xref: /linux/drivers/gpu/drm/amd/amdgpu/amdgpu_ttm.c (revision e91c37f1)
1 /*
2  * Copyright 2009 Jerome Glisse.
3  * All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the
7  * "Software"), to deal in the Software without restriction, including
8  * without limitation the rights to use, copy, modify, merge, publish,
9  * distribute, sub license, and/or sell copies of the Software, and to
10  * permit persons to whom the Software is furnished to do so, subject to
11  * the following conditions:
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19  * USE OR OTHER DEALINGS IN THE SOFTWARE.
20  *
21  * The above copyright notice and this permission notice (including the
22  * next paragraph) shall be included in all copies or substantial portions
23  * of the Software.
24  *
25  */
26 /*
27  * Authors:
28  *    Jerome Glisse <glisse@freedesktop.org>
29  *    Thomas Hellstrom <thomas-at-tungstengraphics-dot-com>
30  *    Dave Airlie
31  */
32 
33 #include <linux/dma-mapping.h>
34 #include <linux/iommu.h>
35 #include <linux/pagemap.h>
36 #include <linux/sched/task.h>
37 #include <linux/sched/mm.h>
38 #include <linux/seq_file.h>
39 #include <linux/slab.h>
40 #include <linux/swap.h>
41 #include <linux/dma-buf.h>
42 #include <linux/sizes.h>
43 #include <linux/module.h>
44 
45 #include <drm/drm_drv.h>
46 #include <drm/ttm/ttm_bo.h>
47 #include <drm/ttm/ttm_placement.h>
48 #include <drm/ttm/ttm_range_manager.h>
49 #include <drm/ttm/ttm_tt.h>
50 
51 #include <drm/amdgpu_drm.h>
52 
53 #include "amdgpu.h"
54 #include "amdgpu_object.h"
55 #include "amdgpu_trace.h"
56 #include "amdgpu_amdkfd.h"
57 #include "amdgpu_sdma.h"
58 #include "amdgpu_ras.h"
59 #include "amdgpu_hmm.h"
60 #include "amdgpu_atomfirmware.h"
61 #include "amdgpu_res_cursor.h"
62 #include "bif/bif_4_1_d.h"
63 
64 MODULE_IMPORT_NS(DMA_BUF);
65 
66 #define AMDGPU_TTM_VRAM_MAX_DW_READ	((size_t)128)
67 
68 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
69 				   struct ttm_tt *ttm,
70 				   struct ttm_resource *bo_mem);
71 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
72 				      struct ttm_tt *ttm);
73 
74 static int amdgpu_ttm_init_on_chip(struct amdgpu_device *adev,
75 				    unsigned int type,
76 				    uint64_t size_in_page)
77 {
78 	return ttm_range_man_init(&adev->mman.bdev, type,
79 				  false, size_in_page);
80 }
81 
82 /**
83  * amdgpu_evict_flags - Compute placement flags
84  *
85  * @bo: The buffer object to evict
86  * @placement: Possible destination(s) for evicted BO
87  *
88  * Fill in placement data when ttm_bo_evict() is called
89  */
90 static void amdgpu_evict_flags(struct ttm_buffer_object *bo,
91 				struct ttm_placement *placement)
92 {
93 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
94 	struct amdgpu_bo *abo;
95 	static const struct ttm_place placements = {
96 		.fpfn = 0,
97 		.lpfn = 0,
98 		.mem_type = TTM_PL_SYSTEM,
99 		.flags = 0
100 	};
101 
102 	/* Don't handle scatter gather BOs */
103 	if (bo->type == ttm_bo_type_sg) {
104 		placement->num_placement = 0;
105 		return;
106 	}
107 
108 	/* Object isn't an AMDGPU object so ignore */
109 	if (!amdgpu_bo_is_amdgpu_bo(bo)) {
110 		placement->placement = &placements;
111 		placement->num_placement = 1;
112 		return;
113 	}
114 
115 	abo = ttm_to_amdgpu_bo(bo);
116 	if (abo->flags & AMDGPU_GEM_CREATE_DISCARDABLE) {
117 		placement->num_placement = 0;
118 		return;
119 	}
120 
121 	switch (bo->resource->mem_type) {
122 	case AMDGPU_PL_GDS:
123 	case AMDGPU_PL_GWS:
124 	case AMDGPU_PL_OA:
125 	case AMDGPU_PL_DOORBELL:
126 		placement->num_placement = 0;
127 		return;
128 
129 	case TTM_PL_VRAM:
130 		if (!adev->mman.buffer_funcs_enabled) {
131 			/* Move to system memory */
132 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
133 
134 		} else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
135 			   !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) &&
136 			   amdgpu_bo_in_cpu_visible_vram(abo)) {
137 
138 			/* Try evicting to the CPU inaccessible part of VRAM
139 			 * first, but only set GTT as busy placement, so this
140 			 * BO will be evicted to GTT rather than causing other
141 			 * BOs to be evicted from VRAM
142 			 */
143 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM |
144 							AMDGPU_GEM_DOMAIN_GTT |
145 							AMDGPU_GEM_DOMAIN_CPU);
146 			abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT;
147 			abo->placements[0].lpfn = 0;
148 			abo->placements[0].flags |= TTM_PL_FLAG_DESIRED;
149 		} else {
150 			/* Move to GTT memory */
151 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT |
152 							AMDGPU_GEM_DOMAIN_CPU);
153 		}
154 		break;
155 	case TTM_PL_TT:
156 	case AMDGPU_PL_PREEMPT:
157 	default:
158 		amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
159 		break;
160 	}
161 	*placement = abo->placement;
162 }
163 
164 /**
165  * amdgpu_ttm_map_buffer - Map memory into the GART windows
166  * @bo: buffer object to map
167  * @mem: memory object to map
168  * @mm_cur: range to map
169  * @window: which GART window to use
170  * @ring: DMA ring to use for the copy
171  * @tmz: if we should setup a TMZ enabled mapping
172  * @size: in number of bytes to map, out number of bytes mapped
173  * @addr: resulting address inside the MC address space
174  *
175  * Setup one of the GART windows to access a specific piece of memory or return
176  * the physical address for local memory.
177  */
178 static int amdgpu_ttm_map_buffer(struct ttm_buffer_object *bo,
179 				 struct ttm_resource *mem,
180 				 struct amdgpu_res_cursor *mm_cur,
181 				 unsigned int window, struct amdgpu_ring *ring,
182 				 bool tmz, uint64_t *size, uint64_t *addr)
183 {
184 	struct amdgpu_device *adev = ring->adev;
185 	unsigned int offset, num_pages, num_dw, num_bytes;
186 	uint64_t src_addr, dst_addr;
187 	struct amdgpu_job *job;
188 	void *cpu_addr;
189 	uint64_t flags;
190 	unsigned int i;
191 	int r;
192 
193 	BUG_ON(adev->mman.buffer_funcs->copy_max_bytes <
194 	       AMDGPU_GTT_MAX_TRANSFER_SIZE * 8);
195 
196 	if (WARN_ON(mem->mem_type == AMDGPU_PL_PREEMPT))
197 		return -EINVAL;
198 
199 	/* Map only what can't be accessed directly */
200 	if (!tmz && mem->start != AMDGPU_BO_INVALID_OFFSET) {
201 		*addr = amdgpu_ttm_domain_start(adev, mem->mem_type) +
202 			mm_cur->start;
203 		return 0;
204 	}
205 
206 
207 	/*
208 	 * If start begins at an offset inside the page, then adjust the size
209 	 * and addr accordingly
210 	 */
211 	offset = mm_cur->start & ~PAGE_MASK;
212 
213 	num_pages = PFN_UP(*size + offset);
214 	num_pages = min_t(uint32_t, num_pages, AMDGPU_GTT_MAX_TRANSFER_SIZE);
215 
216 	*size = min(*size, (uint64_t)num_pages * PAGE_SIZE - offset);
217 
218 	*addr = adev->gmc.gart_start;
219 	*addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE *
220 		AMDGPU_GPU_PAGE_SIZE;
221 	*addr += offset;
222 
223 	num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
224 	num_bytes = num_pages * 8 * AMDGPU_GPU_PAGES_IN_CPU_PAGE;
225 
226 	r = amdgpu_job_alloc_with_ib(adev, &adev->mman.high_pr,
227 				     AMDGPU_FENCE_OWNER_UNDEFINED,
228 				     num_dw * 4 + num_bytes,
229 				     AMDGPU_IB_POOL_DELAYED, &job);
230 	if (r)
231 		return r;
232 
233 	src_addr = num_dw * 4;
234 	src_addr += job->ibs[0].gpu_addr;
235 
236 	dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo);
237 	dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8;
238 	amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr,
239 				dst_addr, num_bytes, false);
240 
241 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
242 	WARN_ON(job->ibs[0].length_dw > num_dw);
243 
244 	flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, mem);
245 	if (tmz)
246 		flags |= AMDGPU_PTE_TMZ;
247 
248 	cpu_addr = &job->ibs[0].ptr[num_dw];
249 
250 	if (mem->mem_type == TTM_PL_TT) {
251 		dma_addr_t *dma_addr;
252 
253 		dma_addr = &bo->ttm->dma_address[mm_cur->start >> PAGE_SHIFT];
254 		amdgpu_gart_map(adev, 0, num_pages, dma_addr, flags, cpu_addr);
255 	} else {
256 		dma_addr_t dma_address;
257 
258 		dma_address = mm_cur->start;
259 		dma_address += adev->vm_manager.vram_base_offset;
260 
261 		for (i = 0; i < num_pages; ++i) {
262 			amdgpu_gart_map(adev, i << PAGE_SHIFT, 1, &dma_address,
263 					flags, cpu_addr);
264 			dma_address += PAGE_SIZE;
265 		}
266 	}
267 
268 	dma_fence_put(amdgpu_job_submit(job));
269 	return 0;
270 }
271 
272 /**
273  * amdgpu_ttm_copy_mem_to_mem - Helper function for copy
274  * @adev: amdgpu device
275  * @src: buffer/address where to read from
276  * @dst: buffer/address where to write to
277  * @size: number of bytes to copy
278  * @tmz: if a secure copy should be used
279  * @resv: resv object to sync to
280  * @f: Returns the last fence if multiple jobs are submitted.
281  *
282  * The function copies @size bytes from {src->mem + src->offset} to
283  * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a
284  * move and different for a BO to BO copy.
285  *
286  */
287 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev,
288 			       const struct amdgpu_copy_mem *src,
289 			       const struct amdgpu_copy_mem *dst,
290 			       uint64_t size, bool tmz,
291 			       struct dma_resv *resv,
292 			       struct dma_fence **f)
293 {
294 	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
295 	struct amdgpu_res_cursor src_mm, dst_mm;
296 	struct dma_fence *fence = NULL;
297 	int r = 0;
298 
299 	if (!adev->mman.buffer_funcs_enabled) {
300 		DRM_ERROR("Trying to move memory with ring turned off.\n");
301 		return -EINVAL;
302 	}
303 
304 	amdgpu_res_first(src->mem, src->offset, size, &src_mm);
305 	amdgpu_res_first(dst->mem, dst->offset, size, &dst_mm);
306 
307 	mutex_lock(&adev->mman.gtt_window_lock);
308 	while (src_mm.remaining) {
309 		uint64_t from, to, cur_size;
310 		struct dma_fence *next;
311 
312 		/* Never copy more than 256MiB at once to avoid a timeout */
313 		cur_size = min3(src_mm.size, dst_mm.size, 256ULL << 20);
314 
315 		/* Map src to window 0 and dst to window 1. */
316 		r = amdgpu_ttm_map_buffer(src->bo, src->mem, &src_mm,
317 					  0, ring, tmz, &cur_size, &from);
318 		if (r)
319 			goto error;
320 
321 		r = amdgpu_ttm_map_buffer(dst->bo, dst->mem, &dst_mm,
322 					  1, ring, tmz, &cur_size, &to);
323 		if (r)
324 			goto error;
325 
326 		r = amdgpu_copy_buffer(ring, from, to, cur_size,
327 				       resv, &next, false, true, tmz);
328 		if (r)
329 			goto error;
330 
331 		dma_fence_put(fence);
332 		fence = next;
333 
334 		amdgpu_res_next(&src_mm, cur_size);
335 		amdgpu_res_next(&dst_mm, cur_size);
336 	}
337 error:
338 	mutex_unlock(&adev->mman.gtt_window_lock);
339 	if (f)
340 		*f = dma_fence_get(fence);
341 	dma_fence_put(fence);
342 	return r;
343 }
344 
345 /*
346  * amdgpu_move_blit - Copy an entire buffer to another buffer
347  *
348  * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to
349  * help move buffers to and from VRAM.
350  */
351 static int amdgpu_move_blit(struct ttm_buffer_object *bo,
352 			    bool evict,
353 			    struct ttm_resource *new_mem,
354 			    struct ttm_resource *old_mem)
355 {
356 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
357 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
358 	struct amdgpu_copy_mem src, dst;
359 	struct dma_fence *fence = NULL;
360 	int r;
361 
362 	src.bo = bo;
363 	dst.bo = bo;
364 	src.mem = old_mem;
365 	dst.mem = new_mem;
366 	src.offset = 0;
367 	dst.offset = 0;
368 
369 	r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst,
370 				       new_mem->size,
371 				       amdgpu_bo_encrypted(abo),
372 				       bo->base.resv, &fence);
373 	if (r)
374 		goto error;
375 
376 	/* clear the space being freed */
377 	if (old_mem->mem_type == TTM_PL_VRAM &&
378 	    (abo->flags & AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) {
379 		struct dma_fence *wipe_fence = NULL;
380 
381 		r = amdgpu_fill_buffer(abo, AMDGPU_POISON, NULL, &wipe_fence,
382 					false);
383 		if (r) {
384 			goto error;
385 		} else if (wipe_fence) {
386 			dma_fence_put(fence);
387 			fence = wipe_fence;
388 		}
389 	}
390 
391 	/* Always block for VM page tables before committing the new location */
392 	if (bo->type == ttm_bo_type_kernel)
393 		r = ttm_bo_move_accel_cleanup(bo, fence, true, false, new_mem);
394 	else
395 		r = ttm_bo_move_accel_cleanup(bo, fence, evict, true, new_mem);
396 	dma_fence_put(fence);
397 	return r;
398 
399 error:
400 	if (fence)
401 		dma_fence_wait(fence, false);
402 	dma_fence_put(fence);
403 	return r;
404 }
405 
406 /*
407  * amdgpu_mem_visible - Check that memory can be accessed by ttm_bo_move_memcpy
408  *
409  * Called by amdgpu_bo_move()
410  */
411 static bool amdgpu_mem_visible(struct amdgpu_device *adev,
412 			       struct ttm_resource *mem)
413 {
414 	u64 mem_size = (u64)mem->size;
415 	struct amdgpu_res_cursor cursor;
416 	u64 end;
417 
418 	if (mem->mem_type == TTM_PL_SYSTEM ||
419 	    mem->mem_type == TTM_PL_TT)
420 		return true;
421 	if (mem->mem_type != TTM_PL_VRAM)
422 		return false;
423 
424 	amdgpu_res_first(mem, 0, mem_size, &cursor);
425 	end = cursor.start + cursor.size;
426 	while (cursor.remaining) {
427 		amdgpu_res_next(&cursor, cursor.size);
428 
429 		if (!cursor.remaining)
430 			break;
431 
432 		/* ttm_resource_ioremap only supports contiguous memory */
433 		if (end != cursor.start)
434 			return false;
435 
436 		end = cursor.start + cursor.size;
437 	}
438 
439 	return end <= adev->gmc.visible_vram_size;
440 }
441 
442 /*
443  * amdgpu_bo_move - Move a buffer object to a new memory location
444  *
445  * Called by ttm_bo_handle_move_mem()
446  */
447 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict,
448 			  struct ttm_operation_ctx *ctx,
449 			  struct ttm_resource *new_mem,
450 			  struct ttm_place *hop)
451 {
452 	struct amdgpu_device *adev;
453 	struct amdgpu_bo *abo;
454 	struct ttm_resource *old_mem = bo->resource;
455 	int r;
456 
457 	if (new_mem->mem_type == TTM_PL_TT ||
458 	    new_mem->mem_type == AMDGPU_PL_PREEMPT) {
459 		r = amdgpu_ttm_backend_bind(bo->bdev, bo->ttm, new_mem);
460 		if (r)
461 			return r;
462 	}
463 
464 	abo = ttm_to_amdgpu_bo(bo);
465 	adev = amdgpu_ttm_adev(bo->bdev);
466 
467 	if (!old_mem || (old_mem->mem_type == TTM_PL_SYSTEM &&
468 			 bo->ttm == NULL)) {
469 		ttm_bo_move_null(bo, new_mem);
470 		goto out;
471 	}
472 	if (old_mem->mem_type == TTM_PL_SYSTEM &&
473 	    (new_mem->mem_type == TTM_PL_TT ||
474 	     new_mem->mem_type == AMDGPU_PL_PREEMPT)) {
475 		ttm_bo_move_null(bo, new_mem);
476 		goto out;
477 	}
478 	if ((old_mem->mem_type == TTM_PL_TT ||
479 	     old_mem->mem_type == AMDGPU_PL_PREEMPT) &&
480 	    new_mem->mem_type == TTM_PL_SYSTEM) {
481 		r = ttm_bo_wait_ctx(bo, ctx);
482 		if (r)
483 			return r;
484 
485 		amdgpu_ttm_backend_unbind(bo->bdev, bo->ttm);
486 		ttm_resource_free(bo, &bo->resource);
487 		ttm_bo_assign_mem(bo, new_mem);
488 		goto out;
489 	}
490 
491 	if (old_mem->mem_type == AMDGPU_PL_GDS ||
492 	    old_mem->mem_type == AMDGPU_PL_GWS ||
493 	    old_mem->mem_type == AMDGPU_PL_OA ||
494 	    old_mem->mem_type == AMDGPU_PL_DOORBELL ||
495 	    new_mem->mem_type == AMDGPU_PL_GDS ||
496 	    new_mem->mem_type == AMDGPU_PL_GWS ||
497 	    new_mem->mem_type == AMDGPU_PL_OA ||
498 	    new_mem->mem_type == AMDGPU_PL_DOORBELL) {
499 		/* Nothing to save here */
500 		ttm_bo_move_null(bo, new_mem);
501 		goto out;
502 	}
503 
504 	if (bo->type == ttm_bo_type_device &&
505 	    new_mem->mem_type == TTM_PL_VRAM &&
506 	    old_mem->mem_type != TTM_PL_VRAM) {
507 		/* amdgpu_bo_fault_reserve_notify will re-set this if the CPU
508 		 * accesses the BO after it's moved.
509 		 */
510 		abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
511 	}
512 
513 	if (adev->mman.buffer_funcs_enabled) {
514 		if (((old_mem->mem_type == TTM_PL_SYSTEM &&
515 		      new_mem->mem_type == TTM_PL_VRAM) ||
516 		     (old_mem->mem_type == TTM_PL_VRAM &&
517 		      new_mem->mem_type == TTM_PL_SYSTEM))) {
518 			hop->fpfn = 0;
519 			hop->lpfn = 0;
520 			hop->mem_type = TTM_PL_TT;
521 			hop->flags = TTM_PL_FLAG_TEMPORARY;
522 			return -EMULTIHOP;
523 		}
524 
525 		r = amdgpu_move_blit(bo, evict, new_mem, old_mem);
526 	} else {
527 		r = -ENODEV;
528 	}
529 
530 	if (r) {
531 		/* Check that all memory is CPU accessible */
532 		if (!amdgpu_mem_visible(adev, old_mem) ||
533 		    !amdgpu_mem_visible(adev, new_mem)) {
534 			pr_err("Move buffer fallback to memcpy unavailable\n");
535 			return r;
536 		}
537 
538 		r = ttm_bo_move_memcpy(bo, ctx, new_mem);
539 		if (r)
540 			return r;
541 	}
542 
543 	trace_amdgpu_bo_move(abo, new_mem->mem_type, old_mem->mem_type);
544 out:
545 	/* update statistics */
546 	atomic64_add(bo->base.size, &adev->num_bytes_moved);
547 	amdgpu_bo_move_notify(bo, evict);
548 	return 0;
549 }
550 
551 /*
552  * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault
553  *
554  * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault()
555  */
556 static int amdgpu_ttm_io_mem_reserve(struct ttm_device *bdev,
557 				     struct ttm_resource *mem)
558 {
559 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
560 	size_t bus_size = (size_t)mem->size;
561 
562 	switch (mem->mem_type) {
563 	case TTM_PL_SYSTEM:
564 		/* system memory */
565 		return 0;
566 	case TTM_PL_TT:
567 	case AMDGPU_PL_PREEMPT:
568 		break;
569 	case TTM_PL_VRAM:
570 		mem->bus.offset = mem->start << PAGE_SHIFT;
571 		/* check if it's visible */
572 		if ((mem->bus.offset + bus_size) > adev->gmc.visible_vram_size)
573 			return -EINVAL;
574 
575 		if (adev->mman.aper_base_kaddr &&
576 		    mem->placement & TTM_PL_FLAG_CONTIGUOUS)
577 			mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr +
578 					mem->bus.offset;
579 
580 		mem->bus.offset += adev->gmc.aper_base;
581 		mem->bus.is_iomem = true;
582 		break;
583 	case AMDGPU_PL_DOORBELL:
584 		mem->bus.offset = mem->start << PAGE_SHIFT;
585 		mem->bus.offset += adev->doorbell.base;
586 		mem->bus.is_iomem = true;
587 		mem->bus.caching = ttm_uncached;
588 		break;
589 	default:
590 		return -EINVAL;
591 	}
592 	return 0;
593 }
594 
595 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
596 					   unsigned long page_offset)
597 {
598 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
599 	struct amdgpu_res_cursor cursor;
600 
601 	amdgpu_res_first(bo->resource, (u64)page_offset << PAGE_SHIFT, 0,
602 			 &cursor);
603 
604 	if (bo->resource->mem_type == AMDGPU_PL_DOORBELL)
605 		return ((uint64_t)(adev->doorbell.base + cursor.start)) >> PAGE_SHIFT;
606 
607 	return (adev->gmc.aper_base + cursor.start) >> PAGE_SHIFT;
608 }
609 
610 /**
611  * amdgpu_ttm_domain_start - Returns GPU start address
612  * @adev: amdgpu device object
613  * @type: type of the memory
614  *
615  * Returns:
616  * GPU start address of a memory domain
617  */
618 
619 uint64_t amdgpu_ttm_domain_start(struct amdgpu_device *adev, uint32_t type)
620 {
621 	switch (type) {
622 	case TTM_PL_TT:
623 		return adev->gmc.gart_start;
624 	case TTM_PL_VRAM:
625 		return adev->gmc.vram_start;
626 	}
627 
628 	return 0;
629 }
630 
631 /*
632  * TTM backend functions.
633  */
634 struct amdgpu_ttm_tt {
635 	struct ttm_tt	ttm;
636 	struct drm_gem_object	*gobj;
637 	u64			offset;
638 	uint64_t		userptr;
639 	struct task_struct	*usertask;
640 	uint32_t		userflags;
641 	bool			bound;
642 	int32_t			pool_id;
643 };
644 
645 #define ttm_to_amdgpu_ttm_tt(ptr)	container_of(ptr, struct amdgpu_ttm_tt, ttm)
646 
647 #ifdef CONFIG_DRM_AMDGPU_USERPTR
648 /*
649  * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user
650  * memory and start HMM tracking CPU page table update
651  *
652  * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only
653  * once afterwards to stop HMM tracking
654  */
655 int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages,
656 				 struct hmm_range **range)
657 {
658 	struct ttm_tt *ttm = bo->tbo.ttm;
659 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
660 	unsigned long start = gtt->userptr;
661 	struct vm_area_struct *vma;
662 	struct mm_struct *mm;
663 	bool readonly;
664 	int r = 0;
665 
666 	/* Make sure get_user_pages_done() can cleanup gracefully */
667 	*range = NULL;
668 
669 	mm = bo->notifier.mm;
670 	if (unlikely(!mm)) {
671 		DRM_DEBUG_DRIVER("BO is not registered?\n");
672 		return -EFAULT;
673 	}
674 
675 	if (!mmget_not_zero(mm)) /* Happens during process shutdown */
676 		return -ESRCH;
677 
678 	mmap_read_lock(mm);
679 	vma = vma_lookup(mm, start);
680 	if (unlikely(!vma)) {
681 		r = -EFAULT;
682 		goto out_unlock;
683 	}
684 	if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) &&
685 		vma->vm_file)) {
686 		r = -EPERM;
687 		goto out_unlock;
688 	}
689 
690 	readonly = amdgpu_ttm_tt_is_readonly(ttm);
691 	r = amdgpu_hmm_range_get_pages(&bo->notifier, start, ttm->num_pages,
692 				       readonly, NULL, pages, range);
693 out_unlock:
694 	mmap_read_unlock(mm);
695 	if (r)
696 		pr_debug("failed %d to get user pages 0x%lx\n", r, start);
697 
698 	mmput(mm);
699 
700 	return r;
701 }
702 
703 /* amdgpu_ttm_tt_discard_user_pages - Discard range and pfn array allocations
704  */
705 void amdgpu_ttm_tt_discard_user_pages(struct ttm_tt *ttm,
706 				      struct hmm_range *range)
707 {
708 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
709 
710 	if (gtt && gtt->userptr && range)
711 		amdgpu_hmm_range_get_pages_done(range);
712 }
713 
714 /*
715  * amdgpu_ttm_tt_get_user_pages_done - stop HMM track the CPU page table change
716  * Check if the pages backing this ttm range have been invalidated
717  *
718  * Returns: true if pages are still valid
719  */
720 bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm,
721 				       struct hmm_range *range)
722 {
723 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
724 
725 	if (!gtt || !gtt->userptr || !range)
726 		return false;
727 
728 	DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%x\n",
729 		gtt->userptr, ttm->num_pages);
730 
731 	WARN_ONCE(!range->hmm_pfns, "No user pages to check\n");
732 
733 	return !amdgpu_hmm_range_get_pages_done(range);
734 }
735 #endif
736 
737 /*
738  * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary.
739  *
740  * Called by amdgpu_cs_list_validate(). This creates the page list
741  * that backs user memory and will ultimately be mapped into the device
742  * address space.
743  */
744 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages)
745 {
746 	unsigned long i;
747 
748 	for (i = 0; i < ttm->num_pages; ++i)
749 		ttm->pages[i] = pages ? pages[i] : NULL;
750 }
751 
752 /*
753  * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages
754  *
755  * Called by amdgpu_ttm_backend_bind()
756  **/
757 static int amdgpu_ttm_tt_pin_userptr(struct ttm_device *bdev,
758 				     struct ttm_tt *ttm)
759 {
760 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
761 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
762 	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
763 	enum dma_data_direction direction = write ?
764 		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
765 	int r;
766 
767 	/* Allocate an SG array and squash pages into it */
768 	r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0,
769 				      (u64)ttm->num_pages << PAGE_SHIFT,
770 				      GFP_KERNEL);
771 	if (r)
772 		goto release_sg;
773 
774 	/* Map SG to device */
775 	r = dma_map_sgtable(adev->dev, ttm->sg, direction, 0);
776 	if (r)
777 		goto release_sg;
778 
779 	/* convert SG to linear array of pages and dma addresses */
780 	drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
781 				       ttm->num_pages);
782 
783 	return 0;
784 
785 release_sg:
786 	kfree(ttm->sg);
787 	ttm->sg = NULL;
788 	return r;
789 }
790 
791 /*
792  * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages
793  */
794 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_device *bdev,
795 					struct ttm_tt *ttm)
796 {
797 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
798 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
799 	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
800 	enum dma_data_direction direction = write ?
801 		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
802 
803 	/* double check that we don't free the table twice */
804 	if (!ttm->sg || !ttm->sg->sgl)
805 		return;
806 
807 	/* unmap the pages mapped to the device */
808 	dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0);
809 	sg_free_table(ttm->sg);
810 }
811 
812 /*
813  * total_pages is constructed as MQD0+CtrlStack0 + MQD1+CtrlStack1 + ...
814  * MQDn+CtrlStackn where n is the number of XCCs per partition.
815  * pages_per_xcc is the size of one MQD+CtrlStack. The first page is MQD
816  * and uses memory type default, UC. The rest of pages_per_xcc are
817  * Ctrl stack and modify their memory type to NC.
818  */
819 static void amdgpu_ttm_gart_bind_gfx9_mqd(struct amdgpu_device *adev,
820 				struct ttm_tt *ttm, uint64_t flags)
821 {
822 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
823 	uint64_t total_pages = ttm->num_pages;
824 	int num_xcc = max(1U, adev->gfx.num_xcc_per_xcp);
825 	uint64_t page_idx, pages_per_xcc;
826 	int i;
827 	uint64_t ctrl_flags = (flags & ~AMDGPU_PTE_MTYPE_VG10_MASK) |
828 			AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC);
829 
830 	pages_per_xcc = total_pages;
831 	do_div(pages_per_xcc, num_xcc);
832 
833 	for (i = 0, page_idx = 0; i < num_xcc; i++, page_idx += pages_per_xcc) {
834 		/* MQD page: use default flags */
835 		amdgpu_gart_bind(adev,
836 				gtt->offset + (page_idx << PAGE_SHIFT),
837 				1, &gtt->ttm.dma_address[page_idx], flags);
838 		/*
839 		 * Ctrl pages - modify the memory type to NC (ctrl_flags) from
840 		 * the second page of the BO onward.
841 		 */
842 		amdgpu_gart_bind(adev,
843 				gtt->offset + ((page_idx + 1) << PAGE_SHIFT),
844 				pages_per_xcc - 1,
845 				&gtt->ttm.dma_address[page_idx + 1],
846 				ctrl_flags);
847 	}
848 }
849 
850 static void amdgpu_ttm_gart_bind(struct amdgpu_device *adev,
851 				 struct ttm_buffer_object *tbo,
852 				 uint64_t flags)
853 {
854 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo);
855 	struct ttm_tt *ttm = tbo->ttm;
856 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
857 
858 	if (amdgpu_bo_encrypted(abo))
859 		flags |= AMDGPU_PTE_TMZ;
860 
861 	if (abo->flags & AMDGPU_GEM_CREATE_CP_MQD_GFX9) {
862 		amdgpu_ttm_gart_bind_gfx9_mqd(adev, ttm, flags);
863 	} else {
864 		amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
865 				 gtt->ttm.dma_address, flags);
866 	}
867 }
868 
869 /*
870  * amdgpu_ttm_backend_bind - Bind GTT memory
871  *
872  * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem().
873  * This handles binding GTT memory to the device address space.
874  */
875 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
876 				   struct ttm_tt *ttm,
877 				   struct ttm_resource *bo_mem)
878 {
879 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
880 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
881 	uint64_t flags;
882 	int r;
883 
884 	if (!bo_mem)
885 		return -EINVAL;
886 
887 	if (gtt->bound)
888 		return 0;
889 
890 	if (gtt->userptr) {
891 		r = amdgpu_ttm_tt_pin_userptr(bdev, ttm);
892 		if (r) {
893 			DRM_ERROR("failed to pin userptr\n");
894 			return r;
895 		}
896 	} else if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) {
897 		if (!ttm->sg) {
898 			struct dma_buf_attachment *attach;
899 			struct sg_table *sgt;
900 
901 			attach = gtt->gobj->import_attach;
902 			sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL);
903 			if (IS_ERR(sgt))
904 				return PTR_ERR(sgt);
905 
906 			ttm->sg = sgt;
907 		}
908 
909 		drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
910 					       ttm->num_pages);
911 	}
912 
913 	if (!ttm->num_pages) {
914 		WARN(1, "nothing to bind %u pages for mreg %p back %p!\n",
915 		     ttm->num_pages, bo_mem, ttm);
916 	}
917 
918 	if (bo_mem->mem_type != TTM_PL_TT ||
919 	    !amdgpu_gtt_mgr_has_gart_addr(bo_mem)) {
920 		gtt->offset = AMDGPU_BO_INVALID_OFFSET;
921 		return 0;
922 	}
923 
924 	/* compute PTE flags relevant to this BO memory */
925 	flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem);
926 
927 	/* bind pages into GART page tables */
928 	gtt->offset = (u64)bo_mem->start << PAGE_SHIFT;
929 	amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
930 			 gtt->ttm.dma_address, flags);
931 	gtt->bound = true;
932 	return 0;
933 }
934 
935 /*
936  * amdgpu_ttm_alloc_gart - Make sure buffer object is accessible either
937  * through AGP or GART aperture.
938  *
939  * If bo is accessible through AGP aperture, then use AGP aperture
940  * to access bo; otherwise allocate logical space in GART aperture
941  * and map bo to GART aperture.
942  */
943 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo)
944 {
945 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
946 	struct ttm_operation_ctx ctx = { false, false };
947 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(bo->ttm);
948 	struct ttm_placement placement;
949 	struct ttm_place placements;
950 	struct ttm_resource *tmp;
951 	uint64_t addr, flags;
952 	int r;
953 
954 	if (bo->resource->start != AMDGPU_BO_INVALID_OFFSET)
955 		return 0;
956 
957 	addr = amdgpu_gmc_agp_addr(bo);
958 	if (addr != AMDGPU_BO_INVALID_OFFSET)
959 		return 0;
960 
961 	/* allocate GART space */
962 	placement.num_placement = 1;
963 	placement.placement = &placements;
964 	placements.fpfn = 0;
965 	placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT;
966 	placements.mem_type = TTM_PL_TT;
967 	placements.flags = bo->resource->placement;
968 
969 	r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx);
970 	if (unlikely(r))
971 		return r;
972 
973 	/* compute PTE flags for this buffer object */
974 	flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, tmp);
975 
976 	/* Bind pages */
977 	gtt->offset = (u64)tmp->start << PAGE_SHIFT;
978 	amdgpu_ttm_gart_bind(adev, bo, flags);
979 	amdgpu_gart_invalidate_tlb(adev);
980 	ttm_resource_free(bo, &bo->resource);
981 	ttm_bo_assign_mem(bo, tmp);
982 
983 	return 0;
984 }
985 
986 /*
987  * amdgpu_ttm_recover_gart - Rebind GTT pages
988  *
989  * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to
990  * rebind GTT pages during a GPU reset.
991  */
992 void amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo)
993 {
994 	struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev);
995 	uint64_t flags;
996 
997 	if (!tbo->ttm)
998 		return;
999 
1000 	flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, tbo->resource);
1001 	amdgpu_ttm_gart_bind(adev, tbo, flags);
1002 }
1003 
1004 /*
1005  * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages
1006  *
1007  * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and
1008  * ttm_tt_destroy().
1009  */
1010 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
1011 				      struct ttm_tt *ttm)
1012 {
1013 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1014 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1015 
1016 	/* if the pages have userptr pinning then clear that first */
1017 	if (gtt->userptr) {
1018 		amdgpu_ttm_tt_unpin_userptr(bdev, ttm);
1019 	} else if (ttm->sg && gtt->gobj->import_attach) {
1020 		struct dma_buf_attachment *attach;
1021 
1022 		attach = gtt->gobj->import_attach;
1023 		dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL);
1024 		ttm->sg = NULL;
1025 	}
1026 
1027 	if (!gtt->bound)
1028 		return;
1029 
1030 	if (gtt->offset == AMDGPU_BO_INVALID_OFFSET)
1031 		return;
1032 
1033 	/* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */
1034 	amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages);
1035 	gtt->bound = false;
1036 }
1037 
1038 static void amdgpu_ttm_backend_destroy(struct ttm_device *bdev,
1039 				       struct ttm_tt *ttm)
1040 {
1041 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1042 
1043 	if (gtt->usertask)
1044 		put_task_struct(gtt->usertask);
1045 
1046 	ttm_tt_fini(&gtt->ttm);
1047 	kfree(gtt);
1048 }
1049 
1050 /**
1051  * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO
1052  *
1053  * @bo: The buffer object to create a GTT ttm_tt object around
1054  * @page_flags: Page flags to be added to the ttm_tt object
1055  *
1056  * Called by ttm_tt_create().
1057  */
1058 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo,
1059 					   uint32_t page_flags)
1060 {
1061 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
1062 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1063 	struct amdgpu_ttm_tt *gtt;
1064 	enum ttm_caching caching;
1065 
1066 	gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL);
1067 	if (!gtt)
1068 		return NULL;
1069 
1070 	gtt->gobj = &bo->base;
1071 	if (adev->gmc.mem_partitions && abo->xcp_id >= 0)
1072 		gtt->pool_id = KFD_XCP_MEM_ID(adev, abo->xcp_id);
1073 	else
1074 		gtt->pool_id = abo->xcp_id;
1075 
1076 	if (abo->flags & AMDGPU_GEM_CREATE_CPU_GTT_USWC)
1077 		caching = ttm_write_combined;
1078 	else
1079 		caching = ttm_cached;
1080 
1081 	/* allocate space for the uninitialized page entries */
1082 	if (ttm_sg_tt_init(&gtt->ttm, bo, page_flags, caching)) {
1083 		kfree(gtt);
1084 		return NULL;
1085 	}
1086 	return &gtt->ttm;
1087 }
1088 
1089 /*
1090  * amdgpu_ttm_tt_populate - Map GTT pages visible to the device
1091  *
1092  * Map the pages of a ttm_tt object to an address space visible
1093  * to the underlying device.
1094  */
1095 static int amdgpu_ttm_tt_populate(struct ttm_device *bdev,
1096 				  struct ttm_tt *ttm,
1097 				  struct ttm_operation_ctx *ctx)
1098 {
1099 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1100 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1101 	struct ttm_pool *pool;
1102 	pgoff_t i;
1103 	int ret;
1104 
1105 	/* user pages are bound by amdgpu_ttm_tt_pin_userptr() */
1106 	if (gtt->userptr) {
1107 		ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL);
1108 		if (!ttm->sg)
1109 			return -ENOMEM;
1110 		return 0;
1111 	}
1112 
1113 	if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
1114 		return 0;
1115 
1116 	if (adev->mman.ttm_pools && gtt->pool_id >= 0)
1117 		pool = &adev->mman.ttm_pools[gtt->pool_id];
1118 	else
1119 		pool = &adev->mman.bdev.pool;
1120 	ret = ttm_pool_alloc(pool, ttm, ctx);
1121 	if (ret)
1122 		return ret;
1123 
1124 	for (i = 0; i < ttm->num_pages; ++i)
1125 		ttm->pages[i]->mapping = bdev->dev_mapping;
1126 
1127 	return 0;
1128 }
1129 
1130 /*
1131  * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays
1132  *
1133  * Unmaps pages of a ttm_tt object from the device address space and
1134  * unpopulates the page array backing it.
1135  */
1136 static void amdgpu_ttm_tt_unpopulate(struct ttm_device *bdev,
1137 				     struct ttm_tt *ttm)
1138 {
1139 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1140 	struct amdgpu_device *adev;
1141 	struct ttm_pool *pool;
1142 	pgoff_t i;
1143 
1144 	amdgpu_ttm_backend_unbind(bdev, ttm);
1145 
1146 	if (gtt->userptr) {
1147 		amdgpu_ttm_tt_set_user_pages(ttm, NULL);
1148 		kfree(ttm->sg);
1149 		ttm->sg = NULL;
1150 		return;
1151 	}
1152 
1153 	if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
1154 		return;
1155 
1156 	for (i = 0; i < ttm->num_pages; ++i)
1157 		ttm->pages[i]->mapping = NULL;
1158 
1159 	adev = amdgpu_ttm_adev(bdev);
1160 
1161 	if (adev->mman.ttm_pools && gtt->pool_id >= 0)
1162 		pool = &adev->mman.ttm_pools[gtt->pool_id];
1163 	else
1164 		pool = &adev->mman.bdev.pool;
1165 
1166 	return ttm_pool_free(pool, ttm);
1167 }
1168 
1169 /**
1170  * amdgpu_ttm_tt_get_userptr - Return the userptr GTT ttm_tt for the current
1171  * task
1172  *
1173  * @tbo: The ttm_buffer_object that contains the userptr
1174  * @user_addr:  The returned value
1175  */
1176 int amdgpu_ttm_tt_get_userptr(const struct ttm_buffer_object *tbo,
1177 			      uint64_t *user_addr)
1178 {
1179 	struct amdgpu_ttm_tt *gtt;
1180 
1181 	if (!tbo->ttm)
1182 		return -EINVAL;
1183 
1184 	gtt = (void *)tbo->ttm;
1185 	*user_addr = gtt->userptr;
1186 	return 0;
1187 }
1188 
1189 /**
1190  * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current
1191  * task
1192  *
1193  * @bo: The ttm_buffer_object to bind this userptr to
1194  * @addr:  The address in the current tasks VM space to use
1195  * @flags: Requirements of userptr object.
1196  *
1197  * Called by amdgpu_gem_userptr_ioctl() and kfd_ioctl_alloc_memory_of_gpu() to
1198  * bind userptr pages to current task and by kfd_ioctl_acquire_vm() to
1199  * initialize GPU VM for a KFD process.
1200  */
1201 int amdgpu_ttm_tt_set_userptr(struct ttm_buffer_object *bo,
1202 			      uint64_t addr, uint32_t flags)
1203 {
1204 	struct amdgpu_ttm_tt *gtt;
1205 
1206 	if (!bo->ttm) {
1207 		/* TODO: We want a separate TTM object type for userptrs */
1208 		bo->ttm = amdgpu_ttm_tt_create(bo, 0);
1209 		if (bo->ttm == NULL)
1210 			return -ENOMEM;
1211 	}
1212 
1213 	/* Set TTM_TT_FLAG_EXTERNAL before populate but after create. */
1214 	bo->ttm->page_flags |= TTM_TT_FLAG_EXTERNAL;
1215 
1216 	gtt = ttm_to_amdgpu_ttm_tt(bo->ttm);
1217 	gtt->userptr = addr;
1218 	gtt->userflags = flags;
1219 
1220 	if (gtt->usertask)
1221 		put_task_struct(gtt->usertask);
1222 	gtt->usertask = current->group_leader;
1223 	get_task_struct(gtt->usertask);
1224 
1225 	return 0;
1226 }
1227 
1228 /*
1229  * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object
1230  */
1231 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm)
1232 {
1233 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1234 
1235 	if (gtt == NULL)
1236 		return NULL;
1237 
1238 	if (gtt->usertask == NULL)
1239 		return NULL;
1240 
1241 	return gtt->usertask->mm;
1242 }
1243 
1244 /*
1245  * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an
1246  * address range for the current task.
1247  *
1248  */
1249 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start,
1250 				  unsigned long end, unsigned long *userptr)
1251 {
1252 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1253 	unsigned long size;
1254 
1255 	if (gtt == NULL || !gtt->userptr)
1256 		return false;
1257 
1258 	/* Return false if no part of the ttm_tt object lies within
1259 	 * the range
1260 	 */
1261 	size = (unsigned long)gtt->ttm.num_pages * PAGE_SIZE;
1262 	if (gtt->userptr > end || gtt->userptr + size <= start)
1263 		return false;
1264 
1265 	if (userptr)
1266 		*userptr = gtt->userptr;
1267 	return true;
1268 }
1269 
1270 /*
1271  * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr?
1272  */
1273 bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm)
1274 {
1275 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1276 
1277 	if (gtt == NULL || !gtt->userptr)
1278 		return false;
1279 
1280 	return true;
1281 }
1282 
1283 /*
1284  * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only?
1285  */
1286 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm)
1287 {
1288 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1289 
1290 	if (gtt == NULL)
1291 		return false;
1292 
1293 	return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1294 }
1295 
1296 /**
1297  * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object
1298  *
1299  * @ttm: The ttm_tt object to compute the flags for
1300  * @mem: The memory registry backing this ttm_tt object
1301  *
1302  * Figure out the flags to use for a VM PDE (Page Directory Entry).
1303  */
1304 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_resource *mem)
1305 {
1306 	uint64_t flags = 0;
1307 
1308 	if (mem && mem->mem_type != TTM_PL_SYSTEM)
1309 		flags |= AMDGPU_PTE_VALID;
1310 
1311 	if (mem && (mem->mem_type == TTM_PL_TT ||
1312 		    mem->mem_type == AMDGPU_PL_DOORBELL ||
1313 		    mem->mem_type == AMDGPU_PL_PREEMPT)) {
1314 		flags |= AMDGPU_PTE_SYSTEM;
1315 
1316 		if (ttm->caching == ttm_cached)
1317 			flags |= AMDGPU_PTE_SNOOPED;
1318 	}
1319 
1320 	if (mem && mem->mem_type == TTM_PL_VRAM &&
1321 			mem->bus.caching == ttm_cached)
1322 		flags |= AMDGPU_PTE_SNOOPED;
1323 
1324 	return flags;
1325 }
1326 
1327 /**
1328  * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object
1329  *
1330  * @adev: amdgpu_device pointer
1331  * @ttm: The ttm_tt object to compute the flags for
1332  * @mem: The memory registry backing this ttm_tt object
1333  *
1334  * Figure out the flags to use for a VM PTE (Page Table Entry).
1335  */
1336 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm,
1337 				 struct ttm_resource *mem)
1338 {
1339 	uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem);
1340 
1341 	flags |= adev->gart.gart_pte_flags;
1342 	flags |= AMDGPU_PTE_READABLE;
1343 
1344 	if (!amdgpu_ttm_tt_is_readonly(ttm))
1345 		flags |= AMDGPU_PTE_WRITEABLE;
1346 
1347 	return flags;
1348 }
1349 
1350 /*
1351  * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer
1352  * object.
1353  *
1354  * Return true if eviction is sensible. Called by ttm_mem_evict_first() on
1355  * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until
1356  * it can find space for a new object and by ttm_bo_force_list_clean() which is
1357  * used to clean out a memory space.
1358  */
1359 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
1360 					    const struct ttm_place *place)
1361 {
1362 	struct dma_resv_iter resv_cursor;
1363 	struct dma_fence *f;
1364 
1365 	if (!amdgpu_bo_is_amdgpu_bo(bo))
1366 		return ttm_bo_eviction_valuable(bo, place);
1367 
1368 	/* Swapout? */
1369 	if (bo->resource->mem_type == TTM_PL_SYSTEM)
1370 		return true;
1371 
1372 	if (bo->type == ttm_bo_type_kernel &&
1373 	    !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo)))
1374 		return false;
1375 
1376 	/* If bo is a KFD BO, check if the bo belongs to the current process.
1377 	 * If true, then return false as any KFD process needs all its BOs to
1378 	 * be resident to run successfully
1379 	 */
1380 	dma_resv_for_each_fence(&resv_cursor, bo->base.resv,
1381 				DMA_RESV_USAGE_BOOKKEEP, f) {
1382 		if (amdkfd_fence_check_mm(f, current->mm))
1383 			return false;
1384 	}
1385 
1386 	/* Preemptible BOs don't own system resources managed by the
1387 	 * driver (pages, VRAM, GART space). They point to resources
1388 	 * owned by someone else (e.g. pageable memory in user mode
1389 	 * or a DMABuf). They are used in a preemptible context so we
1390 	 * can guarantee no deadlocks and good QoS in case of MMU
1391 	 * notifiers or DMABuf move notifiers from the resource owner.
1392 	 */
1393 	if (bo->resource->mem_type == AMDGPU_PL_PREEMPT)
1394 		return false;
1395 
1396 	if (bo->resource->mem_type == TTM_PL_TT &&
1397 	    amdgpu_bo_encrypted(ttm_to_amdgpu_bo(bo)))
1398 		return false;
1399 
1400 	return ttm_bo_eviction_valuable(bo, place);
1401 }
1402 
1403 static void amdgpu_ttm_vram_mm_access(struct amdgpu_device *adev, loff_t pos,
1404 				      void *buf, size_t size, bool write)
1405 {
1406 	while (size) {
1407 		uint64_t aligned_pos = ALIGN_DOWN(pos, 4);
1408 		uint64_t bytes = 4 - (pos & 0x3);
1409 		uint32_t shift = (pos & 0x3) * 8;
1410 		uint32_t mask = 0xffffffff << shift;
1411 		uint32_t value = 0;
1412 
1413 		if (size < bytes) {
1414 			mask &= 0xffffffff >> (bytes - size) * 8;
1415 			bytes = size;
1416 		}
1417 
1418 		if (mask != 0xffffffff) {
1419 			amdgpu_device_mm_access(adev, aligned_pos, &value, 4, false);
1420 			if (write) {
1421 				value &= ~mask;
1422 				value |= (*(uint32_t *)buf << shift) & mask;
1423 				amdgpu_device_mm_access(adev, aligned_pos, &value, 4, true);
1424 			} else {
1425 				value = (value & mask) >> shift;
1426 				memcpy(buf, &value, bytes);
1427 			}
1428 		} else {
1429 			amdgpu_device_mm_access(adev, aligned_pos, buf, 4, write);
1430 		}
1431 
1432 		pos += bytes;
1433 		buf += bytes;
1434 		size -= bytes;
1435 	}
1436 }
1437 
1438 static int amdgpu_ttm_access_memory_sdma(struct ttm_buffer_object *bo,
1439 					unsigned long offset, void *buf,
1440 					int len, int write)
1441 {
1442 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1443 	struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1444 	struct amdgpu_res_cursor src_mm;
1445 	struct amdgpu_job *job;
1446 	struct dma_fence *fence;
1447 	uint64_t src_addr, dst_addr;
1448 	unsigned int num_dw;
1449 	int r, idx;
1450 
1451 	if (len != PAGE_SIZE)
1452 		return -EINVAL;
1453 
1454 	if (!adev->mman.sdma_access_ptr)
1455 		return -EACCES;
1456 
1457 	if (!drm_dev_enter(adev_to_drm(adev), &idx))
1458 		return -ENODEV;
1459 
1460 	if (write)
1461 		memcpy(adev->mman.sdma_access_ptr, buf, len);
1462 
1463 	num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
1464 	r = amdgpu_job_alloc_with_ib(adev, &adev->mman.high_pr,
1465 				     AMDGPU_FENCE_OWNER_UNDEFINED,
1466 				     num_dw * 4, AMDGPU_IB_POOL_DELAYED,
1467 				     &job);
1468 	if (r)
1469 		goto out;
1470 
1471 	amdgpu_res_first(abo->tbo.resource, offset, len, &src_mm);
1472 	src_addr = amdgpu_ttm_domain_start(adev, bo->resource->mem_type) +
1473 		src_mm.start;
1474 	dst_addr = amdgpu_bo_gpu_offset(adev->mman.sdma_access_bo);
1475 	if (write)
1476 		swap(src_addr, dst_addr);
1477 
1478 	amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, dst_addr,
1479 				PAGE_SIZE, false);
1480 
1481 	amdgpu_ring_pad_ib(adev->mman.buffer_funcs_ring, &job->ibs[0]);
1482 	WARN_ON(job->ibs[0].length_dw > num_dw);
1483 
1484 	fence = amdgpu_job_submit(job);
1485 
1486 	if (!dma_fence_wait_timeout(fence, false, adev->sdma_timeout))
1487 		r = -ETIMEDOUT;
1488 	dma_fence_put(fence);
1489 
1490 	if (!(r || write))
1491 		memcpy(buf, adev->mman.sdma_access_ptr, len);
1492 out:
1493 	drm_dev_exit(idx);
1494 	return r;
1495 }
1496 
1497 /**
1498  * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object.
1499  *
1500  * @bo:  The buffer object to read/write
1501  * @offset:  Offset into buffer object
1502  * @buf:  Secondary buffer to write/read from
1503  * @len: Length in bytes of access
1504  * @write:  true if writing
1505  *
1506  * This is used to access VRAM that backs a buffer object via MMIO
1507  * access for debugging purposes.
1508  */
1509 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo,
1510 				    unsigned long offset, void *buf, int len,
1511 				    int write)
1512 {
1513 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1514 	struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1515 	struct amdgpu_res_cursor cursor;
1516 	int ret = 0;
1517 
1518 	if (bo->resource->mem_type != TTM_PL_VRAM)
1519 		return -EIO;
1520 
1521 	if (amdgpu_device_has_timeouts_enabled(adev) &&
1522 			!amdgpu_ttm_access_memory_sdma(bo, offset, buf, len, write))
1523 		return len;
1524 
1525 	amdgpu_res_first(bo->resource, offset, len, &cursor);
1526 	while (cursor.remaining) {
1527 		size_t count, size = cursor.size;
1528 		loff_t pos = cursor.start;
1529 
1530 		count = amdgpu_device_aper_access(adev, pos, buf, size, write);
1531 		size -= count;
1532 		if (size) {
1533 			/* using MM to access rest vram and handle un-aligned address */
1534 			pos += count;
1535 			buf += count;
1536 			amdgpu_ttm_vram_mm_access(adev, pos, buf, size, write);
1537 		}
1538 
1539 		ret += cursor.size;
1540 		buf += cursor.size;
1541 		amdgpu_res_next(&cursor, cursor.size);
1542 	}
1543 
1544 	return ret;
1545 }
1546 
1547 static void
1548 amdgpu_bo_delete_mem_notify(struct ttm_buffer_object *bo)
1549 {
1550 	amdgpu_bo_move_notify(bo, false);
1551 }
1552 
1553 static struct ttm_device_funcs amdgpu_bo_driver = {
1554 	.ttm_tt_create = &amdgpu_ttm_tt_create,
1555 	.ttm_tt_populate = &amdgpu_ttm_tt_populate,
1556 	.ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate,
1557 	.ttm_tt_destroy = &amdgpu_ttm_backend_destroy,
1558 	.eviction_valuable = amdgpu_ttm_bo_eviction_valuable,
1559 	.evict_flags = &amdgpu_evict_flags,
1560 	.move = &amdgpu_bo_move,
1561 	.delete_mem_notify = &amdgpu_bo_delete_mem_notify,
1562 	.release_notify = &amdgpu_bo_release_notify,
1563 	.io_mem_reserve = &amdgpu_ttm_io_mem_reserve,
1564 	.io_mem_pfn = amdgpu_ttm_io_mem_pfn,
1565 	.access_memory = &amdgpu_ttm_access_memory,
1566 };
1567 
1568 /*
1569  * Firmware Reservation functions
1570  */
1571 /**
1572  * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram
1573  *
1574  * @adev: amdgpu_device pointer
1575  *
1576  * free fw reserved vram if it has been reserved.
1577  */
1578 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev)
1579 {
1580 	amdgpu_bo_free_kernel(&adev->mman.fw_vram_usage_reserved_bo,
1581 		NULL, &adev->mman.fw_vram_usage_va);
1582 }
1583 
1584 /*
1585  * Driver Reservation functions
1586  */
1587 /**
1588  * amdgpu_ttm_drv_reserve_vram_fini - free drv reserved vram
1589  *
1590  * @adev: amdgpu_device pointer
1591  *
1592  * free drv reserved vram if it has been reserved.
1593  */
1594 static void amdgpu_ttm_drv_reserve_vram_fini(struct amdgpu_device *adev)
1595 {
1596 	amdgpu_bo_free_kernel(&adev->mman.drv_vram_usage_reserved_bo,
1597 						  NULL,
1598 						  &adev->mman.drv_vram_usage_va);
1599 }
1600 
1601 /**
1602  * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw
1603  *
1604  * @adev: amdgpu_device pointer
1605  *
1606  * create bo vram reservation from fw.
1607  */
1608 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev)
1609 {
1610 	uint64_t vram_size = adev->gmc.visible_vram_size;
1611 
1612 	adev->mman.fw_vram_usage_va = NULL;
1613 	adev->mman.fw_vram_usage_reserved_bo = NULL;
1614 
1615 	if (adev->mman.fw_vram_usage_size == 0 ||
1616 	    adev->mman.fw_vram_usage_size > vram_size)
1617 		return 0;
1618 
1619 	return amdgpu_bo_create_kernel_at(adev,
1620 					  adev->mman.fw_vram_usage_start_offset,
1621 					  adev->mman.fw_vram_usage_size,
1622 					  &adev->mman.fw_vram_usage_reserved_bo,
1623 					  &adev->mman.fw_vram_usage_va);
1624 }
1625 
1626 /**
1627  * amdgpu_ttm_drv_reserve_vram_init - create bo vram reservation from driver
1628  *
1629  * @adev: amdgpu_device pointer
1630  *
1631  * create bo vram reservation from drv.
1632  */
1633 static int amdgpu_ttm_drv_reserve_vram_init(struct amdgpu_device *adev)
1634 {
1635 	u64 vram_size = adev->gmc.visible_vram_size;
1636 
1637 	adev->mman.drv_vram_usage_va = NULL;
1638 	adev->mman.drv_vram_usage_reserved_bo = NULL;
1639 
1640 	if (adev->mman.drv_vram_usage_size == 0 ||
1641 	    adev->mman.drv_vram_usage_size > vram_size)
1642 		return 0;
1643 
1644 	return amdgpu_bo_create_kernel_at(adev,
1645 					  adev->mman.drv_vram_usage_start_offset,
1646 					  adev->mman.drv_vram_usage_size,
1647 					  &adev->mman.drv_vram_usage_reserved_bo,
1648 					  &adev->mman.drv_vram_usage_va);
1649 }
1650 
1651 /*
1652  * Memoy training reservation functions
1653  */
1654 
1655 /**
1656  * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram
1657  *
1658  * @adev: amdgpu_device pointer
1659  *
1660  * free memory training reserved vram if it has been reserved.
1661  */
1662 static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev)
1663 {
1664 	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1665 
1666 	ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT;
1667 	amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL);
1668 	ctx->c2p_bo = NULL;
1669 
1670 	return 0;
1671 }
1672 
1673 static void amdgpu_ttm_training_data_block_init(struct amdgpu_device *adev,
1674 						uint32_t reserve_size)
1675 {
1676 	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1677 
1678 	memset(ctx, 0, sizeof(*ctx));
1679 
1680 	ctx->c2p_train_data_offset =
1681 		ALIGN((adev->gmc.mc_vram_size - reserve_size - SZ_1M), SZ_1M);
1682 	ctx->p2c_train_data_offset =
1683 		(adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET);
1684 	ctx->train_data_size =
1685 		GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES;
1686 
1687 	DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n",
1688 			ctx->train_data_size,
1689 			ctx->p2c_train_data_offset,
1690 			ctx->c2p_train_data_offset);
1691 }
1692 
1693 /*
1694  * reserve TMR memory at the top of VRAM which holds
1695  * IP Discovery data and is protected by PSP.
1696  */
1697 static int amdgpu_ttm_reserve_tmr(struct amdgpu_device *adev)
1698 {
1699 	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1700 	bool mem_train_support = false;
1701 	uint32_t reserve_size = 0;
1702 	int ret;
1703 
1704 	if (adev->bios && !amdgpu_sriov_vf(adev)) {
1705 		if (amdgpu_atomfirmware_mem_training_supported(adev))
1706 			mem_train_support = true;
1707 		else
1708 			DRM_DEBUG("memory training does not support!\n");
1709 	}
1710 
1711 	/*
1712 	 * Query reserved tmr size through atom firmwareinfo for Sienna_Cichlid and onwards for all
1713 	 * the use cases (IP discovery/G6 memory training/profiling/diagnostic data.etc)
1714 	 *
1715 	 * Otherwise, fallback to legacy approach to check and reserve tmr block for ip
1716 	 * discovery data and G6 memory training data respectively
1717 	 */
1718 	if (adev->bios)
1719 		reserve_size =
1720 			amdgpu_atomfirmware_get_fw_reserved_fb_size(adev);
1721 
1722 	if (!adev->bios &&
1723 	    amdgpu_ip_version(adev, GC_HWIP, 0) == IP_VERSION(9, 4, 3))
1724 		reserve_size = max(reserve_size, (uint32_t)280 << 20);
1725 	else if (!reserve_size)
1726 		reserve_size = DISCOVERY_TMR_OFFSET;
1727 
1728 	if (mem_train_support) {
1729 		/* reserve vram for mem train according to TMR location */
1730 		amdgpu_ttm_training_data_block_init(adev, reserve_size);
1731 		ret = amdgpu_bo_create_kernel_at(adev,
1732 						 ctx->c2p_train_data_offset,
1733 						 ctx->train_data_size,
1734 						 &ctx->c2p_bo,
1735 						 NULL);
1736 		if (ret) {
1737 			DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret);
1738 			amdgpu_ttm_training_reserve_vram_fini(adev);
1739 			return ret;
1740 		}
1741 		ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS;
1742 	}
1743 
1744 	if (!adev->gmc.is_app_apu) {
1745 		ret = amdgpu_bo_create_kernel_at(
1746 			adev, adev->gmc.real_vram_size - reserve_size,
1747 			reserve_size, &adev->mman.fw_reserved_memory, NULL);
1748 		if (ret) {
1749 			DRM_ERROR("alloc tmr failed(%d)!\n", ret);
1750 			amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory,
1751 					      NULL, NULL);
1752 			return ret;
1753 		}
1754 	} else {
1755 		DRM_DEBUG_DRIVER("backdoor fw loading path for PSP TMR, no reservation needed\n");
1756 	}
1757 
1758 	return 0;
1759 }
1760 
1761 static int amdgpu_ttm_pools_init(struct amdgpu_device *adev)
1762 {
1763 	int i;
1764 
1765 	if (!adev->gmc.is_app_apu || !adev->gmc.num_mem_partitions)
1766 		return 0;
1767 
1768 	adev->mman.ttm_pools = kcalloc(adev->gmc.num_mem_partitions,
1769 				       sizeof(*adev->mman.ttm_pools),
1770 				       GFP_KERNEL);
1771 	if (!adev->mman.ttm_pools)
1772 		return -ENOMEM;
1773 
1774 	for (i = 0; i < adev->gmc.num_mem_partitions; i++) {
1775 		ttm_pool_init(&adev->mman.ttm_pools[i], adev->dev,
1776 			      adev->gmc.mem_partitions[i].numa.node,
1777 			      false, false);
1778 	}
1779 	return 0;
1780 }
1781 
1782 static void amdgpu_ttm_pools_fini(struct amdgpu_device *adev)
1783 {
1784 	int i;
1785 
1786 	if (!adev->gmc.is_app_apu || !adev->mman.ttm_pools)
1787 		return;
1788 
1789 	for (i = 0; i < adev->gmc.num_mem_partitions; i++)
1790 		ttm_pool_fini(&adev->mman.ttm_pools[i]);
1791 
1792 	kfree(adev->mman.ttm_pools);
1793 	adev->mman.ttm_pools = NULL;
1794 }
1795 
1796 /*
1797  * amdgpu_ttm_init - Init the memory management (ttm) as well as various
1798  * gtt/vram related fields.
1799  *
1800  * This initializes all of the memory space pools that the TTM layer
1801  * will need such as the GTT space (system memory mapped to the device),
1802  * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which
1803  * can be mapped per VMID.
1804  */
1805 int amdgpu_ttm_init(struct amdgpu_device *adev)
1806 {
1807 	uint64_t gtt_size;
1808 	int r;
1809 
1810 	mutex_init(&adev->mman.gtt_window_lock);
1811 
1812 	/* No others user of address space so set it to 0 */
1813 	r = ttm_device_init(&adev->mman.bdev, &amdgpu_bo_driver, adev->dev,
1814 			       adev_to_drm(adev)->anon_inode->i_mapping,
1815 			       adev_to_drm(adev)->vma_offset_manager,
1816 			       adev->need_swiotlb,
1817 			       dma_addressing_limited(adev->dev));
1818 	if (r) {
1819 		DRM_ERROR("failed initializing buffer object driver(%d).\n", r);
1820 		return r;
1821 	}
1822 
1823 	r = amdgpu_ttm_pools_init(adev);
1824 	if (r) {
1825 		DRM_ERROR("failed to init ttm pools(%d).\n", r);
1826 		return r;
1827 	}
1828 	adev->mman.initialized = true;
1829 
1830 	/* Initialize VRAM pool with all of VRAM divided into pages */
1831 	r = amdgpu_vram_mgr_init(adev);
1832 	if (r) {
1833 		DRM_ERROR("Failed initializing VRAM heap.\n");
1834 		return r;
1835 	}
1836 
1837 	/* Change the size here instead of the init above so only lpfn is affected */
1838 	amdgpu_ttm_set_buffer_funcs_status(adev, false);
1839 #ifdef CONFIG_64BIT
1840 #ifdef CONFIG_X86
1841 	if (adev->gmc.xgmi.connected_to_cpu)
1842 		adev->mman.aper_base_kaddr = ioremap_cache(adev->gmc.aper_base,
1843 				adev->gmc.visible_vram_size);
1844 
1845 	else if (adev->gmc.is_app_apu)
1846 		DRM_DEBUG_DRIVER(
1847 			"No need to ioremap when real vram size is 0\n");
1848 	else
1849 #endif
1850 		adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base,
1851 				adev->gmc.visible_vram_size);
1852 #endif
1853 
1854 	/*
1855 	 *The reserved vram for firmware must be pinned to the specified
1856 	 *place on the VRAM, so reserve it early.
1857 	 */
1858 	r = amdgpu_ttm_fw_reserve_vram_init(adev);
1859 	if (r)
1860 		return r;
1861 
1862 	/*
1863 	 *The reserved vram for driver must be pinned to the specified
1864 	 *place on the VRAM, so reserve it early.
1865 	 */
1866 	r = amdgpu_ttm_drv_reserve_vram_init(adev);
1867 	if (r)
1868 		return r;
1869 
1870 	/*
1871 	 * only NAVI10 and onwards ASIC support for IP discovery.
1872 	 * If IP discovery enabled, a block of memory should be
1873 	 * reserved for IP discovey.
1874 	 */
1875 	if (adev->mman.discovery_bin) {
1876 		r = amdgpu_ttm_reserve_tmr(adev);
1877 		if (r)
1878 			return r;
1879 	}
1880 
1881 	/* allocate memory as required for VGA
1882 	 * This is used for VGA emulation and pre-OS scanout buffers to
1883 	 * avoid display artifacts while transitioning between pre-OS
1884 	 * and driver.
1885 	 */
1886 	if (!adev->gmc.is_app_apu) {
1887 		r = amdgpu_bo_create_kernel_at(adev, 0,
1888 					       adev->mman.stolen_vga_size,
1889 					       &adev->mman.stolen_vga_memory,
1890 					       NULL);
1891 		if (r)
1892 			return r;
1893 
1894 		r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_vga_size,
1895 					       adev->mman.stolen_extended_size,
1896 					       &adev->mman.stolen_extended_memory,
1897 					       NULL);
1898 
1899 		if (r)
1900 			return r;
1901 
1902 		r = amdgpu_bo_create_kernel_at(adev,
1903 					       adev->mman.stolen_reserved_offset,
1904 					       adev->mman.stolen_reserved_size,
1905 					       &adev->mman.stolen_reserved_memory,
1906 					       NULL);
1907 		if (r)
1908 			return r;
1909 	} else {
1910 		DRM_DEBUG_DRIVER("Skipped stolen memory reservation\n");
1911 	}
1912 
1913 	DRM_INFO("amdgpu: %uM of VRAM memory ready\n",
1914 		 (unsigned int)(adev->gmc.real_vram_size / (1024 * 1024)));
1915 
1916 	/* Compute GTT size, either based on TTM limit
1917 	 * or whatever the user passed on module init.
1918 	 */
1919 	if (amdgpu_gtt_size == -1)
1920 		gtt_size = ttm_tt_pages_limit() << PAGE_SHIFT;
1921 	else
1922 		gtt_size = (uint64_t)amdgpu_gtt_size << 20;
1923 
1924 	/* Initialize GTT memory pool */
1925 	r = amdgpu_gtt_mgr_init(adev, gtt_size);
1926 	if (r) {
1927 		DRM_ERROR("Failed initializing GTT heap.\n");
1928 		return r;
1929 	}
1930 	DRM_INFO("amdgpu: %uM of GTT memory ready.\n",
1931 		 (unsigned int)(gtt_size / (1024 * 1024)));
1932 
1933 	/* Initiailize doorbell pool on PCI BAR */
1934 	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_DOORBELL, adev->doorbell.size / PAGE_SIZE);
1935 	if (r) {
1936 		DRM_ERROR("Failed initializing doorbell heap.\n");
1937 		return r;
1938 	}
1939 
1940 	/* Create a boorbell page for kernel usages */
1941 	r = amdgpu_doorbell_create_kernel_doorbells(adev);
1942 	if (r) {
1943 		DRM_ERROR("Failed to initialize kernel doorbells.\n");
1944 		return r;
1945 	}
1946 
1947 	/* Initialize preemptible memory pool */
1948 	r = amdgpu_preempt_mgr_init(adev);
1949 	if (r) {
1950 		DRM_ERROR("Failed initializing PREEMPT heap.\n");
1951 		return r;
1952 	}
1953 
1954 	/* Initialize various on-chip memory pools */
1955 	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GDS, adev->gds.gds_size);
1956 	if (r) {
1957 		DRM_ERROR("Failed initializing GDS heap.\n");
1958 		return r;
1959 	}
1960 
1961 	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GWS, adev->gds.gws_size);
1962 	if (r) {
1963 		DRM_ERROR("Failed initializing gws heap.\n");
1964 		return r;
1965 	}
1966 
1967 	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_OA, adev->gds.oa_size);
1968 	if (r) {
1969 		DRM_ERROR("Failed initializing oa heap.\n");
1970 		return r;
1971 	}
1972 	if (amdgpu_bo_create_kernel(adev, PAGE_SIZE, PAGE_SIZE,
1973 				AMDGPU_GEM_DOMAIN_GTT,
1974 				&adev->mman.sdma_access_bo, NULL,
1975 				&adev->mman.sdma_access_ptr))
1976 		DRM_WARN("Debug VRAM access will use slowpath MM access\n");
1977 
1978 	return 0;
1979 }
1980 
1981 /*
1982  * amdgpu_ttm_fini - De-initialize the TTM memory pools
1983  */
1984 void amdgpu_ttm_fini(struct amdgpu_device *adev)
1985 {
1986 	int idx;
1987 
1988 	if (!adev->mman.initialized)
1989 		return;
1990 
1991 	amdgpu_ttm_pools_fini(adev);
1992 
1993 	amdgpu_ttm_training_reserve_vram_fini(adev);
1994 	/* return the stolen vga memory back to VRAM */
1995 	if (!adev->gmc.is_app_apu) {
1996 		amdgpu_bo_free_kernel(&adev->mman.stolen_vga_memory, NULL, NULL);
1997 		amdgpu_bo_free_kernel(&adev->mman.stolen_extended_memory, NULL, NULL);
1998 		/* return the FW reserved memory back to VRAM */
1999 		amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory, NULL,
2000 				      NULL);
2001 		if (adev->mman.stolen_reserved_size)
2002 			amdgpu_bo_free_kernel(&adev->mman.stolen_reserved_memory,
2003 					      NULL, NULL);
2004 	}
2005 	amdgpu_bo_free_kernel(&adev->mman.sdma_access_bo, NULL,
2006 					&adev->mman.sdma_access_ptr);
2007 	amdgpu_ttm_fw_reserve_vram_fini(adev);
2008 	amdgpu_ttm_drv_reserve_vram_fini(adev);
2009 
2010 	if (drm_dev_enter(adev_to_drm(adev), &idx)) {
2011 
2012 		if (adev->mman.aper_base_kaddr)
2013 			iounmap(adev->mman.aper_base_kaddr);
2014 		adev->mman.aper_base_kaddr = NULL;
2015 
2016 		drm_dev_exit(idx);
2017 	}
2018 
2019 	amdgpu_vram_mgr_fini(adev);
2020 	amdgpu_gtt_mgr_fini(adev);
2021 	amdgpu_preempt_mgr_fini(adev);
2022 	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GDS);
2023 	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GWS);
2024 	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_OA);
2025 	ttm_device_fini(&adev->mman.bdev);
2026 	adev->mman.initialized = false;
2027 	DRM_INFO("amdgpu: ttm finalized\n");
2028 }
2029 
2030 /**
2031  * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions
2032  *
2033  * @adev: amdgpu_device pointer
2034  * @enable: true when we can use buffer functions.
2035  *
2036  * Enable/disable use of buffer functions during suspend/resume. This should
2037  * only be called at bootup or when userspace isn't running.
2038  */
2039 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable)
2040 {
2041 	struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, TTM_PL_VRAM);
2042 	uint64_t size;
2043 	int r;
2044 
2045 	if (!adev->mman.initialized || amdgpu_in_reset(adev) ||
2046 	    adev->mman.buffer_funcs_enabled == enable || adev->gmc.is_app_apu)
2047 		return;
2048 
2049 	if (enable) {
2050 		struct amdgpu_ring *ring;
2051 		struct drm_gpu_scheduler *sched;
2052 
2053 		ring = adev->mman.buffer_funcs_ring;
2054 		sched = &ring->sched;
2055 		r = drm_sched_entity_init(&adev->mman.high_pr,
2056 					  DRM_SCHED_PRIORITY_KERNEL, &sched,
2057 					  1, NULL);
2058 		if (r) {
2059 			DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
2060 				  r);
2061 			return;
2062 		}
2063 
2064 		r = drm_sched_entity_init(&adev->mman.low_pr,
2065 					  DRM_SCHED_PRIORITY_NORMAL, &sched,
2066 					  1, NULL);
2067 		if (r) {
2068 			DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
2069 				  r);
2070 			goto error_free_entity;
2071 		}
2072 	} else {
2073 		drm_sched_entity_destroy(&adev->mman.high_pr);
2074 		drm_sched_entity_destroy(&adev->mman.low_pr);
2075 		dma_fence_put(man->move);
2076 		man->move = NULL;
2077 	}
2078 
2079 	/* this just adjusts TTM size idea, which sets lpfn to the correct value */
2080 	if (enable)
2081 		size = adev->gmc.real_vram_size;
2082 	else
2083 		size = adev->gmc.visible_vram_size;
2084 	man->size = size;
2085 	adev->mman.buffer_funcs_enabled = enable;
2086 
2087 	return;
2088 
2089 error_free_entity:
2090 	drm_sched_entity_destroy(&adev->mman.high_pr);
2091 }
2092 
2093 static int amdgpu_ttm_prepare_job(struct amdgpu_device *adev,
2094 				  bool direct_submit,
2095 				  unsigned int num_dw,
2096 				  struct dma_resv *resv,
2097 				  bool vm_needs_flush,
2098 				  struct amdgpu_job **job,
2099 				  bool delayed)
2100 {
2101 	enum amdgpu_ib_pool_type pool = direct_submit ?
2102 		AMDGPU_IB_POOL_DIRECT :
2103 		AMDGPU_IB_POOL_DELAYED;
2104 	int r;
2105 	struct drm_sched_entity *entity = delayed ? &adev->mman.low_pr :
2106 						    &adev->mman.high_pr;
2107 	r = amdgpu_job_alloc_with_ib(adev, entity,
2108 				     AMDGPU_FENCE_OWNER_UNDEFINED,
2109 				     num_dw * 4, pool, job);
2110 	if (r)
2111 		return r;
2112 
2113 	if (vm_needs_flush) {
2114 		(*job)->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gmc.pdb0_bo ?
2115 							adev->gmc.pdb0_bo :
2116 							adev->gart.bo);
2117 		(*job)->vm_needs_flush = true;
2118 	}
2119 	if (!resv)
2120 		return 0;
2121 
2122 	return drm_sched_job_add_resv_dependencies(&(*job)->base, resv,
2123 						   DMA_RESV_USAGE_BOOKKEEP);
2124 }
2125 
2126 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset,
2127 		       uint64_t dst_offset, uint32_t byte_count,
2128 		       struct dma_resv *resv,
2129 		       struct dma_fence **fence, bool direct_submit,
2130 		       bool vm_needs_flush, bool tmz)
2131 {
2132 	struct amdgpu_device *adev = ring->adev;
2133 	unsigned int num_loops, num_dw;
2134 	struct amdgpu_job *job;
2135 	uint32_t max_bytes;
2136 	unsigned int i;
2137 	int r;
2138 
2139 	if (!direct_submit && !ring->sched.ready) {
2140 		DRM_ERROR("Trying to move memory with ring turned off.\n");
2141 		return -EINVAL;
2142 	}
2143 
2144 	max_bytes = adev->mman.buffer_funcs->copy_max_bytes;
2145 	num_loops = DIV_ROUND_UP(byte_count, max_bytes);
2146 	num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8);
2147 	r = amdgpu_ttm_prepare_job(adev, direct_submit, num_dw,
2148 				   resv, vm_needs_flush, &job, false);
2149 	if (r)
2150 		return r;
2151 
2152 	for (i = 0; i < num_loops; i++) {
2153 		uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
2154 
2155 		amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset,
2156 					dst_offset, cur_size_in_bytes, tmz);
2157 
2158 		src_offset += cur_size_in_bytes;
2159 		dst_offset += cur_size_in_bytes;
2160 		byte_count -= cur_size_in_bytes;
2161 	}
2162 
2163 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2164 	WARN_ON(job->ibs[0].length_dw > num_dw);
2165 	if (direct_submit)
2166 		r = amdgpu_job_submit_direct(job, ring, fence);
2167 	else
2168 		*fence = amdgpu_job_submit(job);
2169 	if (r)
2170 		goto error_free;
2171 
2172 	return r;
2173 
2174 error_free:
2175 	amdgpu_job_free(job);
2176 	DRM_ERROR("Error scheduling IBs (%d)\n", r);
2177 	return r;
2178 }
2179 
2180 static int amdgpu_ttm_fill_mem(struct amdgpu_ring *ring, uint32_t src_data,
2181 			       uint64_t dst_addr, uint32_t byte_count,
2182 			       struct dma_resv *resv,
2183 			       struct dma_fence **fence,
2184 			       bool vm_needs_flush, bool delayed)
2185 {
2186 	struct amdgpu_device *adev = ring->adev;
2187 	unsigned int num_loops, num_dw;
2188 	struct amdgpu_job *job;
2189 	uint32_t max_bytes;
2190 	unsigned int i;
2191 	int r;
2192 
2193 	max_bytes = adev->mman.buffer_funcs->fill_max_bytes;
2194 	num_loops = DIV_ROUND_UP_ULL(byte_count, max_bytes);
2195 	num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->fill_num_dw, 8);
2196 	r = amdgpu_ttm_prepare_job(adev, false, num_dw, resv, vm_needs_flush,
2197 				   &job, delayed);
2198 	if (r)
2199 		return r;
2200 
2201 	for (i = 0; i < num_loops; i++) {
2202 		uint32_t cur_size = min(byte_count, max_bytes);
2203 
2204 		amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data, dst_addr,
2205 					cur_size);
2206 
2207 		dst_addr += cur_size;
2208 		byte_count -= cur_size;
2209 	}
2210 
2211 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2212 	WARN_ON(job->ibs[0].length_dw > num_dw);
2213 	*fence = amdgpu_job_submit(job);
2214 	return 0;
2215 }
2216 
2217 int amdgpu_fill_buffer(struct amdgpu_bo *bo,
2218 			uint32_t src_data,
2219 			struct dma_resv *resv,
2220 			struct dma_fence **f,
2221 			bool delayed)
2222 {
2223 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
2224 	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
2225 	struct dma_fence *fence = NULL;
2226 	struct amdgpu_res_cursor dst;
2227 	int r;
2228 
2229 	if (!adev->mman.buffer_funcs_enabled) {
2230 		DRM_ERROR("Trying to clear memory with ring turned off.\n");
2231 		return -EINVAL;
2232 	}
2233 
2234 	amdgpu_res_first(bo->tbo.resource, 0, amdgpu_bo_size(bo), &dst);
2235 
2236 	mutex_lock(&adev->mman.gtt_window_lock);
2237 	while (dst.remaining) {
2238 		struct dma_fence *next;
2239 		uint64_t cur_size, to;
2240 
2241 		/* Never fill more than 256MiB at once to avoid timeouts */
2242 		cur_size = min(dst.size, 256ULL << 20);
2243 
2244 		r = amdgpu_ttm_map_buffer(&bo->tbo, bo->tbo.resource, &dst,
2245 					  1, ring, false, &cur_size, &to);
2246 		if (r)
2247 			goto error;
2248 
2249 		r = amdgpu_ttm_fill_mem(ring, src_data, to, cur_size, resv,
2250 					&next, true, delayed);
2251 		if (r)
2252 			goto error;
2253 
2254 		dma_fence_put(fence);
2255 		fence = next;
2256 
2257 		amdgpu_res_next(&dst, cur_size);
2258 	}
2259 error:
2260 	mutex_unlock(&adev->mman.gtt_window_lock);
2261 	if (f)
2262 		*f = dma_fence_get(fence);
2263 	dma_fence_put(fence);
2264 	return r;
2265 }
2266 
2267 /**
2268  * amdgpu_ttm_evict_resources - evict memory buffers
2269  * @adev: amdgpu device object
2270  * @mem_type: evicted BO's memory type
2271  *
2272  * Evicts all @mem_type buffers on the lru list of the memory type.
2273  *
2274  * Returns:
2275  * 0 for success or a negative error code on failure.
2276  */
2277 int amdgpu_ttm_evict_resources(struct amdgpu_device *adev, int mem_type)
2278 {
2279 	struct ttm_resource_manager *man;
2280 
2281 	switch (mem_type) {
2282 	case TTM_PL_VRAM:
2283 	case TTM_PL_TT:
2284 	case AMDGPU_PL_GWS:
2285 	case AMDGPU_PL_GDS:
2286 	case AMDGPU_PL_OA:
2287 		man = ttm_manager_type(&adev->mman.bdev, mem_type);
2288 		break;
2289 	default:
2290 		DRM_ERROR("Trying to evict invalid memory type\n");
2291 		return -EINVAL;
2292 	}
2293 
2294 	return ttm_resource_manager_evict_all(&adev->mman.bdev, man);
2295 }
2296 
2297 #if defined(CONFIG_DEBUG_FS)
2298 
2299 static int amdgpu_ttm_page_pool_show(struct seq_file *m, void *unused)
2300 {
2301 	struct amdgpu_device *adev = m->private;
2302 
2303 	return ttm_pool_debugfs(&adev->mman.bdev.pool, m);
2304 }
2305 
2306 DEFINE_SHOW_ATTRIBUTE(amdgpu_ttm_page_pool);
2307 
2308 /*
2309  * amdgpu_ttm_vram_read - Linear read access to VRAM
2310  *
2311  * Accesses VRAM via MMIO for debugging purposes.
2312  */
2313 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf,
2314 				    size_t size, loff_t *pos)
2315 {
2316 	struct amdgpu_device *adev = file_inode(f)->i_private;
2317 	ssize_t result = 0;
2318 
2319 	if (size & 0x3 || *pos & 0x3)
2320 		return -EINVAL;
2321 
2322 	if (*pos >= adev->gmc.mc_vram_size)
2323 		return -ENXIO;
2324 
2325 	size = min(size, (size_t)(adev->gmc.mc_vram_size - *pos));
2326 	while (size) {
2327 		size_t bytes = min(size, AMDGPU_TTM_VRAM_MAX_DW_READ * 4);
2328 		uint32_t value[AMDGPU_TTM_VRAM_MAX_DW_READ];
2329 
2330 		amdgpu_device_vram_access(adev, *pos, value, bytes, false);
2331 		if (copy_to_user(buf, value, bytes))
2332 			return -EFAULT;
2333 
2334 		result += bytes;
2335 		buf += bytes;
2336 		*pos += bytes;
2337 		size -= bytes;
2338 	}
2339 
2340 	return result;
2341 }
2342 
2343 /*
2344  * amdgpu_ttm_vram_write - Linear write access to VRAM
2345  *
2346  * Accesses VRAM via MMIO for debugging purposes.
2347  */
2348 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf,
2349 				    size_t size, loff_t *pos)
2350 {
2351 	struct amdgpu_device *adev = file_inode(f)->i_private;
2352 	ssize_t result = 0;
2353 	int r;
2354 
2355 	if (size & 0x3 || *pos & 0x3)
2356 		return -EINVAL;
2357 
2358 	if (*pos >= adev->gmc.mc_vram_size)
2359 		return -ENXIO;
2360 
2361 	while (size) {
2362 		uint32_t value;
2363 
2364 		if (*pos >= adev->gmc.mc_vram_size)
2365 			return result;
2366 
2367 		r = get_user(value, (uint32_t *)buf);
2368 		if (r)
2369 			return r;
2370 
2371 		amdgpu_device_mm_access(adev, *pos, &value, 4, true);
2372 
2373 		result += 4;
2374 		buf += 4;
2375 		*pos += 4;
2376 		size -= 4;
2377 	}
2378 
2379 	return result;
2380 }
2381 
2382 static const struct file_operations amdgpu_ttm_vram_fops = {
2383 	.owner = THIS_MODULE,
2384 	.read = amdgpu_ttm_vram_read,
2385 	.write = amdgpu_ttm_vram_write,
2386 	.llseek = default_llseek,
2387 };
2388 
2389 /*
2390  * amdgpu_iomem_read - Virtual read access to GPU mapped memory
2391  *
2392  * This function is used to read memory that has been mapped to the
2393  * GPU and the known addresses are not physical addresses but instead
2394  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2395  */
2396 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf,
2397 				 size_t size, loff_t *pos)
2398 {
2399 	struct amdgpu_device *adev = file_inode(f)->i_private;
2400 	struct iommu_domain *dom;
2401 	ssize_t result = 0;
2402 	int r;
2403 
2404 	/* retrieve the IOMMU domain if any for this device */
2405 	dom = iommu_get_domain_for_dev(adev->dev);
2406 
2407 	while (size) {
2408 		phys_addr_t addr = *pos & PAGE_MASK;
2409 		loff_t off = *pos & ~PAGE_MASK;
2410 		size_t bytes = PAGE_SIZE - off;
2411 		unsigned long pfn;
2412 		struct page *p;
2413 		void *ptr;
2414 
2415 		bytes = min(bytes, size);
2416 
2417 		/* Translate the bus address to a physical address.  If
2418 		 * the domain is NULL it means there is no IOMMU active
2419 		 * and the address translation is the identity
2420 		 */
2421 		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2422 
2423 		pfn = addr >> PAGE_SHIFT;
2424 		if (!pfn_valid(pfn))
2425 			return -EPERM;
2426 
2427 		p = pfn_to_page(pfn);
2428 		if (p->mapping != adev->mman.bdev.dev_mapping)
2429 			return -EPERM;
2430 
2431 		ptr = kmap_local_page(p);
2432 		r = copy_to_user(buf, ptr + off, bytes);
2433 		kunmap_local(ptr);
2434 		if (r)
2435 			return -EFAULT;
2436 
2437 		size -= bytes;
2438 		*pos += bytes;
2439 		result += bytes;
2440 	}
2441 
2442 	return result;
2443 }
2444 
2445 /*
2446  * amdgpu_iomem_write - Virtual write access to GPU mapped memory
2447  *
2448  * This function is used to write memory that has been mapped to the
2449  * GPU and the known addresses are not physical addresses but instead
2450  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2451  */
2452 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf,
2453 				 size_t size, loff_t *pos)
2454 {
2455 	struct amdgpu_device *adev = file_inode(f)->i_private;
2456 	struct iommu_domain *dom;
2457 	ssize_t result = 0;
2458 	int r;
2459 
2460 	dom = iommu_get_domain_for_dev(adev->dev);
2461 
2462 	while (size) {
2463 		phys_addr_t addr = *pos & PAGE_MASK;
2464 		loff_t off = *pos & ~PAGE_MASK;
2465 		size_t bytes = PAGE_SIZE - off;
2466 		unsigned long pfn;
2467 		struct page *p;
2468 		void *ptr;
2469 
2470 		bytes = min(bytes, size);
2471 
2472 		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2473 
2474 		pfn = addr >> PAGE_SHIFT;
2475 		if (!pfn_valid(pfn))
2476 			return -EPERM;
2477 
2478 		p = pfn_to_page(pfn);
2479 		if (p->mapping != adev->mman.bdev.dev_mapping)
2480 			return -EPERM;
2481 
2482 		ptr = kmap_local_page(p);
2483 		r = copy_from_user(ptr + off, buf, bytes);
2484 		kunmap_local(ptr);
2485 		if (r)
2486 			return -EFAULT;
2487 
2488 		size -= bytes;
2489 		*pos += bytes;
2490 		result += bytes;
2491 	}
2492 
2493 	return result;
2494 }
2495 
2496 static const struct file_operations amdgpu_ttm_iomem_fops = {
2497 	.owner = THIS_MODULE,
2498 	.read = amdgpu_iomem_read,
2499 	.write = amdgpu_iomem_write,
2500 	.llseek = default_llseek
2501 };
2502 
2503 #endif
2504 
2505 void amdgpu_ttm_debugfs_init(struct amdgpu_device *adev)
2506 {
2507 #if defined(CONFIG_DEBUG_FS)
2508 	struct drm_minor *minor = adev_to_drm(adev)->primary;
2509 	struct dentry *root = minor->debugfs_root;
2510 
2511 	debugfs_create_file_size("amdgpu_vram", 0444, root, adev,
2512 				 &amdgpu_ttm_vram_fops, adev->gmc.mc_vram_size);
2513 	debugfs_create_file("amdgpu_iomem", 0444, root, adev,
2514 			    &amdgpu_ttm_iomem_fops);
2515 	debugfs_create_file("ttm_page_pool", 0444, root, adev,
2516 			    &amdgpu_ttm_page_pool_fops);
2517 	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2518 							     TTM_PL_VRAM),
2519 					    root, "amdgpu_vram_mm");
2520 	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2521 							     TTM_PL_TT),
2522 					    root, "amdgpu_gtt_mm");
2523 	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2524 							     AMDGPU_PL_GDS),
2525 					    root, "amdgpu_gds_mm");
2526 	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2527 							     AMDGPU_PL_GWS),
2528 					    root, "amdgpu_gws_mm");
2529 	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2530 							     AMDGPU_PL_OA),
2531 					    root, "amdgpu_oa_mm");
2532 
2533 #endif
2534 }
2535