mapping)
2428 			return -EPERM;
2429 
2430 		ptr = kmap(p);
2431 		r = copy_from_user(ptr + off, buf, bytes);
2432 		kunmap(p);
2433 		if (r)
2434 			return -EFAULT;
2435 
2436 		size -= bytes;
2437 		*pos += bytes;
2438 		result += bytes;
2439 	}
2440 
2441 	return result;
2442 }
2443 
2444 static const struct file_operations amdgpu_ttm_iomem_fops = {
2445 	.owner = THIS_MODULE,
2446 	.read = amdgpu_iomem_read,
2447 	.write = amdgpu_iomem_write,
2448 	.llseek = default_llseek
2449 };
2450 
2451 static const struct {
2452 	char *name;
2453 	const struct file_operations *fops;
2454 	int domain;
2455 } ttm_debugfs_entries[] = {
2456 	{ "amdgpu_vram", &amdgpu_ttm_vram_fops, TTM_PL_VRAM },
2457 #ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS
2458 	{ "amdgpu_gtt", &amdgpu_ttm_gtt_fops, TTM_PL_TT },
2459 #endif
2460 	{ "amdgpu_iomem", &amdgpu_ttm_iomem_fops, TTM_PL_SYSTEM },
2461 };
2462 
2463 #endif
2464 
2465 static int amdgpu_ttm_debugfs_init(struct amdgpu_device *adev)
2466 {
2467 #if defined(CONFIG_DEBUG_FS)
2468 	unsigned count;
2469 
2470 	struct drm_minor *minor = adev->ddev->primary;
2471 	struct dentry *ent, *root = minor->debugfs_root;
2472 
2473 	for (count = 0; count < ARRAY_SIZE(ttm_debugfs_entries); count++) {
2474 		ent = debugfs_create_file(
2475 				ttm_debugfs_entries[count].name,
2476 				S_IFREG | S_IRUGO, root,
2477 				adev,
2478 				ttm_debugfs_entries[count].fops);
2479 		if (IS_ERR(ent))
2480 			return PTR_ERR(ent);
2481 		if (ttm_debugfs_entries[count].domain == TTM_PL_VRAM)
2482 			i_size_write(ent->d_inode, adev->gmc.mc_vram_size);
2483 		else if (ttm_debugfs_entries[count].domain == TTM_PL_TT)
2484 			i_size_write(ent->d_inode, adev->gmc.gart_size);
2485 		adev->mman.debugfs_entries[count] = ent;
2486 	}
2487 
2488 	count = ARRAY_SIZE(amdgpu_ttm_debugfs_list);
2489 
2490 #ifdef CONFIG_SWIOTLB
2491 	if (!(adev->need_swiotlb && swiotlb_nr_tbl()))
2492 		--count;
2493 #endif
2494 
2495 	return amdgpu_debugfs_add_files(adev, amdgpu_ttm_debugfs_list, count);
2496 #else
2497 	return 0;
2498 #endif
2499 }
2500 
2501 static void amdgpu_ttm_debugfs_fini(struct amdgpu_device *adev)
2502 {
2503 #if defined(CONFIG_DEBUG_FS)
2504 	unsigned i;
2505 
2506 	for (i = 0; i < ARRAY_SIZE(ttm_debugfs_entries); i++)
2507 		debugfs_remove(adev->mman.debugfs_entries[i]);
2508 #endif
2509 }
2510